2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include <linux/sched/mm.h>
25 #include "ordered-data.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "dev-replace.h"
30 #include "check-integrity.h"
31 #include "rcu-string.h"
35 * This is only the first step towards a full-features scrub. It reads all
36 * extent and super block and verifies the checksums. In case a bad checksum
37 * is found or the extent cannot be read, good data will be written back if
40 * Future enhancements:
41 * - In case an unrepairable extent is encountered, track which files are
42 * affected and report them
43 * - track and record media errors, throw out bad devices
44 * - add a mode to also read unallocated space
51 * the following three values only influence the performance.
52 * The last one configures the number of parallel and outstanding I/O
53 * operations. The first two values configure an upper limit for the number
54 * of (dynamically allocated) pages that are added to a bio.
56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
61 * the following value times PAGE_SIZE needs to be large enough to match the
62 * largest node/leaf/sector size that shall be supported.
63 * Values larger than BTRFS_STRIPE_LEN are not supported.
65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_recover
{
69 struct btrfs_bio
*bbio
;
74 struct scrub_block
*sblock
;
76 struct btrfs_device
*dev
;
77 struct list_head list
;
78 u64 flags
; /* extent flags */
82 u64 physical_for_dev_replace
;
85 unsigned int mirror_num
:8;
86 unsigned int have_csum
:1;
87 unsigned int io_error
:1;
89 u8 csum
[BTRFS_CSUM_SIZE
];
91 struct scrub_recover
*recover
;
96 struct scrub_ctx
*sctx
;
97 struct btrfs_device
*dev
;
102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
105 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
109 struct btrfs_work work
;
113 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
115 atomic_t outstanding_pages
;
116 refcount_t refs
; /* free mem on transition to zero */
117 struct scrub_ctx
*sctx
;
118 struct scrub_parity
*sparity
;
120 unsigned int header_error
:1;
121 unsigned int checksum_error
:1;
122 unsigned int no_io_error_seen
:1;
123 unsigned int generation_error
:1; /* also sets header_error */
125 /* The following is for the data used to check parity */
126 /* It is for the data with checksum */
127 unsigned int data_corrected
:1;
129 struct btrfs_work work
;
132 /* Used for the chunks with parity stripe such RAID5/6 */
133 struct scrub_parity
{
134 struct scrub_ctx
*sctx
;
136 struct btrfs_device
*scrub_dev
;
148 struct list_head spages
;
150 /* Work of parity check and repair */
151 struct btrfs_work work
;
153 /* Mark the parity blocks which have data */
154 unsigned long *dbitmap
;
157 * Mark the parity blocks which have data, but errors happen when
158 * read data or check data
160 unsigned long *ebitmap
;
162 unsigned long bitmap
[0];
166 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
167 struct btrfs_fs_info
*fs_info
;
170 atomic_t bios_in_flight
;
171 atomic_t workers_pending
;
172 spinlock_t list_lock
;
173 wait_queue_head_t list_wait
;
175 struct list_head csum_list
;
178 int pages_per_rd_bio
;
182 struct scrub_bio
*wr_curr_bio
;
183 struct mutex wr_lock
;
184 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
185 struct btrfs_device
*wr_tgtdev
;
186 bool flush_all_writes
;
191 struct btrfs_scrub_progress stat
;
192 spinlock_t stat_lock
;
195 * Use a ref counter to avoid use-after-free issues. Scrub workers
196 * decrement bios_in_flight and workers_pending and then do a wakeup
197 * on the list_wait wait queue. We must ensure the main scrub task
198 * doesn't free the scrub context before or while the workers are
199 * doing the wakeup() call.
204 struct scrub_fixup_nodatasum
{
205 struct scrub_ctx
*sctx
;
206 struct btrfs_device
*dev
;
208 struct btrfs_root
*root
;
209 struct btrfs_work work
;
213 struct scrub_nocow_inode
{
217 struct list_head list
;
220 struct scrub_copy_nocow_ctx
{
221 struct scrub_ctx
*sctx
;
225 u64 physical_for_dev_replace
;
226 struct list_head inodes
;
227 struct btrfs_work work
;
230 struct scrub_warning
{
231 struct btrfs_path
*path
;
232 u64 extent_item_size
;
236 struct btrfs_device
*dev
;
239 struct full_stripe_lock
{
246 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
247 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
248 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
249 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
250 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
251 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
252 struct scrub_block
*sblocks_for_recheck
);
253 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
254 struct scrub_block
*sblock
,
255 int retry_failed_mirror
);
256 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
257 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
258 struct scrub_block
*sblock_good
);
259 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
260 struct scrub_block
*sblock_good
,
261 int page_num
, int force_write
);
262 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
263 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
265 static int scrub_checksum_data(struct scrub_block
*sblock
);
266 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
267 static int scrub_checksum_super(struct scrub_block
*sblock
);
268 static void scrub_block_get(struct scrub_block
*sblock
);
269 static void scrub_block_put(struct scrub_block
*sblock
);
270 static void scrub_page_get(struct scrub_page
*spage
);
271 static void scrub_page_put(struct scrub_page
*spage
);
272 static void scrub_parity_get(struct scrub_parity
*sparity
);
273 static void scrub_parity_put(struct scrub_parity
*sparity
);
274 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
275 struct scrub_page
*spage
);
276 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
277 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
278 u64 gen
, int mirror_num
, u8
*csum
, int force
,
279 u64 physical_for_dev_replace
);
280 static void scrub_bio_end_io(struct bio
*bio
);
281 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
282 static void scrub_block_complete(struct scrub_block
*sblock
);
283 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
284 u64 extent_logical
, u64 extent_len
,
285 u64
*extent_physical
,
286 struct btrfs_device
**extent_dev
,
287 int *extent_mirror_num
);
288 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
289 struct scrub_page
*spage
);
290 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
291 static void scrub_wr_bio_end_io(struct bio
*bio
);
292 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
293 static int write_page_nocow(struct scrub_ctx
*sctx
,
294 u64 physical_for_dev_replace
, struct page
*page
);
295 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
296 struct scrub_copy_nocow_ctx
*ctx
);
297 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
298 int mirror_num
, u64 physical_for_dev_replace
);
299 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
300 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
302 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
304 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
306 return page
->recover
&&
307 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
310 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
312 refcount_inc(&sctx
->refs
);
313 atomic_inc(&sctx
->bios_in_flight
);
316 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
318 atomic_dec(&sctx
->bios_in_flight
);
319 wake_up(&sctx
->list_wait
);
323 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
325 while (atomic_read(&fs_info
->scrub_pause_req
)) {
326 mutex_unlock(&fs_info
->scrub_lock
);
327 wait_event(fs_info
->scrub_pause_wait
,
328 atomic_read(&fs_info
->scrub_pause_req
) == 0);
329 mutex_lock(&fs_info
->scrub_lock
);
333 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
335 atomic_inc(&fs_info
->scrubs_paused
);
336 wake_up(&fs_info
->scrub_pause_wait
);
339 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
341 mutex_lock(&fs_info
->scrub_lock
);
342 __scrub_blocked_if_needed(fs_info
);
343 atomic_dec(&fs_info
->scrubs_paused
);
344 mutex_unlock(&fs_info
->scrub_lock
);
346 wake_up(&fs_info
->scrub_pause_wait
);
349 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
351 scrub_pause_on(fs_info
);
352 scrub_pause_off(fs_info
);
356 * Insert new full stripe lock into full stripe locks tree
358 * Return pointer to existing or newly inserted full_stripe_lock structure if
359 * everything works well.
360 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
362 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
365 static struct full_stripe_lock
*insert_full_stripe_lock(
366 struct btrfs_full_stripe_locks_tree
*locks_root
,
370 struct rb_node
*parent
= NULL
;
371 struct full_stripe_lock
*entry
;
372 struct full_stripe_lock
*ret
;
374 WARN_ON(!mutex_is_locked(&locks_root
->lock
));
376 p
= &locks_root
->root
.rb_node
;
379 entry
= rb_entry(parent
, struct full_stripe_lock
, node
);
380 if (fstripe_logical
< entry
->logical
) {
382 } else if (fstripe_logical
> entry
->logical
) {
390 /* Insert new lock */
391 ret
= kmalloc(sizeof(*ret
), GFP_KERNEL
);
393 return ERR_PTR(-ENOMEM
);
394 ret
->logical
= fstripe_logical
;
396 mutex_init(&ret
->mutex
);
398 rb_link_node(&ret
->node
, parent
, p
);
399 rb_insert_color(&ret
->node
, &locks_root
->root
);
404 * Search for a full stripe lock of a block group
406 * Return pointer to existing full stripe lock if found
407 * Return NULL if not found
409 static struct full_stripe_lock
*search_full_stripe_lock(
410 struct btrfs_full_stripe_locks_tree
*locks_root
,
413 struct rb_node
*node
;
414 struct full_stripe_lock
*entry
;
416 WARN_ON(!mutex_is_locked(&locks_root
->lock
));
418 node
= locks_root
->root
.rb_node
;
420 entry
= rb_entry(node
, struct full_stripe_lock
, node
);
421 if (fstripe_logical
< entry
->logical
)
422 node
= node
->rb_left
;
423 else if (fstripe_logical
> entry
->logical
)
424 node
= node
->rb_right
;
432 * Helper to get full stripe logical from a normal bytenr.
434 * Caller must ensure @cache is a RAID56 block group.
436 static u64
get_full_stripe_logical(struct btrfs_block_group_cache
*cache
,
442 * Due to chunk item size limit, full stripe length should not be
443 * larger than U32_MAX. Just a sanity check here.
445 WARN_ON_ONCE(cache
->full_stripe_len
>= U32_MAX
);
448 * round_down() can only handle power of 2, while RAID56 full
449 * stripe length can be 64KiB * n, so we need to manually round down.
451 ret
= div64_u64(bytenr
- cache
->key
.objectid
, cache
->full_stripe_len
) *
452 cache
->full_stripe_len
+ cache
->key
.objectid
;
457 * Lock a full stripe to avoid concurrency of recovery and read
459 * It's only used for profiles with parities (RAID5/6), for other profiles it
462 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
463 * So caller must call unlock_full_stripe() at the same context.
465 * Return <0 if encounters error.
467 static int lock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
470 struct btrfs_block_group_cache
*bg_cache
;
471 struct btrfs_full_stripe_locks_tree
*locks_root
;
472 struct full_stripe_lock
*existing
;
477 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
483 /* Profiles not based on parity don't need full stripe lock */
484 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
486 locks_root
= &bg_cache
->full_stripe_locks_root
;
488 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
490 /* Now insert the full stripe lock */
491 mutex_lock(&locks_root
->lock
);
492 existing
= insert_full_stripe_lock(locks_root
, fstripe_start
);
493 mutex_unlock(&locks_root
->lock
);
494 if (IS_ERR(existing
)) {
495 ret
= PTR_ERR(existing
);
498 mutex_lock(&existing
->mutex
);
501 btrfs_put_block_group(bg_cache
);
506 * Unlock a full stripe.
508 * NOTE: Caller must ensure it's the same context calling corresponding
509 * lock_full_stripe().
511 * Return 0 if we unlock full stripe without problem.
512 * Return <0 for error
514 static int unlock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
517 struct btrfs_block_group_cache
*bg_cache
;
518 struct btrfs_full_stripe_locks_tree
*locks_root
;
519 struct full_stripe_lock
*fstripe_lock
;
524 /* If we didn't acquire full stripe lock, no need to continue */
528 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
533 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
536 locks_root
= &bg_cache
->full_stripe_locks_root
;
537 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
539 mutex_lock(&locks_root
->lock
);
540 fstripe_lock
= search_full_stripe_lock(locks_root
, fstripe_start
);
541 /* Unpaired unlock_full_stripe() detected */
545 mutex_unlock(&locks_root
->lock
);
549 if (fstripe_lock
->refs
== 0) {
551 btrfs_warn(fs_info
, "full stripe lock at %llu refcount underflow",
552 fstripe_lock
->logical
);
554 fstripe_lock
->refs
--;
557 if (fstripe_lock
->refs
== 0) {
558 rb_erase(&fstripe_lock
->node
, &locks_root
->root
);
561 mutex_unlock(&locks_root
->lock
);
563 mutex_unlock(&fstripe_lock
->mutex
);
567 btrfs_put_block_group(bg_cache
);
572 * used for workers that require transaction commits (i.e., for the
575 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
577 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
579 refcount_inc(&sctx
->refs
);
581 * increment scrubs_running to prevent cancel requests from
582 * completing as long as a worker is running. we must also
583 * increment scrubs_paused to prevent deadlocking on pause
584 * requests used for transactions commits (as the worker uses a
585 * transaction context). it is safe to regard the worker
586 * as paused for all matters practical. effectively, we only
587 * avoid cancellation requests from completing.
589 mutex_lock(&fs_info
->scrub_lock
);
590 atomic_inc(&fs_info
->scrubs_running
);
591 atomic_inc(&fs_info
->scrubs_paused
);
592 mutex_unlock(&fs_info
->scrub_lock
);
595 * check if @scrubs_running=@scrubs_paused condition
596 * inside wait_event() is not an atomic operation.
597 * which means we may inc/dec @scrub_running/paused
598 * at any time. Let's wake up @scrub_pause_wait as
599 * much as we can to let commit transaction blocked less.
