1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly
;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
55 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
56 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
59 EXPORT_SYMBOL(jbd2_journal_extend
);
60 EXPORT_SYMBOL(jbd2_journal_stop
);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
68 EXPORT_SYMBOL(jbd2_journal_forget
);
70 EXPORT_SYMBOL(journal_sync_buffer
);
72 EXPORT_SYMBOL(jbd2_journal_flush
);
73 EXPORT_SYMBOL(jbd2_journal_revoke
);
75 EXPORT_SYMBOL(jbd2_journal_init_dev
);
76 EXPORT_SYMBOL(jbd2_journal_init_inode
);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
79 EXPORT_SYMBOL(jbd2_journal_set_features
);
80 EXPORT_SYMBOL(jbd2_journal_load
);
81 EXPORT_SYMBOL(jbd2_journal_destroy
);
82 EXPORT_SYMBOL(jbd2_journal_abort
);
83 EXPORT_SYMBOL(jbd2_journal_errno
);
84 EXPORT_SYMBOL(jbd2_journal_ack_err
);
85 EXPORT_SYMBOL(jbd2_journal_clear_err
);
86 EXPORT_SYMBOL(jbd2_log_wait_commit
);
87 EXPORT_SYMBOL(jbd2_log_start_commit
);
88 EXPORT_SYMBOL(jbd2_journal_start_commit
);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
90 EXPORT_SYMBOL(jbd2_journal_wipe
);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
94 EXPORT_SYMBOL(jbd2_journal_force_commit
);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write
);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait
);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
100 EXPORT_SYMBOL(jbd2_inode_cache
);
102 static void __journal_abort_soft (journal_t
*journal
, int errno
);
103 static int jbd2_journal_create_slab(size_t slab_size
);
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level
, const char *file
, const char *func
,
107 unsigned int line
, const char *fmt
, ...)
109 struct va_format vaf
;
112 if (level
> jbd2_journal_enable_debug
)
117 printk(KERN_DEBUG
"%s: (%s, %u): %pV\n", file
, func
, line
, &vaf
);
120 EXPORT_SYMBOL(__jbd2_debug
);
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
126 if (!jbd2_journal_has_csum_v2or3_feature(j
))
129 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
132 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
137 old_csum
= sb
->s_checksum
;
139 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
140 sb
->s_checksum
= old_csum
;
142 return cpu_to_be32(csum
);
145 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
147 if (!jbd2_journal_has_csum_v2or3(j
))
150 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
153 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
155 if (!jbd2_journal_has_csum_v2or3(j
))
158 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
162 * Helper function used to manage commit timeouts
165 static void commit_timeout(struct timer_list
*t
)
167 journal_t
*journal
= from_timer(journal
, t
, j_commit_timer
);
169 wake_up_process(journal
->j_task
);
173 * kjournald2: The main thread function used to manage a logging device
176 * This kernel thread is responsible for two things:
178 * 1) COMMIT: Every so often we need to commit the current state of the
179 * filesystem to disk. The journal thread is responsible for writing
180 * all of the metadata buffers to disk.
182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183 * of the data in that part of the log has been rewritten elsewhere on
184 * the disk. Flushing these old buffers to reclaim space in the log is
185 * known as checkpointing, and this thread is responsible for that job.
188 static int kjournald2(void *arg
)
190 journal_t
*journal
= arg
;
191 transaction_t
*transaction
;
194 * Set up an interval timer which can be used to trigger a commit wakeup
195 * after the commit interval expires
197 timer_setup(&journal
->j_commit_timer
, commit_timeout
, 0);
201 /* Record that the journal thread is running */
202 journal
->j_task
= current
;
203 wake_up(&journal
->j_wait_done_commit
);
206 * Make sure that no allocations from this kernel thread will ever
207 * recurse to the fs layer because we are responsible for the
208 * transaction commit and any fs involvement might get stuck waiting for
211 memalloc_nofs_save();
214 * And now, wait forever for commit wakeup events.
216 write_lock(&journal
->j_state_lock
);
219 if (journal
->j_flags
& JBD2_UNMOUNT
)
222 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
223 journal
->j_commit_sequence
, journal
->j_commit_request
);
225 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
226 jbd_debug(1, "OK, requests differ\n");
227 write_unlock(&journal
->j_state_lock
);
228 del_timer_sync(&journal
->j_commit_timer
);
229 jbd2_journal_commit_transaction(journal
);
230 write_lock(&journal
->j_state_lock
);
234 wake_up(&journal
->j_wait_done_commit
);
235 if (freezing(current
)) {
237 * The simpler the better. Flushing journal isn't a
238 * good idea, because that depends on threads that may
239 * be already stopped.
241 jbd_debug(1, "Now suspending kjournald2\n");
242 write_unlock(&journal
->j_state_lock
);
244 write_lock(&journal
->j_state_lock
);
247 * We assume on resume that commits are already there,
251 int should_sleep
= 1;
253 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
255 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
257 transaction
= journal
->j_running_transaction
;
258 if (transaction
&& time_after_eq(jiffies
,
259 transaction
->t_expires
))
261 if (journal
->j_flags
& JBD2_UNMOUNT
)
264 write_unlock(&journal
->j_state_lock
);
266 write_lock(&journal
->j_state_lock
);
268 finish_wait(&journal
->j_wait_commit
, &wait
);
271 jbd_debug(1, "kjournald2 wakes\n");
274 * Were we woken up by a commit wakeup event?
276 transaction
= journal
->j_running_transaction
;
277 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
278 journal
->j_commit_request
= transaction
->t_tid
;
279 jbd_debug(1, "woke because of timeout\n");
284 del_timer_sync(&journal
->j_commit_timer
);
285 journal
->j_task
= NULL
;
286 wake_up(&journal
->j_wait_done_commit
);
287 jbd_debug(1, "Journal thread exiting.\n");
288 write_unlock(&journal
->j_state_lock
);
292 static int jbd2_journal_start_thread(journal_t
*journal
)
294 struct task_struct
*t
;
296 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
301 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
305 static void journal_kill_thread(journal_t
*journal
)
307 write_lock(&journal
->j_state_lock
);
308 journal
->j_flags
|= JBD2_UNMOUNT
;
310 while (journal
->j_task
) {
311 write_unlock(&journal
->j_state_lock
);
312 wake_up(&journal
->j_wait_commit
);
313 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
314 write_lock(&journal
->j_state_lock
);
316 write_unlock(&journal
->j_state_lock
);
320 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
322 * Writes a metadata buffer to a given disk block. The actual IO is not
323 * performed but a new buffer_head is constructed which labels the data
324 * to be written with the correct destination disk block.
326 * Any magic-number escaping which needs to be done will cause a
327 * copy-out here. If the buffer happens to start with the
328 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
329 * magic number is only written to the log for descripter blocks. In
330 * this case, we copy the data and replace the first word with 0, and we
331 * return a result code which indicates that this buffer needs to be
332 * marked as an escaped buffer in the corresponding log descriptor
333 * block. The missing word can then be restored when the block is read
336 * If the source buffer has already been modified by a new transaction
337 * since we took the last commit snapshot, we use the frozen copy of
338 * that data for IO. If we end up using the existing buffer_head's data
339 * for the write, then we have to make sure nobody modifies it while the
340 * IO is in progress. do_get_write_access() handles this.
342 * The function returns a pointer to the buffer_head to be used for IO.
350 * Bit 0 set == escape performed on the data
351 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
354 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
355 struct journal_head
*jh_in
,
356 struct buffer_head
**bh_out
,
359 int need_copy_out
= 0;
360 int done_copy_out
= 0;
363 struct buffer_head
*new_bh
;
364 struct page
*new_page
;
365 unsigned int new_offset
;
366 struct buffer_head
*bh_in
= jh2bh(jh_in
);
367 journal_t
*journal
= transaction
->t_journal
;
370 * The buffer really shouldn't be locked: only the current committing
371 * transaction is allowed to write it, so nobody else is allowed
374 * akpm: except if we're journalling data, and write() output is
375 * also part of a shared mapping, and another thread has
376 * decided to launch a writepage() against this buffer.
378 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
380 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
382 /* keep subsequent assertions sane */
383 atomic_set(&new_bh
->b_count
, 1);
385 jbd_lock_bh_state(bh_in
);
388 * If a new transaction has already done a buffer copy-out, then
389 * we use that version of the data for the commit.
