Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / kernel / bpf / verifier.c
blobc6eff108aa998721512fce01ab98ba31b3f1b92b
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
26 #include "disasm.h"
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
37 /* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
49 * analysis is limited to 64k insn, which may be hit even if total number of
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56 * copied to R1.
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 * Most of the time the registers have SCALAR_VALUE type, which
78 * means the register has some value, but it's not a valid pointer.
79 * (like pointer plus pointer becomes SCALAR_VALUE type)
81 * When verifier sees load or store instructions the type of base register
82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83 * types recognized by check_mem_access() function.
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
111 * void *value;
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem {
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
150 struct bpf_verifier_state st;
151 int insn_idx;
152 int prev_insn_idx;
153 struct bpf_verifier_stack_elem *next;
156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
157 #define BPF_COMPLEXITY_LIMIT_STACK 1024
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 struct bpf_call_arg_meta {
162 struct bpf_map *map_ptr;
163 bool raw_mode;
164 bool pkt_access;
165 int regno;
166 int access_size;
169 static DEFINE_MUTEX(bpf_verifier_lock);
171 /* log_level controls verbosity level of eBPF verifier.
172 * bpf_verifier_log_write() is used to dump the verification trace to the log,
173 * so the user can figure out what's wrong with the program
175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
176 const char *fmt, ...)
178 struct bpf_verifer_log *log = &env->log;
179 unsigned int n;
180 va_list args;
182 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 return;
185 va_start(args, fmt);
186 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187 va_end(args);
189 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
190 "verifier log line truncated - local buffer too short\n");
192 n = min(log->len_total - log->len_used - 1, n);
193 log->kbuf[n] = '\0';
195 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
196 log->len_used += n;
197 else
198 log->ubuf = NULL;
200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
201 /* Historically bpf_verifier_log_write was called verbose, but the name was too
202 * generic for symbol export. The function was renamed, but not the calls in
203 * the verifier to avoid complicating backports. Hence the alias below.
205 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
206 const char *fmt, ...)
207 __attribute__((alias("bpf_verifier_log_write")));
209 static bool type_is_pkt_pointer(enum bpf_reg_type type)
211 return type == PTR_TO_PACKET ||
212 type == PTR_TO_PACKET_META;
215 /* string representation of 'enum bpf_reg_type' */
216 static const char * const reg_type_str[] = {
217 [NOT_INIT] = "?",
218 [SCALAR_VALUE] = "inv",
219 [PTR_TO_CTX] = "ctx",
220 [CONST_PTR_TO_MAP] = "map_ptr",
221 [PTR_TO_MAP_VALUE] = "map_value",
222 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
223 [PTR_TO_STACK] = "fp",
224 [PTR_TO_PACKET] = "pkt",
225 [PTR_TO_PACKET_META] = "pkt_meta",
226 [PTR_TO_PACKET_END] = "pkt_end",
229 static void print_liveness(struct bpf_verifier_env *env,
230 enum bpf_reg_liveness live)
232 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
233 verbose(env, "_");
234 if (live & REG_LIVE_READ)
235 verbose(env, "r");
236 if (live & REG_LIVE_WRITTEN)
237 verbose(env, "w");
240 static struct bpf_func_state *func(struct bpf_verifier_env *env,
241 const struct bpf_reg_state *reg)
243 struct bpf_verifier_state *cur = env->cur_state;
245 return cur->frame[reg->frameno];
248 static void print_verifier_state(struct bpf_verifier_env *env,
249 const struct bpf_func_state *state)
251 const struct bpf_reg_state *reg;
252 enum bpf_reg_type t;
253 int i;
255 if (state->frameno)
256 verbose(env, " frame%d:", state->frameno);
257 for (i = 0; i < MAX_BPF_REG; i++) {
258 reg = &state->regs[i];
259 t = reg->type;
260 if (t == NOT_INIT)
261 continue;
262 verbose(env, " R%d", i);
263 print_liveness(env, reg->live);
264 verbose(env, "=%s", reg_type_str[t]);
265 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
266 tnum_is_const(reg->var_off)) {
267 /* reg->off should be 0 for SCALAR_VALUE */
268 verbose(env, "%lld", reg->var_off.value + reg->off);
269 if (t == PTR_TO_STACK)
270 verbose(env, ",call_%d", func(env, reg)->callsite);
271 } else {
272 verbose(env, "(id=%d", reg->id);
273 if (t != SCALAR_VALUE)
274 verbose(env, ",off=%d", reg->off);
275 if (type_is_pkt_pointer(t))
276 verbose(env, ",r=%d", reg->range);
277 else if (t == CONST_PTR_TO_MAP ||
278 t == PTR_TO_MAP_VALUE ||
279 t == PTR_TO_MAP_VALUE_OR_NULL)
280 verbose(env, ",ks=%d,vs=%d",
281 reg->map_ptr->key_size,
282 reg->map_ptr->value_size);
283 if (tnum_is_const(reg->var_off)) {
284 /* Typically an immediate SCALAR_VALUE, but
285 * could be a pointer whose offset is too big
286 * for reg->off
288 verbose(env, ",imm=%llx", reg->var_off.value);
289 } else {
290 if (reg->smin_value != reg->umin_value &&
291 reg->smin_value != S64_MIN)
292 verbose(env, ",smin_value=%lld",
293 (long long)reg->smin_value);
294 if (reg->smax_value != reg->umax_value &&
295 reg->smax_value != S64_MAX)
296 verbose(env, ",smax_value=%lld",
297 (long long)reg->smax_value);
298 if (reg->umin_value != 0)
299 verbose(env, ",umin_value=%llu",
300 (unsigned long long)reg->umin_value);
301 if (reg->umax_value != U64_MAX)
302 verbose(env, ",umax_value=%llu",
303 (unsigned long long)reg->umax_value);
304 if (!tnum_is_unknown(reg->var_off)) {
305 char tn_buf[48];
307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
308 verbose(env, ",var_off=%s", tn_buf);
311 verbose(env, ")");
314 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
315 if (state->stack[i].slot_type[0] == STACK_SPILL) {
316 verbose(env, " fp%d",
317 (-i - 1) * BPF_REG_SIZE);
318 print_liveness(env, state->stack[i].spilled_ptr.live);
319 verbose(env, "=%s",
320 reg_type_str[state->stack[i].spilled_ptr.type]);
322 if (state->stack[i].slot_type[0] == STACK_ZERO)
323 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
325 verbose(env, "\n");
328 static int copy_stack_state(struct bpf_func_state *dst,
329 const struct bpf_func_state *src)
331 if (!src->stack)
332 return 0;
333 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
334 /* internal bug, make state invalid to reject the program */
335 memset(dst, 0, sizeof(*dst));
336 return -EFAULT;
338 memcpy(dst->stack, src->stack,
339 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
340 return 0;
343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344 * make it consume minimal amount of memory. check_stack_write() access from
345 * the program calls into realloc_func_state() to grow the stack size.
346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347 * which this function copies over. It points to previous bpf_verifier_state
348 * which is never reallocated
350 static int realloc_func_state(struct bpf_func_state *state, int size,
351 bool copy_old)
353 u32 old_size = state->allocated_stack;
354 struct bpf_stack_state *new_stack;
355 int slot = size / BPF_REG_SIZE;
357 if (size <= old_size || !size) {
358 if (copy_old)
359 return 0;
360 state->allocated_stack = slot * BPF_REG_SIZE;
361 if (!size && old_size) {
362 kfree(state->stack);
363 state->stack = NULL;
365 return 0;
367 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
368 GFP_KERNEL);
369 if (!new_stack)
370 return -ENOMEM;
371 if (copy_old) {
372 if (state->stack)
373 memcpy(new_stack, state->stack,
374 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
375 memset(new_stack + old_size / BPF_REG_SIZE, 0,
376 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
378 state->allocated_stack = slot * BPF_REG_SIZE;
379 kfree(state->stack);
380 state->stack = new_stack;
381 return 0;
384 static void free_func_state(struct bpf_func_state *state)
386 if (!state)
387 return;
388 kfree(state->stack);
389 kfree(state);
392 static void free_verifier_state(struct bpf_verifier_state *state,
393 bool free_self)
395 int i;
397 for (i = 0; i <= state->curframe; i++) {
398 free_func_state(state->frame[i]);
399 state->frame[i] = NULL;
401 if (free_self)
402 kfree(state);
405 /* copy verifier state from src to dst growing dst stack space
406 * when necessary to accommodate larger src stack
408 static int copy_func_state(struct bpf_func_state *dst,
409 const struct bpf_func_state *src)
411 int err;
413 err = realloc_func_state(dst, src->allocated_stack, false);
414 if (err)
415 return err;
416 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
417 return copy_stack_state(dst, src);
420 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
421 const struct bpf_verifier_state *src)
423 struct bpf_func_state *dst;
424 int i, err;
426 /* if dst has more stack frames then src frame, free them */
427 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
428 free_func_state(dst_state->frame[i]);
429 dst_state->frame[i] = NULL;
431 dst_state->curframe = src->curframe;
432 dst_state->parent = src->parent;
433 for (i = 0; i <= src->curframe; i++) {
434 dst = dst_state->frame[i];
435 if (!dst) {
436 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
437 if (!dst)
438 return -ENOMEM;
439 dst_state->frame[i] = dst;
441 err = copy_func_state(dst, src->frame[i]);
442 if (err)
443 return err;
445 return 0;
448 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
449 int *insn_idx)
451 struct bpf_verifier_state *cur = env->cur_state;
452 struct bpf_verifier_stack_elem *elem, *head = env->head;
453 int err;
455 if (env->head == NULL)
456 return -ENOENT;
458 if (cur) {
459 err = copy_verifier_state(cur, &head->st);
460 if (err)
461 return err;
463 if (insn_idx)
464 *insn_idx = head->insn_idx;
465 if (prev_insn_idx)
466 *prev_insn_idx = head->prev_insn_idx;
467 elem = head->next;
468 free_verifier_state(&head->st, false);
469 kfree(head);
470 env->head = elem;
471 env->stack_size--;
472 return 0;
475 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
476 int insn_idx, int prev_insn_idx)
478 struct bpf_verifier_state *cur = env->cur_state;
479 struct bpf_verifier_stack_elem *elem;
480 int err;
482 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
483 if (!elem)
484 goto err;
486 elem->insn_idx = insn_idx;
487 elem->prev_insn_idx = prev_insn_idx;
488 elem->next = env->head;
489 env->head = elem;
490 env->stack_size++;
491 err = copy_verifier_state(&elem->st, cur);
492 if (err)
493 goto err;
494 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
495 verbose(env, "BPF program is too complex\n");
496 goto err;
498 return &elem->st;
499 err:
500 free_verifier_state(env->cur_state, true);
501 env->cur_state = NULL;
502 /* pop all elements and return */
503 while (!pop_stack(env, NULL, NULL));
504 return NULL;
507 #define CALLER_SAVED_REGS 6
508 static const int caller_saved[CALLER_SAVED_REGS] = {
509 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
511 #define CALLEE_SAVED_REGS 5
512 static const int callee_saved[CALLEE_SAVED_REGS] = {
513 BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
516 static void __mark_reg_not_init(struct bpf_reg_state *reg);
518 /* Mark the unknown part of a register (variable offset or scalar value) as
519 * known to have the value @imm.
521 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
523 reg->id = 0;
524 reg->var_off = tnum_const(imm);
525 reg->smin_value = (s64)imm;
526 reg->smax_value = (s64)imm;
527 reg->umin_value = imm;
528 reg->umax_value = imm;
531 /* Mark the 'variable offset' part of a register as zero. This should be
532 * used only on registers holding a pointer type.
534 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
536 __mark_reg_known(reg, 0);
539 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
541 __mark_reg_known(reg, 0);
542 reg->off = 0;
543 reg->type = SCALAR_VALUE;
546 static void mark_reg_known_zero(struct bpf_verifier_env *env,
547 struct bpf_reg_state *regs, u32 regno)
549 if (WARN_ON(regno >= MAX_BPF_REG)) {
550 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
551 /* Something bad happened, let's kill all regs */
552 for (regno = 0; regno < MAX_BPF_REG; regno++)
553 __mark_reg_not_init(regs + regno);
554 return;
556 __mark_reg_known_zero(regs + regno);
559 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
561 return type_is_pkt_pointer(reg->type);
564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
566 return reg_is_pkt_pointer(reg) ||
567 reg->type == PTR_TO_PACKET_END;
570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
572 enum bpf_reg_type which)
574 /* The register can already have a range from prior markings.
575 * This is fine as long as it hasn't been advanced from its
576 * origin.
578 return reg->type == which &&
579 reg->id == 0 &&
580 reg->off == 0 &&
581 tnum_equals_const(reg->var_off, 0);
584 /* Attempts to improve min/max values based on var_off information */
585 static void __update_reg_bounds(struct bpf_reg_state *reg)
587 /* min signed is max(sign bit) | min(other bits) */
588 reg->smin_value = max_t(s64, reg->smin_value,
589 reg->var_off.value | (reg->var_off.mask & S64_MIN));
590 /* max signed is min(sign bit) | max(other bits) */
591 reg->smax_value = min_t(s64, reg->smax_value,
592 reg->var_off.value | (reg->var_off.mask & S64_MAX));
593 reg->umin_value = max(reg->umin_value, reg->var_off.value);
594 reg->umax_value = min(reg->umax_value,
595 reg->var_off.value | reg->var_off.mask);
598 /* Uses signed min/max values to inform unsigned, and vice-versa */
599 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
601 /* Learn sign from signed bounds.
602 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 * are the same, so combine. This works even in the negative case, e.g.
604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
606 if (reg->smin_value >= 0 || reg->smax_value < 0) {
607 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
608 reg->umin_value);
609 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
610 reg->umax_value);
611 return;
613 /* Learn sign from unsigned bounds. Signed bounds cross the sign
614 * boundary, so we must be careful.
616 if ((s64)reg->umax_value >= 0) {
617 /* Positive. We can't learn anything from the smin, but smax
618 * is positive, hence safe.
620 reg->smin_value = reg->umin_value;
621 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
622 reg->umax_value);
623 } else if ((s64)reg->umin_value < 0) {
624 /* Negative. We can't learn anything from the smax, but smin
625 * is negative, hence safe.