601 wake_up(&fs_info
->scrub_pause_wait
);
603 atomic_inc(&sctx
->workers_pending
);
606 /* used for workers that require transaction commits */
607 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
609 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
612 * see scrub_pending_trans_workers_inc() why we're pretending
613 * to be paused in the scrub counters
615 mutex_lock(&fs_info
->scrub_lock
);
616 atomic_dec(&fs_info
->scrubs_running
);
617 atomic_dec(&fs_info
->scrubs_paused
);
618 mutex_unlock(&fs_info
->scrub_lock
);
619 atomic_dec(&sctx
->workers_pending
);
620 wake_up(&fs_info
->scrub_pause_wait
);
621 wake_up(&sctx
->list_wait
);
625 static void scrub_free_csums(struct scrub_ctx
*sctx
)
627 while (!list_empty(&sctx
->csum_list
)) {
628 struct btrfs_ordered_sum
*sum
;
629 sum
= list_first_entry(&sctx
->csum_list
,
630 struct btrfs_ordered_sum
, list
);
631 list_del(&sum
->list
);
636 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
643 /* this can happen when scrub is cancelled */
644 if (sctx
->curr
!= -1) {
645 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
647 for (i
= 0; i
< sbio
->page_count
; i
++) {
648 WARN_ON(!sbio
->pagev
[i
]->page
);
649 scrub_block_put(sbio
->pagev
[i
]->sblock
);
654 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
655 struct scrub_bio
*sbio
= sctx
->bios
[i
];
662 kfree(sctx
->wr_curr_bio
);
663 scrub_free_csums(sctx
);
667 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
669 if (refcount_dec_and_test(&sctx
->refs
))
670 scrub_free_ctx(sctx
);
673 static noinline_for_stack
674 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
676 struct scrub_ctx
*sctx
;
678 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
680 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
683 refcount_set(&sctx
->refs
, 1);
684 sctx
->is_dev_replace
= is_dev_replace
;
685 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
687 sctx
->fs_info
= dev
->fs_info
;
688 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
689 struct scrub_bio
*sbio
;
691 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
694 sctx
->bios
[i
] = sbio
;
698 sbio
->page_count
= 0;
699 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
700 scrub_bio_end_io_worker
, NULL
, NULL
);
702 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
703 sctx
->bios
[i
]->next_free
= i
+ 1;
705 sctx
->bios
[i
]->next_free
= -1;
707 sctx
->first_free
= 0;
708 atomic_set(&sctx
->bios_in_flight
, 0);
709 atomic_set(&sctx
->workers_pending
, 0);
710 atomic_set(&sctx
->cancel_req
, 0);
711 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
712 INIT_LIST_HEAD(&sctx
->csum_list
);
714 spin_lock_init(&sctx
->list_lock
);
715 spin_lock_init(&sctx
->stat_lock
);
716 init_waitqueue_head(&sctx
->list_wait
);
718 WARN_ON(sctx
->wr_curr_bio
!= NULL
);
719 mutex_init(&sctx
->wr_lock
);
720 sctx
->wr_curr_bio
= NULL
;
721 if (is_dev_replace
) {
722 WARN_ON(!fs_info
->dev_replace
.tgtdev
);
723 sctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
724 sctx
->wr_tgtdev
= fs_info
->dev_replace
.tgtdev
;
725 sctx
->flush_all_writes
= false;
731 scrub_free_ctx(sctx
);
732 return ERR_PTR(-ENOMEM
);
735 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
743 struct extent_buffer
*eb
;
744 struct btrfs_inode_item
*inode_item
;
745 struct scrub_warning
*swarn
= warn_ctx
;
746 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
747 struct inode_fs_paths
*ipath
= NULL
;
748 struct btrfs_root
*local_root
;
749 struct btrfs_key root_key
;
750 struct btrfs_key key
;
752 root_key
.objectid
= root
;
753 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
754 root_key
.offset
= (u64
)-1;
755 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
756 if (IS_ERR(local_root
)) {
757 ret
= PTR_ERR(local_root
);
762 * this makes the path point to (inum INODE_ITEM ioff)
765 key
.type
= BTRFS_INODE_ITEM_KEY
;
768 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
770 btrfs_release_path(swarn
->path
);
774 eb
= swarn
->path
->nodes
[0];
775 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
776 struct btrfs_inode_item
);
777 isize
= btrfs_inode_size(eb
, inode_item
);
778 nlink
= btrfs_inode_nlink(eb
, inode_item
);
779 btrfs_release_path(swarn
->path
);
782 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
783 * uses GFP_NOFS in this context, so we keep it consistent but it does
784 * not seem to be strictly necessary.
786 nofs_flag
= memalloc_nofs_save();
787 ipath
= init_ipath(4096, local_root
, swarn
->path
);
788 memalloc_nofs_restore(nofs_flag
);
790 ret
= PTR_ERR(ipath
);
794 ret
= paths_from_inode(inum
, ipath
);
800 * we deliberately ignore the bit ipath might have been too small to
801 * hold all of the paths here
803 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
804 btrfs_warn_in_rcu(fs_info
,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
806 swarn
->errstr
, swarn
->logical
,
807 rcu_str_deref(swarn
->dev
->name
),
810 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
811 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
817 btrfs_warn_in_rcu(fs_info
,
818 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
819 swarn
->errstr
, swarn
->logical
,
820 rcu_str_deref(swarn
->dev
->name
),
822 root
, inum
, offset
, ret
);
828 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
830 struct btrfs_device
*dev
;
831 struct btrfs_fs_info
*fs_info
;
832 struct btrfs_path
*path
;
833 struct btrfs_key found_key
;
834 struct extent_buffer
*eb
;
835 struct btrfs_extent_item
*ei
;
836 struct scrub_warning swarn
;
837 unsigned long ptr
= 0;
845 WARN_ON(sblock
->page_count
< 1);
846 dev
= sblock
->pagev
[0]->dev
;
847 fs_info
= sblock
->sctx
->fs_info
;
849 path
= btrfs_alloc_path();
853 swarn
.physical
= sblock
->pagev
[0]->physical
;
854 swarn
.logical
= sblock
->pagev
[0]->logical
;
855 swarn
.errstr
= errstr
;
858 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
863 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
864 swarn
.extent_item_size
= found_key
.offset
;
867 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
868 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
870 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
872 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
873 item_size
, &ref_root
,
875 btrfs_warn_in_rcu(fs_info
,
876 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
877 errstr
, swarn
.logical
,
878 rcu_str_deref(dev
->name
),
880 ref_level
? "node" : "leaf",
881 ret
< 0 ? -1 : ref_level
,
882 ret
< 0 ? -1 : ref_root
);
884 btrfs_release_path(path
);
886 btrfs_release_path(path
);
889 iterate_extent_inodes(fs_info
, found_key
.objectid
,
891 scrub_print_warning_inode
, &swarn
, false);
895 btrfs_free_path(path
);
898 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
900 struct page
*page
= NULL
;
902 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
905 struct btrfs_key key
;
906 struct inode
*inode
= NULL
;
907 struct btrfs_fs_info
*fs_info
;
908 u64 end
= offset
+ PAGE_SIZE
- 1;
909 struct btrfs_root
*local_root
;
913 key
.type
= BTRFS_ROOT_ITEM_KEY
;
914 key
.offset
= (u64
)-1;
916 fs_info
= fixup
->root
->fs_info
;
917 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
919 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
920 if (IS_ERR(local_root
)) {
921 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
922 return PTR_ERR(local_root
);
925 key
.type
= BTRFS_INODE_ITEM_KEY
;
928 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
929 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
931 return PTR_ERR(inode
);
933 index
= offset
>> PAGE_SHIFT
;
935 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
941 if (PageUptodate(page
)) {
942 if (PageDirty(page
)) {
944 * we need to write the data to the defect sector. the
945 * data that was in that sector is not in memory,
946 * because the page was modified. we must not write the
947 * modified page to that sector.
949 * TODO: what could be done here: wait for the delalloc
950 * runner to write out that page (might involve
951 * COW) and see whether the sector is still
952 * referenced afterwards.
954 * For the meantime, we'll treat this error
955 * incorrectable, although there is a chance that a
956 * later scrub will find the bad sector again and that
957 * there's no dirty page in memory, then.
962 ret
= repair_io_failure(fs_info
, inum
, offset
, PAGE_SIZE
,
963 fixup
->logical
, page
,
964 offset
- page_offset(page
),
970 * we need to get good data first. the general readpage path
971 * will call repair_io_failure for us, we just have to make
972 * sure we read the bad mirror.
974 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
977 /* set_extent_bits should give proper error */
984 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
987 wait_on_page_locked(page
);
989 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
990 end
, EXTENT_DAMAGED
, 0, NULL
);
992 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
1005 if (ret
== 0 && corrected
) {
1007 * we only need to call readpage for one of the inodes belonging
1008 * to this extent. so make iterate_extent_inodes stop
1016 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
1018 struct btrfs_fs_info
*fs_info
;
1020 struct scrub_fixup_nodatasum
*fixup
;
1021 struct scrub_ctx
*sctx
;
1022 struct btrfs_trans_handle
*trans
= NULL
;
1023 struct btrfs_path
*path
;
1024 int uncorrectable
= 0;
1026 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
1028 fs_info
= fixup
->root
->fs_info
;
1030 path
= btrfs_alloc_path();
1032 spin_lock(&sctx
->stat_lock
);
1033 ++sctx
->stat
.malloc_errors
;
1034 spin_unlock(&sctx
->stat_lock
);
1039 trans
= btrfs_join_transaction(fixup
->root
);
1040 if (IS_ERR(trans
)) {
1046 * the idea is to trigger a regular read through the standard path. we
1047 * read a page from the (failed) logical address by specifying the
1048 * corresponding copynum of the failed sector. thus, that readpage is
1050 * that is the point where on-the-fly error correction will kick in
1051 * (once it's finished) and rewrite the failed sector if a good copy
1054 ret
= iterate_inodes_from_logical(fixup
->logical
, fs_info
, path
,
1055 scrub_fixup_readpage
, fixup
, false);
1062 spin_lock(&sctx
->stat_lock
);
1063 ++sctx
->stat
.corrected_errors
;
1064 spin_unlock(&sctx
->stat_lock
);
1067 if (trans
&& !IS_ERR(trans
))
1068 btrfs_end_transaction(trans
);
1069 if (uncorrectable
) {
1070 spin_lock(&sctx
->stat_lock
);
1071 ++sctx
->stat
.uncorrectable_errors
;
1072 spin_unlock(&sctx
->stat_lock
);
1073 btrfs_dev_replace_stats_inc(
1074 &fs_info
->dev_replace
.num_uncorrectable_read_errors
);
1075 btrfs_err_rl_in_rcu(fs_info
,
1076 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1077 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
1080 btrfs_free_path(path
);
1083 scrub_pending_trans_workers_dec(sctx
);
1086 static inline void scrub_get_recover(struct scrub_recover
*recover
)
1088 refcount_inc(&recover
->refs
);
1091 static inline void scrub_put_recover(struct btrfs_fs_info
*fs_info
,
1092 struct scrub_recover
*recover
)
1094 if (refcount_dec_and_test(&recover
->refs
)) {
1095 btrfs_bio_counter_dec(fs_info
);
1096 btrfs_put_bbio(recover
->bbio
);
1102 * scrub_handle_errored_block gets called when either verification of the
1103 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1104 * case, this function handles all pages in the bio, even though only one
1106 * The goal of this function is to repair the errored block by using the
1107 * contents of one of the mirrors.
1109 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
1111 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
1112 struct btrfs_device
*dev
;
1113 struct btrfs_fs_info
*fs_info
;
1116 unsigned int failed_mirror_index
;
1117 unsigned int is_metadata
;
1118 unsigned int have_csum
;
1119 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
1120 struct scrub_block
*sblock_bad
;
1125 bool full_stripe_locked
;
1126 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1127 DEFAULT_RATELIMIT_BURST
);
1129 BUG_ON(sblock_to_check
->page_count
< 1);
1130 fs_info
= sctx
->fs_info
;
1131 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
1133 * if we find an error in a super block, we just report it.
1134 * They will get written with the next transaction commit
1137 spin_lock(&sctx
->stat_lock
);
1138 ++sctx
->stat
.super_errors
;
1139 spin_unlock(&sctx
->stat_lock
);
1142 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
1143 logical
= sblock_to_check
->pagev
[0]->logical
;
1144 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
1145 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
1146 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
1147 BTRFS_EXTENT_FLAG_DATA
);
1148 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
1149 dev
= sblock_to_check
->pagev
[0]->dev
;
1152 * For RAID5/6, race can happen for a different device scrub thread.
1153 * For data corruption, Parity and Data threads will both try
1154 * to recovery the data.
1155 * Race can lead to doubly added csum error, or even unrecoverable
1158 ret
= lock_full_stripe(fs_info
, logical
, &full_stripe_locked
);
1160 spin_lock(&sctx
->stat_lock
);
1162 sctx
->stat
.malloc_errors
++;
1163 sctx
->stat
.read_errors
++;
1164 sctx
->stat
.uncorrectable_errors
++;
1165 spin_unlock(&sctx
->stat_lock
);
1169 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
1170 sblocks_for_recheck
= NULL
;
1171 goto nodatasum_case
;
1175 * read all mirrors one after the other. This includes to
1176 * re-read the extent or metadata block that failed (that was
1177 * the cause that this fixup code is called) another time,
1178 * page by page this time in order to know which pages
1179 * caused I/O errors and which ones are good (for all mirrors).