391 if (jh_in
->b_frozen_data
) {
393 new_page
= virt_to_page(jh_in
->b_frozen_data
);
394 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
396 new_page
= jh2bh(jh_in
)->b_page
;
397 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
400 mapped_data
= kmap_atomic(new_page
);
402 * Fire data frozen trigger if data already wasn't frozen. Do this
403 * before checking for escaping, as the trigger may modify the magic
404 * offset. If a copy-out happens afterwards, it will have the correct
405 * data in the buffer.
408 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
414 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
415 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
419 kunmap_atomic(mapped_data
);
422 * Do we need to do a data copy?
424 if (need_copy_out
&& !done_copy_out
) {
427 jbd_unlock_bh_state(bh_in
);
428 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
433 jbd_lock_bh_state(bh_in
);
434 if (jh_in
->b_frozen_data
) {
435 jbd2_free(tmp
, bh_in
->b_size
);
439 jh_in
->b_frozen_data
= tmp
;
440 mapped_data
= kmap_atomic(new_page
);
441 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
442 kunmap_atomic(mapped_data
);
444 new_page
= virt_to_page(tmp
);
445 new_offset
= offset_in_page(tmp
);
449 * This isn't strictly necessary, as we're using frozen
450 * data for the escaping, but it keeps consistency with
451 * b_frozen_data usage.
453 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
457 * Did we need to do an escaping? Now we've done all the
458 * copying, we can finally do so.
461 mapped_data
= kmap_atomic(new_page
);
462 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
463 kunmap_atomic(mapped_data
);
466 set_bh_page(new_bh
, new_page
, new_offset
);
467 new_bh
->b_size
= bh_in
->b_size
;
468 new_bh
->b_bdev
= journal
->j_dev
;
469 new_bh
->b_blocknr
= blocknr
;
470 new_bh
->b_private
= bh_in
;
471 set_buffer_mapped(new_bh
);
472 set_buffer_dirty(new_bh
);
477 * The to-be-written buffer needs to get moved to the io queue,
478 * and the original buffer whose contents we are shadowing or
479 * copying is moved to the transaction's shadow queue.
481 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
482 spin_lock(&journal
->j_list_lock
);
483 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
484 spin_unlock(&journal
->j_list_lock
);
485 set_buffer_shadow(bh_in
);
486 jbd_unlock_bh_state(bh_in
);
488 return do_escape
| (done_copy_out
<< 1);
492 * Allocation code for the journal file. Manage the space left in the
493 * journal, so that we can begin checkpointing when appropriate.
497 * Called with j_state_lock locked for writing.
498 * Returns true if a transaction commit was started.
500 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
502 /* Return if the txn has already requested to be committed */
503 if (journal
->j_commit_request
== target
)
507 * The only transaction we can possibly wait upon is the
508 * currently running transaction (if it exists). Otherwise,
509 * the target tid must be an old one.
511 if (journal
->j_running_transaction
&&
512 journal
->j_running_transaction
->t_tid
== target
) {
514 * We want a new commit: OK, mark the request and wakeup the
515 * commit thread. We do _not_ do the commit ourselves.
518 journal
->j_commit_request
= target
;
519 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
520 journal
->j_commit_request
,
521 journal
->j_commit_sequence
);
522 journal
->j_running_transaction
->t_requested
= jiffies
;
523 wake_up(&journal
->j_wait_commit
);
525 } else if (!tid_geq(journal
->j_commit_request
, target
))
526 /* This should never happen, but if it does, preserve
527 the evidence before kjournald goes into a loop and
528 increments j_commit_sequence beyond all recognition. */
529 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
530 journal
->j_commit_request
,
531 journal
->j_commit_sequence
,
532 target
, journal
->j_running_transaction
?
533 journal
->j_running_transaction
->t_tid
: 0);
537 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
541 write_lock(&journal
->j_state_lock
);
542 ret
= __jbd2_log_start_commit(journal
, tid
);
543 write_unlock(&journal
->j_state_lock
);
548 * Force and wait any uncommitted transactions. We can only force the running
549 * transaction if we don't have an active handle, otherwise, we will deadlock.
550 * Returns: <0 in case of error,
551 * 0 if nothing to commit,
552 * 1 if transaction was successfully committed.
554 static int __jbd2_journal_force_commit(journal_t
*journal
)
556 transaction_t
*transaction
= NULL
;
558 int need_to_start
= 0, ret
= 0;
560 read_lock(&journal
->j_state_lock
);
561 if (journal
->j_running_transaction
&& !current
->journal_info
) {
562 transaction
= journal
->j_running_transaction
;
563 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
565 } else if (journal
->j_committing_transaction
)
566 transaction
= journal
->j_committing_transaction
;
569 /* Nothing to commit */
570 read_unlock(&journal
->j_state_lock
);
573 tid
= transaction
->t_tid
;
574 read_unlock(&journal
->j_state_lock
);
576 jbd2_log_start_commit(journal
, tid
);
577 ret
= jbd2_log_wait_commit(journal
, tid
);
585 * Force and wait upon a commit if the calling process is not within
586 * transaction. This is used for forcing out undo-protected data which contains
587 * bitmaps, when the fs is running out of space.
589 * @journal: journal to force
590 * Returns true if progress was made.
592 int jbd2_journal_force_commit_nested(journal_t
*journal
)
596 ret
= __jbd2_journal_force_commit(journal
);
601 * int journal_force_commit() - force any uncommitted transactions
602 * @journal: journal to force
604 * Caller want unconditional commit. We can only force the running transaction
605 * if we don't have an active handle, otherwise, we will deadlock.
607 int jbd2_journal_force_commit(journal_t
*journal
)
611 J_ASSERT(!current
->journal_info
);
612 ret
= __jbd2_journal_force_commit(journal
);
619 * Start a commit of the current running transaction (if any). Returns true
620 * if a transaction is going to be committed (or is currently already
621 * committing), and fills its tid in at *ptid
623 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
627 write_lock(&journal
->j_state_lock
);
628 if (journal
->j_running_transaction
) {
629 tid_t tid
= journal
->j_running_transaction
->t_tid
;
631 __jbd2_log_start_commit(journal
, tid
);
632 /* There's a running transaction and we've just made sure
633 * it's commit has been scheduled. */
637 } else if (journal
->j_committing_transaction
) {
639 * If commit has been started, then we have to wait for
640 * completion of that transaction.
643 *ptid
= journal
->j_committing_transaction
->t_tid
;
646 write_unlock(&journal
->j_state_lock
);
651 * Return 1 if a given transaction has not yet sent barrier request
652 * connected with a transaction commit. If 0 is returned, transaction
653 * may or may not have sent the barrier. Used to avoid sending barrier
654 * twice in common cases.
656 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
659 transaction_t
*commit_trans
;
661 if (!(journal
->j_flags
& JBD2_BARRIER
))
663 read_lock(&journal
->j_state_lock
);
664 /* Transaction already committed? */
665 if (tid_geq(journal
->j_commit_sequence
, tid
))
667 commit_trans
= journal
->j_committing_transaction
;
668 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
673 * Transaction is being committed and we already proceeded to
674 * submitting a flush to fs partition?
676 if (journal
->j_fs_dev
!= journal
->j_dev
) {
677 if (!commit_trans
->t_need_data_flush
||
678 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
681 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
686 read_unlock(&journal
->j_state_lock
);
689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
692 * Wait for a specified commit to complete.
693 * The caller may not hold the journal lock.