627 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
628 reg->umin_value);
629 reg->smax_value = reg->umax_value;
633 /* Attempts to improve var_off based on unsigned min/max information */
634 static void __reg_bound_offset(struct bpf_reg_state *reg)
636 reg->var_off = tnum_intersect(reg->var_off,
637 tnum_range(reg->umin_value,
638 reg->umax_value));
641 /* Reset the min/max bounds of a register */
642 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
644 reg->smin_value = S64_MIN;
645 reg->smax_value = S64_MAX;
646 reg->umin_value = 0;
647 reg->umax_value = U64_MAX;
650 /* Mark a register as having a completely unknown (scalar) value. */
651 static void __mark_reg_unknown(struct bpf_reg_state *reg)
653 reg->type = SCALAR_VALUE;
654 reg->id = 0;
655 reg->off = 0;
656 reg->var_off = tnum_unknown;
657 reg->frameno = 0;
658 __mark_reg_unbounded(reg);
661 static void mark_reg_unknown(struct bpf_verifier_env *env,
662 struct bpf_reg_state *regs, u32 regno)
664 if (WARN_ON(regno >= MAX_BPF_REG)) {
665 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
666 /* Something bad happened, let's kill all regs except FP */
667 for (regno = 0; regno < BPF_REG_FP; regno++)
668 __mark_reg_not_init(regs + regno);
669 return;
671 __mark_reg_unknown(regs + regno);
674 static void __mark_reg_not_init(struct bpf_reg_state *reg)
676 __mark_reg_unknown(reg);
677 reg->type = NOT_INIT;
680 static void mark_reg_not_init(struct bpf_verifier_env *env,
681 struct bpf_reg_state *regs, u32 regno)
683 if (WARN_ON(regno >= MAX_BPF_REG)) {
684 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
685 /* Something bad happened, let's kill all regs except FP */
686 for (regno = 0; regno < BPF_REG_FP; regno++)
687 __mark_reg_not_init(regs + regno);
688 return;
690 __mark_reg_not_init(regs + regno);
693 static void init_reg_state(struct bpf_verifier_env *env,
694 struct bpf_func_state *state)
696 struct bpf_reg_state *regs = state->regs;
697 int i;
699 for (i = 0; i < MAX_BPF_REG; i++) {
700 mark_reg_not_init(env, regs, i);
701 regs[i].live = REG_LIVE_NONE;
704 /* frame pointer */
705 regs[BPF_REG_FP].type = PTR_TO_STACK;
706 mark_reg_known_zero(env, regs, BPF_REG_FP);
707 regs[BPF_REG_FP].frameno = state->frameno;
709 /* 1st arg to a function */
710 regs[BPF_REG_1].type = PTR_TO_CTX;
711 mark_reg_known_zero(env, regs, BPF_REG_1);
714 #define BPF_MAIN_FUNC (-1)
715 static void init_func_state(struct bpf_verifier_env *env,
716 struct bpf_func_state *state,
717 int callsite, int frameno, int subprogno)
719 state->callsite = callsite;
720 state->frameno = frameno;
721 state->subprogno = subprogno;
722 init_reg_state(env, state);
725 enum reg_arg_type {
726 SRC_OP, /* register is used as source operand */
727 DST_OP, /* register is used as destination operand */
728 DST_OP_NO_MARK /* same as above, check only, don't mark */
731 static int cmp_subprogs(const void *a, const void *b)
733 return *(int *)a - *(int *)b;
736 static int find_subprog(struct bpf_verifier_env *env, int off)
738 u32 *p;
740 p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
741 sizeof(env->subprog_starts[0]), cmp_subprogs);
742 if (!p)
743 return -ENOENT;
744 return p - env->subprog_starts;
748 static int add_subprog(struct bpf_verifier_env *env, int off)
750 int insn_cnt = env->prog->len;
751 int ret;
753 if (off >= insn_cnt || off < 0) {
754 verbose(env, "call to invalid destination\n");
755 return -EINVAL;
757 ret = find_subprog(env, off);
758 if (ret >= 0)
759 return 0;
760 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
761 verbose(env, "too many subprograms\n");
762 return -E2BIG;
764 env->subprog_starts[env->subprog_cnt++] = off;
765 sort(env->subprog_starts, env->subprog_cnt,
766 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
767 return 0;
770 static int check_subprogs(struct bpf_verifier_env *env)
772 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
773 struct bpf_insn *insn = env->prog->insnsi;
774 int insn_cnt = env->prog->len;
776 /* determine subprog starts. The end is one before the next starts */
777 for (i = 0; i < insn_cnt; i++) {
778 if (insn[i].code != (BPF_JMP | BPF_CALL))
779 continue;
780 if (insn[i].src_reg != BPF_PSEUDO_CALL)
781 continue;
782 if (!env->allow_ptr_leaks) {
783 verbose(env, "function calls to other bpf functions are allowed for root only\n");
784 return -EPERM;
786 if (bpf_prog_is_dev_bound(env->prog->aux)) {
787 verbose(env, "function calls in offloaded programs are not supported yet\n");
788 return -EINVAL;
790 ret = add_subprog(env, i + insn[i].imm + 1);
791 if (ret < 0)
792 return ret;
795 if (env->log.level > 1)
796 for (i = 0; i < env->subprog_cnt; i++)
797 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);
799 /* now check that all jumps are within the same subprog */
800 subprog_start = 0;
801 if (env->subprog_cnt == cur_subprog)
802 subprog_end = insn_cnt;
803 else
804 subprog_end = env->subprog_starts[cur_subprog++];
805 for (i = 0; i < insn_cnt; i++) {
806 u8 code = insn[i].code;
808 if (BPF_CLASS(code) != BPF_JMP)
809 goto next;
810 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
811 goto next;
812 off = i + insn[i].off + 1;
813 if (off < subprog_start || off >= subprog_end) {
814 verbose(env, "jump out of range from insn %d to %d\n", i, off);
815 return -EINVAL;
817 next:
818 if (i == subprog_end - 1) {
819 /* to avoid fall-through from one subprog into another
820 * the last insn of the subprog should be either exit
821 * or unconditional jump back
823 if (code != (BPF_JMP | BPF_EXIT) &&
824 code != (BPF_JMP | BPF_JA)) {
825 verbose(env, "last insn is not an exit or jmp\n");
826 return -EINVAL;
828 subprog_start = subprog_end;
829 if (env->subprog_cnt == cur_subprog)
830 subprog_end = insn_cnt;
831 else
832 subprog_end = env->subprog_starts[cur_subprog++];
835 return 0;
838 static
839 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
840 const struct bpf_verifier_state *state,
841 struct bpf_verifier_state *parent,
842 u32 regno)
844 struct bpf_verifier_state *tmp = NULL;
846 /* 'parent' could be a state of caller and
847 * 'state' could be a state of callee. In such case
848 * parent->curframe < state->curframe
849 * and it's ok for r1 - r5 registers
851 * 'parent' could be a callee's state after it bpf_exit-ed.
852 * In such case parent->curframe > state->curframe
853 * and it's ok for r0 only
855 if (parent->curframe == state->curframe ||
856 (parent->curframe < state->curframe &&
857 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
858 (parent->curframe > state->curframe &&
859 regno == BPF_REG_0))
860 return parent;
862 if (parent->curframe > state->curframe &&
863 regno >= BPF_REG_6) {
864 /* for callee saved regs we have to skip the whole chain
865 * of states that belong to callee and mark as LIVE_READ
866 * the registers before the call
868 tmp = parent;
869 while (tmp && tmp->curframe != state->curframe) {
870 tmp = tmp->parent;
872 if (!tmp)
873 goto bug;
874 parent = tmp;
875 } else {
876 goto bug;
878 return parent;
879 bug:
880 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
881 verbose(env, "regno %d parent frame %d current frame %d\n",
882 regno, parent->curframe, state->curframe);
883 return NULL;
886 static int mark_reg_read(struct bpf_verifier_env *env,
887 const struct bpf_verifier_state *state,
888 struct bpf_verifier_state *parent,
889 u32 regno)
891 bool writes = parent == state->parent; /* Observe write marks */
893 if (regno == BPF_REG_FP)
894 /* We don't need to worry about FP liveness because it's read-only */
895 return 0;
897 while (parent) {
898 /* if read wasn't screened by an earlier write ... */
899 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
900 break;
901 parent = skip_callee(env, state, parent, regno);
902 if (!parent)
903 return -EFAULT;
904 /* ... then we depend on parent's value */
905 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
906 state = parent;
907 parent = state->parent;
908 writes = true;
910 return 0;
913 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
914 enum reg_arg_type t)
916 struct bpf_verifier_state *vstate = env->cur_state;
917 struct bpf_func_state *state = vstate->frame[vstate->curframe];
918 struct bpf_reg_state *regs = state->regs;
920 if (regno >= MAX_BPF_REG) {
921 verbose(env, "R%d is invalid\n", regno);
922 return -EINVAL;
925 if (t == SRC_OP) {
926 /* check whether register used as source operand can be read */
927 if (regs[regno].type == NOT_INIT) {
928 verbose(env, "R%d !read_ok\n", regno);
929 return -EACCES;
931 return mark_reg_read(env, vstate, vstate->parent, regno);
932 } else {
933 /* check whether register used as dest operand can be written to */
934 if (regno == BPF_REG_FP) {
935 verbose(env, "frame pointer is read only\n");
936 return -EACCES;
938 regs[regno].live |= REG_LIVE_WRITTEN;
939 if (t == DST_OP)
940 mark_reg_unknown(env, regs, regno);
942 return 0;
945 static bool is_spillable_regtype(enum bpf_reg_type type)
947 switch (type) {
948 case PTR_TO_MAP_VALUE:
949 case PTR_TO_MAP_VALUE_OR_NULL:
950 case PTR_TO_STACK:
951 case PTR_TO_CTX:
952 case PTR_TO_PACKET:
953 case PTR_TO_PACKET_META:
954 case PTR_TO_PACKET_END:
955 case CONST_PTR_TO_MAP:
956 return true;
957 default:
958 return false;
962 /* Does this register contain a constant zero? */
963 static bool register_is_null(struct bpf_reg_state *reg)
965 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
968 /* check_stack_read/write functions track spill/fill of registers,
969 * stack boundary and alignment are checked in check_mem_access()
971 static int check_stack_write(struct bpf_verifier_env *env,
972 struct bpf_func_state *state, /* func where register points to */
973 int off, int size, int value_regno)
975 struct bpf_func_state *cur; /* state of the current function */
976 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
977 enum bpf_reg_type type;
979 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
980 true);
981 if (err)
982 return err;
983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 * so it's aligned access and [off, off + size) are within stack limits
986 if (!env->allow_ptr_leaks &&
987 state->stack[spi].slot_type[0] == STACK_SPILL &&
988 size != BPF_REG_SIZE) {
989 verbose(env, "attempt to corrupt spilled pointer on stack\n");
990 return -EACCES;
993 cur = env->cur_state->frame[env->cur_state->curframe];
994 if (value_regno >= 0 &&
995 is_spillable_regtype((type = cur->regs[value_regno].type))) {
997 /* register containing pointer is being spilled into stack */
998 if (size != BPF_REG_SIZE) {
999 verbose(env, "invalid size of register spill\n");
1000 return -EACCES;
1003 if (state != cur && type == PTR_TO_STACK) {
1004 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1005 return -EINVAL;
1008 /* save register state */
1009 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1010 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1012 for (i = 0; i < BPF_REG_SIZE; i++)
1013 state->stack[spi].slot_type[i] = STACK_SPILL;
1014 } else {
1015 u8 type = STACK_MISC;
1017 /* regular write of data into stack */
1018 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1020 /* only mark the slot as written if all 8 bytes were written
1021 * otherwise read propagation may incorrectly stop too soon
1022 * when stack slots are partially written.
1023 * This heuristic means that read propagation will be
1024 * conservative, since it will add reg_live_read marks
1025 * to stack slots all the way to first state when programs
1026 * writes+reads less than 8 bytes
1028 if (size == BPF_REG_SIZE)
1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1031 /* when we zero initialize stack slots mark them as such */
1032 if (value_regno >= 0 &&
1033 register_is_null(&cur->regs[value_regno]))
1034 type = STACK_ZERO;
1036 for (i = 0; i < size; i++)
1037 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1038 type;
1040 return 0;
1043 /* registers of every function are unique and mark_reg_read() propagates
1044 * the liveness in the following cases:
1045 * - from callee into caller for R1 - R5 that were used as arguments
1046 * - from caller into callee for R0 that used as result of the call
1047 * - from caller to the same caller skipping states of the callee for R6 - R9,
1048 * since R6 - R9 are callee saved by implicit function prologue and
1049 * caller's R6 != callee's R6, so when we propagate liveness up to
1050 * parent states we need to skip callee states for R6 - R9.
1052 * stack slot marking is different, since stacks of caller and callee are
1053 * accessible in both (since caller can pass a pointer to caller's stack to
1054 * callee which can pass it to another function), hence mark_stack_slot_read()
1055 * has to propagate the stack liveness to all parent states at given frame number.
1056 * Consider code:
1057 * f1() {
1058 * ptr = fp - 8;
1059 * *ptr = ctx;
1060 * call f2 {
1061 * .. = *ptr;
1063 * .. = *ptr;
1065 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1066 * to mark liveness at the f1's frame and not f2's frame.