1180 * It is the goal to handle the situation when more than one
1181 * mirror contains I/O errors, but the errors do not
1182 * overlap, i.e. the data can be repaired by selecting the
1183 * pages from those mirrors without I/O error on the
1184 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1185 * would be that mirror #1 has an I/O error on the first page,
1186 * the second page is good, and mirror #2 has an I/O error on
1187 * the second page, but the first page is good.
1188 * Then the first page of the first mirror can be repaired by
1189 * taking the first page of the second mirror, and the
1190 * second page of the second mirror can be repaired by
1191 * copying the contents of the 2nd page of the 1st mirror.
1192 * One more note: if the pages of one mirror contain I/O
1193 * errors, the checksum cannot be verified. In order to get
1194 * the best data for repairing, the first attempt is to find
1195 * a mirror without I/O errors and with a validated checksum.
1196 * Only if this is not possible, the pages are picked from
1197 * mirrors with I/O errors without considering the checksum.
1198 * If the latter is the case, at the end, the checksum of the
1199 * repaired area is verified in order to correctly maintain
1203 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
1204 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
1205 if (!sblocks_for_recheck
) {
1206 spin_lock(&sctx
->stat_lock
);
1207 sctx
->stat
.malloc_errors
++;
1208 sctx
->stat
.read_errors
++;
1209 sctx
->stat
.uncorrectable_errors
++;
1210 spin_unlock(&sctx
->stat_lock
);
1211 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1215 /* setup the context, map the logical blocks and alloc the pages */
1216 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
1218 spin_lock(&sctx
->stat_lock
);
1219 sctx
->stat
.read_errors
++;
1220 sctx
->stat
.uncorrectable_errors
++;
1221 spin_unlock(&sctx
->stat_lock
);
1222 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1225 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
1226 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
1228 /* build and submit the bios for the failed mirror, check checksums */
1229 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1231 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
1232 sblock_bad
->no_io_error_seen
) {
1234 * the error disappeared after reading page by page, or
1235 * the area was part of a huge bio and other parts of the
1236 * bio caused I/O errors, or the block layer merged several
1237 * read requests into one and the error is caused by a
1238 * different bio (usually one of the two latter cases is
1241 spin_lock(&sctx
->stat_lock
);
1242 sctx
->stat
.unverified_errors
++;
1243 sblock_to_check
->data_corrected
= 1;
1244 spin_unlock(&sctx
->stat_lock
);
1246 if (sctx
->is_dev_replace
)
1247 scrub_write_block_to_dev_replace(sblock_bad
);
1251 if (!sblock_bad
->no_io_error_seen
) {
1252 spin_lock(&sctx
->stat_lock
);
1253 sctx
->stat
.read_errors
++;
1254 spin_unlock(&sctx
->stat_lock
);
1255 if (__ratelimit(&_rs
))
1256 scrub_print_warning("i/o error", sblock_to_check
);
1257 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1258 } else if (sblock_bad
->checksum_error
) {
1259 spin_lock(&sctx
->stat_lock
);
1260 sctx
->stat
.csum_errors
++;
1261 spin_unlock(&sctx
->stat_lock
);
1262 if (__ratelimit(&_rs
))
1263 scrub_print_warning("checksum error", sblock_to_check
);
1264 btrfs_dev_stat_inc_and_print(dev
,
1265 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1266 } else if (sblock_bad
->header_error
) {
1267 spin_lock(&sctx
->stat_lock
);
1268 sctx
->stat
.verify_errors
++;
1269 spin_unlock(&sctx
->stat_lock
);
1270 if (__ratelimit(&_rs
))
1271 scrub_print_warning("checksum/header error",
1273 if (sblock_bad
->generation_error
)
1274 btrfs_dev_stat_inc_and_print(dev
,
1275 BTRFS_DEV_STAT_GENERATION_ERRS
);
1277 btrfs_dev_stat_inc_and_print(dev
,
1278 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1281 if (sctx
->readonly
) {
1282 ASSERT(!sctx
->is_dev_replace
);
1286 if (!is_metadata
&& !have_csum
) {
1287 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1289 WARN_ON(sctx
->is_dev_replace
);
1294 * !is_metadata and !have_csum, this means that the data
1295 * might not be COWed, that it might be modified
1296 * concurrently. The general strategy to work on the
1297 * commit root does not help in the case when COW is not
1300 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1301 if (!fixup_nodatasum
)
1302 goto did_not_correct_error
;
1303 fixup_nodatasum
->sctx
= sctx
;
1304 fixup_nodatasum
->dev
= dev
;
1305 fixup_nodatasum
->logical
= logical
;
1306 fixup_nodatasum
->root
= fs_info
->extent_root
;
1307 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1308 scrub_pending_trans_workers_inc(sctx
);
1309 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1310 scrub_fixup_nodatasum
, NULL
, NULL
);
1311 btrfs_queue_work(fs_info
->scrub_workers
,
1312 &fixup_nodatasum
->work
);
1317 * now build and submit the bios for the other mirrors, check
1319 * First try to pick the mirror which is completely without I/O
1320 * errors and also does not have a checksum error.
1321 * If one is found, and if a checksum is present, the full block
1322 * that is known to contain an error is rewritten. Afterwards
1323 * the block is known to be corrected.
1324 * If a mirror is found which is completely correct, and no
1325 * checksum is present, only those pages are rewritten that had
1326 * an I/O error in the block to be repaired, since it cannot be
1327 * determined, which copy of the other pages is better (and it
1328 * could happen otherwise that a correct page would be
1329 * overwritten by a bad one).
1331 for (mirror_index
= 0; ;mirror_index
++) {
1332 struct scrub_block
*sblock_other
;
1334 if (mirror_index
== failed_mirror_index
)
1337 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1338 if (!scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1339 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1341 if (!sblocks_for_recheck
[mirror_index
].page_count
)
1344 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1346 struct scrub_recover
*r
= sblock_bad
->pagev
[0]->recover
;
1347 int max_allowed
= r
->bbio
->num_stripes
-
1348 r
->bbio
->num_tgtdevs
;
1350 if (mirror_index
>= max_allowed
)
1352 if (!sblocks_for_recheck
[1].page_count
)
1355 ASSERT(failed_mirror_index
== 0);
1356 sblock_other
= sblocks_for_recheck
+ 1;
1357 sblock_other
->pagev
[0]->mirror_num
= 1 + mirror_index
;
1360 /* build and submit the bios, check checksums */
1361 scrub_recheck_block(fs_info
, sblock_other
, 0);
1363 if (!sblock_other
->header_error
&&
1364 !sblock_other
->checksum_error
&&
1365 sblock_other
->no_io_error_seen
) {
1366 if (sctx
->is_dev_replace
) {
1367 scrub_write_block_to_dev_replace(sblock_other
);
1368 goto corrected_error
;
1370 ret
= scrub_repair_block_from_good_copy(
1371 sblock_bad
, sblock_other
);
1373 goto corrected_error
;
1378 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1379 goto did_not_correct_error
;
1382 * In case of I/O errors in the area that is supposed to be
1383 * repaired, continue by picking good copies of those pages.
1384 * Select the good pages from mirrors to rewrite bad pages from
1385 * the area to fix. Afterwards verify the checksum of the block
1386 * that is supposed to be repaired. This verification step is
1387 * only done for the purpose of statistic counting and for the
1388 * final scrub report, whether errors remain.
1389 * A perfect algorithm could make use of the checksum and try
1390 * all possible combinations of pages from the different mirrors
1391 * until the checksum verification succeeds. For example, when
1392 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1393 * of mirror #2 is readable but the final checksum test fails,
1394 * then the 2nd page of mirror #3 could be tried, whether now
1395 * the final checksum succeeds. But this would be a rare
1396 * exception and is therefore not implemented. At least it is
1397 * avoided that the good copy is overwritten.
1398 * A more useful improvement would be to pick the sectors
1399 * without I/O error based on sector sizes (512 bytes on legacy
1400 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1401 * mirror could be repaired by taking 512 byte of a different
1402 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1403 * area are unreadable.
1406 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1408 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1409 struct scrub_block
*sblock_other
= NULL
;
1411 /* skip no-io-error page in scrub */
1412 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1415 /* try to find no-io-error page in mirrors */
1416 if (page_bad
->io_error
) {
1417 for (mirror_index
= 0;
1418 mirror_index
< BTRFS_MAX_MIRRORS
&&
1419 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1421 if (!sblocks_for_recheck
[mirror_index
].
1422 pagev
[page_num
]->io_error
) {
1423 sblock_other
= sblocks_for_recheck
+
1432 if (sctx
->is_dev_replace
) {
1434 * did not find a mirror to fetch the page
1435 * from. scrub_write_page_to_dev_replace()
1436 * handles this case (page->io_error), by
1437 * filling the block with zeros before
1438 * submitting the write request
1441 sblock_other
= sblock_bad
;
1443 if (scrub_write_page_to_dev_replace(sblock_other
,
1445 btrfs_dev_replace_stats_inc(
1446 &fs_info
->dev_replace
.num_write_errors
);
1449 } else if (sblock_other
) {
1450 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1454 page_bad
->io_error
= 0;
1460 if (success
&& !sctx
->is_dev_replace
) {
1461 if (is_metadata
|| have_csum
) {
1463 * need to verify the checksum now that all
1464 * sectors on disk are repaired (the write
1465 * request for data to be repaired is on its way).
1466 * Just be lazy and use scrub_recheck_block()
1467 * which re-reads the data before the checksum
1468 * is verified, but most likely the data comes out
1469 * of the page cache.
1471 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1472 if (!sblock_bad
->header_error
&&
1473 !sblock_bad
->checksum_error
&&
1474 sblock_bad
->no_io_error_seen
)
1475 goto corrected_error
;
1477 goto did_not_correct_error
;
1480 spin_lock(&sctx
->stat_lock
);
1481 sctx
->stat
.corrected_errors
++;
1482 sblock_to_check
->data_corrected
= 1;
1483 spin_unlock(&sctx
->stat_lock
);
1484 btrfs_err_rl_in_rcu(fs_info
,
1485 "fixed up error at logical %llu on dev %s",
1486 logical
, rcu_str_deref(dev
->name
));
1489 did_not_correct_error
:
1490 spin_lock(&sctx
->stat_lock
);
1491 sctx
->stat
.uncorrectable_errors
++;
1492 spin_unlock(&sctx
->stat_lock
);
1493 btrfs_err_rl_in_rcu(fs_info
,
1494 "unable to fixup (regular) error at logical %llu on dev %s",
1495 logical
, rcu_str_deref(dev
->name
));
1499 if (sblocks_for_recheck
) {
1500 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1502 struct scrub_block
*sblock
= sblocks_for_recheck
+
1504 struct scrub_recover
*recover
;
1507 for (page_index
= 0; page_index
< sblock
->page_count
;
1509 sblock
->pagev
[page_index
]->sblock
= NULL
;
1510 recover
= sblock
->pagev
[page_index
]->recover
;
1512 scrub_put_recover(fs_info
, recover
);
1513 sblock
->pagev
[page_index
]->recover
=
1516 scrub_page_put(sblock
->pagev
[page_index
]);
1519 kfree(sblocks_for_recheck
);
1522 ret
= unlock_full_stripe(fs_info
, logical
, full_stripe_locked
);
1528 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1530 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1532 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1535 return (int)bbio
->num_stripes
;
1538 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1541 int nstripes
, int mirror
,
1547 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1549 for (i
= 0; i
< nstripes
; i
++) {
1550 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1551 raid_map
[i
] == RAID5_P_STRIPE
)
1554 if (logical
>= raid_map
[i
] &&
1555 logical
< raid_map
[i
] + mapped_length
)
1560 *stripe_offset
= logical
- raid_map
[i
];
1562 /* The other RAID type */
1563 *stripe_index
= mirror
;
1568 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1569 struct scrub_block
*sblocks_for_recheck
)
1571 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1572 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1573 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1574 u64 logical
= original_sblock
->pagev
[0]->logical
;
1575 u64 generation
= original_sblock
->pagev
[0]->generation
;
1576 u64 flags
= original_sblock
->pagev
[0]->flags
;
1577 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1578 struct scrub_recover
*recover
;
1579 struct btrfs_bio
*bbio
;
1590 * note: the two members refs and outstanding_pages
1591 * are not used (and not set) in the blocks that are used for
1592 * the recheck procedure
1595 while (length
> 0) {
1596 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1597 mapped_length
= sublen
;
1601 * with a length of PAGE_SIZE, each returned stripe
1602 * represents one mirror
1604 btrfs_bio_counter_inc_blocked(fs_info
);
1605 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1606 logical
, &mapped_length
, &bbio
);
1607 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1608 btrfs_put_bbio(bbio
);
1609 btrfs_bio_counter_dec(fs_info
);
1613 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1615 btrfs_put_bbio(bbio
);
1616 btrfs_bio_counter_dec(fs_info
);
1620 refcount_set(&recover
->refs
, 1);
1621 recover
->bbio
= bbio
;
1622 recover
->map_length
= mapped_length
;
1624 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1626 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1628 for (mirror_index
= 0; mirror_index
< nmirrors
;
1630 struct scrub_block
*sblock
;
1631 struct scrub_page
*page
;
1633 sblock
= sblocks_for_recheck
+ mirror_index
;
1634 sblock
->sctx
= sctx
;
1636 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1639 spin_lock(&sctx
->stat_lock
);
1640 sctx
->stat
.malloc_errors
++;
1641 spin_unlock(&sctx
->stat_lock
);
1642 scrub_put_recover(fs_info
, recover
);
1645 scrub_page_get(page
);
1646 sblock
->pagev
[page_index
] = page
;
1647 page
->sblock
= sblock
;
1648 page
->flags
= flags
;
1649 page
->generation
= generation
;
1650 page
->logical
= logical
;
1651 page
->have_csum
= have_csum
;
1654 original_sblock
->pagev
[0]->csum
,
1657 scrub_stripe_index_and_offset(logical
,
1666 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1668 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1670 BUG_ON(page_index
>= original_sblock
->page_count
);
1671 page
->physical_for_dev_replace
=
1672 original_sblock
->pagev
[page_index
]->
1673 physical_for_dev_replace
;
1674 /* for missing devices, dev->bdev is NULL */
1675 page
->mirror_num
= mirror_index
+ 1;
1676 sblock
->page_count
++;
1677 page
->page
= alloc_page(GFP_NOFS
);
1681 scrub_get_recover(recover
);
1682 page
->recover
= recover
;
1684 scrub_put_recover(fs_info
, recover
);
1693 static void scrub_bio_wait_endio(struct bio
*bio
)
1695 complete(bio
->bi_private
);
1698 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1700 struct scrub_page
*page
)
1702 DECLARE_COMPLETION_ONSTACK(done
);
1706 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1707 bio
->bi_private
= &done
;
1708 bio
->bi_end_io
= scrub_bio_wait_endio
;
1710 mirror_num
= page
->sblock
->pagev
[0]->mirror_num
;
1711 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1712 page
->recover
->map_length
,
1717 wait_for_completion_io(&done
);
1718 return blk_status_to_errno(bio
->bi_status
);
1722 * this function will check the on disk data for checksum errors, header
1723 * errors and read I/O errors. If any I/O errors happen, the exact pages
1724 * which are errored are marked as being bad. The goal is to enable scrub
1725 * to take those pages that are not errored from all the mirrors so that
1726 * the pages that are errored in the just handled mirror can be repaired.