695 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
699 read_lock(&journal
->j_state_lock
);
700 #ifdef CONFIG_PROVE_LOCKING
702 * Some callers make sure transaction is already committing and in that
703 * case we cannot block on open handles anymore. So don't warn in that
706 if (tid_gt(tid
, journal
->j_commit_sequence
) &&
707 (!journal
->j_committing_transaction
||
708 journal
->j_committing_transaction
->t_tid
!= tid
)) {
709 read_unlock(&journal
->j_state_lock
);
710 jbd2_might_wait_for_commit(journal
);
711 read_lock(&journal
->j_state_lock
);
714 #ifdef CONFIG_JBD2_DEBUG
715 if (!tid_geq(journal
->j_commit_request
, tid
)) {
717 "%s: error: j_commit_request=%d, tid=%d\n",
718 __func__
, journal
->j_commit_request
, tid
);
721 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
722 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
723 tid
, journal
->j_commit_sequence
);
724 read_unlock(&journal
->j_state_lock
);
725 wake_up(&journal
->j_wait_commit
);
726 wait_event(journal
->j_wait_done_commit
,
727 !tid_gt(tid
, journal
->j_commit_sequence
));
728 read_lock(&journal
->j_state_lock
);
730 read_unlock(&journal
->j_state_lock
);
732 if (unlikely(is_journal_aborted(journal
)))
737 /* Return 1 when transaction with given tid has already committed. */
738 int jbd2_transaction_committed(journal_t
*journal
, tid_t tid
)
742 read_lock(&journal
->j_state_lock
);
743 if (journal
->j_running_transaction
&&
744 journal
->j_running_transaction
->t_tid
== tid
)
746 if (journal
->j_committing_transaction
&&
747 journal
->j_committing_transaction
->t_tid
== tid
)
749 read_unlock(&journal
->j_state_lock
);
752 EXPORT_SYMBOL(jbd2_transaction_committed
);
755 * When this function returns the transaction corresponding to tid
756 * will be completed. If the transaction has currently running, start
757 * committing that transaction before waiting for it to complete. If
758 * the transaction id is stale, it is by definition already completed,
759 * so just return SUCCESS.
761 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
763 int need_to_wait
= 1;
765 read_lock(&journal
->j_state_lock
);
766 if (journal
->j_running_transaction
&&
767 journal
->j_running_transaction
->t_tid
== tid
) {
768 if (journal
->j_commit_request
!= tid
) {
769 /* transaction not yet started, so request it */
770 read_unlock(&journal
->j_state_lock
);
771 jbd2_log_start_commit(journal
, tid
);
774 } else if (!(journal
->j_committing_transaction
&&
775 journal
->j_committing_transaction
->t_tid
== tid
))
777 read_unlock(&journal
->j_state_lock
);
781 return jbd2_log_wait_commit(journal
, tid
);
783 EXPORT_SYMBOL(jbd2_complete_transaction
);
786 * Log buffer allocation routines:
789 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
791 unsigned long blocknr
;
793 write_lock(&journal
->j_state_lock
);
794 J_ASSERT(journal
->j_free
> 1);
796 blocknr
= journal
->j_head
;
799 if (journal
->j_head
== journal
->j_last
)
800 journal
->j_head
= journal
->j_first
;
801 write_unlock(&journal
->j_state_lock
);
802 return jbd2_journal_bmap(journal
, blocknr
, retp
);
806 * Conversion of logical to physical block numbers for the journal
808 * On external journals the journal blocks are identity-mapped, so
809 * this is a no-op. If needed, we can use j_blk_offset - everything is
812 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
813 unsigned long long *retp
)
816 unsigned long long ret
;
818 if (journal
->j_inode
) {
819 ret
= bmap(journal
->j_inode
, blocknr
);
823 printk(KERN_ALERT
"%s: journal block not found "
824 "at offset %lu on %s\n",
825 __func__
, blocknr
, journal
->j_devname
);
827 __journal_abort_soft(journal
, err
);
830 *retp
= blocknr
; /* +journal->j_blk_offset */
836 * We play buffer_head aliasing tricks to write data/metadata blocks to
837 * the journal without copying their contents, but for journal
838 * descriptor blocks we do need to generate bona fide buffers.
840 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
841 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
842 * But we don't bother doing that, so there will be coherency problems with
843 * mmaps of blockdevs which hold live JBD-controlled filesystems.
846 jbd2_journal_get_descriptor_buffer(transaction_t
*transaction
, int type
)
848 journal_t
*journal
= transaction
->t_journal
;
849 struct buffer_head
*bh
;
850 unsigned long long blocknr
;
851 journal_header_t
*header
;
854 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
859 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
863 memset(bh
->b_data
, 0, journal
->j_blocksize
);
864 header
= (journal_header_t
*)bh
->b_data
;
865 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
866 header
->h_blocktype
= cpu_to_be32(type
);
867 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
868 set_buffer_uptodate(bh
);
870 BUFFER_TRACE(bh
, "return this buffer");
874 void jbd2_descriptor_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
876 struct jbd2_journal_block_tail
*tail
;
879 if (!jbd2_journal_has_csum_v2or3(j
))
882 tail
= (struct jbd2_journal_block_tail
*)(bh
->b_data
+ j
->j_blocksize
-
883 sizeof(struct jbd2_journal_block_tail
));
884 tail
->t_checksum
= 0;
885 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
886 tail
->t_checksum
= cpu_to_be32(csum
);
890 * Return tid of the oldest transaction in the journal and block in the journal
891 * where the transaction starts.
893 * If the journal is now empty, return which will be the next transaction ID
894 * we will write and where will that transaction start.
896 * The return value is 0 if journal tail cannot be pushed any further, 1 if
899 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
900 unsigned long *block
)
902 transaction_t
*transaction
;
905 read_lock(&journal
->j_state_lock
);
906 spin_lock(&journal
->j_list_lock
);
907 transaction
= journal
->j_checkpoint_transactions
;
909 *tid
= transaction
->t_tid
;
910 *block
= transaction
->t_log_start
;
911 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
912 *tid
= transaction
->t_tid
;
913 *block
= transaction
->t_log_start
;
914 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
915 *tid
= transaction
->t_tid
;
916 *block
= journal
->j_head
;
918 *tid
= journal
->j_transaction_sequence
;
919 *block
= journal
->j_head
;
921 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
922 spin_unlock(&journal
->j_list_lock
);
923 read_unlock(&journal
->j_state_lock
);
929 * Update information in journal structure and in on disk journal superblock
930 * about log tail. This function does not check whether information passed in
931 * really pushes log tail further. It's responsibility of the caller to make
932 * sure provided log tail information is valid (e.g. by holding
933 * j_checkpoint_mutex all the time between computing log tail and calling this
934 * function as is the case with jbd2_cleanup_journal_tail()).
936 * Requires j_checkpoint_mutex
938 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
943 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
946 * We cannot afford for write to remain in drive's caches since as
947 * soon as we update j_tail, next transaction can start reusing journal
948 * space and if we lose sb update during power failure we'd replay
949 * old transaction with possibly newly overwritten data.
951 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
,
956 write_lock(&journal
->j_state_lock
);
957 freed
= block
- journal
->j_tail
;
958 if (block
< journal
->j_tail
)
959 freed
+= journal
->j_last
- journal
->j_first
;
961 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
963 "Cleaning journal tail from %d to %d (offset %lu), "
965 journal
->j_tail_sequence
, tid
, block
, freed
);
967 journal
->j_free
+= freed
;
968 journal
->j_tail_sequence
= tid
;
969 journal
->j_tail
= block
;
970 write_unlock(&journal
->j_state_lock
);
977 * This is a variaon of __jbd2_update_log_tail which checks for validity of
978 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
979 * with other threads updating log tail.