1067 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1068 * to propagate liveness to f2 states at f1's frame level and further into
1069 * f1 states at f1's frame level until write into that stack slot
1071 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1072 const struct bpf_verifier_state *state,
1073 struct bpf_verifier_state *parent,
1074 int slot, int frameno)
1076 bool writes = parent == state->parent; /* Observe write marks */
1078 while (parent) {
1079 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1080 /* since LIVE_WRITTEN mark is only done for full 8-byte
1081 * write the read marks are conservative and parent
1082 * state may not even have the stack allocated. In such case
1083 * end the propagation, since the loop reached beginning
1084 * of the function
1086 break;
1087 /* if read wasn't screened by an earlier write ... */
1088 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1089 break;
1090 /* ... then we depend on parent's value */
1091 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1092 state = parent;
1093 parent = state->parent;
1094 writes = true;
1098 static int check_stack_read(struct bpf_verifier_env *env,
1099 struct bpf_func_state *reg_state /* func where register points to */,
1100 int off, int size, int value_regno)
1102 struct bpf_verifier_state *vstate = env->cur_state;
1103 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1104 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1105 u8 *stype;
1107 if (reg_state->allocated_stack <= slot) {
1108 verbose(env, "invalid read from stack off %d+0 size %d\n",
1109 off, size);
1110 return -EACCES;
1112 stype = reg_state->stack[spi].slot_type;
1114 if (stype[0] == STACK_SPILL) {
1115 if (size != BPF_REG_SIZE) {
1116 verbose(env, "invalid size of register spill\n");
1117 return -EACCES;
1119 for (i = 1; i < BPF_REG_SIZE; i++) {
1120 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1121 verbose(env, "corrupted spill memory\n");
1122 return -EACCES;
1126 if (value_regno >= 0) {
1127 /* restore register state from stack */
1128 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1129 /* mark reg as written since spilled pointer state likely
1130 * has its liveness marks cleared by is_state_visited()
1131 * which resets stack/reg liveness for state transitions
1133 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1135 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1136 reg_state->frameno);
1137 return 0;
1138 } else {
1139 int zeros = 0;
1141 for (i = 0; i < size; i++) {
1142 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1143 continue;
1144 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1145 zeros++;
1146 continue;
1148 verbose(env, "invalid read from stack off %d+%d size %d\n",
1149 off, i, size);
1150 return -EACCES;
1152 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1153 reg_state->frameno);
1154 if (value_regno >= 0) {
1155 if (zeros == size) {
1156 /* any size read into register is zero extended,
1157 * so the whole register == const_zero
1159 __mark_reg_const_zero(&state->regs[value_regno]);
1160 } else {
1161 /* have read misc data from the stack */
1162 mark_reg_unknown(env, state->regs, value_regno);
1164 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1166 return 0;
1170 /* check read/write into map element returned by bpf_map_lookup_elem() */
1171 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1172 int size, bool zero_size_allowed)
1174 struct bpf_reg_state *regs = cur_regs(env);
1175 struct bpf_map *map = regs[regno].map_ptr;
1177 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1178 off + size > map->value_size) {
1179 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1180 map->value_size, off, size);
1181 return -EACCES;
1183 return 0;
1186 /* check read/write into a map element with possible variable offset */
1187 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1188 int off, int size, bool zero_size_allowed)
1190 struct bpf_verifier_state *vstate = env->cur_state;
1191 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1192 struct bpf_reg_state *reg = &state->regs[regno];
1193 int err;
1195 /* We may have adjusted the register to this map value, so we
1196 * need to try adding each of min_value and max_value to off
1197 * to make sure our theoretical access will be safe.
1199 if (env->log.level)
1200 print_verifier_state(env, state);
1201 /* The minimum value is only important with signed
1202 * comparisons where we can't assume the floor of a
1203 * value is 0. If we are using signed variables for our
1204 * index'es we need to make sure that whatever we use
1205 * will have a set floor within our range.
1207 if (reg->smin_value < 0) {
1208 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1209 regno);
1210 return -EACCES;
1212 err = __check_map_access(env, regno, reg->smin_value + off, size,
1213 zero_size_allowed);
1214 if (err) {
1215 verbose(env, "R%d min value is outside of the array range\n",
1216 regno);
1217 return err;
1220 /* If we haven't set a max value then we need to bail since we can't be
1221 * sure we won't do bad things.
1222 * If reg->umax_value + off could overflow, treat that as unbounded too.
1224 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1225 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1226 regno);
1227 return -EACCES;
1229 err = __check_map_access(env, regno, reg->umax_value + off, size,
1230 zero_size_allowed);
1231 if (err)
1232 verbose(env, "R%d max value is outside of the array range\n",
1233 regno);
1234 return err;
1237 #define MAX_PACKET_OFF 0xffff
1239 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1240 const struct bpf_call_arg_meta *meta,
1241 enum bpf_access_type t)
1243 switch (env->prog->type) {
1244 case BPF_PROG_TYPE_LWT_IN:
1245 case BPF_PROG_TYPE_LWT_OUT:
1246 /* dst_input() and dst_output() can't write for now */
1247 if (t == BPF_WRITE)
1248 return false;
1249 /* fallthrough */
1250 case BPF_PROG_TYPE_SCHED_CLS:
1251 case BPF_PROG_TYPE_SCHED_ACT:
1252 case BPF_PROG_TYPE_XDP:
1253 case BPF_PROG_TYPE_LWT_XMIT:
1254 case BPF_PROG_TYPE_SK_SKB:
1255 if (meta)
1256 return meta->pkt_access;
1258 env->seen_direct_write = true;
1259 return true;
1260 default:
1261 return false;
1265 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1266 int off, int size, bool zero_size_allowed)
1268 struct bpf_reg_state *regs = cur_regs(env);
1269 struct bpf_reg_state *reg = &regs[regno];
1271 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1272 (u64)off + size > reg->range) {
1273 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1274 off, size, regno, reg->id, reg->off, reg->range);
1275 return -EACCES;
1277 return 0;
1280 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1281 int size, bool zero_size_allowed)
1283 struct bpf_reg_state *regs = cur_regs(env);
1284 struct bpf_reg_state *reg = &regs[regno];
1285 int err;
1287 /* We may have added a variable offset to the packet pointer; but any
1288 * reg->range we have comes after that. We are only checking the fixed
1289 * offset.
1292 /* We don't allow negative numbers, because we aren't tracking enough
1293 * detail to prove they're safe.
1295 if (reg->smin_value < 0) {
1296 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1297 regno);
1298 return -EACCES;
1300 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1301 if (err) {
1302 verbose(env, "R%d offset is outside of the packet\n", regno);
1303 return err;
1305 return err;
1308 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1309 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1310 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1312 struct bpf_insn_access_aux info = {
1313 .reg_type = *reg_type,
1316 if (env->ops->is_valid_access &&
1317 env->ops->is_valid_access(off, size, t, &info)) {
1318 /* A non zero info.ctx_field_size indicates that this field is a
1319 * candidate for later verifier transformation to load the whole
1320 * field and then apply a mask when accessed with a narrower
1321 * access than actual ctx access size. A zero info.ctx_field_size
1322 * will only allow for whole field access and rejects any other
1323 * type of narrower access.
1325 *reg_type = info.reg_type;
1327 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1328 /* remember the offset of last byte accessed in ctx */
1329 if (env->prog->aux->max_ctx_offset < off + size)
1330 env->prog->aux->max_ctx_offset = off + size;
1331 return 0;
1334 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1335 return -EACCES;
1338 static bool __is_pointer_value(bool allow_ptr_leaks,
1339 const struct bpf_reg_state *reg)
1341 if (allow_ptr_leaks)
1342 return false;
1344 return reg->type != SCALAR_VALUE;
1347 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1349 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1352 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1354 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1356 return reg->type == PTR_TO_CTX;
1359 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1361 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1363 return type_is_pkt_pointer(reg->type);
1366 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1367 const struct bpf_reg_state *reg,
1368 int off, int size, bool strict)
1370 struct tnum reg_off;
1371 int ip_align;
1373 /* Byte size accesses are always allowed. */
1374 if (!strict || size == 1)
1375 return 0;
1377 /* For platforms that do not have a Kconfig enabling
1378 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1379 * NET_IP_ALIGN is universally set to '2'. And on platforms
1380 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1381 * to this code only in strict mode where we want to emulate
1382 * the NET_IP_ALIGN==2 checking. Therefore use an
1383 * unconditional IP align value of '2'.
1385 ip_align = 2;
1387 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1388 if (!tnum_is_aligned(reg_off, size)) {
1389 char tn_buf[48];
1391 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1392 verbose(env,
1393 "misaligned packet access off %d+%s+%d+%d size %d\n",
1394 ip_align, tn_buf, reg->off, off, size);
1395 return -EACCES;
1398 return 0;
1401 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1402 const struct bpf_reg_state *reg,
1403 const char *pointer_desc,
1404 int off, int size, bool strict)
1406 struct tnum reg_off;
1408 /* Byte size accesses are always allowed. */
1409 if (!strict || size == 1)
1410 return 0;
1412 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1413 if (!tnum_is_aligned(reg_off, size)) {
1414 char tn_buf[48];
1416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1417 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1418 pointer_desc, tn_buf, reg->off, off, size);
1419 return -EACCES;
1422 return 0;
1425 static int check_ptr_alignment(struct bpf_verifier_env *env,
1426 const struct bpf_reg_state *reg, int off,
1427 int size, bool strict_alignment_once)
1429 bool strict = env->strict_alignment || strict_alignment_once;
1430 const char *pointer_desc = "";
1432 switch (reg->type) {
1433 case PTR_TO_PACKET:
1434 case PTR_TO_PACKET_META:
1435 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1436 * right in front, treat it the very same way.
1438 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1439 case PTR_TO_MAP_VALUE:
1440 pointer_desc = "value ";
1441 break;
1442 case PTR_TO_CTX:
1443 pointer_desc = "context ";
1444 break;
1445 case PTR_TO_STACK:
1446 pointer_desc = "stack ";
1447 /* The stack spill tracking logic in check_stack_write()
1448 * and check_stack_read() relies on stack accesses being
1449 * aligned.
1451 strict = true;
1452 break;
1453 default:
1454 break;
1456 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1457 strict);
1460 static int update_stack_depth(struct bpf_verifier_env *env,
1461 const struct bpf_func_state *func,
1462 int off)
1464 u16 stack = env->subprog_stack_depth[func->subprogno];
1466 if (stack >= -off)
1467 return 0;
1469 /* update known max for given subprogram */
1470 env->subprog_stack_depth[func->subprogno] = -off;
1471 return 0;
1474 /* starting from main bpf function walk all instructions of the function
1475 * and recursively walk all callees that given function can call.
1476 * Ignore jump and exit insns.
1477 * Since recursion is prevented by check_cfg() this algorithm
1478 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1480 static int check_max_stack_depth(struct bpf_verifier_env *env)
1482 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
1483 struct bpf_insn *insn = env->prog->insnsi;
1484 int insn_cnt = env->prog->len;
1485 int ret_insn[MAX_CALL_FRAMES];
1486 int ret_prog[MAX_CALL_FRAMES];
1488 process_func:
1489 /* round up to 32-bytes, since this is granularity
1490 * of interpreter stack size
1492 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1493 if (depth > MAX_BPF_STACK) {
1494 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1495 frame + 1, depth);
1496 return -EACCES;
1498 continue_func:
1499 if (env->subprog_cnt == subprog)
1500 subprog_end = insn_cnt;
1501 else
1502 subprog_end = env->subprog_starts[subprog];
1503 for (; i < subprog_end; i++) {
1504 if (insn[i].code != (BPF_JMP | BPF_CALL))
1505 continue;
1506 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1507 continue;
1508 /* remember insn and function to return to */
1509 ret_insn[frame] = i + 1;
1510 ret_prog[frame] = subprog;
1512 /* find the callee */
1513 i = i + insn[i].imm + 1;
1514 subprog = find_subprog(env, i);
1515 if (subprog < 0) {
1516 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1518 return -EFAULT;
1520 subprog++;
1521 frame++;
1522 if (frame >= MAX_CALL_FRAMES) {
1523 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1524 return -EFAULT;
1526 goto process_func;
1528 /* end of for() loop means the last insn of the 'subprog'
1529 * was reached. Doesn't matter whether it was JA or EXIT
1531 if (frame == 0)
1532 return 0;
1533 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1534 frame--;
1535 i = ret_insn[frame];
1536 subprog = ret_prog[frame];
1537 goto continue_func;
1540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1541 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1542 const struct bpf_insn *insn, int idx)
1544 int start = idx + insn->imm + 1, subprog;
1546 subprog = find_subprog(env, start);
1547 if (subprog < 0) {
1548 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1549 start);
1550 return -EFAULT;
1552 subprog++;
1553 return env->subprog_stack_depth[subprog];
1555 #endif
1557 /* truncate register to smaller size (in bytes)
1558 * must be called with size < BPF_REG_SIZE
1560 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1562 u64 mask;
1564 /* clear high bits in bit representation */
1565 reg->var_off = tnum_cast(reg->var_off, size);
1567 /* fix arithmetic bounds */
1568 mask = ((u64)1 << (size * 8)) - 1;
1569 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1570 reg->umin_value &= mask;
1571 reg->umax_value &= mask;
1572 } else {
1573 reg->umin_value = 0;
1574 reg->umax_value = mask;
1576 reg->smin_value = reg->umin_value;
1577 reg->smax_value = reg->umax_value;
1580 /* check whether memory at (regno + off) is accessible for t = (read | write)
1581 * if t==write, value_regno is a register which value is stored into memory
1582 * if t==read, value_regno is a register which will receive the value from memory
1583 * if t==write && value_regno==-1, some unknown value is stored into memory
1584 * if t==read && value_regno==-1, don't care what we read from memory
1586 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1587 int off, int bpf_size, enum bpf_access_type t,
1588 int value_regno, bool strict_alignment_once)
1590 struct bpf_reg_state *regs = cur_regs(env);
1591 struct bpf_reg_state *reg = regs + regno;
1592 struct bpf_func_state *state;
1593 int size, err = 0;
1595 size = bpf_size_to_bytes(bpf_size);
1596 if (size < 0)
1597 return size;
1599 /* alignment checks will add in reg->off themselves */
1600 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1601 if (err)
1602 return err;
1604 /* for access checks, reg->off is just part of off */
1605 off += reg->off;
1607 if (reg->type == PTR_TO_MAP_VALUE) {
1608 if (t == BPF_WRITE && value_regno >= 0 &&
1609 is_pointer_value(env, value_regno)) {
1610 verbose(env, "R%d leaks addr into map\n", value_regno);
1611 return -EACCES;
1614 err = check_map_access(env, regno, off, size, false);
1615 if (!err && t == BPF_READ && value_regno >= 0)
1616 mark_reg_unknown(env, regs, value_regno);
1618 } else if (reg->type == PTR_TO_CTX) {
1619 enum bpf_reg_type reg_type = SCALAR_VALUE;
1621 if (t == BPF_WRITE && value_regno >= 0 &&
1622 is_pointer_value(env, value_regno)) {
1623 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1624 return -EACCES;
1626 /* ctx accesses must be at a fixed offset, so that we can
1627 * determine what type of data were returned.
1629 if (reg->off) {
1630 verbose(env,
1631 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1632 regno, reg->off, off - reg->off);
1633 return -EACCES;
1635 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1636 char tn_buf[48];
1638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1639 verbose(env,
1640 "variable ctx access var_off=%s off=%d size=%d",
1641 tn_buf, off, size);
1642 return -EACCES;
1644 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1645 if (!err && t == BPF_READ && value_regno >= 0) {
1646 /* ctx access returns either a scalar, or a
1647 * PTR_TO_PACKET[_META,_END]. In the latter
1648 * case, we know the offset is zero.