1728 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1729 struct scrub_block
*sblock
,
1730 int retry_failed_mirror
)
1734 sblock
->no_io_error_seen
= 1;
1736 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1738 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1740 if (page
->dev
->bdev
== NULL
) {
1742 sblock
->no_io_error_seen
= 0;
1746 WARN_ON(!page
->page
);
1747 bio
= btrfs_io_bio_alloc(1);
1748 bio_set_dev(bio
, page
->dev
->bdev
);
1750 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1751 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(page
)) {
1752 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, page
)) {
1754 sblock
->no_io_error_seen
= 0;
1757 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1758 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
1760 if (btrfsic_submit_bio_wait(bio
)) {
1762 sblock
->no_io_error_seen
= 0;
1769 if (sblock
->no_io_error_seen
)
1770 scrub_recheck_block_checksum(sblock
);
1773 static inline int scrub_check_fsid(u8 fsid
[],
1774 struct scrub_page
*spage
)
1776 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1779 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1783 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1785 sblock
->header_error
= 0;
1786 sblock
->checksum_error
= 0;
1787 sblock
->generation_error
= 0;
1789 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1790 scrub_checksum_data(sblock
);
1792 scrub_checksum_tree_block(sblock
);
1795 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1796 struct scrub_block
*sblock_good
)
1801 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1804 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1814 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1815 struct scrub_block
*sblock_good
,
1816 int page_num
, int force_write
)
1818 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1819 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1820 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1822 BUG_ON(page_bad
->page
== NULL
);
1823 BUG_ON(page_good
->page
== NULL
);
1824 if (force_write
|| sblock_bad
->header_error
||
1825 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1829 if (!page_bad
->dev
->bdev
) {
1830 btrfs_warn_rl(fs_info
,
1831 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1835 bio
= btrfs_io_bio_alloc(1);
1836 bio_set_dev(bio
, page_bad
->dev
->bdev
);
1837 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1838 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1840 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1841 if (PAGE_SIZE
!= ret
) {
1846 if (btrfsic_submit_bio_wait(bio
)) {
1847 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1848 BTRFS_DEV_STAT_WRITE_ERRS
);
1849 btrfs_dev_replace_stats_inc(
1850 &fs_info
->dev_replace
.num_write_errors
);
1860 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1862 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1866 * This block is used for the check of the parity on the source device,
1867 * so the data needn't be written into the destination device.
1869 if (sblock
->sparity
)
1872 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1875 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1877 btrfs_dev_replace_stats_inc(
1878 &fs_info
->dev_replace
.num_write_errors
);
1882 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1885 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1887 BUG_ON(spage
->page
== NULL
);
1888 if (spage
->io_error
) {
1889 void *mapped_buffer
= kmap_atomic(spage
->page
);
1891 clear_page(mapped_buffer
);
1892 flush_dcache_page(spage
->page
);
1893 kunmap_atomic(mapped_buffer
);
1895 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1898 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1899 struct scrub_page
*spage
)
1901 struct scrub_bio
*sbio
;
1904 mutex_lock(&sctx
->wr_lock
);
1906 if (!sctx
->wr_curr_bio
) {
1907 sctx
->wr_curr_bio
= kzalloc(sizeof(*sctx
->wr_curr_bio
),
1909 if (!sctx
->wr_curr_bio
) {
1910 mutex_unlock(&sctx
->wr_lock
);
1913 sctx
->wr_curr_bio
->sctx
= sctx
;
1914 sctx
->wr_curr_bio
->page_count
= 0;
1916 sbio
= sctx
->wr_curr_bio
;
1917 if (sbio
->page_count
== 0) {
1920 sbio
->physical
= spage
->physical_for_dev_replace
;
1921 sbio
->logical
= spage
->logical
;
1922 sbio
->dev
= sctx
->wr_tgtdev
;
1925 bio
= btrfs_io_bio_alloc(sctx
->pages_per_wr_bio
);
1929 bio
->bi_private
= sbio
;
1930 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1931 bio_set_dev(bio
, sbio
->dev
->bdev
);
1932 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1933 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1935 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1936 spage
->physical_for_dev_replace
||
1937 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1939 scrub_wr_submit(sctx
);
1943 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1944 if (ret
!= PAGE_SIZE
) {
1945 if (sbio
->page_count
< 1) {
1948 mutex_unlock(&sctx
->wr_lock
);
1951 scrub_wr_submit(sctx
);
1955 sbio
->pagev
[sbio
->page_count
] = spage
;
1956 scrub_page_get(spage
);
1958 if (sbio
->page_count
== sctx
->pages_per_wr_bio
)
1959 scrub_wr_submit(sctx
);
1960 mutex_unlock(&sctx
->wr_lock
);
1965 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1967 struct scrub_bio
*sbio
;
1969 if (!sctx
->wr_curr_bio
)
1972 sbio
= sctx
->wr_curr_bio
;
1973 sctx
->wr_curr_bio
= NULL
;
1974 WARN_ON(!sbio
->bio
->bi_disk
);
1975 scrub_pending_bio_inc(sctx
);
1976 /* process all writes in a single worker thread. Then the block layer
1977 * orders the requests before sending them to the driver which
1978 * doubled the write performance on spinning disks when measured
1980 btrfsic_submit_bio(sbio
->bio
);
1983 static void scrub_wr_bio_end_io(struct bio
*bio
)
1985 struct scrub_bio
*sbio
= bio
->bi_private
;
1986 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
1988 sbio
->status
= bio
->bi_status
;
1991 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
1992 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1993 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1996 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1998 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1999 struct scrub_ctx
*sctx
= sbio
->sctx
;
2002 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
2004 struct btrfs_dev_replace
*dev_replace
=
2005 &sbio
->sctx
->fs_info
->dev_replace
;
2007 for (i
= 0; i
< sbio
->page_count
; i
++) {
2008 struct scrub_page
*spage
= sbio
->pagev
[i
];
2010 spage
->io_error
= 1;
2011 btrfs_dev_replace_stats_inc(&dev_replace
->
2016 for (i
= 0; i
< sbio
->page_count
; i
++)
2017 scrub_page_put(sbio
->pagev
[i
]);
2021 scrub_pending_bio_dec(sctx
);
2024 static int scrub_checksum(struct scrub_block
*sblock
)
2030 * No need to initialize these stats currently,
2031 * because this function only use return value
2032 * instead of these stats value.
2037 sblock
->header_error
= 0;
2038 sblock
->generation_error
= 0;
2039 sblock
->checksum_error
= 0;
2041 WARN_ON(sblock
->page_count
< 1);
2042 flags
= sblock
->pagev
[0]->flags
;
2044 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
2045 ret
= scrub_checksum_data(sblock
);
2046 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
2047 ret
= scrub_checksum_tree_block(sblock
);
2048 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
2049 (void)scrub_checksum_super(sblock
);
2053 scrub_handle_errored_block(sblock
);
2058 static int scrub_checksum_data(struct scrub_block
*sblock
)
2060 struct scrub_ctx
*sctx
= sblock
->sctx
;
2061 u8 csum
[BTRFS_CSUM_SIZE
];
2069 BUG_ON(sblock
->page_count
< 1);
2070 if (!sblock
->pagev
[0]->have_csum
)
2073 on_disk_csum
= sblock
->pagev
[0]->csum
;
2074 page
= sblock
->pagev
[0]->page
;
2075 buffer
= kmap_atomic(page
);
2077 len
= sctx
->fs_info
->sectorsize
;
2080 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2082 crc
= btrfs_csum_data(buffer
, crc
, l
);
2083 kunmap_atomic(buffer
);
2088 BUG_ON(index
>= sblock
->page_count
);
2089 BUG_ON(!sblock
->pagev
[index
]->page
);
2090 page
= sblock
->pagev
[index
]->page
;
2091 buffer
= kmap_atomic(page
);
2094 btrfs_csum_final(crc
, csum
);
2095 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
2096 sblock
->checksum_error
= 1;
2098 return sblock
->checksum_error
;
2101 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
2103 struct scrub_ctx
*sctx
= sblock
->sctx
;
2104 struct btrfs_header
*h
;
2105 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2106 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2107 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2109 void *mapped_buffer
;
2116 BUG_ON(sblock
->page_count
< 1);
2117 page
= sblock
->pagev
[0]->page
;
2118 mapped_buffer
= kmap_atomic(page
);
2119 h
= (struct btrfs_header
*)mapped_buffer
;
2120 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
2123 * we don't use the getter functions here, as we
2124 * a) don't have an extent buffer and
2125 * b) the page is already kmapped
2127 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
2128 sblock
->header_error
= 1;
2130 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
2131 sblock
->header_error
= 1;
2132 sblock
->generation_error
= 1;
2135 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
2136 sblock
->header_error
= 1;
2138 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
2140 sblock
->header_error
= 1;
2142 len
= sctx
->fs_info
->nodesize
- BTRFS_CSUM_SIZE
;
2143 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2144 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2147 u64 l
= min_t(u64
, len
, mapped_size
);
2149 crc
= btrfs_csum_data(p
, crc
, l
);
2150 kunmap_atomic(mapped_buffer
);
2155 BUG_ON(index
>= sblock
->page_count
);
2156 BUG_ON(!sblock
->pagev
[index
]->page
);
2157 page
= sblock
->pagev
[index
]->page
;
2158 mapped_buffer
= kmap_atomic(page
);
2159 mapped_size
= PAGE_SIZE
;
2163 btrfs_csum_final(crc
, calculated_csum
);
2164 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2165 sblock
->checksum_error
= 1;
2167 return sblock
->header_error
|| sblock
->checksum_error
;
2170 static int scrub_checksum_super(struct scrub_block
*sblock
)
2172 struct btrfs_super_block
*s
;
2173 struct scrub_ctx
*sctx
= sblock
->sctx
;
2174 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2175 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2177 void *mapped_buffer
;
2186 BUG_ON(sblock
->page_count
< 1);
2187 page
= sblock
->pagev
[0]->page
;
2188 mapped_buffer
= kmap_atomic(page
);
2189 s
= (struct btrfs_super_block
*)mapped_buffer
;
2190 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
2192 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
2195 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
2198 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
2201 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
2202 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2203 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2206 u64 l
= min_t(u64
, len
, mapped_size
);
2208 crc
= btrfs_csum_data(p
, crc
, l
);
2209 kunmap_atomic(mapped_buffer
);
2214 BUG_ON(index
>= sblock
->page_count
);
2215 BUG_ON(!sblock
->pagev
[index
]->page
);
2216 page
= sblock
->pagev
[index
]->page
;
2217 mapped_buffer
= kmap_atomic(page
);
2218 mapped_size
= PAGE_SIZE
;
2222 btrfs_csum_final(crc
, calculated_csum
);
2223 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2226 if (fail_cor
+ fail_gen
) {
2228 * if we find an error in a super block, we just report it.