981 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
983 mutex_lock_io(&journal
->j_checkpoint_mutex
);
984 if (tid_gt(tid
, journal
->j_tail_sequence
))
985 __jbd2_update_log_tail(journal
, tid
, block
);
986 mutex_unlock(&journal
->j_checkpoint_mutex
);
989 struct jbd2_stats_proc_session
{
991 struct transaction_stats_s
*stats
;
996 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
998 return *pos
? NULL
: SEQ_START_TOKEN
;
1001 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1006 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
1008 struct jbd2_stats_proc_session
*s
= seq
->private;
1010 if (v
!= SEQ_START_TOKEN
)
1012 seq_printf(seq
, "%lu transactions (%lu requested), "
1013 "each up to %u blocks\n",
1014 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
1015 s
->journal
->j_max_transaction_buffers
);
1016 if (s
->stats
->ts_tid
== 0)
1018 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
1019 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
1020 seq_printf(seq
, " %ums request delay\n",
1021 (s
->stats
->ts_requested
== 0) ? 0 :
1022 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
1023 s
->stats
->ts_requested
));
1024 seq_printf(seq
, " %ums running transaction\n",
1025 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
1026 seq_printf(seq
, " %ums transaction was being locked\n",
1027 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
1028 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
1029 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
1030 seq_printf(seq
, " %ums logging transaction\n",
1031 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
1032 seq_printf(seq
, " %lluus average transaction commit time\n",
1033 div_u64(s
->journal
->j_average_commit_time
, 1000));
1034 seq_printf(seq
, " %lu handles per transaction\n",
1035 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
1036 seq_printf(seq
, " %lu blocks per transaction\n",
1037 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
1038 seq_printf(seq
, " %lu logged blocks per transaction\n",
1039 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
1043 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
1047 static const struct seq_operations jbd2_seq_info_ops
= {
1048 .start
= jbd2_seq_info_start
,
1049 .next
= jbd2_seq_info_next
,
1050 .stop
= jbd2_seq_info_stop
,
1051 .show
= jbd2_seq_info_show
,
1054 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1056 journal_t
*journal
= PDE_DATA(inode
);
1057 struct jbd2_stats_proc_session
*s
;
1060 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1063 size
= sizeof(struct transaction_stats_s
);
1064 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1065 if (s
->stats
== NULL
) {
1069 spin_lock(&journal
->j_history_lock
);
1070 memcpy(s
->stats
, &journal
->j_stats
, size
);
1071 s
->journal
= journal
;
1072 spin_unlock(&journal
->j_history_lock
);
1074 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1076 struct seq_file
*m
= file
->private_data
;
1086 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1088 struct seq_file
*seq
= file
->private_data
;
1089 struct jbd2_stats_proc_session
*s
= seq
->private;
1092 return seq_release(inode
, file
);
1095 static const struct file_operations jbd2_seq_info_fops
= {
1096 .owner
= THIS_MODULE
,
1097 .open
= jbd2_seq_info_open
,
1099 .llseek
= seq_lseek
,
1100 .release
= jbd2_seq_info_release
,
1103 static struct proc_dir_entry
*proc_jbd2_stats
;
1105 static void jbd2_stats_proc_init(journal_t
*journal
)
1107 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1108 if (journal
->j_proc_entry
) {
1109 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1110 &jbd2_seq_info_fops
, journal
);
1114 static void jbd2_stats_proc_exit(journal_t
*journal
)
1116 remove_proc_entry("info", journal
->j_proc_entry
);
1117 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1121 * Management for journal control blocks: functions to create and
1122 * destroy journal_t structures, and to initialise and read existing
1123 * journal blocks from disk. */
1125 /* First: create and setup a journal_t object in memory. We initialise
1126 * very few fields yet: that has to wait until we have created the
1127 * journal structures from from scratch, or loaded them from disk. */
1129 static journal_t
*journal_init_common(struct block_device
*bdev
,
1130 struct block_device
*fs_dev
,
1131 unsigned long long start
, int len
, int blocksize
)
1133 static struct lock_class_key jbd2_trans_commit_key
;
1136 struct buffer_head
*bh
;
1139 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1143 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1144 init_waitqueue_head(&journal
->j_wait_done_commit
);
1145 init_waitqueue_head(&journal
->j_wait_commit
);
1146 init_waitqueue_head(&journal
->j_wait_updates
);
1147 init_waitqueue_head(&journal
->j_wait_reserved
);
1148 mutex_init(&journal
->j_barrier
);
1149 mutex_init(&journal
->j_checkpoint_mutex
);
1150 spin_lock_init(&journal
->j_revoke_lock
);
1151 spin_lock_init(&journal
->j_list_lock
);
1152 rwlock_init(&journal
->j_state_lock
);
1154 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1155 journal
->j_min_batch_time
= 0;
1156 journal
->j_max_batch_time
= 15000; /* 15ms */
1157 atomic_set(&journal
->j_reserved_credits
, 0);
1159 /* The journal is marked for error until we succeed with recovery! */
1160 journal
->j_flags
= JBD2_ABORT
;
1162 /* Set up a default-sized revoke table for the new mount. */
1163 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1167 spin_lock_init(&journal
->j_history_lock
);
1169 lockdep_init_map(&journal
->j_trans_commit_map
, "jbd2_handle",
1170 &jbd2_trans_commit_key
, 0);
1172 /* journal descriptor can store up to n blocks -bzzz */
1173 journal
->j_blocksize
= blocksize
;
1174 journal
->j_dev
= bdev
;
1175 journal
->j_fs_dev
= fs_dev
;
1176 journal
->j_blk_offset
= start
;
1177 journal
->j_maxlen
= len
;
1178 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1179 journal
->j_wbufsize
= n
;
1180 journal
->j_wbuf
= kmalloc_array(n
, sizeof(struct buffer_head
*),
1182 if (!journal
->j_wbuf
)
1185 bh
= getblk_unmovable(journal
->j_dev
, start
, journal
->j_blocksize
);
1187 pr_err("%s: Cannot get buffer for journal superblock\n",
1191 journal
->j_sb_buffer
= bh
;
1192 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1197 kfree(journal
->j_wbuf
);
1198 jbd2_journal_destroy_revoke(journal
);
1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1205 * Create a journal structure assigned some fixed set of disk blocks to
1206 * the journal. We don't actually touch those disk blocks yet, but we
1207 * need to set up all of the mapping information to tell the journaling
1208 * system where the journal blocks are.
1213 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214 * @bdev: Block device on which to create the journal
1215 * @fs_dev: Device which hold journalled filesystem for this journal.
1216 * @start: Block nr Start of journal.
1217 * @len: Length of the journal in blocks.
1218 * @blocksize: blocksize of journalling device
1220 * Returns: a newly created journal_t *
1222 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223 * range of blocks on an arbitrary block device.
1226 journal_t
*jbd2_journal_init_dev(struct block_device
*bdev
,
1227 struct block_device
*fs_dev
,
1228 unsigned long long start
, int len
, int blocksize
)
1232 journal
= journal_init_common(bdev
, fs_dev
, start
, len
, blocksize
);
1236 bdevname(journal
->j_dev
, journal
->j_devname
);
1237 strreplace(journal
->j_devname
, '/', '!');
1238 jbd2_stats_proc_init(journal
);
1244 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245 * @inode: An inode to create the journal in
1247 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248 * the journal. The inode must exist already, must support bmap() and
1249 * must have all data blocks preallocated.
1251 journal_t
*jbd2_journal_init_inode(struct inode
*inode
)
1255 unsigned long long blocknr
;
1257 blocknr
= bmap(inode
, 0);
1259 pr_err("%s: Cannot locate journal superblock\n",
1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 inode
->i_sb
->s_id
, inode
->i_ino
, (long long) inode
->i_size
,
1266 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1268 journal
= journal_init_common(inode
->i_sb
->s_bdev
, inode
->i_sb
->s_bdev
,
1269 blocknr
, inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
,
1270 inode
->i_sb
->s_blocksize
);
1274 journal
->j_inode
= inode
;
1275 bdevname(journal
->j_dev
, journal
->j_devname
);
1276 p
= strreplace(journal
->j_devname
, '/', '!');
1277 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1278 jbd2_stats_proc_init(journal
);
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1288 static void journal_fail_superblock (journal_t
*journal
)
1290 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1292 journal
->j_sb_buffer
= NULL
;
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session. We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1302 static int journal_reset(journal_t
*journal
)
1304 journal_superblock_t
*sb
= journal
->j_superblock
;
1305 unsigned long long first
, last
;
1307 first
= be32_to_cpu(sb
->s_first
);
1308 last
= be32_to_cpu(sb
->s_maxlen
);
1309 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1310 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1312 journal_fail_superblock(journal
);
1316 journal
->j_first
= first
;
1317 journal
->j_last
= last
;
1319 journal
->j_head
= first
;
1320 journal
->j_tail
= first
;
1321 journal
->j_free
= last
- first
;
1323 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1324 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1325 journal
->j_commit_request
= journal
->j_commit_sequence
;
1327 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1330 * As a special case, if the on-disk copy is already marked as needing
1331 * no recovery (s_start == 0), then we can safely defer the superblock
1332 * update until the next commit by setting JBD2_FLUSHED. This avoids
1333 * attempting a write to a potential-readonly device.
