Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / kernel / bpf / cpumap.c
bloba4bb0b34375a6c652f49d7719c1bd7e0e02c89e0
1 /* bpf/cpumap.c
3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4 * Released under terms in GPL version 2. See COPYING.
5 */
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
23 #include <linux/sched.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/capability.h>
27 #include <trace/events/xdp.h>
29 #include <linux/netdevice.h> /* netif_receive_skb_core */
30 #include <linux/etherdevice.h> /* eth_type_trans */
32 /* General idea: XDP packets getting XDP redirected to another CPU,
33 * will maximum be stored/queued for one driver ->poll() call. It is
34 * guaranteed that setting flush bit and flush operation happen on
35 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
36 * which queue in bpf_cpu_map_entry contains packets.
39 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
40 struct xdp_bulk_queue {
41 void *q[CPU_MAP_BULK_SIZE];
42 unsigned int count;
45 /* Struct for every remote "destination" CPU in map */
46 struct bpf_cpu_map_entry {
47 u32 cpu; /* kthread CPU and map index */
48 int map_id; /* Back reference to map */
49 u32 qsize; /* Queue size placeholder for map lookup */
51 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
52 struct xdp_bulk_queue __percpu *bulkq;
54 /* Queue with potential multi-producers, and single-consumer kthread */
55 struct ptr_ring *queue;
56 struct task_struct *kthread;
57 struct work_struct kthread_stop_wq;
59 atomic_t refcnt; /* Control when this struct can be free'ed */
60 struct rcu_head rcu;
63 struct bpf_cpu_map {
64 struct bpf_map map;
65 /* Below members specific for map type */
66 struct bpf_cpu_map_entry **cpu_map;
67 unsigned long __percpu *flush_needed;
70 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
71 struct xdp_bulk_queue *bq);
73 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
78 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 struct bpf_cpu_map *cmap;
81 int err = -ENOMEM;
82 u64 cost;
83 int ret;
85 if (!capable(CAP_SYS_ADMIN))
86 return ERR_PTR(-EPERM);
88 /* check sanity of attributes */
89 if (attr->max_entries == 0 || attr->key_size != 4 ||
90 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
91 return ERR_PTR(-EINVAL);
93 cmap = kzalloc(sizeof(*cmap), GFP_USER);
94 if (!cmap)
95 return ERR_PTR(-ENOMEM);
97 bpf_map_init_from_attr(&cmap->map, attr);
99 /* Pre-limit array size based on NR_CPUS, not final CPU check */
100 if (cmap->map.max_entries > NR_CPUS) {
101 err = -E2BIG;
102 goto free_cmap;
105 /* make sure page count doesn't overflow */
106 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
107 cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
108 if (cost >= U32_MAX - PAGE_SIZE)
109 goto free_cmap;
110 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
112 /* Notice returns -EPERM on if map size is larger than memlock limit */
113 ret = bpf_map_precharge_memlock(cmap->map.pages);
114 if (ret) {
115 err = ret;
116 goto free_cmap;
119 /* A per cpu bitfield with a bit per possible CPU in map */
120 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
121 __alignof__(unsigned long));
122 if (!cmap->flush_needed)
123 goto free_cmap;
125 /* Alloc array for possible remote "destination" CPUs */
126 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127 sizeof(struct bpf_cpu_map_entry *),
128 cmap->map.numa_node);
129 if (!cmap->cpu_map)
130 goto free_percpu;
132 return &cmap->map;
133 free_percpu:
134 free_percpu(cmap->flush_needed);
135 free_cmap:
136 kfree(cmap);
137 return ERR_PTR(err);
140 static void __cpu_map_queue_destructor(void *ptr)
142 /* The tear-down procedure should have made sure that queue is
143 * empty. See __cpu_map_entry_replace() and work-queue
144 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
145 * gracefully and warn once.
147 if (WARN_ON_ONCE(ptr))
148 page_frag_free(ptr);
151 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
153 if (atomic_dec_and_test(&rcpu->refcnt)) {
154 /* The queue should be empty at this point */
155 ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
156 kfree(rcpu->queue);
157 kfree(rcpu);
161 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
163 atomic_inc(&rcpu->refcnt);
166 /* called from workqueue, to workaround syscall using preempt_disable */
167 static void cpu_map_kthread_stop(struct work_struct *work)
169 struct bpf_cpu_map_entry *rcpu;
171 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
173 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
174 * as it waits until all in-flight call_rcu() callbacks complete.
176 rcu_barrier();
178 /* kthread_stop will wake_up_process and wait for it to complete */
179 kthread_stop(rcpu->kthread);
182 /* For now, xdp_pkt is a cpumap internal data structure, with info
183 * carried between enqueue to dequeue. It is mapped into the top
184 * headroom of the packet, to avoid allocating separate mem.