2229 * They will get written with the next transaction commit
2232 spin_lock(&sctx
->stat_lock
);
2233 ++sctx
->stat
.super_errors
;
2234 spin_unlock(&sctx
->stat_lock
);
2236 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2237 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
2239 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2240 BTRFS_DEV_STAT_GENERATION_ERRS
);
2243 return fail_cor
+ fail_gen
;
2246 static void scrub_block_get(struct scrub_block
*sblock
)
2248 refcount_inc(&sblock
->refs
);
2251 static void scrub_block_put(struct scrub_block
*sblock
)
2253 if (refcount_dec_and_test(&sblock
->refs
)) {
2256 if (sblock
->sparity
)
2257 scrub_parity_put(sblock
->sparity
);
2259 for (i
= 0; i
< sblock
->page_count
; i
++)
2260 scrub_page_put(sblock
->pagev
[i
]);
2265 static void scrub_page_get(struct scrub_page
*spage
)
2267 atomic_inc(&spage
->refs
);
2270 static void scrub_page_put(struct scrub_page
*spage
)
2272 if (atomic_dec_and_test(&spage
->refs
)) {
2274 __free_page(spage
->page
);
2279 static void scrub_submit(struct scrub_ctx
*sctx
)
2281 struct scrub_bio
*sbio
;
2283 if (sctx
->curr
== -1)
2286 sbio
= sctx
->bios
[sctx
->curr
];
2288 scrub_pending_bio_inc(sctx
);
2289 btrfsic_submit_bio(sbio
->bio
);
2292 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2293 struct scrub_page
*spage
)
2295 struct scrub_block
*sblock
= spage
->sblock
;
2296 struct scrub_bio
*sbio
;
2301 * grab a fresh bio or wait for one to become available
2303 while (sctx
->curr
== -1) {
2304 spin_lock(&sctx
->list_lock
);
2305 sctx
->curr
= sctx
->first_free
;
2306 if (sctx
->curr
!= -1) {
2307 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2308 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2309 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2310 spin_unlock(&sctx
->list_lock
);
2312 spin_unlock(&sctx
->list_lock
);
2313 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2316 sbio
= sctx
->bios
[sctx
->curr
];
2317 if (sbio
->page_count
== 0) {
2320 sbio
->physical
= spage
->physical
;
2321 sbio
->logical
= spage
->logical
;
2322 sbio
->dev
= spage
->dev
;
2325 bio
= btrfs_io_bio_alloc(sctx
->pages_per_rd_bio
);
2329 bio
->bi_private
= sbio
;
2330 bio
->bi_end_io
= scrub_bio_end_io
;
2331 bio_set_dev(bio
, sbio
->dev
->bdev
);
2332 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2333 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2335 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2337 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2339 sbio
->dev
!= spage
->dev
) {
2344 sbio
->pagev
[sbio
->page_count
] = spage
;
2345 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2346 if (ret
!= PAGE_SIZE
) {
2347 if (sbio
->page_count
< 1) {
2356 scrub_block_get(sblock
); /* one for the page added to the bio */
2357 atomic_inc(&sblock
->outstanding_pages
);
2359 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2365 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2367 struct scrub_block
*sblock
= bio
->bi_private
;
2368 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2371 sblock
->no_io_error_seen
= 0;
2375 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2378 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2380 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2381 struct scrub_ctx
*sctx
= sblock
->sctx
;
2382 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2384 struct btrfs_device
*dev
;
2386 logical
= sblock
->pagev
[0]->logical
;
2387 dev
= sblock
->pagev
[0]->dev
;
2389 if (sblock
->no_io_error_seen
)
2390 scrub_recheck_block_checksum(sblock
);
2392 if (!sblock
->no_io_error_seen
) {
2393 spin_lock(&sctx
->stat_lock
);
2394 sctx
->stat
.read_errors
++;
2395 spin_unlock(&sctx
->stat_lock
);
2396 btrfs_err_rl_in_rcu(fs_info
,
2397 "IO error rebuilding logical %llu for dev %s",
2398 logical
, rcu_str_deref(dev
->name
));
2399 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2400 spin_lock(&sctx
->stat_lock
);
2401 sctx
->stat
.uncorrectable_errors
++;
2402 spin_unlock(&sctx
->stat_lock
);
2403 btrfs_err_rl_in_rcu(fs_info
,
2404 "failed to rebuild valid logical %llu for dev %s",
2405 logical
, rcu_str_deref(dev
->name
));
2407 scrub_write_block_to_dev_replace(sblock
);
2410 scrub_block_put(sblock
);
2412 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2413 mutex_lock(&sctx
->wr_lock
);
2414 scrub_wr_submit(sctx
);
2415 mutex_unlock(&sctx
->wr_lock
);
2418 scrub_pending_bio_dec(sctx
);
2421 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2423 struct scrub_ctx
*sctx
= sblock
->sctx
;
2424 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2425 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2426 u64 logical
= sblock
->pagev
[0]->logical
;
2427 struct btrfs_bio
*bbio
= NULL
;
2429 struct btrfs_raid_bio
*rbio
;
2433 btrfs_bio_counter_inc_blocked(fs_info
);
2434 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2436 if (ret
|| !bbio
|| !bbio
->raid_map
)
2439 if (WARN_ON(!sctx
->is_dev_replace
||
2440 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2442 * We shouldn't be scrubbing a missing device. Even for dev
2443 * replace, we should only get here for RAID 5/6. We either
2444 * managed to mount something with no mirrors remaining or
2445 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2450 bio
= btrfs_io_bio_alloc(0);
2451 bio
->bi_iter
.bi_sector
= logical
>> 9;
2452 bio
->bi_private
= sblock
;
2453 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2455 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2459 for (i
= 0; i
< sblock
->page_count
; i
++) {
2460 struct scrub_page
*spage
= sblock
->pagev
[i
];
2462 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2465 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2466 scrub_missing_raid56_worker
, NULL
, NULL
);
2467 scrub_block_get(sblock
);
2468 scrub_pending_bio_inc(sctx
);
2469 raid56_submit_missing_rbio(rbio
);
2475 btrfs_bio_counter_dec(fs_info
);
2476 btrfs_put_bbio(bbio
);
2477 spin_lock(&sctx
->stat_lock
);
2478 sctx
->stat
.malloc_errors
++;
2479 spin_unlock(&sctx
->stat_lock
);
2482 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2483 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2484 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2485 u64 physical_for_dev_replace
)
2487 struct scrub_block
*sblock
;
2490 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2492 spin_lock(&sctx
->stat_lock
);
2493 sctx
->stat
.malloc_errors
++;
2494 spin_unlock(&sctx
->stat_lock
);
2498 /* one ref inside this function, plus one for each page added to
2500 refcount_set(&sblock
->refs
, 1);
2501 sblock
->sctx
= sctx
;
2502 sblock
->no_io_error_seen
= 1;
2504 for (index
= 0; len
> 0; index
++) {
2505 struct scrub_page
*spage
;
2506 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2508 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2511 spin_lock(&sctx
->stat_lock
);
2512 sctx
->stat
.malloc_errors
++;
2513 spin_unlock(&sctx
->stat_lock
);
2514 scrub_block_put(sblock
);
2517 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2518 scrub_page_get(spage
);
2519 sblock
->pagev
[index
] = spage
;
2520 spage
->sblock
= sblock
;
2522 spage
->flags
= flags
;
2523 spage
->generation
= gen
;
2524 spage
->logical
= logical
;
2525 spage
->physical
= physical
;
2526 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2527 spage
->mirror_num
= mirror_num
;
2529 spage
->have_csum
= 1;
2530 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2532 spage
->have_csum
= 0;
2534 sblock
->page_count
++;
2535 spage
->page
= alloc_page(GFP_KERNEL
);
2541 physical_for_dev_replace
+= l
;
2544 WARN_ON(sblock
->page_count
== 0);
2545 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2547 * This case should only be hit for RAID 5/6 device replace. See
2548 * the comment in scrub_missing_raid56_pages() for details.
2550 scrub_missing_raid56_pages(sblock
);
2552 for (index
= 0; index
< sblock
->page_count
; index
++) {
2553 struct scrub_page
*spage
= sblock
->pagev
[index
];
2556 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2558 scrub_block_put(sblock
);
2567 /* last one frees, either here or in bio completion for last page */
2568 scrub_block_put(sblock
);
2572 static void scrub_bio_end_io(struct bio
*bio
)
2574 struct scrub_bio
*sbio
= bio
->bi_private
;
2575 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2577 sbio
->status
= bio
->bi_status
;
2580 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2583 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2585 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2586 struct scrub_ctx
*sctx
= sbio
->sctx
;
2589 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2591 for (i
= 0; i
< sbio
->page_count
; i
++) {
2592 struct scrub_page
*spage
= sbio
->pagev
[i
];
2594 spage
->io_error
= 1;
2595 spage
->sblock
->no_io_error_seen
= 0;
2599 /* now complete the scrub_block items that have all pages completed */
2600 for (i
= 0; i
< sbio
->page_count
; i
++) {
2601 struct scrub_page
*spage
= sbio
->pagev
[i
];
2602 struct scrub_block
*sblock
= spage
->sblock
;
2604 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2605 scrub_block_complete(sblock
);
2606 scrub_block_put(sblock
);
2611 spin_lock(&sctx
->list_lock
);
2612 sbio
->next_free
= sctx
->first_free
;
2613 sctx
->first_free
= sbio
->index
;
2614 spin_unlock(&sctx
->list_lock
);
2616 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2617 mutex_lock(&sctx
->wr_lock
);
2618 scrub_wr_submit(sctx
);
2619 mutex_unlock(&sctx
->wr_lock
);
2622 scrub_pending_bio_dec(sctx
);
2625 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2626 unsigned long *bitmap
,
2632 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2634 if (len
>= sparity
->stripe_len
) {
2635 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2639 start
-= sparity
->logic_start
;
2640 start
= div64_u64_rem(start
, sparity
->stripe_len
, &offset
);
2641 offset
= div_u64(offset
, sectorsize
);
2642 nsectors64
= div_u64(len
, sectorsize
);
2644 ASSERT(nsectors64
< UINT_MAX
);
2645 nsectors
= (u32
)nsectors64
;
2647 if (offset
+ nsectors
<= sparity
->nsectors
) {
2648 bitmap_set(bitmap
, offset
, nsectors
);
2652 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2653 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2656 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2659 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2662 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2665 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2668 static void scrub_block_complete(struct scrub_block
*sblock
)
2672 if (!sblock
->no_io_error_seen
) {
2674 scrub_handle_errored_block(sblock
);
2677 * if has checksum error, write via repair mechanism in
2678 * dev replace case, otherwise write here in dev replace
2681 corrupted
= scrub_checksum(sblock
);
2682 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2683 scrub_write_block_to_dev_replace(sblock
);
2686 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2687 u64 start
= sblock
->pagev
[0]->logical
;
2688 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2691 scrub_parity_mark_sectors_error(sblock
->sparity
,
2692 start
, end
- start
);
2696 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2698 struct btrfs_ordered_sum
*sum
= NULL
;
2699 unsigned long index
;
2700 unsigned long num_sectors
;
2702 while (!list_empty(&sctx
->csum_list
)) {
2703 sum
= list_first_entry(&sctx
->csum_list
,
2704 struct btrfs_ordered_sum
, list
);
2705 if (sum
->bytenr
> logical
)
2707 if (sum
->bytenr
+ sum
->len
> logical
)
2710 ++sctx
->stat
.csum_discards
;
2711 list_del(&sum
->list
);
2718 index
= div_u64(logical
- sum
->bytenr
, sctx
->fs_info
->sectorsize
);
2719 ASSERT(index
< UINT_MAX
);
2721 num_sectors
= sum
->len
/ sctx
->fs_info
->sectorsize
;
2722 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2723 if (index
== num_sectors
- 1) {
2724 list_del(&sum
->list
);
2730 /* scrub extent tries to collect up to 64 kB for each bio */
2731 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2732 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2733 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2736 u8 csum
[BTRFS_CSUM_SIZE
];
2739 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2740 blocksize
= sctx
->fs_info
->sectorsize
;
2741 spin_lock(&sctx
->stat_lock
);
2742 sctx
->stat
.data_extents_scrubbed
++;
2743 sctx
->stat
.data_bytes_scrubbed
+= len
;
2744 spin_unlock(&sctx
->stat_lock
);
2745 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2746 blocksize
= sctx
->fs_info
->nodesize
;
2747 spin_lock(&sctx
->stat_lock
);
2748 sctx
->stat
.tree_extents_scrubbed
++;
2749 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2750 spin_unlock(&sctx
->stat_lock
);
2752 blocksize
= sctx
->fs_info
->sectorsize
;
2757 u64 l
= min_t(u64
, len
, blocksize
);
2760 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2761 /* push csums to sbio */
2762 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2764 ++sctx
->stat
.no_csum
;
2765 if (sctx
->is_dev_replace
&& !have_csum
) {
2766 ret
= copy_nocow_pages(sctx
, logical
, l
,
2768 physical_for_dev_replace
);
2769 goto behind_scrub_pages
;
2772 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2773 mirror_num
, have_csum
? csum
: NULL
, 0,
2774 physical_for_dev_replace
);
2781 physical_for_dev_replace
+= l
;
2786 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2787 u64 logical
, u64 len
,
2788 u64 physical
, struct btrfs_device
*dev
,
2789 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2791 struct scrub_ctx
*sctx
= sparity
->sctx
;
2792 struct scrub_block
*sblock
;
2795 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2797 spin_lock(&sctx
->stat_lock
);
2798 sctx
->stat
.malloc_errors
++;
2799 spin_unlock(&sctx
->stat_lock
);
2803 /* one ref inside this function, plus one for each page added to
2805 refcount_set(&sblock
->refs
, 1);
2806 sblock
->sctx
= sctx
;
2807 sblock
->no_io_error_seen
= 1;
2808 sblock
->sparity
= sparity
;
2809 scrub_parity_get(sparity
);
2811 for (index
= 0; len
> 0; index
++) {
2812 struct scrub_page
*spage
;
2813 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2815 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2818 spin_lock(&sctx
->stat_lock
);
2819 sctx
->stat
.malloc_errors
++;
2820 spin_unlock(&sctx
->stat_lock
);
2821 scrub_block_put(sblock
);
2824 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2825 /* For scrub block */
2826 scrub_page_get(spage
);
2827 sblock
->pagev
[index
] = spage
;
2828 /* For scrub parity */
2829 scrub_page_get(spage
);
2830 list_add_tail(&spage
->list
, &sparity
->spages
);
2831 spage
->sblock
= sblock
;
2833 spage
->flags
= flags
;
2834 spage
->generation
= gen
;
2835 spage
->logical
= logical
;
2836 spage
->physical
= physical
;
2837 spage
->mirror_num
= mirror_num
;
2839 spage
->have_csum
= 1;
2840 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2842 spage
->have_csum
= 0;
2844 sblock
->page_count
++;
2845 spage
->page
= alloc_page(GFP_KERNEL
);
2853 WARN_ON(sblock
->page_count
== 0);
2854 for (index
= 0; index
< sblock
->page_count
; index
++) {
2855 struct scrub_page
*spage
= sblock
->pagev
[index
];
2858 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2860 scrub_block_put(sblock
);
2865 /* last one frees, either here or in bio completion for last page */
2866 scrub_block_put(sblock
);
2870 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2871 u64 logical
, u64 len
,
2872 u64 physical
, struct btrfs_device
*dev
,
2873 u64 flags
, u64 gen
, int mirror_num
)
2875 struct scrub_ctx
*sctx
= sparity
->sctx
;
2877 u8 csum
[BTRFS_CSUM_SIZE
];
2880 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2881 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2885 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2886 blocksize
= sctx
->fs_info
->sectorsize
;
2887 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2888 blocksize
= sctx
->fs_info
->nodesize
;
2890 blocksize
= sctx
->fs_info
->sectorsize
;
2895 u64 l
= min_t(u64
, len
, blocksize
);
2898 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2899 /* push csums to sbio */
2900 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2904 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2905 flags
, gen
, mirror_num
,
2906 have_csum
? csum
: NULL
);
2918 * Given a physical address, this will calculate it's
2919 * logical offset. if this is a parity stripe, it will return
2920 * the most left data stripe's logical offset.