1650 if (reg_type == SCALAR_VALUE)
1651 mark_reg_unknown(env, regs, value_regno);
1652 else
1653 mark_reg_known_zero(env, regs,
1654 value_regno);
1655 regs[value_regno].id = 0;
1656 regs[value_regno].off = 0;
1657 regs[value_regno].range = 0;
1658 regs[value_regno].type = reg_type;
1661 } else if (reg->type == PTR_TO_STACK) {
1662 /* stack accesses must be at a fixed offset, so that we can
1663 * determine what type of data were returned.
1664 * See check_stack_read().
1666 if (!tnum_is_const(reg->var_off)) {
1667 char tn_buf[48];
1669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1670 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1671 tn_buf, off, size);
1672 return -EACCES;
1674 off += reg->var_off.value;
1675 if (off >= 0 || off < -MAX_BPF_STACK) {
1676 verbose(env, "invalid stack off=%d size=%d\n", off,
1677 size);
1678 return -EACCES;
1681 state = func(env, reg);
1682 err = update_stack_depth(env, state, off);
1683 if (err)
1684 return err;
1686 if (t == BPF_WRITE)
1687 err = check_stack_write(env, state, off, size,
1688 value_regno);
1689 else
1690 err = check_stack_read(env, state, off, size,
1691 value_regno);
1692 } else if (reg_is_pkt_pointer(reg)) {
1693 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1694 verbose(env, "cannot write into packet\n");
1695 return -EACCES;
1697 if (t == BPF_WRITE && value_regno >= 0 &&
1698 is_pointer_value(env, value_regno)) {
1699 verbose(env, "R%d leaks addr into packet\n",
1700 value_regno);
1701 return -EACCES;
1703 err = check_packet_access(env, regno, off, size, false);
1704 if (!err && t == BPF_READ && value_regno >= 0)
1705 mark_reg_unknown(env, regs, value_regno);
1706 } else {
1707 verbose(env, "R%d invalid mem access '%s'\n", regno,
1708 reg_type_str[reg->type]);
1709 return -EACCES;
1712 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1713 regs[value_regno].type == SCALAR_VALUE) {
1714 /* b/h/w load zero-extends, mark upper bits as known 0 */
1715 coerce_reg_to_size(&regs[value_regno], size);
1717 return err;
1720 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1722 int err;
1724 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1725 insn->imm != 0) {
1726 verbose(env, "BPF_XADD uses reserved fields\n");
1727 return -EINVAL;
1730 /* check src1 operand */
1731 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1732 if (err)
1733 return err;
1735 /* check src2 operand */
1736 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1737 if (err)
1738 return err;
1740 if (is_pointer_value(env, insn->src_reg)) {
1741 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1742 return -EACCES;
1745 if (is_ctx_reg(env, insn->dst_reg) ||
1746 is_pkt_reg(env, insn->dst_reg)) {
1747 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1748 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1749 "context" : "packet");
1750 return -EACCES;
1753 /* check whether atomic_add can read the memory */
1754 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1755 BPF_SIZE(insn->code), BPF_READ, -1, true);
1756 if (err)
1757 return err;
1759 /* check whether atomic_add can write into the same memory */
1760 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1761 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1764 /* when register 'regno' is passed into function that will read 'access_size'
1765 * bytes from that pointer, make sure that it's within stack boundary
1766 * and all elements of stack are initialized.
1767 * Unlike most pointer bounds-checking functions, this one doesn't take an
1768 * 'off' argument, so it has to add in reg->off itself.
1770 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1771 int access_size, bool zero_size_allowed,
1772 struct bpf_call_arg_meta *meta)
1774 struct bpf_reg_state *reg = cur_regs(env) + regno;
1775 struct bpf_func_state *state = func(env, reg);
1776 int off, i, slot, spi;
1778 if (reg->type != PTR_TO_STACK) {
1779 /* Allow zero-byte read from NULL, regardless of pointer type */
1780 if (zero_size_allowed && access_size == 0 &&
1781 register_is_null(reg))
1782 return 0;
1784 verbose(env, "R%d type=%s expected=%s\n", regno,
1785 reg_type_str[reg->type],
1786 reg_type_str[PTR_TO_STACK]);
1787 return -EACCES;
1790 /* Only allow fixed-offset stack reads */
1791 if (!tnum_is_const(reg->var_off)) {
1792 char tn_buf[48];
1794 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1795 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1796 regno, tn_buf);
1797 return -EACCES;
1799 off = reg->off + reg->var_off.value;
1800 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1801 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1802 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1803 regno, off, access_size);
1804 return -EACCES;
1807 if (meta && meta->raw_mode) {
1808 meta->access_size = access_size;
1809 meta->regno = regno;
1810 return 0;
1813 for (i = 0; i < access_size; i++) {
1814 u8 *stype;
1816 slot = -(off + i) - 1;
1817 spi = slot / BPF_REG_SIZE;
1818 if (state->allocated_stack <= slot)
1819 goto err;
1820 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1821 if (*stype == STACK_MISC)
1822 goto mark;
1823 if (*stype == STACK_ZERO) {
1824 /* helper can write anything into the stack */
1825 *stype = STACK_MISC;
1826 goto mark;
1828 err:
1829 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1830 off, i, access_size);
1831 return -EACCES;
1832 mark:
1833 /* reading any byte out of 8-byte 'spill_slot' will cause
1834 * the whole slot to be marked as 'read'
1836 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1837 spi, state->frameno);
1839 return update_stack_depth(env, state, off);
1842 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1843 int access_size, bool zero_size_allowed,
1844 struct bpf_call_arg_meta *meta)
1846 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1848 switch (reg->type) {
1849 case PTR_TO_PACKET:
1850 case PTR_TO_PACKET_META:
1851 return check_packet_access(env, regno, reg->off, access_size,
1852 zero_size_allowed);
1853 case PTR_TO_MAP_VALUE:
1854 return check_map_access(env, regno, reg->off, access_size,
1855 zero_size_allowed);
1856 default: /* scalar_value|ptr_to_stack or invalid ptr */
1857 return check_stack_boundary(env, regno, access_size,
1858 zero_size_allowed, meta);
1862 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1864 return type == ARG_PTR_TO_MEM ||
1865 type == ARG_PTR_TO_MEM_OR_NULL ||
1866 type == ARG_PTR_TO_UNINIT_MEM;
1869 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1871 return type == ARG_CONST_SIZE ||
1872 type == ARG_CONST_SIZE_OR_ZERO;
1875 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1876 enum bpf_arg_type arg_type,
1877 struct bpf_call_arg_meta *meta)
1879 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1880 enum bpf_reg_type expected_type, type = reg->type;
1881 int err = 0;
1883 if (arg_type == ARG_DONTCARE)
1884 return 0;
1886 err = check_reg_arg(env, regno, SRC_OP);
1887 if (err)
1888 return err;
1890 if (arg_type == ARG_ANYTHING) {
1891 if (is_pointer_value(env, regno)) {
1892 verbose(env, "R%d leaks addr into helper function\n",
1893 regno);
1894 return -EACCES;
1896 return 0;
1899 if (type_is_pkt_pointer(type) &&
1900 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1901 verbose(env, "helper access to the packet is not allowed\n");
1902 return -EACCES;
1905 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1906 arg_type == ARG_PTR_TO_MAP_VALUE) {
1907 expected_type = PTR_TO_STACK;
1908 if (!type_is_pkt_pointer(type) &&
1909 type != expected_type)
1910 goto err_type;
1911 } else if (arg_type == ARG_CONST_SIZE ||
1912 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1913 expected_type = SCALAR_VALUE;
1914 if (type != expected_type)
1915 goto err_type;
1916 } else if (arg_type == ARG_CONST_MAP_PTR) {
1917 expected_type = CONST_PTR_TO_MAP;
1918 if (type != expected_type)
1919 goto err_type;
1920 } else if (arg_type == ARG_PTR_TO_CTX) {
1921 expected_type = PTR_TO_CTX;
1922 if (type != expected_type)
1923 goto err_type;
1924 } else if (arg_type_is_mem_ptr(arg_type)) {
1925 expected_type = PTR_TO_STACK;
1926 /* One exception here. In case function allows for NULL to be
1927 * passed in as argument, it's a SCALAR_VALUE type. Final test
1928 * happens during stack boundary checking.
1930 if (register_is_null(reg) &&
1931 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1932 /* final test in check_stack_boundary() */;
1933 else if (!type_is_pkt_pointer(type) &&
1934 type != PTR_TO_MAP_VALUE &&
1935 type != expected_type)
1936 goto err_type;
1937 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1938 } else {
1939 verbose(env, "unsupported arg_type %d\n", arg_type);
1940 return -EFAULT;
1943 if (arg_type == ARG_CONST_MAP_PTR) {
1944 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1945 meta->map_ptr = reg->map_ptr;
1946 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1947 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1948 * check that [key, key + map->key_size) are within
1949 * stack limits and initialized
1951 if (!meta->map_ptr) {
1952 /* in function declaration map_ptr must come before
1953 * map_key, so that it's verified and known before
1954 * we have to check map_key here. Otherwise it means
1955 * that kernel subsystem misconfigured verifier
1957 verbose(env, "invalid map_ptr to access map->key\n");
1958 return -EACCES;
1960 if (type_is_pkt_pointer(type))
1961 err = check_packet_access(env, regno, reg->off,
1962 meta->map_ptr->key_size,
1963 false);
1964 else
1965 err = check_stack_boundary(env, regno,
1966 meta->map_ptr->key_size,
1967 false, NULL);
1968 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1969 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1970 * check [value, value + map->value_size) validity
1972 if (!meta->map_ptr) {
1973 /* kernel subsystem misconfigured verifier */
1974 verbose(env, "invalid map_ptr to access map->value\n");
1975 return -EACCES;
1977 if (type_is_pkt_pointer(type))
1978 err = check_packet_access(env, regno, reg->off,
1979 meta->map_ptr->value_size,
1980 false);
1981 else
1982 err = check_stack_boundary(env, regno,
1983 meta->map_ptr->value_size,
1984 false, NULL);
1985 } else if (arg_type_is_mem_size(arg_type)) {
1986 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1988 /* The register is SCALAR_VALUE; the access check
1989 * happens using its boundaries.
1991 if (!tnum_is_const(reg->var_off))
1992 /* For unprivileged variable accesses, disable raw
1993 * mode so that the program is required to
1994 * initialize all the memory that the helper could
1995 * just partially fill up.
1997 meta = NULL;
1999 if (reg->smin_value < 0) {
2000 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2001 regno);
2002 return -EACCES;
2005 if (reg->umin_value == 0) {
2006 err = check_helper_mem_access(env, regno - 1, 0,
2007 zero_size_allowed,
2008 meta);
2009 if (err)
2010 return err;
2013 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2014 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2015 regno);
2016 return -EACCES;
2018 err = check_helper_mem_access(env, regno - 1,
2019 reg->umax_value,
2020 zero_size_allowed, meta);
2023 return err;
2024 err_type:
2025 verbose(env, "R%d type=%s expected=%s\n", regno,
2026 reg_type_str[type], reg_type_str[expected_type]);
2027 return -EACCES;
2030 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2031 struct bpf_map *map, int func_id)
2033 if (!map)
2034 return 0;
2036 /* We need a two way check, first is from map perspective ... */
2037 switch (map->map_type) {
2038 case BPF_MAP_TYPE_PROG_ARRAY:
2039 if (func_id != BPF_FUNC_tail_call)
2040 goto error;
2041 break;
2042 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2043 if (func_id != BPF_FUNC_perf_event_read &&
2044 func_id != BPF_FUNC_perf_event_output &&
2045 func_id != BPF_FUNC_perf_event_read_value)
2046 goto error;
2047 break;
2048 case BPF_MAP_TYPE_STACK_TRACE:
2049 if (func_id != BPF_FUNC_get_stackid)
2050 goto error;
2051 break;
2052 case BPF_MAP_TYPE_CGROUP_ARRAY:
2053 if (func_id != BPF_FUNC_skb_under_cgroup &&
2054 func_id != BPF_FUNC_current_task_under_cgroup)
2055 goto error;
2056 break;
2057 /* devmap returns a pointer to a live net_device ifindex that we cannot
2058 * allow to be modified from bpf side. So do not allow lookup elements
2059 * for now.
2061 case BPF_MAP_TYPE_DEVMAP:
2062 if (func_id != BPF_FUNC_redirect_map)
2063 goto error;
2064 break;
2065 /* Restrict bpf side of cpumap, open when use-cases appear */
2066 case BPF_MAP_TYPE_CPUMAP:
2067 if (func_id != BPF_FUNC_redirect_map)
2068 goto error;
2069 break;
2070 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2071 case BPF_MAP_TYPE_HASH_OF_MAPS:
2072 if (func_id != BPF_FUNC_map_lookup_elem)
2073 goto error;
2074 break;
2075 case BPF_MAP_TYPE_SOCKMAP:
2076 if (func_id != BPF_FUNC_sk_redirect_map &&
2077 func_id != BPF_FUNC_sock_map_update &&
2078 func_id != BPF_FUNC_map_delete_elem)
2079 goto error;
2080 break;
2081 default:
2082 break;
2085 /* ... and second from the function itself. */
2086 switch (func_id) {
2087 case BPF_FUNC_tail_call:
2088 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2089 goto error;
2090 if (env->subprog_cnt) {
2091 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2092 return -EINVAL;
2094 break;
2095 case BPF_FUNC_perf_event_read:
2096 case BPF_FUNC_perf_event_output:
2097 case BPF_FUNC_perf_event_read_value:
2098 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2099 goto error;
2100 break;
2101 case BPF_FUNC_get_stackid:
2102 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2103 goto error;
2104 break;
2105 case BPF_FUNC_current_task_under_cgroup:
2106 case BPF_FUNC_skb_under_cgroup:
2107 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2108 goto error;
2109 break;
2110 case BPF_FUNC_redirect_map:
2111 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2112 map->map_type != BPF_MAP_TYPE_CPUMAP)
2113 goto error;
2114 break;
2115 case BPF_FUNC_sk_redirect_map:
2116 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2117 goto error;
2118 break;
2119 case BPF_FUNC_sock_map_update:
2120 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2121 goto error;
2122 break;
2123 default:
2124 break;
2127 return 0;
2128 error:
2129 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2130 map->map_type, func_id_name(func_id), func_id);
2131 return -EINVAL;
2134 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2136 int count = 0;
2138 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2139 count++;
2140 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2141 count++;
2142 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2143 count++;
2144 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2145 count++;
2146 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2147 count++;
2149 /* We only support one arg being in raw mode at the moment,
2150 * which is sufficient for the helper functions we have
2151 * right now.