1335 if (sb
->s_start
== 0) {
1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 "(start %ld, seq %d, errno %d)\n",
1338 journal
->j_tail
, journal
->j_tail_sequence
,
1340 journal
->j_flags
|= JBD2_FLUSHED
;
1342 /* Lock here to make assertions happy... */
1343 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1345 * Update log tail information. We use REQ_FUA since new
1346 * transaction will start reusing journal space and so we
1347 * must make sure information about current log tail is on
1350 jbd2_journal_update_sb_log_tail(journal
,
1351 journal
->j_tail_sequence
,
1353 REQ_SYNC
| REQ_FUA
);
1354 mutex_unlock(&journal
->j_checkpoint_mutex
);
1356 return jbd2_journal_start_thread(journal
);
1359 static int jbd2_write_superblock(journal_t
*journal
, int write_flags
)
1361 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1362 journal_superblock_t
*sb
= journal
->j_superblock
;
1365 trace_jbd2_write_superblock(journal
, write_flags
);
1366 if (!(journal
->j_flags
& JBD2_BARRIER
))
1367 write_flags
&= ~(REQ_FUA
| REQ_PREFLUSH
);
1369 if (buffer_write_io_error(bh
)) {
1371 * Oh, dear. A previous attempt to write the journal
1372 * superblock failed. This could happen because the
1373 * USB device was yanked out. Or it could happen to
1374 * be a transient write error and maybe the block will
1375 * be remapped. Nothing we can do but to retry the
1376 * write and hope for the best.
1378 printk(KERN_ERR
"JBD2: previous I/O error detected "
1379 "for journal superblock update for %s.\n",
1380 journal
->j_devname
);
1381 clear_buffer_write_io_error(bh
);
1382 set_buffer_uptodate(bh
);
1384 jbd2_superblock_csum_set(journal
, sb
);
1386 bh
->b_end_io
= end_buffer_write_sync
;
1387 ret
= submit_bh(REQ_OP_WRITE
, write_flags
, bh
);
1389 if (buffer_write_io_error(bh
)) {
1390 clear_buffer_write_io_error(bh
);
1391 set_buffer_uptodate(bh
);
1395 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1396 "journal superblock for %s.\n", ret
,
1397 journal
->j_devname
);
1398 jbd2_journal_abort(journal
, ret
);
1405 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406 * @journal: The journal to update.
1407 * @tail_tid: TID of the new transaction at the tail of the log
1408 * @tail_block: The first block of the transaction at the tail of the log
1409 * @write_op: With which operation should we write the journal sb
1411 * Update a journal's superblock information about log tail and write it to
1412 * disk, waiting for the IO to complete.
1414 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1415 unsigned long tail_block
, int write_op
)
1417 journal_superblock_t
*sb
= journal
->j_superblock
;
1420 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1421 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1422 tail_block
, tail_tid
);
1424 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1425 sb
->s_start
= cpu_to_be32(tail_block
);
1427 ret
= jbd2_write_superblock(journal
, write_op
);
1431 /* Log is no longer empty */
1432 write_lock(&journal
->j_state_lock
);
1433 WARN_ON(!sb
->s_sequence
);
1434 journal
->j_flags
&= ~JBD2_FLUSHED
;
1435 write_unlock(&journal
->j_state_lock
);
1442 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1443 * @journal: The journal to update.
1444 * @write_op: With which operation should we write the journal sb
1446 * Update a journal's dynamic superblock fields to show that journal is empty.
1447 * Write updated superblock to disk waiting for IO to complete.
1449 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1451 journal_superblock_t
*sb
= journal
->j_superblock
;
1453 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1454 read_lock(&journal
->j_state_lock
);
1455 /* Is it already empty? */
1456 if (sb
->s_start
== 0) {
1457 read_unlock(&journal
->j_state_lock
);
1460 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1461 journal
->j_tail_sequence
);
1463 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1464 sb
->s_start
= cpu_to_be32(0);
1465 read_unlock(&journal
->j_state_lock
);
1467 jbd2_write_superblock(journal
, write_op
);
1469 /* Log is no longer empty */
1470 write_lock(&journal
->j_state_lock
);
1471 journal
->j_flags
|= JBD2_FLUSHED
;
1472 write_unlock(&journal
->j_state_lock
);
1477 * jbd2_journal_update_sb_errno() - Update error in the journal.
1478 * @journal: The journal to update.
1480 * Update a journal's errno. Write updated superblock to disk waiting for IO
1483 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1485 journal_superblock_t
*sb
= journal
->j_superblock
;
1487 read_lock(&journal
->j_state_lock
);
1488 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1490 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1491 read_unlock(&journal
->j_state_lock
);
1493 jbd2_write_superblock(journal
, REQ_SYNC
| REQ_FUA
);
1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1498 * Read the superblock for a given journal, performing initial
1499 * validation of the format.
1501 static int journal_get_superblock(journal_t
*journal
)
1503 struct buffer_head
*bh
;
1504 journal_superblock_t
*sb
;
1507 bh
= journal
->j_sb_buffer
;
1509 J_ASSERT(bh
!= NULL
);
1510 if (!buffer_uptodate(bh
)) {
1511 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1513 if (!buffer_uptodate(bh
)) {
1515 "JBD2: IO error reading journal superblock\n");
1520 if (buffer_verified(bh
))
1523 sb
= journal
->j_superblock
;
1527 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1528 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1529 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1533 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1534 case JBD2_SUPERBLOCK_V1
:
1535 journal
->j_format_version
= 1;
1537 case JBD2_SUPERBLOCK_V2
:
1538 journal
->j_format_version
= 2;
1541 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1545 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1546 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1547 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1548 printk(KERN_WARNING
"JBD2: journal file too short\n");
1552 if (be32_to_cpu(sb
->s_first
) == 0 ||
1553 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1555 "JBD2: Invalid start block of journal: %u\n",
1556 be32_to_cpu(sb
->s_first
));
1560 if (jbd2_has_feature_csum2(journal
) &&
1561 jbd2_has_feature_csum3(journal
)) {
1562 /* Can't have checksum v2 and v3 at the same time! */
1563 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1564 "at the same time!\n");
1568 if (jbd2_journal_has_csum_v2or3_feature(journal
) &&
1569 jbd2_has_feature_checksum(journal
)) {
1570 /* Can't have checksum v1 and v2 on at the same time! */
1571 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1572 "at the same time!\n");
1576 if (!jbd2_verify_csum_type(journal
, sb
)) {
1577 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1581 /* Load the checksum driver */
1582 if (jbd2_journal_has_csum_v2or3_feature(journal
)) {
1583 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1584 if (IS_ERR(journal
->j_chksum_driver
)) {
1585 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1586 err
= PTR_ERR(journal
->j_chksum_driver
);
1587 journal
->j_chksum_driver
= NULL
;
1592 /* Check superblock checksum */
1593 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1594 printk(KERN_ERR
"JBD2: journal checksum error\n");
1599 /* Precompute checksum seed for all metadata */
1600 if (jbd2_journal_has_csum_v2or3(journal
))
1601 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1602 sizeof(sb
->s_uuid
));
1604 set_buffer_verified(bh
);
1609 journal_fail_superblock(journal
);
1614 * Load the on-disk journal superblock and read the key fields into the
1618 static int load_superblock(journal_t
*journal
)
1621 journal_superblock_t
*sb
;
1623 err
= journal_get_superblock(journal
);
1627 sb
= journal
->j_superblock
;
1629 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1630 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1631 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1632 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1633 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1640 * int jbd2_journal_load() - Read journal from disk.
1641 * @journal: Journal to act on.
1643 * Given a journal_t structure which tells us which disk blocks contain
1644 * a journal, read the journal from disk to initialise the in-memory
1647 int jbd2_journal_load(journal_t
*journal
)
1650 journal_superblock_t
*sb
;
1652 err
= load_superblock(journal
);
1656 sb
= journal
->j_superblock
;
1657 /* If this is a V2 superblock, then we have to check the
1658 * features flags on it. */
1660 if (journal
->j_format_version
>= 2) {
1661 if ((sb
->s_feature_ro_compat
&
1662 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1663 (sb
->s_feature_incompat
&
1664 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1666 "JBD2: Unrecognised features on journal\n");
1672 * Create a slab for this blocksize
1674 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1678 /* Let the recovery code check whether it needs to recover any
1679 * data from the journal. */
1680 if (jbd2_journal_recover(journal
))
1681 goto recovery_error
;
1683 if (journal
->j_failed_commit
) {
1684 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1685 "is corrupt.\n", journal
->j_failed_commit
,
1686 journal
->j_devname
);
1687 return -EFSCORRUPTED
;
1690 /* OK, we've finished with the dynamic journal bits:
1691 * reinitialise the dynamic contents of the superblock in memory
1692 * and reset them on disk. */
1693 if (journal_reset(journal
))
1694 goto recovery_error
;
1696 journal
->j_flags
&= ~JBD2_ABORT
;
1697 journal
->j_flags
|= JBD2_LOADED
;
1701 printk(KERN_WARNING
"JBD2: recovery failed\n");
1706 * void jbd2_journal_destroy() - Release a journal_t structure.