2922 * return 0 if it is a data stripe, 1 means parity stripe.
2924 static int get_raid56_logic_offset(u64 physical
, int num
,
2925 struct map_lookup
*map
, u64
*offset
,
2935 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2936 nr_data_stripes(map
);
2938 *stripe_start
= last_offset
;
2940 *offset
= last_offset
;
2941 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2942 *offset
= last_offset
+ i
* map
->stripe_len
;
2944 stripe_nr
= div64_u64(*offset
, map
->stripe_len
);
2945 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2947 /* Work out the disk rotation on this stripe-set */
2948 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2949 /* calculate which stripe this data locates */
2951 stripe_index
= rot
% map
->num_stripes
;
2952 if (stripe_index
== num
)
2954 if (stripe_index
< num
)
2957 *offset
= last_offset
+ j
* map
->stripe_len
;
2961 static void scrub_free_parity(struct scrub_parity
*sparity
)
2963 struct scrub_ctx
*sctx
= sparity
->sctx
;
2964 struct scrub_page
*curr
, *next
;
2967 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
2969 spin_lock(&sctx
->stat_lock
);
2970 sctx
->stat
.read_errors
+= nbits
;
2971 sctx
->stat
.uncorrectable_errors
+= nbits
;
2972 spin_unlock(&sctx
->stat_lock
);
2975 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
2976 list_del_init(&curr
->list
);
2977 scrub_page_put(curr
);
2983 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
2985 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
2987 struct scrub_ctx
*sctx
= sparity
->sctx
;
2989 scrub_free_parity(sparity
);
2990 scrub_pending_bio_dec(sctx
);
2993 static void scrub_parity_bio_endio(struct bio
*bio
)
2995 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
2996 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
2999 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3004 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
3005 scrub_parity_bio_endio_worker
, NULL
, NULL
);
3006 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
3009 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
3011 struct scrub_ctx
*sctx
= sparity
->sctx
;
3012 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3014 struct btrfs_raid_bio
*rbio
;
3015 struct btrfs_bio
*bbio
= NULL
;
3019 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
3023 length
= sparity
->logic_end
- sparity
->logic_start
;
3025 btrfs_bio_counter_inc_blocked(fs_info
);
3026 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
3028 if (ret
|| !bbio
|| !bbio
->raid_map
)
3031 bio
= btrfs_io_bio_alloc(0);
3032 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
3033 bio
->bi_private
= sparity
;
3034 bio
->bi_end_io
= scrub_parity_bio_endio
;
3036 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
3037 length
, sparity
->scrub_dev
,
3043 scrub_pending_bio_inc(sctx
);
3044 raid56_parity_submit_scrub_rbio(rbio
);
3050 btrfs_bio_counter_dec(fs_info
);
3051 btrfs_put_bbio(bbio
);
3052 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3054 spin_lock(&sctx
->stat_lock
);
3055 sctx
->stat
.malloc_errors
++;
3056 spin_unlock(&sctx
->stat_lock
);
3058 scrub_free_parity(sparity
);
3061 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
3063 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
3066 static void scrub_parity_get(struct scrub_parity
*sparity
)
3068 refcount_inc(&sparity
->refs
);
3071 static void scrub_parity_put(struct scrub_parity
*sparity
)
3073 if (!refcount_dec_and_test(&sparity
->refs
))
3076 scrub_parity_check_and_repair(sparity
);
3079 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
3080 struct map_lookup
*map
,
3081 struct btrfs_device
*sdev
,
3082 struct btrfs_path
*path
,
3086 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3087 struct btrfs_root
*root
= fs_info
->extent_root
;
3088 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3089 struct btrfs_extent_item
*extent
;
3090 struct btrfs_bio
*bbio
= NULL
;
3094 struct extent_buffer
*l
;
3095 struct btrfs_key key
;
3098 u64 extent_physical
;
3101 struct btrfs_device
*extent_dev
;
3102 struct scrub_parity
*sparity
;
3105 int extent_mirror_num
;
3108 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
3109 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
3110 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
3113 spin_lock(&sctx
->stat_lock
);
3114 sctx
->stat
.malloc_errors
++;
3115 spin_unlock(&sctx
->stat_lock
);
3119 sparity
->stripe_len
= map
->stripe_len
;
3120 sparity
->nsectors
= nsectors
;
3121 sparity
->sctx
= sctx
;
3122 sparity
->scrub_dev
= sdev
;
3123 sparity
->logic_start
= logic_start
;
3124 sparity
->logic_end
= logic_end
;
3125 refcount_set(&sparity
->refs
, 1);
3126 INIT_LIST_HEAD(&sparity
->spages
);
3127 sparity
->dbitmap
= sparity
->bitmap
;
3128 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
3131 while (logic_start
< logic_end
) {
3132 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3133 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3135 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3136 key
.objectid
= logic_start
;
3137 key
.offset
= (u64
)-1;
3139 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3144 ret
= btrfs_previous_extent_item(root
, path
, 0);
3148 btrfs_release_path(path
);
3149 ret
= btrfs_search_slot(NULL
, root
, &key
,
3161 slot
= path
->slots
[0];
3162 if (slot
>= btrfs_header_nritems(l
)) {
3163 ret
= btrfs_next_leaf(root
, path
);
3172 btrfs_item_key_to_cpu(l
, &key
, slot
);
3174 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3175 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3178 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3179 bytes
= fs_info
->nodesize
;
3183 if (key
.objectid
+ bytes
<= logic_start
)
3186 if (key
.objectid
>= logic_end
) {
3191 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
3192 logic_start
+= map
->stripe_len
;
3194 extent
= btrfs_item_ptr(l
, slot
,
3195 struct btrfs_extent_item
);
3196 flags
= btrfs_extent_flags(l
, extent
);
3197 generation
= btrfs_extent_generation(l
, extent
);
3199 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3200 (key
.objectid
< logic_start
||
3201 key
.objectid
+ bytes
>
3202 logic_start
+ map
->stripe_len
)) {
3204 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3205 key
.objectid
, logic_start
);
3206 spin_lock(&sctx
->stat_lock
);
3207 sctx
->stat
.uncorrectable_errors
++;
3208 spin_unlock(&sctx
->stat_lock
);
3212 extent_logical
= key
.objectid
;
3215 if (extent_logical
< logic_start
) {
3216 extent_len
-= logic_start
- extent_logical
;
3217 extent_logical
= logic_start
;
3220 if (extent_logical
+ extent_len
>
3221 logic_start
+ map
->stripe_len
)
3222 extent_len
= logic_start
+ map
->stripe_len
-
3225 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
3228 mapped_length
= extent_len
;
3230 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
3231 extent_logical
, &mapped_length
, &bbio
,
3234 if (!bbio
|| mapped_length
< extent_len
)
3238 btrfs_put_bbio(bbio
);
3241 extent_physical
= bbio
->stripes
[0].physical
;
3242 extent_mirror_num
= bbio
->mirror_num
;
3243 extent_dev
= bbio
->stripes
[0].dev
;
3244 btrfs_put_bbio(bbio
);
3246 ret
= btrfs_lookup_csums_range(csum_root
,
3248 extent_logical
+ extent_len
- 1,
3249 &sctx
->csum_list
, 1);
3253 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3260 scrub_free_csums(sctx
);
3265 if (extent_logical
+ extent_len
<
3266 key
.objectid
+ bytes
) {
3267 logic_start
+= map
->stripe_len
;
3269 if (logic_start
>= logic_end
) {
3274 if (logic_start
< key
.objectid
+ bytes
) {
3283 btrfs_release_path(path
);
3288 logic_start
+= map
->stripe_len
;
3292 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3293 logic_end
- logic_start
);
3294 scrub_parity_put(sparity
);
3296 mutex_lock(&sctx
->wr_lock
);
3297 scrub_wr_submit(sctx
);
3298 mutex_unlock(&sctx
->wr_lock
);
3300 btrfs_release_path(path
);
3301 return ret
< 0 ? ret
: 0;
3304 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3305 struct map_lookup
*map
,
3306 struct btrfs_device
*scrub_dev
,
3307 int num
, u64 base
, u64 length
,
3310 struct btrfs_path
*path
, *ppath
;
3311 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3312 struct btrfs_root
*root
= fs_info
->extent_root
;
3313 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3314 struct btrfs_extent_item
*extent
;
3315 struct blk_plug plug
;
3320 struct extent_buffer
*l
;
3327 struct reada_control
*reada1
;
3328 struct reada_control
*reada2
;
3329 struct btrfs_key key
;
3330 struct btrfs_key key_end
;
3331 u64 increment
= map
->stripe_len
;
3334 u64 extent_physical
;
3338 struct btrfs_device
*extent_dev
;
3339 int extent_mirror_num
;
3342 physical
= map
->stripes
[num
].physical
;
3344 nstripes
= div64_u64(length
, map
->stripe_len
);
3345 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3346 offset
= map
->stripe_len
* num
;
3347 increment
= map
->stripe_len
* map
->num_stripes
;
3349 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3350 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3351 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3352 increment
= map
->stripe_len
* factor
;
3353 mirror_num
= num
% map
->sub_stripes
+ 1;
3354 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3355 increment
= map
->stripe_len
;
3356 mirror_num
= num
% map
->num_stripes
+ 1;
3357 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3358 increment
= map
->stripe_len
;
3359 mirror_num
= num
% map
->num_stripes
+ 1;
3360 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3361 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3362 increment
= map
->stripe_len
* nr_data_stripes(map
);
3365 increment
= map
->stripe_len
;
3369 path
= btrfs_alloc_path();
3373 ppath
= btrfs_alloc_path();
3375 btrfs_free_path(path
);
3380 * work on commit root. The related disk blocks are static as
3381 * long as COW is applied. This means, it is save to rewrite
3382 * them to repair disk errors without any race conditions
3384 path
->search_commit_root
= 1;
3385 path
->skip_locking
= 1;
3387 ppath
->search_commit_root
= 1;
3388 ppath
->skip_locking
= 1;
3390 * trigger the readahead for extent tree csum tree and wait for
3391 * completion. During readahead, the scrub is officially paused
3392 * to not hold off transaction commits
3394 logical
= base
+ offset
;
3395 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3396 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3397 get_raid56_logic_offset(physical_end
, num
,
3398 map
, &logic_end
, NULL
);
3401 logic_end
= logical
+ increment
* nstripes
;
3403 wait_event(sctx
->list_wait
,
3404 atomic_read(&sctx
->bios_in_flight
) == 0);
3405 scrub_blocked_if_needed(fs_info
);
3407 /* FIXME it might be better to start readahead at commit root */
3408 key
.objectid
= logical
;
3409 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3410 key
.offset
= (u64
)0;
3411 key_end
.objectid
= logic_end
;
3412 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3413 key_end
.offset
= (u64
)-1;
3414 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3416 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3417 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3418 key
.offset
= logical
;
3419 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3420 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3421 key_end
.offset
= logic_end
;
3422 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3424 if (!IS_ERR(reada1
))
3425 btrfs_reada_wait(reada1
);
3426 if (!IS_ERR(reada2
))
3427 btrfs_reada_wait(reada2
);
3431 * collect all data csums for the stripe to avoid seeking during
3432 * the scrub. This might currently (crc32) end up to be about 1MB
3434 blk_start_plug(&plug
);
3437 * now find all extents for each stripe and scrub them
3440 while (physical
< physical_end
) {
3444 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3445 atomic_read(&sctx
->cancel_req
)) {
3450 * check to see if we have to pause
3452 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3453 /* push queued extents */
3454 sctx
->flush_all_writes
= true;
3456 mutex_lock(&sctx
->wr_lock
);
3457 scrub_wr_submit(sctx
);
3458 mutex_unlock(&sctx
->wr_lock
);
3459 wait_event(sctx
->list_wait
,
3460 atomic_read(&sctx
->bios_in_flight
) == 0);
3461 sctx
->flush_all_writes
= false;
3462 scrub_blocked_if_needed(fs_info
);
3465 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3466 ret
= get_raid56_logic_offset(physical
, num
, map
,
3471 /* it is parity strip */
3472 stripe_logical
+= base
;
3473 stripe_end
= stripe_logical
+ increment
;
3474 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3475 ppath
, stripe_logical
,
3483 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3484 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3486 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3487 key
.objectid
= logical
;
3488 key
.offset
= (u64
)-1;
3490 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3495 ret
= btrfs_previous_extent_item(root
, path
, 0);
3499 /* there's no smaller item, so stick with the
3501 btrfs_release_path(path
);
3502 ret
= btrfs_search_slot(NULL
, root
, &key
,
3514 slot
= path
->slots
[0];
3515 if (slot
>= btrfs_header_nritems(l
)) {
3516 ret
= btrfs_next_leaf(root
, path
);
3525 btrfs_item_key_to_cpu(l
, &key
, slot
);
3527 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3528 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3531 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3532 bytes
= fs_info
->nodesize
;
3536 if (key
.objectid
+ bytes
<= logical
)
3539 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3540 /* out of this device extent */
3541 if (key
.objectid
>= logic_end
)
3546 extent
= btrfs_item_ptr(l
, slot
,
3547 struct btrfs_extent_item
);
3548 flags
= btrfs_extent_flags(l
, extent
);
3549 generation
= btrfs_extent_generation(l
, extent
);
3551 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3552 (key
.objectid
< logical
||
3553 key
.objectid
+ bytes
>
3554 logical
+ map
->stripe_len
)) {
3556 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3557 key
.objectid
, logical
);
3558 spin_lock(&sctx
->stat_lock
);
3559 sctx
->stat
.uncorrectable_errors
++;
3560 spin_unlock(&sctx
->stat_lock
);
3565 extent_logical
= key
.objectid
;
3569 * trim extent to this stripe
3571 if (extent_logical
< logical
) {
3572 extent_len
-= logical
- extent_logical
;
3573 extent_logical
= logical
;
3575 if (extent_logical
+ extent_len
>
3576 logical
+ map
->stripe_len
) {
3577 extent_len
= logical
+ map
->stripe_len
-
3581 extent_physical
= extent_logical
- logical
+ physical
;
3582 extent_dev
= scrub_dev
;
3583 extent_mirror_num
= mirror_num
;
3585 scrub_remap_extent(fs_info
, extent_logical
,
3586 extent_len
, &extent_physical
,
3588 &extent_mirror_num
);
3590 ret
= btrfs_lookup_csums_range(csum_root
,
3594 &sctx
->csum_list
, 1);
3598 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
3599 extent_physical
, extent_dev
, flags
,
3600 generation
, extent_mirror_num
,
3601 extent_logical
- logical
+ physical
);
3603 scrub_free_csums(sctx
);
3608 if (extent_logical
+ extent_len
<
3609 key
.objectid
+ bytes
) {
3610 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3612 * loop until we find next data stripe
3613 * or we have finished all stripes.