186 struct xdp_pkt {
187 void *data;
188 u16 len;
189 u16 headroom;
190 u16 metasize;
191 struct net_device *dev_rx;
194 /* Convert xdp_buff to xdp_pkt */
195 static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
197 struct xdp_pkt *xdp_pkt;
198 int metasize;
199 int headroom;
201 /* Assure headroom is available for storing info */
202 headroom = xdp->data - xdp->data_hard_start;
203 metasize = xdp->data - xdp->data_meta;
204 metasize = metasize > 0 ? metasize : 0;
205 if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
206 return NULL;
208 /* Store info in top of packet */
209 xdp_pkt = xdp->data_hard_start;
211 xdp_pkt->data = xdp->data;
212 xdp_pkt->len = xdp->data_end - xdp->data;
213 xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
214 xdp_pkt->metasize = metasize;
216 return xdp_pkt;
219 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
220 struct xdp_pkt *xdp_pkt)
222 unsigned int frame_size;
223 void *pkt_data_start;
224 struct sk_buff *skb;
226 /* build_skb need to place skb_shared_info after SKB end, and
227 * also want to know the memory "truesize". Thus, need to
228 * know the memory frame size backing xdp_buff.
230 * XDP was designed to have PAGE_SIZE frames, but this
231 * assumption is not longer true with ixgbe and i40e. It
232 * would be preferred to set frame_size to 2048 or 4096
233 * depending on the driver.
234 * frame_size = 2048;
235 * frame_len = frame_size - sizeof(*xdp_pkt);
237 * Instead, with info avail, skb_shared_info in placed after
238 * packet len. This, unfortunately fakes the truesize.
239 * Another disadvantage of this approach, the skb_shared_info
240 * is not at a fixed memory location, with mixed length
241 * packets, which is bad for cache-line hotness.
243 frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
244 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
246 pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
247 skb = build_skb(pkt_data_start, frame_size);
248 if (!skb)
249 return NULL;
251 skb_reserve(skb, xdp_pkt->headroom);
252 __skb_put(skb, xdp_pkt->len);
253 if (xdp_pkt->metasize)
254 skb_metadata_set(skb, xdp_pkt->metasize);
256 /* Essential SKB info: protocol and skb->dev */
257 skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
259 /* Optional SKB info, currently missing:
260 * - HW checksum info (skb->ip_summed)
261 * - HW RX hash (skb_set_hash)
262 * - RX ring dev queue index (skb_record_rx_queue)
265 return skb;
268 static int cpu_map_kthread_run(void *data)
270 struct bpf_cpu_map_entry *rcpu = data;
272 set_current_state(TASK_INTERRUPTIBLE);
274 /* When kthread gives stop order, then rcpu have been disconnected
275 * from map, thus no new packets can enter. Remaining in-flight
276 * per CPU stored packets are flushed to this queue. Wait honoring
277 * kthread_stop signal until queue is empty.
279 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
280 unsigned int processed = 0, drops = 0, sched = 0;
281 struct xdp_pkt *xdp_pkt;
283 /* Release CPU reschedule checks */
284 if (__ptr_ring_empty(rcpu->queue)) {
285 set_current_state(TASK_INTERRUPTIBLE);
286 /* Recheck to avoid lost wake-up */
287 if (__ptr_ring_empty(rcpu->queue)) {
288 schedule();
289 sched = 1;
290 } else {
291 __set_current_state(TASK_RUNNING);
293 } else {
294 sched = cond_resched();
297 /* Process packets in rcpu->queue */
298 local_bh_disable();
300 * The bpf_cpu_map_entry is single consumer, with this
301 * kthread CPU pinned. Lockless access to ptr_ring
302 * consume side valid as no-resize allowed of queue.