1707 * @journal: Journal to act on.
1709 * Release a journal_t structure once it is no longer in use by the
1711 * Return <0 if we couldn't clean up the journal.
1713 int jbd2_journal_destroy(journal_t
*journal
)
1717 /* Wait for the commit thread to wake up and die. */
1718 journal_kill_thread(journal
);
1720 /* Force a final log commit */
1721 if (journal
->j_running_transaction
)
1722 jbd2_journal_commit_transaction(journal
);
1724 /* Force any old transactions to disk */
1726 /* Totally anal locking here... */
1727 spin_lock(&journal
->j_list_lock
);
1728 while (journal
->j_checkpoint_transactions
!= NULL
) {
1729 spin_unlock(&journal
->j_list_lock
);
1730 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1731 err
= jbd2_log_do_checkpoint(journal
);
1732 mutex_unlock(&journal
->j_checkpoint_mutex
);
1734 * If checkpointing failed, just free the buffers to avoid
1738 jbd2_journal_destroy_checkpoint(journal
);
1739 spin_lock(&journal
->j_list_lock
);
1742 spin_lock(&journal
->j_list_lock
);
1745 J_ASSERT(journal
->j_running_transaction
== NULL
);
1746 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1747 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1748 spin_unlock(&journal
->j_list_lock
);
1750 if (journal
->j_sb_buffer
) {
1751 if (!is_journal_aborted(journal
)) {
1752 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1754 write_lock(&journal
->j_state_lock
);
1755 journal
->j_tail_sequence
=
1756 ++journal
->j_transaction_sequence
;
1757 write_unlock(&journal
->j_state_lock
);
1759 jbd2_mark_journal_empty(journal
,
1760 REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
1761 mutex_unlock(&journal
->j_checkpoint_mutex
);
1764 brelse(journal
->j_sb_buffer
);
1767 if (journal
->j_proc_entry
)
1768 jbd2_stats_proc_exit(journal
);
1769 iput(journal
->j_inode
);
1770 if (journal
->j_revoke
)
1771 jbd2_journal_destroy_revoke(journal
);
1772 if (journal
->j_chksum_driver
)
1773 crypto_free_shash(journal
->j_chksum_driver
);
1774 kfree(journal
->j_wbuf
);
1782 *int jbd2_journal_check_used_features () - Check if features specified are used.
1783 * @journal: Journal to check.
1784 * @compat: bitmask of compatible features
1785 * @ro: bitmask of features that force read-only mount
1786 * @incompat: bitmask of incompatible features
1788 * Check whether the journal uses all of a given set of
1789 * features. Return true (non-zero) if it does.
1792 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1793 unsigned long ro
, unsigned long incompat
)
1795 journal_superblock_t
*sb
;
1797 if (!compat
&& !ro
&& !incompat
)
1799 /* Load journal superblock if it is not loaded yet. */
1800 if (journal
->j_format_version
== 0 &&
1801 journal_get_superblock(journal
) != 0)
1803 if (journal
->j_format_version
== 1)
1806 sb
= journal
->j_superblock
;
1808 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1809 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1810 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1817 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1818 * @journal: Journal to check.
1819 * @compat: bitmask of compatible features
1820 * @ro: bitmask of features that force read-only mount
1821 * @incompat: bitmask of incompatible features
1823 * Check whether the journaling code supports the use of
1824 * all of a given set of features on this journal. Return true
1825 * (non-zero) if it can. */
1827 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1828 unsigned long ro
, unsigned long incompat
)
1830 if (!compat
&& !ro
&& !incompat
)
1833 /* We can support any known requested features iff the
1834 * superblock is in version 2. Otherwise we fail to support any
1835 * extended sb features. */
1837 if (journal
->j_format_version
!= 2)
1840 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1841 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1842 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1849 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1850 * @journal: Journal to act on.
1851 * @compat: bitmask of compatible features
1852 * @ro: bitmask of features that force read-only mount
1853 * @incompat: bitmask of incompatible features
1855 * Mark a given journal feature as present on the
1856 * superblock. Returns true if the requested features could be set.
1860 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1861 unsigned long ro
, unsigned long incompat
)
1863 #define INCOMPAT_FEATURE_ON(f) \
1864 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1865 #define COMPAT_FEATURE_ON(f) \
1866 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1867 journal_superblock_t
*sb
;
1869 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1872 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1875 /* If enabling v2 checksums, turn on v3 instead */
1876 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1877 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1878 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1881 /* Asking for checksumming v3 and v1? Only give them v3. */
1882 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1883 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1884 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1886 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1887 compat
, ro
, incompat
);
1889 sb
= journal
->j_superblock
;
1891 /* If enabling v3 checksums, update superblock */
1892 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1893 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1894 sb
->s_feature_compat
&=
1895 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1897 /* Load the checksum driver */
1898 if (journal
->j_chksum_driver
== NULL
) {
1899 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c",
1901 if (IS_ERR(journal
->j_chksum_driver
)) {
1902 printk(KERN_ERR
"JBD2: Cannot load crc32c "
1904 journal
->j_chksum_driver
= NULL
;
1908 /* Precompute checksum seed for all metadata */
1909 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0,
1911 sizeof(sb
->s_uuid
));
1915 /* If enabling v1 checksums, downgrade superblock */
1916 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1917 sb
->s_feature_incompat
&=
1918 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1919 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1921 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1922 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1923 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1926 #undef COMPAT_FEATURE_ON
1927 #undef INCOMPAT_FEATURE_ON
1931 * jbd2_journal_clear_features () - Clear a given journal feature in the
1933 * @journal: Journal to act on.
1934 * @compat: bitmask of compatible features
1935 * @ro: bitmask of features that force read-only mount
1936 * @incompat: bitmask of incompatible features
1938 * Clear a given journal feature as present on the
1941 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1942 unsigned long ro
, unsigned long incompat
)
1944 journal_superblock_t
*sb
;
1946 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1947 compat
, ro
, incompat
);
1949 sb
= journal
->j_superblock
;
1951 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1952 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1953 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1955 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1958 * int jbd2_journal_flush () - Flush journal
1959 * @journal: Journal to act on.
1961 * Flush all data for a given journal to disk and empty the journal.
1962 * Filesystems can use this when remounting readonly to ensure that
1963 * recovery does not need to happen on remount.
1966 int jbd2_journal_flush(journal_t
*journal
)
1969 transaction_t
*transaction
= NULL
;
1971 write_lock(&journal
->j_state_lock
);
1973 /* Force everything buffered to the log... */
1974 if (journal
->j_running_transaction
) {
1975 transaction
= journal
->j_running_transaction
;
1976 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1977 } else if (journal
->j_committing_transaction
)
1978 transaction
= journal
->j_committing_transaction
;
1980 /* Wait for the log commit to complete... */
1982 tid_t tid
= transaction
->t_tid
;
1984 write_unlock(&journal
->j_state_lock
);
1985 jbd2_log_wait_commit(journal
, tid
);
1987 write_unlock(&journal
->j_state_lock
);
1990 /* ...and flush everything in the log out to disk. */
1991 spin_lock(&journal
->j_list_lock
);
1992 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1993 spin_unlock(&journal
->j_list_lock
);
1994 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1995 err
= jbd2_log_do_checkpoint(journal
);
1996 mutex_unlock(&journal
->j_checkpoint_mutex
);
1997 spin_lock(&journal
->j_list_lock
);
1999 spin_unlock(&journal
->j_list_lock
);
2001 if (is_journal_aborted(journal
))
2004 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2006 err
= jbd2_cleanup_journal_tail(journal
);
2008 mutex_unlock(&journal
->j_checkpoint_mutex
);
2014 /* Finally, mark the journal as really needing no recovery.