3616 physical
+= map
->stripe_len
;
3617 ret
= get_raid56_logic_offset(physical
,
3622 if (ret
&& physical
< physical_end
) {
3623 stripe_logical
+= base
;
3624 stripe_end
= stripe_logical
+
3626 ret
= scrub_raid56_parity(sctx
,
3627 map
, scrub_dev
, ppath
,
3635 physical
+= map
->stripe_len
;
3636 logical
+= increment
;
3638 if (logical
< key
.objectid
+ bytes
) {
3643 if (physical
>= physical_end
) {
3651 btrfs_release_path(path
);
3653 logical
+= increment
;
3654 physical
+= map
->stripe_len
;
3655 spin_lock(&sctx
->stat_lock
);
3657 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3660 sctx
->stat
.last_physical
= physical
;
3661 spin_unlock(&sctx
->stat_lock
);
3666 /* push queued extents */
3668 mutex_lock(&sctx
->wr_lock
);
3669 scrub_wr_submit(sctx
);
3670 mutex_unlock(&sctx
->wr_lock
);
3672 blk_finish_plug(&plug
);
3673 btrfs_free_path(path
);
3674 btrfs_free_path(ppath
);
3675 return ret
< 0 ? ret
: 0;
3678 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3679 struct btrfs_device
*scrub_dev
,
3680 u64 chunk_offset
, u64 length
,
3682 struct btrfs_block_group_cache
*cache
,
3685 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3686 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3687 struct map_lookup
*map
;
3688 struct extent_map
*em
;
3692 read_lock(&map_tree
->map_tree
.lock
);
3693 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3694 read_unlock(&map_tree
->map_tree
.lock
);
3698 * Might have been an unused block group deleted by the cleaner
3699 * kthread or relocation.
3701 spin_lock(&cache
->lock
);
3702 if (!cache
->removed
)
3704 spin_unlock(&cache
->lock
);
3709 map
= em
->map_lookup
;
3710 if (em
->start
!= chunk_offset
)
3713 if (em
->len
< length
)
3716 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3717 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3718 map
->stripes
[i
].physical
== dev_offset
) {
3719 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3720 chunk_offset
, length
,
3727 free_extent_map(em
);
3732 static noinline_for_stack
3733 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3734 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3737 struct btrfs_dev_extent
*dev_extent
= NULL
;
3738 struct btrfs_path
*path
;
3739 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3740 struct btrfs_root
*root
= fs_info
->dev_root
;
3746 struct extent_buffer
*l
;
3747 struct btrfs_key key
;
3748 struct btrfs_key found_key
;
3749 struct btrfs_block_group_cache
*cache
;
3750 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3752 path
= btrfs_alloc_path();
3756 path
->reada
= READA_FORWARD
;
3757 path
->search_commit_root
= 1;
3758 path
->skip_locking
= 1;
3760 key
.objectid
= scrub_dev
->devid
;
3762 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3765 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3769 if (path
->slots
[0] >=
3770 btrfs_header_nritems(path
->nodes
[0])) {
3771 ret
= btrfs_next_leaf(root
, path
);
3784 slot
= path
->slots
[0];
3786 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3788 if (found_key
.objectid
!= scrub_dev
->devid
)
3791 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3794 if (found_key
.offset
>= end
)
3797 if (found_key
.offset
< key
.offset
)
3800 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3801 length
= btrfs_dev_extent_length(l
, dev_extent
);
3803 if (found_key
.offset
+ length
<= start
)
3806 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3809 * get a reference on the corresponding block group to prevent
3810 * the chunk from going away while we scrub it
3812 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3814 /* some chunks are removed but not committed to disk yet,
3815 * continue scrubbing */
3820 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3821 * to avoid deadlock caused by:
3822 * btrfs_inc_block_group_ro()
3823 * -> btrfs_wait_for_commit()
3824 * -> btrfs_commit_transaction()
3825 * -> btrfs_scrub_pause()
3827 scrub_pause_on(fs_info
);
3828 ret
= btrfs_inc_block_group_ro(fs_info
, cache
);
3829 if (!ret
&& is_dev_replace
) {
3831 * If we are doing a device replace wait for any tasks
3832 * that started dellaloc right before we set the block
3833 * group to RO mode, as they might have just allocated
3834 * an extent from it or decided they could do a nocow
3835 * write. And if any such tasks did that, wait for their
3836 * ordered extents to complete and then commit the
3837 * current transaction, so that we can later see the new
3838 * extent items in the extent tree - the ordered extents
3839 * create delayed data references (for cow writes) when
3840 * they complete, which will be run and insert the
3841 * corresponding extent items into the extent tree when
3842 * we commit the transaction they used when running
3843 * inode.c:btrfs_finish_ordered_io(). We later use
3844 * the commit root of the extent tree to find extents
3845 * to copy from the srcdev into the tgtdev, and we don't
3846 * want to miss any new extents.
3848 btrfs_wait_block_group_reservations(cache
);
3849 btrfs_wait_nocow_writers(cache
);
3850 ret
= btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3851 cache
->key
.objectid
,
3854 struct btrfs_trans_handle
*trans
;
3856 trans
= btrfs_join_transaction(root
);
3858 ret
= PTR_ERR(trans
);
3860 ret
= btrfs_commit_transaction(trans
);
3862 scrub_pause_off(fs_info
);
3863 btrfs_put_block_group(cache
);
3868 scrub_pause_off(fs_info
);
3872 } else if (ret
== -ENOSPC
) {
3874 * btrfs_inc_block_group_ro return -ENOSPC when it
3875 * failed in creating new chunk for metadata.
3876 * It is not a problem for scrub/replace, because
3877 * metadata are always cowed, and our scrub paused
3878 * commit_transactions.
3883 "failed setting block group ro: %d", ret
);
3884 btrfs_put_block_group(cache
);
3888 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3889 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3890 dev_replace
->cursor_left
= found_key
.offset
;
3891 dev_replace
->item_needs_writeback
= 1;
3892 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3893 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3894 found_key
.offset
, cache
, is_dev_replace
);
3897 * flush, submit all pending read and write bios, afterwards
3899 * Note that in the dev replace case, a read request causes
3900 * write requests that are submitted in the read completion
3901 * worker. Therefore in the current situation, it is required
3902 * that all write requests are flushed, so that all read and
3903 * write requests are really completed when bios_in_flight
3906 sctx
->flush_all_writes
= true;
3908 mutex_lock(&sctx
->wr_lock
);
3909 scrub_wr_submit(sctx
);
3910 mutex_unlock(&sctx
->wr_lock
);
3912 wait_event(sctx
->list_wait
,
3913 atomic_read(&sctx
->bios_in_flight
) == 0);
3915 scrub_pause_on(fs_info
);
3918 * must be called before we decrease @scrub_paused.
3919 * make sure we don't block transaction commit while
3920 * we are waiting pending workers finished.
3922 wait_event(sctx
->list_wait
,
3923 atomic_read(&sctx
->workers_pending
) == 0);
3924 sctx
->flush_all_writes
= false;
3926 scrub_pause_off(fs_info
);
3928 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3929 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3930 dev_replace
->item_needs_writeback
= 1;
3931 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3934 btrfs_dec_block_group_ro(cache
);
3937 * We might have prevented the cleaner kthread from deleting
3938 * this block group if it was already unused because we raced
3939 * and set it to RO mode first. So add it back to the unused
3940 * list, otherwise it might not ever be deleted unless a manual
3941 * balance is triggered or it becomes used and unused again.
3943 spin_lock(&cache
->lock
);
3944 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3945 btrfs_block_group_used(&cache
->item
) == 0) {
3946 spin_unlock(&cache
->lock
);
3947 spin_lock(&fs_info
->unused_bgs_lock
);
3948 if (list_empty(&cache
->bg_list
)) {
3949 btrfs_get_block_group(cache
);
3950 list_add_tail(&cache
->bg_list
,
3951 &fs_info
->unused_bgs
);
3953 spin_unlock(&fs_info
->unused_bgs_lock
);
3955 spin_unlock(&cache
->lock
);
3958 btrfs_put_block_group(cache
);
3961 if (is_dev_replace
&&
3962 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
3966 if (sctx
->stat
.malloc_errors
> 0) {
3971 key
.offset
= found_key
.offset
+ length
;
3972 btrfs_release_path(path
);
3975 btrfs_free_path(path
);
3980 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
3981 struct btrfs_device
*scrub_dev
)
3987 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3989 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3992 /* Seed devices of a new filesystem has their own generation. */
3993 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
3994 gen
= scrub_dev
->generation
;
3996 gen
= fs_info
->last_trans_committed
;
3998 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
3999 bytenr
= btrfs_sb_offset(i
);
4000 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
4001 scrub_dev
->commit_total_bytes
)
4004 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
4005 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
4010 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4016 * get a reference count on fs_info->scrub_workers. start worker if necessary
4018 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
4021 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
4022 int max_active
= fs_info
->thread_pool_size
;
4024 if (fs_info
->scrub_workers_refcnt
== 0) {
4025 fs_info
->scrub_workers
= btrfs_alloc_workqueue(fs_info
, "scrub",
4026 flags
, is_dev_replace
? 1 : max_active
, 4);
4027 if (!fs_info
->scrub_workers
)
4028 goto fail_scrub_workers
;
4030 fs_info
->scrub_wr_completion_workers
=
4031 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
4033 if (!fs_info
->scrub_wr_completion_workers
)
4034 goto fail_scrub_wr_completion_workers
;
4036 fs_info
->scrub_nocow_workers
=
4037 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
4038 if (!fs_info
->scrub_nocow_workers
)
4039 goto fail_scrub_nocow_workers
;
4040 fs_info
->scrub_parity_workers
=
4041 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
4043 if (!fs_info
->scrub_parity_workers
)
4044 goto fail_scrub_parity_workers
;
4046 ++fs_info
->scrub_workers_refcnt
;
4049 fail_scrub_parity_workers
:
4050 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4051 fail_scrub_nocow_workers
:
4052 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4053 fail_scrub_wr_completion_workers
:
4054 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4059 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
4061 if (--fs_info
->scrub_workers_refcnt
== 0) {
4062 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4063 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4064 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4065 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
4067 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
4070 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
4071 u64 end
, struct btrfs_scrub_progress
*progress
,
4072 int readonly
, int is_dev_replace
)
4074 struct scrub_ctx
*sctx
;
4076 struct btrfs_device
*dev
;
4077 struct rcu_string
*name
;
4079 if (btrfs_fs_closing(fs_info
))
4082 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
4084 * in this case scrub is unable to calculate the checksum
4085 * the way scrub is implemented. Do not handle this
4086 * situation at all because it won't ever happen.