2153 return count <= 1;
2156 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2157 enum bpf_arg_type arg_next)
2159 return (arg_type_is_mem_ptr(arg_curr) &&
2160 !arg_type_is_mem_size(arg_next)) ||
2161 (!arg_type_is_mem_ptr(arg_curr) &&
2162 arg_type_is_mem_size(arg_next));
2165 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2167 /* bpf_xxx(..., buf, len) call will access 'len'
2168 * bytes from memory 'buf'. Both arg types need
2169 * to be paired, so make sure there's no buggy
2170 * helper function specification.
2172 if (arg_type_is_mem_size(fn->arg1_type) ||
2173 arg_type_is_mem_ptr(fn->arg5_type) ||
2174 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2175 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2176 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2177 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2178 return false;
2180 return true;
2183 static int check_func_proto(const struct bpf_func_proto *fn)
2185 return check_raw_mode_ok(fn) &&
2186 check_arg_pair_ok(fn) ? 0 : -EINVAL;
2189 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2190 * are now invalid, so turn them into unknown SCALAR_VALUE.
2192 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2193 struct bpf_func_state *state)
2195 struct bpf_reg_state *regs = state->regs, *reg;
2196 int i;
2198 for (i = 0; i < MAX_BPF_REG; i++)
2199 if (reg_is_pkt_pointer_any(&regs[i]))
2200 mark_reg_unknown(env, regs, i);
2202 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2203 if (state->stack[i].slot_type[0] != STACK_SPILL)
2204 continue;
2205 reg = &state->stack[i].spilled_ptr;
2206 if (reg_is_pkt_pointer_any(reg))
2207 __mark_reg_unknown(reg);
2211 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2213 struct bpf_verifier_state *vstate = env->cur_state;
2214 int i;
2216 for (i = 0; i <= vstate->curframe; i++)
2217 __clear_all_pkt_pointers(env, vstate->frame[i]);
2220 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2221 int *insn_idx)
2223 struct bpf_verifier_state *state = env->cur_state;
2224 struct bpf_func_state *caller, *callee;
2225 int i, subprog, target_insn;
2227 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2228 verbose(env, "the call stack of %d frames is too deep\n",
2229 state->curframe + 2);
2230 return -E2BIG;
2233 target_insn = *insn_idx + insn->imm;
2234 subprog = find_subprog(env, target_insn + 1);
2235 if (subprog < 0) {
2236 verbose(env, "verifier bug. No program starts at insn %d\n",
2237 target_insn + 1);
2238 return -EFAULT;
2241 caller = state->frame[state->curframe];
2242 if (state->frame[state->curframe + 1]) {
2243 verbose(env, "verifier bug. Frame %d already allocated\n",
2244 state->curframe + 1);
2245 return -EFAULT;
2248 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2249 if (!callee)
2250 return -ENOMEM;
2251 state->frame[state->curframe + 1] = callee;
2253 /* callee cannot access r0, r6 - r9 for reading and has to write
2254 * into its own stack before reading from it.
2255 * callee can read/write into caller's stack
2257 init_func_state(env, callee,
2258 /* remember the callsite, it will be used by bpf_exit */
2259 *insn_idx /* callsite */,
2260 state->curframe + 1 /* frameno within this callchain */,
2261 subprog + 1 /* subprog number within this prog */);
2263 /* copy r1 - r5 args that callee can access */
2264 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2265 callee->regs[i] = caller->regs[i];
2267 /* after the call regsiters r0 - r5 were scratched */
2268 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2269 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2270 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2273 /* only increment it after check_reg_arg() finished */
2274 state->curframe++;
2276 /* and go analyze first insn of the callee */
2277 *insn_idx = target_insn;
2279 if (env->log.level) {
2280 verbose(env, "caller:\n");
2281 print_verifier_state(env, caller);
2282 verbose(env, "callee:\n");
2283 print_verifier_state(env, callee);
2285 return 0;
2288 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2290 struct bpf_verifier_state *state = env->cur_state;
2291 struct bpf_func_state *caller, *callee;
2292 struct bpf_reg_state *r0;
2294 callee = state->frame[state->curframe];
2295 r0 = &callee->regs[BPF_REG_0];
2296 if (r0->type == PTR_TO_STACK) {
2297 /* technically it's ok to return caller's stack pointer
2298 * (or caller's caller's pointer) back to the caller,
2299 * since these pointers are valid. Only current stack
2300 * pointer will be invalid as soon as function exits,
2301 * but let's be conservative
2303 verbose(env, "cannot return stack pointer to the caller\n");
2304 return -EINVAL;
2307 state->curframe--;
2308 caller = state->frame[state->curframe];
2309 /* return to the caller whatever r0 had in the callee */
2310 caller->regs[BPF_REG_0] = *r0;
2312 *insn_idx = callee->callsite + 1;
2313 if (env->log.level) {
2314 verbose(env, "returning from callee:\n");
2315 print_verifier_state(env, callee);
2316 verbose(env, "to caller at %d:\n", *insn_idx);
2317 print_verifier_state(env, caller);
2319 /* clear everything in the callee */
2320 free_func_state(callee);
2321 state->frame[state->curframe + 1] = NULL;
2322 return 0;
2325 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2327 const struct bpf_func_proto *fn = NULL;
2328 struct bpf_reg_state *regs;
2329 struct bpf_call_arg_meta meta;
2330 bool changes_data;
2331 int i, err;
2333 /* find function prototype */
2334 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2335 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2336 func_id);
2337 return -EINVAL;
2340 if (env->ops->get_func_proto)
2341 fn = env->ops->get_func_proto(func_id);
2342 if (!fn) {
2343 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2344 func_id);
2345 return -EINVAL;
2348 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2349 if (!env->prog->gpl_compatible && fn->gpl_only) {
2350 verbose(env, "cannot call GPL only function from proprietary program\n");
2351 return -EINVAL;
2354 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2355 changes_data = bpf_helper_changes_pkt_data(fn->func);
2356 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2357 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2358 func_id_name(func_id), func_id);
2359 return -EINVAL;
2362 memset(&meta, 0, sizeof(meta));
2363 meta.pkt_access = fn->pkt_access;
2365 err = check_func_proto(fn);
2366 if (err) {
2367 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2368 func_id_name(func_id), func_id);
2369 return err;
2372 /* check args */
2373 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2374 if (err)
2375 return err;
2376 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2377 if (err)
2378 return err;
2379 if (func_id == BPF_FUNC_tail_call) {
2380 if (meta.map_ptr == NULL) {
2381 verbose(env, "verifier bug\n");
2382 return -EINVAL;
2384 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2386 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2387 if (err)
2388 return err;
2389 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2390 if (err)
2391 return err;
2392 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2393 if (err)
2394 return err;
2396 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2397 * is inferred from register state.
2399 for (i = 0; i < meta.access_size; i++) {
2400 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2401 BPF_WRITE, -1, false);
2402 if (err)
2403 return err;
2406 regs = cur_regs(env);
2407 /* reset caller saved regs */
2408 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2409 mark_reg_not_init(env, regs, caller_saved[i]);
2410 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2413 /* update return register (already marked as written above) */
2414 if (fn->ret_type == RET_INTEGER) {
2415 /* sets type to SCALAR_VALUE */
2416 mark_reg_unknown(env, regs, BPF_REG_0);
2417 } else if (fn->ret_type == RET_VOID) {
2418 regs[BPF_REG_0].type = NOT_INIT;
2419 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2420 struct bpf_insn_aux_data *insn_aux;
2422 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2423 /* There is no offset yet applied, variable or fixed */
2424 mark_reg_known_zero(env, regs, BPF_REG_0);
2425 regs[BPF_REG_0].off = 0;
2426 /* remember map_ptr, so that check_map_access()
2427 * can check 'value_size' boundary of memory access
2428 * to map element returned from bpf_map_lookup_elem()
2430 if (meta.map_ptr == NULL) {
2431 verbose(env,
2432 "kernel subsystem misconfigured verifier\n");
2433 return -EINVAL;
2435 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2436 regs[BPF_REG_0].id = ++env->id_gen;
2437 insn_aux = &env->insn_aux_data[insn_idx];
2438 if (!insn_aux->map_ptr)
2439 insn_aux->map_ptr = meta.map_ptr;
2440 else if (insn_aux->map_ptr != meta.map_ptr)
2441 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2442 } else {
2443 verbose(env, "unknown return type %d of func %s#%d\n",
2444 fn->ret_type, func_id_name(func_id), func_id);
2445 return -EINVAL;
2448 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2449 if (err)
2450 return err;
2452 if (changes_data)
2453 clear_all_pkt_pointers(env);
2454 return 0;
2457 static bool signed_add_overflows(s64 a, s64 b)
2459 /* Do the add in u64, where overflow is well-defined */
2460 s64 res = (s64)((u64)a + (u64)b);
2462 if (b < 0)
2463 return res > a;
2464 return res < a;
2467 static bool signed_sub_overflows(s64 a, s64 b)
2469 /* Do the sub in u64, where overflow is well-defined */
2470 s64 res = (s64)((u64)a - (u64)b);
2472 if (b < 0)
2473 return res < a;
2474 return res > a;
2477 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2478 const struct bpf_reg_state *reg,
2479 enum bpf_reg_type type)
2481 bool known = tnum_is_const(reg->var_off);
2482 s64 val = reg->var_off.value;
2483 s64 smin = reg->smin_value;
2485 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2486 verbose(env, "math between %s pointer and %lld is not allowed\n",
2487 reg_type_str[type], val);
2488 return false;
2491 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2492 verbose(env, "%s pointer offset %d is not allowed\n",
2493 reg_type_str[type], reg->off);
2494 return false;
2497 if (smin == S64_MIN) {
2498 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2499 reg_type_str[type]);
2500 return false;
2503 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2504 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2505 smin, reg_type_str[type]);
2506 return false;
2509 return true;
2512 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2513 * Caller should also handle BPF_MOV case separately.
2514 * If we return -EACCES, caller may want to try again treating pointer as a
2515 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2517 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2518 struct bpf_insn *insn,
2519 const struct bpf_reg_state *ptr_reg,
2520 const struct bpf_reg_state *off_reg)
2522 struct bpf_verifier_state *vstate = env->cur_state;
2523 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2524 struct bpf_reg_state *regs = state->regs, *dst_reg;
2525 bool known = tnum_is_const(off_reg->var_off);
2526 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2527 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2528 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2529 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2530 u8 opcode = BPF_OP(insn->code);
2531 u32 dst = insn->dst_reg;
2533 dst_reg = &regs[dst];
2535 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2536 smin_val > smax_val || umin_val > umax_val) {
2537 /* Taint dst register if offset had invalid bounds derived from
2538 * e.g. dead branches.
2540 __mark_reg_unknown(dst_reg);
2541 return 0;
2544 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2545 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2546 verbose(env,
2547 "R%d 32-bit pointer arithmetic prohibited\n",
2548 dst);
2549 return -EACCES;
2552 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2553 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2554 dst);
2555 return -EACCES;
2557 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2558 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2559 dst);
2560 return -EACCES;
2562 if (ptr_reg->type == PTR_TO_PACKET_END) {
2563 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2564 dst);
2565 return -EACCES;
2568 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2569 * The id may be overwritten later if we create a new variable offset.
2571 dst_reg->type = ptr_reg->type;
2572 dst_reg->id = ptr_reg->id;
2574 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2575 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2576 return -EINVAL;
2578 switch (opcode) {
2579 case BPF_ADD:
2580 /* We can take a fixed offset as long as it doesn't overflow
2581 * the s32 'off' field
2583 if (known && (ptr_reg->off + smin_val ==
2584 (s64)(s32)(ptr_reg->off + smin_val))) {
2585 /* pointer += K. Accumulate it into fixed offset */
2586 dst_reg->smin_value = smin_ptr;
2587 dst_reg->smax_value = smax_ptr;
2588 dst_reg->umin_value = umin_ptr;
2589 dst_reg->umax_value = umax_ptr;
2590 dst_reg->var_off = ptr_reg->var_off;
2591 dst_reg->off = ptr_reg->off + smin_val;
2592 dst_reg->range = ptr_reg->range;
2593 break;
2595 /* A new variable offset is created. Note that off_reg->off
2596 * == 0, since it's a scalar.
2597 * dst_reg gets the pointer type and since some positive
2598 * integer value was added to the pointer, give it a new 'id'
2599 * if it's a PTR_TO_PACKET.
2600 * this creates a new 'base' pointer, off_reg (variable) gets
2601 * added into the variable offset, and we copy the fixed offset
2602 * from ptr_reg.
2604 if (signed_add_overflows(smin_ptr, smin_val) ||
2605 signed_add_overflows(smax_ptr, smax_val)) {
2606 dst_reg->smin_value = S64_MIN;
2607 dst_reg->smax_value = S64_MAX;
2608 } else {
2609 dst_reg->smin_value = smin_ptr + smin_val;
2610 dst_reg->smax_value = smax_ptr + smax_val;
2612 if (umin_ptr + umin_val < umin_ptr ||
2613 umax_ptr + umax_val < umax_ptr) {
2614 dst_reg->umin_value = 0;
2615 dst_reg->umax_value = U64_MAX;
2616 } else {
2617 dst_reg->umin_value = umin_ptr + umin_val;
2618 dst_reg->umax_value = umax_ptr + umax_val;
2620 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2621 dst_reg->off = ptr_reg->off;
2622 if (reg_is_pkt_pointer(ptr_reg)) {
2623 dst_reg->id = ++env->id_gen;
2624 /* something was added to pkt_ptr, set range to zero */
2625 dst_reg->range = 0;
2627 break;
2628 case BPF_SUB:
2629 if (dst_reg == off_reg) {
2630 /* scalar -= pointer. Creates an unknown scalar */
2631 verbose(env, "R%d tried to subtract pointer from scalar\n",
2632 dst);
2633 return -EACCES;
2635 /* We don't allow subtraction from FP, because (according to
2636 * test_verifier.c test "invalid fp arithmetic", JITs might not
2637 * be able to deal with it.