304 while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
305 struct sk_buff *skb;
306 int ret;
308 skb = cpu_map_build_skb(rcpu, xdp_pkt);
309 if (!skb) {
310 page_frag_free(xdp_pkt);
311 continue;
314 /* Inject into network stack */
315 ret = netif_receive_skb_core(skb);
316 if (ret == NET_RX_DROP)
317 drops++;
319 /* Limit BH-disable period */
320 if (++processed == 8)
321 break;
323 /* Feedback loop via tracepoint */
324 trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
326 local_bh_enable(); /* resched point, may call do_softirq() */
328 __set_current_state(TASK_RUNNING);
330 put_cpu_map_entry(rcpu);
331 return 0;
334 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335 int map_id)
337 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338 struct bpf_cpu_map_entry *rcpu;
339 int numa, err;
341 /* Have map->numa_node, but choose node of redirect target CPU */
342 numa = cpu_to_node(cpu);
344 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
345 if (!rcpu)
346 return NULL;
348 /* Alloc percpu bulkq */
349 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
350 sizeof(void *), gfp);
351 if (!rcpu->bulkq)
352 goto free_rcu;
354 /* Alloc queue */
355 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
356 if (!rcpu->queue)
357 goto free_bulkq;
359 err = ptr_ring_init(rcpu->queue, qsize, gfp);
360 if (err)
361 goto free_queue;
363 rcpu->cpu = cpu;
364 rcpu->map_id = map_id;
365 rcpu->qsize = qsize;
367 /* Setup kthread */
368 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
369 "cpumap/%d/map:%d", cpu, map_id);
370 if (IS_ERR(rcpu->kthread))
371 goto free_ptr_ring;
373 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
374 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
376 /* Make sure kthread runs on a single CPU */
377 kthread_bind(rcpu->kthread, cpu);
378 wake_up_process(rcpu->kthread);
380 return rcpu;
382 free_ptr_ring:
383 ptr_ring_cleanup(rcpu->queue, NULL);
384 free_queue:
385 kfree(rcpu->queue);
386 free_bulkq:
387 free_percpu(rcpu->bulkq);
388 free_rcu:
389 kfree(rcpu);
390 return NULL;
393 static void __cpu_map_entry_free(struct rcu_head *rcu)
395 struct bpf_cpu_map_entry *rcpu;
396 int cpu;
398 /* This cpu_map_entry have been disconnected from map and one
399 * RCU graze-period have elapsed. Thus, XDP cannot queue any
400 * new packets and cannot change/set flush_needed that can
401 * find this entry.
403 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
405 /* Flush remaining packets in percpu bulkq */
406 for_each_online_cpu(cpu) {
407 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
409 /* No concurrent bq_enqueue can run at this point */
410 bq_flush_to_queue(rcpu, bq);
412 free_percpu(rcpu->bulkq);
413 /* Cannot kthread_stop() here, last put free rcpu resources */
414 put_cpu_map_entry(rcpu);
417 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
418 * ensure any driver rcu critical sections have completed, but this
419 * does not guarantee a flush has happened yet. Because driver side
420 * rcu_read_lock/unlock only protects the running XDP program. The
421 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
422 * pending flush op doesn't fail.
424 * The bpf_cpu_map_entry is still used by the kthread, and there can
425 * still be pending packets (in queue and percpu bulkq). A refcnt
426 * makes sure to last user (kthread_stop vs. call_rcu) free memory
427 * resources.
429 * The rcu callback __cpu_map_entry_free flush remaining packets in
430 * percpu bulkq to queue. Due to caller map_delete_elem() disable
431 * preemption, cannot call kthread_stop() to make sure queue is empty.
432 * Instead a work_queue is started for stopping kthread,
433 * cpu_map_kthread_stop, which waits for an RCU graze period before
434 * stopping kthread, emptying the queue.
436 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
437 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
439 struct bpf_cpu_map_entry *old_rcpu;
441 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
442 if (old_rcpu) {
443 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
444 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
445 schedule_work(&old_rcpu->kthread_stop_wq);
449 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
451 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
452 u32 key_cpu = *(u32 *)key;
454 if (key_cpu >= map->max_entries)
455 return -EINVAL;
457 /* notice caller map_delete_elem() use preempt_disable() */
458 __cpu_map_entry_replace(cmap, key_cpu, NULL);
459 return 0;
462 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
463 u64 map_flags)
465 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
466 struct bpf_cpu_map_entry *rcpu;
468 /* Array index key correspond to CPU number */
469 u32 key_cpu = *(u32 *)key;
470 /* Value is the queue size */
471 u32 qsize = *(u32 *)value;
473 if (unlikely(map_flags > BPF_EXIST))
474 return -EINVAL;
475 if (unlikely(key_cpu >= cmap->map.max_entries))
476 return -E2BIG;
477 if (unlikely(map_flags == BPF_NOEXIST))
478 return -EEXIST;
479 if (unlikely(qsize > 16384)) /* sanity limit on qsize */
480 return -EOVERFLOW;
482 /* Make sure CPU is a valid possible cpu */
483 if (!cpu_possible(key_cpu))
484 return -ENODEV;
486 if (qsize == 0) {
487 rcpu = NULL; /* Same as deleting */
488 } else {
489 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
490 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
491 if (!rcpu)
492 return -ENOMEM;
494 rcu_read_lock();
495 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
496 rcu_read_unlock();
497 return 0;
500 static void cpu_map_free(struct bpf_map *map)
502 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
503 int cpu;
504 u32 i;
506 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
507 * so the bpf programs (can be more than one that used this map) were
508 * disconnected from events. Wait for outstanding critical sections in
509 * these programs to complete. The rcu critical section only guarantees
510 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
511 * It does __not__ ensure pending flush operations (if any) are
512 * complete.