2015 * This sets s_start==0 in the underlying superblock, which is
2016 * the magic code for a fully-recovered superblock. Any future
2017 * commits of data to the journal will restore the current
2019 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2020 mutex_unlock(&journal
->j_checkpoint_mutex
);
2021 write_lock(&journal
->j_state_lock
);
2022 J_ASSERT(!journal
->j_running_transaction
);
2023 J_ASSERT(!journal
->j_committing_transaction
);
2024 J_ASSERT(!journal
->j_checkpoint_transactions
);
2025 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2026 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2027 write_unlock(&journal
->j_state_lock
);
2033 * int jbd2_journal_wipe() - Wipe journal contents
2034 * @journal: Journal to act on.
2035 * @write: flag (see below)
2037 * Wipe out all of the contents of a journal, safely. This will produce
2038 * a warning if the journal contains any valid recovery information.
2039 * Must be called between journal_init_*() and jbd2_journal_load().
2041 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2042 * we merely suppress recovery.
2045 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2049 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2051 err
= load_superblock(journal
);
2055 if (!journal
->j_tail
)
2058 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2059 write
? "Clearing" : "Ignoring");
2061 err
= jbd2_journal_skip_recovery(journal
);
2063 /* Lock to make assertions happy... */
2064 mutex_lock(&journal
->j_checkpoint_mutex
);
2065 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2066 mutex_unlock(&journal
->j_checkpoint_mutex
);
2074 * Journal abort has very specific semantics, which we describe
2075 * for journal abort.
2077 * Two internal functions, which provide abort to the jbd layer
2082 * Quick version for internal journal use (doesn't lock the journal).
2083 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2084 * and don't attempt to make any other journal updates.
2086 void __jbd2_journal_abort_hard(journal_t
*journal
)
2088 transaction_t
*transaction
;
2090 if (journal
->j_flags
& JBD2_ABORT
)
2093 printk(KERN_ERR
"Aborting journal on device %s.\n",
2094 journal
->j_devname
);
2096 write_lock(&journal
->j_state_lock
);
2097 journal
->j_flags
|= JBD2_ABORT
;
2098 transaction
= journal
->j_running_transaction
;
2100 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2101 write_unlock(&journal
->j_state_lock
);
2104 /* Soft abort: record the abort error status in the journal superblock,
2105 * but don't do any other IO. */
2106 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2108 if (journal
->j_flags
& JBD2_ABORT
)
2111 if (!journal
->j_errno
)
2112 journal
->j_errno
= errno
;
2114 __jbd2_journal_abort_hard(journal
);
2117 jbd2_journal_update_sb_errno(journal
);
2118 write_lock(&journal
->j_state_lock
);
2119 journal
->j_flags
|= JBD2_REC_ERR
;
2120 write_unlock(&journal
->j_state_lock
);
2125 * void jbd2_journal_abort () - Shutdown the journal immediately.
2126 * @journal: the journal to shutdown.
2127 * @errno: an error number to record in the journal indicating
2128 * the reason for the shutdown.
2130 * Perform a complete, immediate shutdown of the ENTIRE
2131 * journal (not of a single transaction). This operation cannot be
2132 * undone without closing and reopening the journal.
2134 * The jbd2_journal_abort function is intended to support higher level error
2135 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2138 * Journal abort has very specific semantics. Any existing dirty,
2139 * unjournaled buffers in the main filesystem will still be written to
2140 * disk by bdflush, but the journaling mechanism will be suspended
2141 * immediately and no further transaction commits will be honoured.
2143 * Any dirty, journaled buffers will be written back to disk without
2144 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2145 * filesystem, but we _do_ attempt to leave as much data as possible
2146 * behind for fsck to use for cleanup.
2148 * Any attempt to get a new transaction handle on a journal which is in
2149 * ABORT state will just result in an -EROFS error return. A
2150 * jbd2_journal_stop on an existing handle will return -EIO if we have
2151 * entered abort state during the update.
2153 * Recursive transactions are not disturbed by journal abort until the
2154 * final jbd2_journal_stop, which will receive the -EIO error.
2156 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2157 * which will be recorded (if possible) in the journal superblock. This
2158 * allows a client to record failure conditions in the middle of a
2159 * transaction without having to complete the transaction to record the
2160 * failure to disk. ext3_error, for example, now uses this
2163 * Errors which originate from within the journaling layer will NOT
2164 * supply an errno; a null errno implies that absolutely no further
2165 * writes are done to the journal (unless there are any already in
2170 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2172 __journal_abort_soft(journal
, errno
);
2176 * int jbd2_journal_errno () - returns the journal's error state.
2177 * @journal: journal to examine.
2179 * This is the errno number set with jbd2_journal_abort(), the last
2180 * time the journal was mounted - if the journal was stopped
2181 * without calling abort this will be 0.
2183 * If the journal has been aborted on this mount time -EROFS will
2186 int jbd2_journal_errno(journal_t
*journal
)
2190 read_lock(&journal
->j_state_lock
);
2191 if (journal
->j_flags
& JBD2_ABORT
)
2194 err
= journal
->j_errno
;
2195 read_unlock(&journal
->j_state_lock
);
2200 * int jbd2_journal_clear_err () - clears the journal's error state
2201 * @journal: journal to act on.
2203 * An error must be cleared or acked to take a FS out of readonly
2206 int jbd2_journal_clear_err(journal_t
*journal
)
2210 write_lock(&journal
->j_state_lock
);
2211 if (journal
->j_flags
& JBD2_ABORT
)
2214 journal
->j_errno
= 0;
2215 write_unlock(&journal
->j_state_lock
);
2220 * void jbd2_journal_ack_err() - Ack journal err.
2221 * @journal: journal to act on.
2223 * An error must be cleared or acked to take a FS out of readonly
2226 void jbd2_journal_ack_err(journal_t
*journal
)
2228 write_lock(&journal
->j_state_lock
);
2229 if (journal
->j_errno
)
2230 journal
->j_flags
|= JBD2_ACK_ERR
;
2231 write_unlock(&journal
->j_state_lock
);
2234 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2236 return 1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2240 * helper functions to deal with 32 or 64bit block numbers.
2242 size_t journal_tag_bytes(journal_t
*journal
)
2246 if (jbd2_has_feature_csum3(journal
))
2247 return sizeof(journal_block_tag3_t
);
2249 sz
= sizeof(journal_block_tag_t
);
2251 if (jbd2_has_feature_csum2(journal
))
2252 sz
+= sizeof(__u16
);
2254 if (jbd2_has_feature_64bit(journal
))
2257 return sz
- sizeof(__u32
);
2261 * JBD memory management
2263 * These functions are used to allocate block-sized chunks of memory
2264 * used for making copies of buffer_head data. Very often it will be
2265 * page-sized chunks of data, but sometimes it will be in
2266 * sub-page-size chunks. (For example, 16k pages on Power systems
2267 * with a 4k block file system.) For blocks smaller than a page, we
2268 * use a SLAB allocator. There are slab caches for each block size,
2269 * which are allocated at mount time, if necessary, and we only free
2270 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2271 * this reason we don't need to a mutex to protect access to
2272 * jbd2_slab[] allocating or releasing memory; only in
2273 * jbd2_journal_create_slab().