2639 if (ptr_reg->type == PTR_TO_STACK) {
2640 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2641 dst);
2642 return -EACCES;
2644 if (known && (ptr_reg->off - smin_val ==
2645 (s64)(s32)(ptr_reg->off - smin_val))) {
2646 /* pointer -= K. Subtract it from fixed offset */
2647 dst_reg->smin_value = smin_ptr;
2648 dst_reg->smax_value = smax_ptr;
2649 dst_reg->umin_value = umin_ptr;
2650 dst_reg->umax_value = umax_ptr;
2651 dst_reg->var_off = ptr_reg->var_off;
2652 dst_reg->id = ptr_reg->id;
2653 dst_reg->off = ptr_reg->off - smin_val;
2654 dst_reg->range = ptr_reg->range;
2655 break;
2657 /* A new variable offset is created. If the subtrahend is known
2658 * nonnegative, then any reg->range we had before is still good.
2660 if (signed_sub_overflows(smin_ptr, smax_val) ||
2661 signed_sub_overflows(smax_ptr, smin_val)) {
2662 /* Overflow possible, we know nothing */
2663 dst_reg->smin_value = S64_MIN;
2664 dst_reg->smax_value = S64_MAX;
2665 } else {
2666 dst_reg->smin_value = smin_ptr - smax_val;
2667 dst_reg->smax_value = smax_ptr - smin_val;
2669 if (umin_ptr < umax_val) {
2670 /* Overflow possible, we know nothing */
2671 dst_reg->umin_value = 0;
2672 dst_reg->umax_value = U64_MAX;
2673 } else {
2674 /* Cannot overflow (as long as bounds are consistent) */
2675 dst_reg->umin_value = umin_ptr - umax_val;
2676 dst_reg->umax_value = umax_ptr - umin_val;
2678 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2679 dst_reg->off = ptr_reg->off;
2680 if (reg_is_pkt_pointer(ptr_reg)) {
2681 dst_reg->id = ++env->id_gen;
2682 /* something was added to pkt_ptr, set range to zero */
2683 if (smin_val < 0)
2684 dst_reg->range = 0;
2686 break;
2687 case BPF_AND:
2688 case BPF_OR:
2689 case BPF_XOR:
2690 /* bitwise ops on pointers are troublesome, prohibit. */
2691 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2692 dst, bpf_alu_string[opcode >> 4]);
2693 return -EACCES;
2694 default:
2695 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2696 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2697 dst, bpf_alu_string[opcode >> 4]);
2698 return -EACCES;
2701 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2702 return -EINVAL;
2704 __update_reg_bounds(dst_reg);
2705 __reg_deduce_bounds(dst_reg);
2706 __reg_bound_offset(dst_reg);
2707 return 0;
2710 /* WARNING: This function does calculations on 64-bit values, but the actual
2711 * execution may occur on 32-bit values. Therefore, things like bitshifts
2712 * need extra checks in the 32-bit case.
2714 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2715 struct bpf_insn *insn,
2716 struct bpf_reg_state *dst_reg,
2717 struct bpf_reg_state src_reg)
2719 struct bpf_reg_state *regs = cur_regs(env);
2720 u8 opcode = BPF_OP(insn->code);
2721 bool src_known, dst_known;
2722 s64 smin_val, smax_val;
2723 u64 umin_val, umax_val;
2724 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2726 smin_val = src_reg.smin_value;
2727 smax_val = src_reg.smax_value;
2728 umin_val = src_reg.umin_value;
2729 umax_val = src_reg.umax_value;
2730 src_known = tnum_is_const(src_reg.var_off);
2731 dst_known = tnum_is_const(dst_reg->var_off);
2733 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2734 smin_val > smax_val || umin_val > umax_val) {
2735 /* Taint dst register if offset had invalid bounds derived from
2736 * e.g. dead branches.
2738 __mark_reg_unknown(dst_reg);
2739 return 0;
2742 if (!src_known &&
2743 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2744 __mark_reg_unknown(dst_reg);
2745 return 0;
2748 switch (opcode) {
2749 case BPF_ADD:
2750 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2751 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2752 dst_reg->smin_value = S64_MIN;
2753 dst_reg->smax_value = S64_MAX;
2754 } else {
2755 dst_reg->smin_value += smin_val;
2756 dst_reg->smax_value += smax_val;
2758 if (dst_reg->umin_value + umin_val < umin_val ||
2759 dst_reg->umax_value + umax_val < umax_val) {
2760 dst_reg->umin_value = 0;
2761 dst_reg->umax_value = U64_MAX;
2762 } else {
2763 dst_reg->umin_value += umin_val;
2764 dst_reg->umax_value += umax_val;
2766 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2767 break;
2768 case BPF_SUB:
2769 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2770 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2771 /* Overflow possible, we know nothing */
2772 dst_reg->smin_value = S64_MIN;
2773 dst_reg->smax_value = S64_MAX;
2774 } else {
2775 dst_reg->smin_value -= smax_val;
2776 dst_reg->smax_value -= smin_val;
2778 if (dst_reg->umin_value < umax_val) {
2779 /* Overflow possible, we know nothing */
2780 dst_reg->umin_value = 0;
2781 dst_reg->umax_value = U64_MAX;
2782 } else {
2783 /* Cannot overflow (as long as bounds are consistent) */
2784 dst_reg->umin_value -= umax_val;
2785 dst_reg->umax_value -= umin_val;
2787 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2788 break;
2789 case BPF_MUL:
2790 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2791 if (smin_val < 0 || dst_reg->smin_value < 0) {
2792 /* Ain't nobody got time to multiply that sign */
2793 __mark_reg_unbounded(dst_reg);
2794 __update_reg_bounds(dst_reg);
2795 break;
2797 /* Both values are positive, so we can work with unsigned and
2798 * copy the result to signed (unless it exceeds S64_MAX).
2800 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2801 /* Potential overflow, we know nothing */
2802 __mark_reg_unbounded(dst_reg);
2803 /* (except what we can learn from the var_off) */
2804 __update_reg_bounds(dst_reg);
2805 break;
2807 dst_reg->umin_value *= umin_val;
2808 dst_reg->umax_value *= umax_val;
2809 if (dst_reg->umax_value > S64_MAX) {
2810 /* Overflow possible, we know nothing */
2811 dst_reg->smin_value = S64_MIN;
2812 dst_reg->smax_value = S64_MAX;
2813 } else {
2814 dst_reg->smin_value = dst_reg->umin_value;
2815 dst_reg->smax_value = dst_reg->umax_value;
2817 break;
2818 case BPF_AND:
2819 if (src_known && dst_known) {
2820 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2821 src_reg.var_off.value);
2822 break;
2824 /* We get our minimum from the var_off, since that's inherently
2825 * bitwise. Our maximum is the minimum of the operands' maxima.
2827 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2828 dst_reg->umin_value = dst_reg->var_off.value;
2829 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2830 if (dst_reg->smin_value < 0 || smin_val < 0) {
2831 /* Lose signed bounds when ANDing negative numbers,
2832 * ain't nobody got time for that.
2834 dst_reg->smin_value = S64_MIN;
2835 dst_reg->smax_value = S64_MAX;
2836 } else {
2837 /* ANDing two positives gives a positive, so safe to
2838 * cast result into s64.
2840 dst_reg->smin_value = dst_reg->umin_value;
2841 dst_reg->smax_value = dst_reg->umax_value;
2843 /* We may learn something more from the var_off */
2844 __update_reg_bounds(dst_reg);
2845 break;
2846 case BPF_OR:
2847 if (src_known && dst_known) {
2848 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2849 src_reg.var_off.value);
2850 break;
2852 /* We get our maximum from the var_off, and our minimum is the
2853 * maximum of the operands' minima
2855 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2856 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2857 dst_reg->umax_value = dst_reg->var_off.value |
2858 dst_reg->var_off.mask;
2859 if (dst_reg->smin_value < 0 || smin_val < 0) {
2860 /* Lose signed bounds when ORing negative numbers,
2861 * ain't nobody got time for that.
2863 dst_reg->smin_value = S64_MIN;
2864 dst_reg->smax_value = S64_MAX;
2865 } else {
2866 /* ORing two positives gives a positive, so safe to
2867 * cast result into s64.
2869 dst_reg->smin_value = dst_reg->umin_value;
2870 dst_reg->smax_value = dst_reg->umax_value;
2872 /* We may learn something more from the var_off */
2873 __update_reg_bounds(dst_reg);
2874 break;
2875 case BPF_LSH:
2876 if (umax_val >= insn_bitness) {
2877 /* Shifts greater than 31 or 63 are undefined.
2878 * This includes shifts by a negative number.
2880 mark_reg_unknown(env, regs, insn->dst_reg);
2881 break;
2883 /* We lose all sign bit information (except what we can pick
2884 * up from var_off)
2886 dst_reg->smin_value = S64_MIN;
2887 dst_reg->smax_value = S64_MAX;
2888 /* If we might shift our top bit out, then we know nothing */
2889 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2890 dst_reg->umin_value = 0;
2891 dst_reg->umax_value = U64_MAX;
2892 } else {
2893 dst_reg->umin_value <<= umin_val;
2894 dst_reg->umax_value <<= umax_val;
2896 if (src_known)
2897 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2898 else
2899 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2900 /* We may learn something more from the var_off */
2901 __update_reg_bounds(dst_reg);
2902 break;
2903 case BPF_RSH:
2904 if (umax_val >= insn_bitness) {
2905 /* Shifts greater than 31 or 63 are undefined.
2906 * This includes shifts by a negative number.
2908 mark_reg_unknown(env, regs, insn->dst_reg);
2909 break;
2911 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2912 * be negative, then either:
2913 * 1) src_reg might be zero, so the sign bit of the result is
2914 * unknown, so we lose our signed bounds
2915 * 2) it's known negative, thus the unsigned bounds capture the
2916 * signed bounds
2917 * 3) the signed bounds cross zero, so they tell us nothing
2918 * about the result
2919 * If the value in dst_reg is known nonnegative, then again the
2920 * unsigned bounts capture the signed bounds.
2921 * Thus, in all cases it suffices to blow away our signed bounds
2922 * and rely on inferring new ones from the unsigned bounds and
2923 * var_off of the result.
2925 dst_reg->smin_value = S64_MIN;
2926 dst_reg->smax_value = S64_MAX;
2927 if (src_known)
2928 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2929 umin_val);
2930 else
2931 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2932 dst_reg->umin_value >>= umax_val;
2933 dst_reg->umax_value >>= umin_val;
2934 /* We may learn something more from the var_off */
2935 __update_reg_bounds(dst_reg);
2936 break;
2937 default:
2938 mark_reg_unknown(env, regs, insn->dst_reg);
2939 break;
2942 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2943 /* 32-bit ALU ops are (32,32)->32 */
2944 coerce_reg_to_size(dst_reg, 4);
2945 coerce_reg_to_size(&src_reg, 4);
2948 __reg_deduce_bounds(dst_reg);
2949 __reg_bound_offset(dst_reg);
2950 return 0;
2953 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2954 * and var_off.
2956 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2957 struct bpf_insn *insn)
2959 struct bpf_verifier_state *vstate = env->cur_state;
2960 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2961 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2962 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2963 u8 opcode = BPF_OP(insn->code);
2965 dst_reg = &regs[insn->dst_reg];
2966 src_reg = NULL;
2967 if (dst_reg->type != SCALAR_VALUE)
2968 ptr_reg = dst_reg;
2969 if (BPF_SRC(insn->code) == BPF_X) {
2970 src_reg = &regs[insn->src_reg];
2971 if (src_reg->type != SCALAR_VALUE) {
2972 if (dst_reg->type != SCALAR_VALUE) {
2973 /* Combining two pointers by any ALU op yields
2974 * an arbitrary scalar. Disallow all math except
2975 * pointer subtraction
2977 if (opcode == BPF_SUB){
2978 mark_reg_unknown(env, regs, insn->dst_reg);
2979 return 0;
2981 verbose(env, "R%d pointer %s pointer prohibited\n",
2982 insn->dst_reg,
2983 bpf_alu_string[opcode >> 4]);
2984 return -EACCES;
2985 } else {
2986 /* scalar += pointer
2987 * This is legal, but we have to reverse our
2988 * src/dest handling in computing the range
2990 return adjust_ptr_min_max_vals(env, insn,
2991 src_reg, dst_reg);
2993 } else if (ptr_reg) {
2994 /* pointer += scalar */
2995 return adjust_ptr_min_max_vals(env, insn,
2996 dst_reg, src_reg);
2998 } else {
2999 /* Pretend the src is a reg with a known value, since we only
3000 * need to be able to read from this state.