514 synchronize_rcu();
516 /* To ensure all pending flush operations have completed wait for flush
517 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518 * Because the above synchronize_rcu() ensures the map is disconnected
519 * from the program we can assume no new bits will be set.
521 for_each_online_cpu(cpu) {
522 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
524 while (!bitmap_empty(bitmap, cmap->map.max_entries))
525 cond_resched();
528 /* For cpu_map the remote CPUs can still be using the entries
529 * (struct bpf_cpu_map_entry).
531 for (i = 0; i < cmap->map.max_entries; i++) {
532 struct bpf_cpu_map_entry *rcpu;
534 rcpu = READ_ONCE(cmap->cpu_map[i]);
535 if (!rcpu)
536 continue;
538 /* bq flush and cleanup happens after RCU graze-period */
539 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
541 free_percpu(cmap->flush_needed);
542 bpf_map_area_free(cmap->cpu_map);
543 kfree(cmap);
546 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
548 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549 struct bpf_cpu_map_entry *rcpu;
551 if (key >= map->max_entries)
552 return NULL;
554 rcpu = READ_ONCE(cmap->cpu_map[key]);
555 return rcpu;
558 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
560 struct bpf_cpu_map_entry *rcpu =
561 __cpu_map_lookup_elem(map, *(u32 *)key);
563 return rcpu ? &rcpu->qsize : NULL;
566 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
568 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569 u32 index = key ? *(u32 *)key : U32_MAX;
570 u32 *next = next_key;
572 if (index >= cmap->map.max_entries) {
573 *next = 0;
574 return 0;
577 if (index == cmap->map.max_entries - 1)
578 return -ENOENT;
579 *next = index + 1;
580 return 0;
583 const struct bpf_map_ops cpu_map_ops = {
584 .map_alloc = cpu_map_alloc,
585 .map_free = cpu_map_free,
586 .map_delete_elem = cpu_map_delete_elem,
587 .map_update_elem = cpu_map_update_elem,
588 .map_lookup_elem = cpu_map_lookup_elem,
589 .map_get_next_key = cpu_map_get_next_key,
592 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
593 struct xdp_bulk_queue *bq)
595 unsigned int processed = 0, drops = 0;
596 const int to_cpu = rcpu->cpu;
597 struct ptr_ring *q;
598 int i;
600 if (unlikely(!bq->count))
601 return 0;
603 q = rcpu->queue;
604 spin_lock(&q->producer_lock);
606 for (i = 0; i < bq->count; i++) {
607 void *xdp_pkt = bq->q[i];
608 int err;
610 err = __ptr_ring_produce(q, xdp_pkt);
611 if (err) {
612 drops++;
613 page_frag_free(xdp_pkt); /* Free xdp_pkt */
615 processed++;
617 bq->count = 0;
618 spin_unlock(&q->producer_lock);
620 /* Feedback loop via tracepoints */
621 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
622 return 0;
625 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
626 * Thus, safe percpu variable access.
628 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
630 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
632 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
633 bq_flush_to_queue(rcpu, bq);
635 /* Notice, xdp_buff/page MUST be queued here, long enough for
636 * driver to code invoking us to finished, due to driver
637 * (e.g. ixgbe) recycle tricks based on page-refcnt.
639 * Thus, incoming xdp_pkt is always queued here (else we race
640 * with another CPU on page-refcnt and remaining driver code).
641 * Queue time is very short, as driver will invoke flush
642 * operation, when completing napi->poll call.
644 bq->q[bq->count++] = xdp_pkt;
645 return 0;
648 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
649 struct net_device *dev_rx)
651 struct xdp_pkt *xdp_pkt;
653 xdp_pkt = convert_to_xdp_pkt(xdp);
654 if (unlikely(!xdp_pkt))
655 return -EOVERFLOW;
657 /* Info needed when constructing SKB on remote CPU */
658 xdp_pkt->dev_rx = dev_rx;
660 bq_enqueue(rcpu, xdp_pkt);
661 return 0;
664 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
666 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
669 __set_bit(bit, bitmap);
672 void __cpu_map_flush(struct bpf_map *map)
674 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
675 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
676 u32 bit;
678 /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
679 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
680 * bitmap indicate which percpu bulkq have packets.
682 for_each_set_bit(bit, bitmap, map->max_entries) {
683 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
684 struct xdp_bulk_queue *bq;
686 /* This is possible if entry is removed by user space
687 * between xdp redirect and flush op.
689 if (unlikely(!rcpu))
690 continue;
692 __clear_bit(bit, bitmap);
694 /* Flush all frames in bulkq to real queue */
695 bq = this_cpu_ptr(rcpu->bulkq);
696 bq_flush_to_queue(rcpu, bq);
698 /* If already running, costs spin_lock_irqsave + smb_mb */
699 wake_up_process(rcpu->kthread);