2275 #define JBD2_MAX_SLABS 8
2276 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2278 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2279 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2280 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284 static void jbd2_journal_destroy_slabs(void)
2288 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2290 kmem_cache_destroy(jbd2_slab
[i
]);
2291 jbd2_slab
[i
] = NULL
;
2295 static int jbd2_journal_create_slab(size_t size
)
2297 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2298 int i
= order_base_2(size
) - 10;
2301 if (size
== PAGE_SIZE
)
2304 if (i
>= JBD2_MAX_SLABS
)
2307 if (unlikely(i
< 0))
2309 mutex_lock(&jbd2_slab_create_mutex
);
2311 mutex_unlock(&jbd2_slab_create_mutex
);
2312 return 0; /* Already created */
2315 slab_size
= 1 << (i
+10);
2316 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2317 slab_size
, 0, NULL
);
2318 mutex_unlock(&jbd2_slab_create_mutex
);
2319 if (!jbd2_slab
[i
]) {
2320 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2326 static struct kmem_cache
*get_slab(size_t size
)
2328 int i
= order_base_2(size
) - 10;
2330 BUG_ON(i
>= JBD2_MAX_SLABS
);
2331 if (unlikely(i
< 0))
2333 BUG_ON(jbd2_slab
[i
] == NULL
);
2334 return jbd2_slab
[i
];
2337 void *jbd2_alloc(size_t size
, gfp_t flags
)
2341 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2343 if (size
< PAGE_SIZE
)
2344 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2346 ptr
= (void *)__get_free_pages(flags
, get_order(size
));
2348 /* Check alignment; SLUB has gotten this wrong in the past,
2349 * and this can lead to user data corruption! */
2350 BUG_ON(((unsigned long) ptr
) & (size
-1));
2355 void jbd2_free(void *ptr
, size_t size
)
2357 if (size
< PAGE_SIZE
)
2358 kmem_cache_free(get_slab(size
), ptr
);
2360 free_pages((unsigned long)ptr
, get_order(size
));
2364 * Journal_head storage management
2366 static struct kmem_cache
*jbd2_journal_head_cache
;
2367 #ifdef CONFIG_JBD2_DEBUG
2368 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2371 static int jbd2_journal_init_journal_head_cache(void)
2375 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2376 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2377 sizeof(struct journal_head
),
2379 SLAB_TEMPORARY
| SLAB_TYPESAFE_BY_RCU
,
2382 if (!jbd2_journal_head_cache
) {
2384 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2389 static void jbd2_journal_destroy_journal_head_cache(void)
2391 if (jbd2_journal_head_cache
) {
2392 kmem_cache_destroy(jbd2_journal_head_cache
);
2393 jbd2_journal_head_cache
= NULL
;
2398 * journal_head splicing and dicing
2400 static struct journal_head
*journal_alloc_journal_head(void)
2402 struct journal_head
*ret
;
2404 #ifdef CONFIG_JBD2_DEBUG
2405 atomic_inc(&nr_journal_heads
);
2407 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2409 jbd_debug(1, "out of memory for journal_head\n");
2410 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2411 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
,
2412 GFP_NOFS
| __GFP_NOFAIL
);
2417 static void journal_free_journal_head(struct journal_head
*jh
)
2419 #ifdef CONFIG_JBD2_DEBUG
2420 atomic_dec(&nr_journal_heads
);
2421 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2423 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2427 * A journal_head is attached to a buffer_head whenever JBD has an
2428 * interest in the buffer.
2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2431 * is set. This bit is tested in core kernel code where we need to take
2432 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437 * When a buffer has its BH_JBD bit set it is immune from being released by
2438 * core kernel code, mainly via ->b_count.
2440 * A journal_head is detached from its buffer_head when the journal_head's
2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2442 * transaction (b_cp_transaction) hold their references to b_jcount.
2444 * Various places in the kernel want to attach a journal_head to a buffer_head
2445 * _before_ attaching the journal_head to a transaction. To protect the
2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2447 * journal_head's b_jcount refcount by one. The caller must call
2448 * jbd2_journal_put_journal_head() to undo this.
2450 * So the typical usage would be:
2452 * (Attach a journal_head if needed. Increments b_jcount)
2453 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455 * (Get another reference for transaction)
2456 * jbd2_journal_grab_journal_head(bh);
2457 * jh->b_transaction = xxx;
2458 * (Put original reference)
2459 * jbd2_journal_put_journal_head(jh);
2463 * Give a buffer_head a journal_head.
2467 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2469 struct journal_head
*jh
;
2470 struct journal_head
*new_jh
= NULL
;
2473 if (!buffer_jbd(bh
))
2474 new_jh
= journal_alloc_journal_head();
2476 jbd_lock_bh_journal_head(bh
);
2477 if (buffer_jbd(bh
)) {
2481 (atomic_read(&bh
->b_count
) > 0) ||
2482 (bh
->b_page
&& bh
->b_page
->mapping
));
2485 jbd_unlock_bh_journal_head(bh
);
2490 new_jh
= NULL
; /* We consumed it */
2495 BUFFER_TRACE(bh
, "added journal_head");
2498 jbd_unlock_bh_journal_head(bh
);
2500 journal_free_journal_head(new_jh
);
2501 return bh
->b_private
;
2505 * Grab a ref against this buffer_head's journal_head. If it ended up not
2506 * having a journal_head, return NULL
2508 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2510 struct journal_head
*jh
= NULL
;
2512 jbd_lock_bh_journal_head(bh
);
2513 if (buffer_jbd(bh
)) {
2517 jbd_unlock_bh_journal_head(bh
);
2521 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2523 struct journal_head
*jh
= bh2jh(bh
);
2525 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2526 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2527 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2528 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2529 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2530 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2531 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2532 BUFFER_TRACE(bh
, "remove journal_head");
2533 if (jh
->b_frozen_data
) {
2534 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2535 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2537 if (jh
->b_committed_data
) {
2538 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2539 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2541 bh
->b_private
= NULL
;
2542 jh
->b_bh
= NULL
; /* debug, really */
2543 clear_buffer_jbd(bh
);
2544 journal_free_journal_head(jh
);
2548 * Drop a reference on the passed journal_head. If it fell to zero then
2549 * release the journal_head from the buffer_head.
2551 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2553 struct buffer_head
*bh
= jh2bh(jh
);
2555 jbd_lock_bh_journal_head(bh
);
2556 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2558 if (!jh
->b_jcount
) {
2559 __journal_remove_journal_head(bh
);
2560 jbd_unlock_bh_journal_head(bh
);
2563 jbd_unlock_bh_journal_head(bh
);
2567 * Initialize jbd inode head
2569 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2571 jinode
->i_transaction
= NULL
;
2572 jinode
->i_next_transaction
= NULL
;
2573 jinode
->i_vfs_inode
= inode
;
2574 jinode
->i_flags
= 0;
2575 INIT_LIST_HEAD(&jinode
->i_list
);
2579 * Function to be called before we start removing inode from memory (i.e.,
2580 * clear_inode() is a fine place to be called from). It removes inode from
2581 * transaction's lists.
2583 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2584 struct jbd2_inode
*jinode
)
2589 spin_lock(&journal
->j_list_lock
);
2590 /* Is commit writing out inode - we have to wait */
2591 if (jinode
->i_flags
& JI_COMMIT_RUNNING
) {
2592 wait_queue_head_t
*wq
;
2593 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2594 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2595 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2596 spin_unlock(&journal
->j_list_lock
);
2598 finish_wait(wq
, &wait
.wq_entry
);
2602 if (jinode
->i_transaction
) {
2603 list_del(&jinode
->i_list
);
2604 jinode
->i_transaction
= NULL
;
2606 spin_unlock(&journal
->j_list_lock
);
2610 #ifdef CONFIG_PROC_FS
2612 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2616 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2619 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2621 if (proc_jbd2_stats
)
2622 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2627 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2628 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2634 static int __init
jbd2_journal_init_handle_cache(void)
2636 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2637 if (jbd2_handle_cache
== NULL
) {
2638 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2641 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2642 if (jbd2_inode_cache
== NULL
) {
2643 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2644 kmem_cache_destroy(jbd2_handle_cache
);
2650 static void jbd2_journal_destroy_handle_cache(void)
2652 if (jbd2_handle_cache
)
2653 kmem_cache_destroy(jbd2_handle_cache
);
2654 if (jbd2_inode_cache
)
2655 kmem_cache_destroy(jbd2_inode_cache
);
2660 * Module startup and shutdown
2663 static int __init
journal_init_caches(void)
2667 ret
= jbd2_journal_init_revoke_caches();
2669 ret
= jbd2_journal_init_journal_head_cache();
2671 ret
= jbd2_journal_init_handle_cache();
2673 ret
= jbd2_journal_init_transaction_cache();
2677 static void jbd2_journal_destroy_caches(void)
2679 jbd2_journal_destroy_revoke_caches();
2680 jbd2_journal_destroy_journal_head_cache();
2681 jbd2_journal_destroy_handle_cache();
2682 jbd2_journal_destroy_transaction_cache();
2683 jbd2_journal_destroy_slabs();
2686 static int __init
journal_init(void)
2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2692 ret
= journal_init_caches();
2694 jbd2_create_jbd_stats_proc_entry();
2696 jbd2_journal_destroy_caches();
2701 static void __exit
journal_exit(void)
2703 #ifdef CONFIG_JBD2_DEBUG
2704 int n
= atomic_read(&nr_journal_heads
);
2706 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2708 jbd2_remove_jbd_stats_proc_entry();
2709 jbd2_journal_destroy_caches();
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init
);
2714 module_exit(journal_exit
);