3002 off_reg.type = SCALAR_VALUE;
3003 __mark_reg_known(&off_reg, insn->imm);
3004 src_reg = &off_reg;
3005 if (ptr_reg) /* pointer += K */
3006 return adjust_ptr_min_max_vals(env, insn,
3007 ptr_reg, src_reg);
3010 /* Got here implies adding two SCALAR_VALUEs */
3011 if (WARN_ON_ONCE(ptr_reg)) {
3012 print_verifier_state(env, state);
3013 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3014 return -EINVAL;
3016 if (WARN_ON(!src_reg)) {
3017 print_verifier_state(env, state);
3018 verbose(env, "verifier internal error: no src_reg\n");
3019 return -EINVAL;
3021 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3024 /* check validity of 32-bit and 64-bit arithmetic operations */
3025 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3027 struct bpf_reg_state *regs = cur_regs(env);
3028 u8 opcode = BPF_OP(insn->code);
3029 int err;
3031 if (opcode == BPF_END || opcode == BPF_NEG) {
3032 if (opcode == BPF_NEG) {
3033 if (BPF_SRC(insn->code) != 0 ||
3034 insn->src_reg != BPF_REG_0 ||
3035 insn->off != 0 || insn->imm != 0) {
3036 verbose(env, "BPF_NEG uses reserved fields\n");
3037 return -EINVAL;
3039 } else {
3040 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3041 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3042 BPF_CLASS(insn->code) == BPF_ALU64) {
3043 verbose(env, "BPF_END uses reserved fields\n");
3044 return -EINVAL;
3048 /* check src operand */
3049 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3050 if (err)
3051 return err;
3053 if (is_pointer_value(env, insn->dst_reg)) {
3054 verbose(env, "R%d pointer arithmetic prohibited\n",
3055 insn->dst_reg);
3056 return -EACCES;
3059 /* check dest operand */
3060 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3061 if (err)
3062 return err;
3064 } else if (opcode == BPF_MOV) {
3066 if (BPF_SRC(insn->code) == BPF_X) {
3067 if (insn->imm != 0 || insn->off != 0) {
3068 verbose(env, "BPF_MOV uses reserved fields\n");
3069 return -EINVAL;
3072 /* check src operand */
3073 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3074 if (err)
3075 return err;
3076 } else {
3077 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3078 verbose(env, "BPF_MOV uses reserved fields\n");
3079 return -EINVAL;
3083 /* check dest operand */
3084 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3085 if (err)
3086 return err;
3088 if (BPF_SRC(insn->code) == BPF_X) {
3089 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3090 /* case: R1 = R2
3091 * copy register state to dest reg
3093 regs[insn->dst_reg] = regs[insn->src_reg];
3094 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3095 } else {
3096 /* R1 = (u32) R2 */
3097 if (is_pointer_value(env, insn->src_reg)) {
3098 verbose(env,
3099 "R%d partial copy of pointer\n",
3100 insn->src_reg);
3101 return -EACCES;
3103 mark_reg_unknown(env, regs, insn->dst_reg);
3104 coerce_reg_to_size(&regs[insn->dst_reg], 4);
3106 } else {
3107 /* case: R = imm
3108 * remember the value we stored into this reg
3110 regs[insn->dst_reg].type = SCALAR_VALUE;
3111 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3112 __mark_reg_known(regs + insn->dst_reg,
3113 insn->imm);
3114 } else {
3115 __mark_reg_known(regs + insn->dst_reg,
3116 (u32)insn->imm);
3120 } else if (opcode > BPF_END) {
3121 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3122 return -EINVAL;
3124 } else { /* all other ALU ops: and, sub, xor, add, ... */
3126 if (BPF_SRC(insn->code) == BPF_X) {
3127 if (insn->imm != 0 || insn->off != 0) {
3128 verbose(env, "BPF_ALU uses reserved fields\n");
3129 return -EINVAL;
3131 /* check src1 operand */
3132 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3133 if (err)
3134 return err;
3135 } else {
3136 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3137 verbose(env, "BPF_ALU uses reserved fields\n");
3138 return -EINVAL;
3142 /* check src2 operand */
3143 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3144 if (err)
3145 return err;
3147 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3148 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3149 verbose(env, "div by zero\n");
3150 return -EINVAL;
3153 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3154 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3155 return -EINVAL;
3158 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3159 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3160 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3162 if (insn->imm < 0 || insn->imm >= size) {
3163 verbose(env, "invalid shift %d\n", insn->imm);
3164 return -EINVAL;
3168 /* check dest operand */
3169 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3170 if (err)
3171 return err;
3173 return adjust_reg_min_max_vals(env, insn);
3176 return 0;
3179 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3180 struct bpf_reg_state *dst_reg,
3181 enum bpf_reg_type type,
3182 bool range_right_open)
3184 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3185 struct bpf_reg_state *regs = state->regs, *reg;
3186 u16 new_range;
3187 int i, j;
3189 if (dst_reg->off < 0 ||
3190 (dst_reg->off == 0 && range_right_open))
3191 /* This doesn't give us any range */
3192 return;
3194 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3195 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3196 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3197 * than pkt_end, but that's because it's also less than pkt.
3199 return;
3201 new_range = dst_reg->off;
3202 if (range_right_open)
3203 new_range--;
3205 /* Examples for register markings:
3207 * pkt_data in dst register:
3209 * r2 = r3;
3210 * r2 += 8;
3211 * if (r2 > pkt_end) goto <handle exception>
3212 * <access okay>
3214 * r2 = r3;
3215 * r2 += 8;
3216 * if (r2 < pkt_end) goto <access okay>
3217 * <handle exception>
3219 * Where:
3220 * r2 == dst_reg, pkt_end == src_reg
3221 * r2=pkt(id=n,off=8,r=0)
3222 * r3=pkt(id=n,off=0,r=0)
3224 * pkt_data in src register:
3226 * r2 = r3;
3227 * r2 += 8;
3228 * if (pkt_end >= r2) goto <access okay>
3229 * <handle exception>
3231 * r2 = r3;
3232 * r2 += 8;
3233 * if (pkt_end <= r2) goto <handle exception>
3234 * <access okay>
3236 * Where:
3237 * pkt_end == dst_reg, r2 == src_reg
3238 * r2=pkt(id=n,off=8,r=0)
3239 * r3=pkt(id=n,off=0,r=0)
3241 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3242 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3243 * and [r3, r3 + 8-1) respectively is safe to access depending on
3244 * the check.
3247 /* If our ids match, then we must have the same max_value. And we
3248 * don't care about the other reg's fixed offset, since if it's too big
3249 * the range won't allow anything.
3250 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3252 for (i = 0; i < MAX_BPF_REG; i++)
3253 if (regs[i].type == type && regs[i].id == dst_reg->id)
3254 /* keep the maximum range already checked */
3255 regs[i].range = max(regs[i].range, new_range);
3257 for (j = 0; j <= vstate->curframe; j++) {
3258 state = vstate->frame[j];
3259 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3260 if (state->stack[i].slot_type[0] != STACK_SPILL)
3261 continue;
3262 reg = &state->stack[i].spilled_ptr;
3263 if (reg->type == type && reg->id == dst_reg->id)
3264 reg->range = max(reg->range, new_range);
3269 /* Adjusts the register min/max values in the case that the dst_reg is the
3270 * variable register that we are working on, and src_reg is a constant or we're
3271 * simply doing a BPF_K check.
3272 * In JEQ/JNE cases we also adjust the var_off values.
3274 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3275 struct bpf_reg_state *false_reg, u64 val,
3276 u8 opcode)
3278 /* If the dst_reg is a pointer, we can't learn anything about its
3279 * variable offset from the compare (unless src_reg were a pointer into
3280 * the same object, but we don't bother with that.
3281 * Since false_reg and true_reg have the same type by construction, we
3282 * only need to check one of them for pointerness.
3284 if (__is_pointer_value(false, false_reg))
3285 return;
3287 switch (opcode) {
3288 case BPF_JEQ:
3289 /* If this is false then we know nothing Jon Snow, but if it is
3290 * true then we know for sure.
3292 __mark_reg_known(true_reg, val);
3293 break;
3294 case BPF_JNE:
3295 /* If this is true we know nothing Jon Snow, but if it is false
3296 * we know the value for sure;
3298 __mark_reg_known(false_reg, val);
3299 break;
3300 case BPF_JGT:
3301 false_reg->umax_value = min(false_reg->umax_value, val);
3302 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3303 break;
3304 case BPF_JSGT:
3305 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3306 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3307 break;
3308 case BPF_JLT:
3309 false_reg->umin_value = max(false_reg->umin_value, val);
3310 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3311 break;
3312 case BPF_JSLT:
3313 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3314 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3315 break;
3316 case BPF_JGE:
3317 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3318 true_reg->umin_value = max(true_reg->umin_value, val);
3319 break;
3320 case BPF_JSGE:
3321 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3322 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3323 break;
3324 case BPF_JLE:
3325 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3326 true_reg->umax_value = min(true_reg->umax_value, val);
3327 break;
3328 case BPF_JSLE:
3329 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3330 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3331 break;
3332 default:
3333 break;
3336 __reg_deduce_bounds(false_reg);
3337 __reg_deduce_bounds(true_reg);
3338 /* We might have learned some bits from the bounds. */
3339 __reg_bound_offset(false_reg);
3340 __reg_bound_offset(true_reg);
3341 /* Intersecting with the old var_off might have improved our bounds
3342 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3343 * then new var_off is (0; 0x7f...fc) which improves our umax.
3345 __update_reg_bounds(false_reg);
3346 __update_reg_bounds(true_reg);
3349 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3350 * the variable reg.
3352 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3353 struct bpf_reg_state *false_reg, u64 val,
3354 u8 opcode)
3356 if (__is_pointer_value(false, false_reg))
3357 return;
3359 switch (opcode) {
3360 case BPF_JEQ:
3361 /* If this is false then we know nothing Jon Snow, but if it is
3362 * true then we know for sure.
3364 __mark_reg_known(true_reg, val);
3365 break;
3366 case BPF_JNE:
3367 /* If this is true we know nothing Jon Snow, but if it is false
3368 * we know the value for sure;
3370 __mark_reg_known(false_reg, val);
3371 break;
3372 case BPF_JGT:
3373 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3374 false_reg->umin_value = max(false_reg->umin_value, val);
3375 break;
3376 case BPF_JSGT:
3377 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3378 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3379 break;
3380 case BPF_JLT:
3381 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3382 false_reg->umax_value = min(false_reg->umax_value, val);
3383 break;
3384 case BPF_JSLT:
3385 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3386 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3387 break;
3388 case BPF_JGE:
3389 true_reg->umax_value = min(true_reg->umax_value, val);
3390 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3391 break;
3392 case BPF_JSGE:
3393 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3394 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3395 break;
3396 case BPF_JLE:
3397 true_reg->umin_value = max(true_reg->umin_value, val);
3398 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3399 break;
3400 case BPF_JSLE:
3401 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3402 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3403 break;
3404 default:
3405 break;
3408 __reg_deduce_bounds(false_reg);
3409 __reg_deduce_bounds(true_reg);
3410 /* We might have learned some bits from the bounds. */
3411 __reg_bound_offset(false_reg);
3412 __reg_bound_offset(true_reg);
3413 /* Intersecting with the old var_off might have improved our bounds
3414 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3415 * then new var_off is (0; 0x7f...fc) which improves our umax.
3417 __update_reg_bounds(false_reg);
3418 __update_reg_bounds(true_reg);
3421 /* Regs are known to be equal, so intersect their min/max/var_off */
3422 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3423 struct bpf_reg_state *dst_reg)
3425 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3426 dst_reg->umin_value);
3427 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3428 dst_reg->umax_value);
3429 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3430 dst_reg->smin_value);
3431 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3432 dst_reg->smax_value);
3433 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3434 dst_reg->var_off);
3435 /* We might have learned new bounds from the var_off. */
3436 __update_reg_bounds(src_reg);
3437 __update_reg_bounds(dst_reg);
3438 /* We might have learned something about the sign bit. */
3439 __reg_deduce_bounds(src_reg);
3440 __reg_deduce_bounds(dst_reg);
3441 /* We might have learned some bits from the bounds. */
3442 __reg_bound_offset(src_reg);
3443 __reg_bound_offset(dst_reg);
3444 /* Intersecting with the old var_off might have improved our bounds
3445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3446 * then new var_off is (0; 0x7f...fc) which improves our umax.
3448 __update_reg_bounds(src_reg);
3449 __update_reg_bounds(dst_reg);
3452 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3453 struct bpf_reg_state *true_dst,
3454 struct bpf_reg_state *false_src,
3455 struct bpf_reg_state *false_dst,
3456 u8 opcode)
3458 switch (opcode) {
3459 case BPF_JEQ:
3460 __reg_combine_min_max(true_src, true_dst);
3461 break;
3462 case BPF_JNE:
3463 __reg_combine_min_max(false_src, false_dst);
3464 break;
3468 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3469 bool is_null)
3471 struct bpf_reg_state *reg = &regs[regno];
3473 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3474 /* Old offset (both fixed and variable parts) should
3475 * have been known-zero, because we don't allow pointer
3476 * arithmetic on pointers that might be NULL.
3478 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3479 !tnum_equals_const(reg->var_off, 0) ||
3480 reg->off)) {
3481 __mark_reg_known_zero(reg);
3482 reg->off = 0;
3484 if (is_null) {
3485 reg->type = SCALAR_VALUE;
3486 } else if (reg->map_ptr->inner_map_meta) {
3487 reg->type = CONST_PTR_TO_MAP;
3488 reg->map_ptr = reg->map_ptr->inner_map_meta;
3489 } else {
3490 reg->type = PTR_TO_MAP_VALUE;
3492 /* We don't need id from this point onwards anymore, thus we
3493 * should better reset it, so that state pruning has chances
3494 * to take effect.
3496 reg->id = 0;
3500 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3501 * be folded together at some point.
3503 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3504 bool is_null)
3506 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3507 struct bpf_reg_state *regs = state->regs;
3508 u32 id = regs[regno].id;
3509 int i, j;
3511 for (i = 0; i < MAX_BPF_REG; i++)
3512 mark_map_reg(regs, i, id, is_null);
3514 for (j = 0; j <= vstate->curframe; j++) {
3515 state = vstate->frame[j];
3516 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3517 if (state->stack[i].slot_type[0] != STACK_SPILL)
3518 continue;
3519 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3524 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3525 struct bpf_reg_state *dst_reg,
3526 struct bpf_reg_state *src_reg,
3527 struct bpf_verifier_state *this_branch,
3528 struct bpf_verifier_state *other_branch)
3530 if (BPF_SRC(insn->code) != BPF_X)
3531 return false;
3533 switch (BPF_OP(insn->code)) {
3534 case BPF_JGT:
3535 if ((dst_reg->type == PTR_TO_PACKET &&
3536 src_reg->type == PTR_TO_PACKET_END) ||
3537 (dst_reg->type == PTR_TO_PACKET_META &&
3538 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3539 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3540 find_good_pkt_pointers(this_branch, dst_reg,
3541 dst_reg->type, false);
3542 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3543 src_reg->type == PTR_TO_PACKET) ||
3544 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3545 src_reg->type == PTR_TO_PACKET_META)) {
3546 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3547 find_good_pkt_pointers(other_branch, src_reg,
3548 src_reg->type, true);
3549 } else {
3550 return false;
3552 break;
3553 case BPF_JLT:
3554 if ((dst_reg->type == PTR_TO_PACKET &&
3555 src_reg->type == PTR_TO_PACKET_END) ||
3556 (dst_reg->type == PTR_TO_PACKET_META &&
3557 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3558 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3559 find_good_pkt_pointers(other_branch, dst_reg,
3560 dst_reg->type, true);
3561 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3562 src_reg->type == PTR_TO_PACKET) ||
3563 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3564 src_reg->type == PTR_TO_PACKET_META)) {
3565 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3566 find_good_pkt_pointers(this_branch, src_reg,
3567 src_reg->type, false);
3568 } else {
3569 return false;
3571 break;
3572 case BPF_JGE:
3573 if ((dst_reg->type == PTR_TO_PACKET &&
3574 src_reg->type == PTR_TO_PACKET_END) ||
3575 (dst_reg->type == PTR_TO_PACKET_META &&
3576 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3577 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3578 find_good_pkt_pointers(this_branch, dst_reg,
3579 dst_reg->type, true);
3580 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3581 src_reg->type == PTR_TO_PACKET) ||
3582 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3583 src_reg->type == PTR_TO_PACKET_META)) {
3584 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3585 find_good_pkt_pointers(other_branch, src_reg,
3586 src_reg->type, false);
3587 } else {
3588 return false;
3590 break;
3591 case BPF_JLE:
3592 if ((dst_reg->type == PTR_TO_PACKET &&
3593 src_reg->type == PTR_TO_PACKET_END) ||
3594 (dst_reg->type == PTR_TO_PACKET_META &&
3595 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3596 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3597 find_good_pkt_pointers(other_branch, dst_reg,
3598 dst_reg->type, false);
3599 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3600 src_reg->type == PTR_TO_PACKET) ||
3601 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3602 src_reg->type == PTR_TO_PACKET_META)) {
3603 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3604 find_good_pkt_pointers(this_branch, src_reg,
3605 src_reg->type, true);
3606 } else {
3607 return false;
3609 break;
3610 default:
3611 return false;
3614 return true;
3617 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3618 struct bpf_insn *insn, int *insn_idx)
3620 struct bpf_verifier_state *this_branch = env->cur_state;
3621 struct bpf_verifier_state *other_branch;
3622 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3623 struct bpf_reg_state *dst_reg, *other_branch_regs;
3624 u8 opcode = BPF_OP(insn->code);
3625 int err;
3627 if (opcode > BPF_JSLE) {
3628 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3629 return -EINVAL;
3632 if (BPF_SRC(insn->code) == BPF_X) {
3633 if (insn->imm != 0) {
3634 verbose(env, "BPF_JMP uses reserved fields\n");
3635 return -EINVAL;
3638 /* check src1 operand */
3639 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3640 if (err)
3641 return err;
3643 if (is_pointer_value(env, insn->src_reg)) {
3644 verbose(env, "R%d pointer comparison prohibited\n",
3645 insn->src_reg);
3646 return -EACCES;
3648 } else {
3649 if (insn->src_reg != BPF_REG_0) {
3650 verbose(env, "BPF_JMP uses reserved fields\n");
3651 return -EINVAL;
3655 /* check src2 operand */
3656 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3657 if (err)
3658 return err;
3660 dst_reg = &regs[insn->dst_reg];
3662 /* detect if R == 0 where R was initialized to zero earlier */
3663 if (BPF_SRC(insn->code) == BPF_K &&
3664 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3665 dst_reg->type == SCALAR_VALUE &&
3666 tnum_is_const(dst_reg->var_off)) {
3667 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3668 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3669 /* if (imm == imm) goto pc+off;
3670 * only follow the goto, ignore fall-through
3672 *insn_idx += insn->off;
3673 return 0;
3674 } else {
3675 /* if (imm != imm) goto pc+off;
3676 * only follow fall-through branch, since
3677 * that's where the program will go
3679 return 0;
3683 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3684 if (!other_branch)
3685 return -EFAULT;
3686 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3688 /* detect if we are comparing against a constant value so we can adjust
3689 * our min/max values for our dst register.