4089 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4095 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
4096 /* not supported for data w/o checksums */
4097 btrfs_err_rl(fs_info
,
4098 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4099 fs_info
->sectorsize
, PAGE_SIZE
);
4103 if (fs_info
->nodesize
>
4104 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
4105 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
4107 * would exhaust the array bounds of pagev member in
4108 * struct scrub_block
4111 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4113 SCRUB_MAX_PAGES_PER_BLOCK
,
4114 fs_info
->sectorsize
,
4115 SCRUB_MAX_PAGES_PER_BLOCK
);
4120 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4121 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4122 if (!dev
|| (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) &&
4124 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4128 if (!is_dev_replace
&& !readonly
&&
4129 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
4130 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4132 name
= rcu_dereference(dev
->name
);
4133 btrfs_err(fs_info
, "scrub: device %s is not writable",
4139 mutex_lock(&fs_info
->scrub_lock
);
4140 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
4141 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &dev
->dev_state
)) {
4142 mutex_unlock(&fs_info
->scrub_lock
);
4143 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4147 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
4148 if (dev
->scrub_ctx
||
4150 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
4151 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
4152 mutex_unlock(&fs_info
->scrub_lock
);
4153 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4154 return -EINPROGRESS
;
4156 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
4158 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
4160 mutex_unlock(&fs_info
->scrub_lock
);
4161 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4165 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
4167 mutex_unlock(&fs_info
->scrub_lock
);
4168 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4169 scrub_workers_put(fs_info
);
4170 return PTR_ERR(sctx
);
4172 sctx
->readonly
= readonly
;
4173 dev
->scrub_ctx
= sctx
;
4174 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4177 * checking @scrub_pause_req here, we can avoid
4178 * race between committing transaction and scrubbing.
4180 __scrub_blocked_if_needed(fs_info
);
4181 atomic_inc(&fs_info
->scrubs_running
);
4182 mutex_unlock(&fs_info
->scrub_lock
);
4184 if (!is_dev_replace
) {
4186 * by holding device list mutex, we can
4187 * kick off writing super in log tree sync.
4189 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4190 ret
= scrub_supers(sctx
, dev
);
4191 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4195 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
4198 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4199 atomic_dec(&fs_info
->scrubs_running
);
4200 wake_up(&fs_info
->scrub_pause_wait
);
4202 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
4205 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4207 mutex_lock(&fs_info
->scrub_lock
);
4208 dev
->scrub_ctx
= NULL
;
4209 scrub_workers_put(fs_info
);
4210 mutex_unlock(&fs_info
->scrub_lock
);
4212 scrub_put_ctx(sctx
);
4217 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
4219 mutex_lock(&fs_info
->scrub_lock
);
4220 atomic_inc(&fs_info
->scrub_pause_req
);
4221 while (atomic_read(&fs_info
->scrubs_paused
) !=
4222 atomic_read(&fs_info
->scrubs_running
)) {
4223 mutex_unlock(&fs_info
->scrub_lock
);
4224 wait_event(fs_info
->scrub_pause_wait
,
4225 atomic_read(&fs_info
->scrubs_paused
) ==
4226 atomic_read(&fs_info
->scrubs_running
));
4227 mutex_lock(&fs_info
->scrub_lock
);
4229 mutex_unlock(&fs_info
->scrub_lock
);
4232 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
4234 atomic_dec(&fs_info
->scrub_pause_req
);
4235 wake_up(&fs_info
->scrub_pause_wait
);
4238 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4240 mutex_lock(&fs_info
->scrub_lock
);
4241 if (!atomic_read(&fs_info
->scrubs_running
)) {
4242 mutex_unlock(&fs_info
->scrub_lock
);
4246 atomic_inc(&fs_info
->scrub_cancel_req
);
4247 while (atomic_read(&fs_info
->scrubs_running
)) {
4248 mutex_unlock(&fs_info
->scrub_lock
);
4249 wait_event(fs_info
->scrub_pause_wait
,
4250 atomic_read(&fs_info
->scrubs_running
) == 0);
4251 mutex_lock(&fs_info
->scrub_lock
);
4253 atomic_dec(&fs_info
->scrub_cancel_req
);
4254 mutex_unlock(&fs_info
->scrub_lock
);
4259 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4260 struct btrfs_device
*dev
)
4262 struct scrub_ctx
*sctx
;
4264 mutex_lock(&fs_info
->scrub_lock
);
4265 sctx
= dev
->scrub_ctx
;
4267 mutex_unlock(&fs_info
->scrub_lock
);
4270 atomic_inc(&sctx
->cancel_req
);
4271 while (dev
->scrub_ctx
) {
4272 mutex_unlock(&fs_info
->scrub_lock
);
4273 wait_event(fs_info
->scrub_pause_wait
,
4274 dev
->scrub_ctx
== NULL
);
4275 mutex_lock(&fs_info
->scrub_lock
);
4277 mutex_unlock(&fs_info
->scrub_lock
);
4282 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4283 struct btrfs_scrub_progress
*progress
)
4285 struct btrfs_device
*dev
;
4286 struct scrub_ctx
*sctx
= NULL
;
4288 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4289 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4291 sctx
= dev
->scrub_ctx
;
4293 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4294 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4296 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4299 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4300 u64 extent_logical
, u64 extent_len
,
4301 u64
*extent_physical
,
4302 struct btrfs_device
**extent_dev
,
4303 int *extent_mirror_num
)
4306 struct btrfs_bio
*bbio
= NULL
;
4309 mapped_length
= extent_len
;
4310 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4311 &mapped_length
, &bbio
, 0);
4312 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4313 !bbio
->stripes
[0].dev
->bdev
) {
4314 btrfs_put_bbio(bbio
);
4318 *extent_physical
= bbio
->stripes
[0].physical
;
4319 *extent_mirror_num
= bbio
->mirror_num
;
4320 *extent_dev
= bbio
->stripes
[0].dev
;
4321 btrfs_put_bbio(bbio
);
4324 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4325 int mirror_num
, u64 physical_for_dev_replace
)
4327 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4328 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4330 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4332 spin_lock(&sctx
->stat_lock
);
4333 sctx
->stat
.malloc_errors
++;
4334 spin_unlock(&sctx
->stat_lock
);
4338 scrub_pending_trans_workers_inc(sctx
);
4340 nocow_ctx
->sctx
= sctx
;
4341 nocow_ctx
->logical
= logical
;
4342 nocow_ctx
->len
= len
;
4343 nocow_ctx
->mirror_num
= mirror_num
;
4344 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4345 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4346 copy_nocow_pages_worker
, NULL
, NULL
);
4347 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4348 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4354 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4356 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4357 struct scrub_nocow_inode
*nocow_inode
;
4359 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4362 nocow_inode
->inum
= inum
;
4363 nocow_inode
->offset
= offset
;
4364 nocow_inode
->root
= root
;
4365 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4369 #define COPY_COMPLETE 1
4371 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4373 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4374 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4375 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4376 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4377 struct btrfs_root
*root
= fs_info
->extent_root
;
4378 u64 logical
= nocow_ctx
->logical
;
4379 u64 len
= nocow_ctx
->len
;
4380 int mirror_num
= nocow_ctx
->mirror_num
;
4381 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4383 struct btrfs_trans_handle
*trans
= NULL
;
4384 struct btrfs_path
*path
;
4385 int not_written
= 0;
4387 path
= btrfs_alloc_path();
4389 spin_lock(&sctx
->stat_lock
);
4390 sctx
->stat
.malloc_errors
++;
4391 spin_unlock(&sctx
->stat_lock
);
4396 trans
= btrfs_join_transaction(root
);
4397 if (IS_ERR(trans
)) {
4402 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4403 record_inode_for_nocow
, nocow_ctx
, false);
4404 if (ret
!= 0 && ret
!= -ENOENT
) {
4406 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4407 logical
, physical_for_dev_replace
, len
, mirror_num
,
4413 btrfs_end_transaction(trans
);
4415 while (!list_empty(&nocow_ctx
->inodes
)) {
4416 struct scrub_nocow_inode
*entry
;
4417 entry
= list_first_entry(&nocow_ctx
->inodes
,
4418 struct scrub_nocow_inode
,
4420 list_del_init(&entry
->list
);
4421 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4422 entry
->root
, nocow_ctx
);
4424 if (ret
== COPY_COMPLETE
) {
4432 while (!list_empty(&nocow_ctx
->inodes
)) {
4433 struct scrub_nocow_inode
*entry
;
4434 entry
= list_first_entry(&nocow_ctx
->inodes
,
4435 struct scrub_nocow_inode
,
4437 list_del_init(&entry
->list
);
4440 if (trans
&& !IS_ERR(trans
))
4441 btrfs_end_transaction(trans
);
4443 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4444 num_uncorrectable_read_errors
);
4446 btrfs_free_path(path
);
4449 scrub_pending_trans_workers_dec(sctx
);
4452 static int check_extent_to_block(struct btrfs_inode
*inode
, u64 start
, u64 len
,
4455 struct extent_state
*cached_state
= NULL
;
4456 struct btrfs_ordered_extent
*ordered
;
4457 struct extent_io_tree
*io_tree
;
4458 struct extent_map
*em
;
4459 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4462 io_tree
= &inode
->io_tree
;
4464 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4465 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4467 btrfs_put_ordered_extent(ordered
);
4472 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4479 * This extent does not actually cover the logical extent anymore,
4480 * move on to the next inode.
4482 if (em
->block_start
> logical
||
4483 em
->block_start
+ em
->block_len
< logical
+ len
) {
4484 free_extent_map(em
);
4488 free_extent_map(em
);
4491 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
);
4495 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4496 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4498 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->fs_info
;
4499 struct btrfs_key key
;
4500 struct inode
*inode
;
4502 struct btrfs_root
*local_root
;
4503 struct extent_io_tree
*io_tree
;
4504 u64 physical_for_dev_replace
;
4505 u64 nocow_ctx_logical
;
4506 u64 len
= nocow_ctx
->len
;
4507 unsigned long index
;
4512 key
.objectid
= root
;
4513 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4514 key
.offset
= (u64
)-1;
4516 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4518 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4519 if (IS_ERR(local_root
)) {
4520 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4521 return PTR_ERR(local_root
);
4524 key
.type
= BTRFS_INODE_ITEM_KEY
;
4525 key
.objectid
= inum
;
4527 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4528 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4530 return PTR_ERR(inode
);
4532 /* Avoid truncate/dio/punch hole.. */
4534 inode_dio_wait(inode
);
4536 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4537 io_tree
= &BTRFS_I(inode
)->io_tree
;
4538 nocow_ctx_logical
= nocow_ctx
->logical
;
4540 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4543 ret
= ret
> 0 ? 0 : ret
;
4547 while (len
>= PAGE_SIZE
) {
4548 index
= offset
>> PAGE_SHIFT
;
4550 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4552 btrfs_err(fs_info
, "find_or_create_page() failed");
4557 if (PageUptodate(page
)) {
4558 if (PageDirty(page
))
4561 ClearPageError(page
);
4562 err
= extent_read_full_page(io_tree
, page
,
4564 nocow_ctx
->mirror_num
);
4572 * If the page has been remove from the page cache,
4573 * the data on it is meaningless, because it may be
4574 * old one, the new data may be written into the new
4575 * page in the page cache.
4577 if (page
->mapping
!= inode
->i_mapping
) {
4582 if (!PageUptodate(page
)) {
4588 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4591 ret
= ret
> 0 ? 0 : ret
;
4595 err
= write_page_nocow(nocow_ctx
->sctx
,
4596 physical_for_dev_replace
, page
);
4606 offset
+= PAGE_SIZE
;
4607 physical_for_dev_replace
+= PAGE_SIZE
;
4608 nocow_ctx_logical
+= PAGE_SIZE
;
4611 ret
= COPY_COMPLETE
;
4613 inode_unlock(inode
);
4618 static int write_page_nocow(struct scrub_ctx
*sctx
,
4619 u64 physical_for_dev_replace
, struct page
*page
)
4622 struct btrfs_device
*dev
;
4625 dev
= sctx
->wr_tgtdev
;
4629 btrfs_warn_rl(dev
->fs_info
,
4630 "scrub write_page_nocow(bdev == NULL) is unexpected");
4633 bio
= btrfs_io_bio_alloc(1);
4634 bio
->bi_iter
.bi_size
= 0;
4635 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4636 bio_set_dev(bio
, dev
->bdev
);
4637 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
4638 ret
= bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4639 if (ret
!= PAGE_SIZE
) {
4642 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
4646 if (btrfsic_submit_bio_wait(bio
))
4647 goto leave_with_eio
;