3690 * this is only legit if both are scalars (or pointers to the same
3691 * object, I suppose, but we don't support that right now), because
3692 * otherwise the different base pointers mean the offsets aren't
3693 * comparable.
3695 if (BPF_SRC(insn->code) == BPF_X) {
3696 if (dst_reg->type == SCALAR_VALUE &&
3697 regs[insn->src_reg].type == SCALAR_VALUE) {
3698 if (tnum_is_const(regs[insn->src_reg].var_off))
3699 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3700 dst_reg, regs[insn->src_reg].var_off.value,
3701 opcode);
3702 else if (tnum_is_const(dst_reg->var_off))
3703 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3704 &regs[insn->src_reg],
3705 dst_reg->var_off.value, opcode);
3706 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3707 /* Comparing for equality, we can combine knowledge */
3708 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3709 &other_branch_regs[insn->dst_reg],
3710 &regs[insn->src_reg],
3711 &regs[insn->dst_reg], opcode);
3713 } else if (dst_reg->type == SCALAR_VALUE) {
3714 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3715 dst_reg, insn->imm, opcode);
3718 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3719 if (BPF_SRC(insn->code) == BPF_K &&
3720 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3721 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3722 /* Mark all identical map registers in each branch as either
3723 * safe or unknown depending R == 0 or R != 0 conditional.
3725 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3726 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3727 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3728 this_branch, other_branch) &&
3729 is_pointer_value(env, insn->dst_reg)) {
3730 verbose(env, "R%d pointer comparison prohibited\n",
3731 insn->dst_reg);
3732 return -EACCES;
3734 if (env->log.level)
3735 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3736 return 0;
3739 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3740 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3742 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3744 return (struct bpf_map *) (unsigned long) imm64;
3747 /* verify BPF_LD_IMM64 instruction */
3748 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3750 struct bpf_reg_state *regs = cur_regs(env);
3751 int err;
3753 if (BPF_SIZE(insn->code) != BPF_DW) {
3754 verbose(env, "invalid BPF_LD_IMM insn\n");
3755 return -EINVAL;
3757 if (insn->off != 0) {
3758 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3759 return -EINVAL;
3762 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3763 if (err)
3764 return err;
3766 if (insn->src_reg == 0) {
3767 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3769 regs[insn->dst_reg].type = SCALAR_VALUE;
3770 __mark_reg_known(&regs[insn->dst_reg], imm);
3771 return 0;
3774 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3775 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3777 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3778 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3779 return 0;
3782 static bool may_access_skb(enum bpf_prog_type type)
3784 switch (type) {
3785 case BPF_PROG_TYPE_SOCKET_FILTER:
3786 case BPF_PROG_TYPE_SCHED_CLS:
3787 case BPF_PROG_TYPE_SCHED_ACT:
3788 return true;
3789 default:
3790 return false;
3794 /* verify safety of LD_ABS|LD_IND instructions:
3795 * - they can only appear in the programs where ctx == skb
3796 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3797 * preserve R6-R9, and store return value into R0
3799 * Implicit input:
3800 * ctx == skb == R6 == CTX
3802 * Explicit input:
3803 * SRC == any register
3804 * IMM == 32-bit immediate
3806 * Output:
3807 * R0 - 8/16/32-bit skb data converted to cpu endianness
3809 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3811 struct bpf_reg_state *regs = cur_regs(env);
3812 u8 mode = BPF_MODE(insn->code);
3813 int i, err;
3815 if (!may_access_skb(env->prog->type)) {
3816 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3817 return -EINVAL;
3820 if (env->subprog_cnt) {
3821 /* when program has LD_ABS insn JITs and interpreter assume
3822 * that r1 == ctx == skb which is not the case for callees
3823 * that can have arbitrary arguments. It's problematic
3824 * for main prog as well since JITs would need to analyze
3825 * all functions in order to make proper register save/restore
3826 * decisions in the main prog. Hence disallow LD_ABS with calls
3828 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3829 return -EINVAL;
3832 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3833 BPF_SIZE(insn->code) == BPF_DW ||
3834 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3835 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3836 return -EINVAL;
3839 /* check whether implicit source operand (register R6) is readable */
3840 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3841 if (err)
3842 return err;
3844 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3845 verbose(env,
3846 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3847 return -EINVAL;
3850 if (mode == BPF_IND) {
3851 /* check explicit source operand */
3852 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3853 if (err)
3854 return err;
3857 /* reset caller saved regs to unreadable */
3858 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3859 mark_reg_not_init(env, regs, caller_saved[i]);
3860 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3863 /* mark destination R0 register as readable, since it contains
3864 * the value fetched from the packet.
3865 * Already marked as written above.
3867 mark_reg_unknown(env, regs, BPF_REG_0);
3868 return 0;
3871 static int check_return_code(struct bpf_verifier_env *env)
3873 struct bpf_reg_state *reg;
3874 struct tnum range = tnum_range(0, 1);
3876 switch (env->prog->type) {
3877 case BPF_PROG_TYPE_CGROUP_SKB:
3878 case BPF_PROG_TYPE_CGROUP_SOCK:
3879 case BPF_PROG_TYPE_SOCK_OPS:
3880 case BPF_PROG_TYPE_CGROUP_DEVICE:
3881 break;
3882 default:
3883 return 0;
3886 reg = cur_regs(env) + BPF_REG_0;
3887 if (reg->type != SCALAR_VALUE) {
3888 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3889 reg_type_str[reg->type]);
3890 return -EINVAL;
3893 if (!tnum_in(range, reg->var_off)) {
3894 verbose(env, "At program exit the register R0 ");
3895 if (!tnum_is_unknown(reg->var_off)) {
3896 char tn_buf[48];
3898 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3899 verbose(env, "has value %s", tn_buf);
3900 } else {
3901 verbose(env, "has unknown scalar value");
3903 verbose(env, " should have been 0 or 1\n");
3904 return -EINVAL;
3906 return 0;
3909 /* non-recursive DFS pseudo code
3910 * 1 procedure DFS-iterative(G,v):
3911 * 2 label v as discovered
3912 * 3 let S be a stack
3913 * 4 S.push(v)
3914 * 5 while S is not empty
3915 * 6 t <- S.pop()
3916 * 7 if t is what we're looking for:
3917 * 8 return t
3918 * 9 for all edges e in G.adjacentEdges(t) do
3919 * 10 if edge e is already labelled
3920 * 11 continue with the next edge
3921 * 12 w <- G.adjacentVertex(t,e)
3922 * 13 if vertex w is not discovered and not explored
3923 * 14 label e as tree-edge
3924 * 15 label w as discovered
3925 * 16 S.push(w)
3926 * 17 continue at 5
3927 * 18 else if vertex w is discovered
3928 * 19 label e as back-edge
3929 * 20 else
3930 * 21 // vertex w is explored
3931 * 22 label e as forward- or cross-edge
3932 * 23 label t as explored
3933 * 24 S.pop()
3935 * convention:
3936 * 0x10 - discovered
3937 * 0x11 - discovered and fall-through edge labelled
3938 * 0x12 - discovered and fall-through and branch edges labelled
3939 * 0x20 - explored
3942 enum {
3943 DISCOVERED = 0x10,
3944 EXPLORED = 0x20,
3945 FALLTHROUGH = 1,
3946 BRANCH = 2,
3949 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3951 static int *insn_stack; /* stack of insns to process */
3952 static int cur_stack; /* current stack index */
3953 static int *insn_state;
3955 /* t, w, e - match pseudo-code above:
3956 * t - index of current instruction
3957 * w - next instruction
3958 * e - edge
3960 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3962 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3963 return 0;
3965 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3966 return 0;
3968 if (w < 0 || w >= env->prog->len) {
3969 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3970 return -EINVAL;
3973 if (e == BRANCH)
3974 /* mark branch target for state pruning */
3975 env->explored_states[w] = STATE_LIST_MARK;
3977 if (insn_state[w] == 0) {
3978 /* tree-edge */
3979 insn_state[t] = DISCOVERED | e;
3980 insn_state[w] = DISCOVERED;
3981 if (cur_stack >= env->prog->len)
3982 return -E2BIG;
3983 insn_stack[cur_stack++] = w;
3984 return 1;
3985 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3986 verbose(env, "back-edge from insn %d to %d\n", t, w);
3987 return -EINVAL;
3988 } else if (insn_state[w] == EXPLORED) {
3989 /* forward- or cross-edge */
3990 insn_state[t] = DISCOVERED | e;
3991 } else {
3992 verbose(env, "insn state internal bug\n");
3993 return -EFAULT;
3995 return 0;
3998 /* non-recursive depth-first-search to detect loops in BPF program
3999 * loop == back-edge in directed graph
4001 static int check_cfg(struct bpf_verifier_env *env)
4003 struct bpf_insn *insns = env->prog->insnsi;
4004 int insn_cnt = env->prog->len;
4005 int ret = 0;
4006 int i, t;
4008 ret = check_subprogs(env);
4009 if (ret < 0)
4010 return ret;
4012 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4013 if (!insn_state)
4014 return -ENOMEM;
4016 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4017 if (!insn_stack) {
4018 kfree(insn_state);
4019 return -ENOMEM;
4022 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4023 insn_stack[0] = 0; /* 0 is the first instruction */
4024 cur_stack = 1;
4026 peek_stack:
4027 if (cur_stack == 0)
4028 goto check_state;
4029 t = insn_stack[cur_stack - 1];
4031 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4032 u8 opcode = BPF_OP(insns[t].code);
4034 if (opcode == BPF_EXIT) {
4035 goto mark_explored;
4036 } else if (opcode == BPF_CALL) {
4037 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4038 if (ret == 1)
4039 goto peek_stack;
4040 else if (ret < 0)
4041 goto err_free;
4042 if (t + 1 < insn_cnt)
4043 env->explored_states[t + 1] = STATE_LIST_MARK;
4044 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4045 env->explored_states[t] = STATE_LIST_MARK;
4046 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4047 if (ret == 1)
4048 goto peek_stack;
4049 else if (ret < 0)
4050 goto err_free;
4052 } else if (opcode == BPF_JA) {
4053 if (BPF_SRC(insns[t].code) != BPF_K) {
4054 ret = -EINVAL;
4055 goto err_free;
4057 /* unconditional jump with single edge */
4058 ret = push_insn(t, t + insns[t].off + 1,
4059 FALLTHROUGH, env);
4060 if (ret == 1)
4061 goto peek_stack;
4062 else if (ret < 0)
4063 goto err_free;
4064 /* tell verifier to check for equivalent states
4065 * after every call and jump
4067 if (t + 1 < insn_cnt)
4068 env->explored_states[t + 1] = STATE_LIST_MARK;
4069 } else {
4070 /* conditional jump with two edges */
4071 env->explored_states[t] = STATE_LIST_MARK;
4072 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4073 if (ret == 1)
4074 goto peek_stack;
4075 else if (ret < 0)
4076 goto err_free;
4078 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4079 if (ret == 1)
4080 goto peek_stack;
4081 else if (ret < 0)
4082 goto err_free;
4084 } else {
4085 /* all other non-branch instructions with single
4086 * fall-through edge
4088 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4089 if (ret == 1)
4090 goto peek_stack;
4091 else if (ret < 0)
4092 goto err_free;
4095 mark_explored:
4096 insn_state[t] = EXPLORED;
4097 if (cur_stack-- <= 0) {
4098 verbose(env, "pop stack internal bug\n");
4099 ret = -EFAULT;
4100 goto err_free;
4102 goto peek_stack;
4104 check_state:
4105 for (i = 0; i < insn_cnt; i++) {
4106 if (insn_state[i] != EXPLORED) {
4107 verbose(env, "unreachable insn %d\n", i);
4108 ret = -EINVAL;
4109 goto err_free;
4112 ret = 0; /* cfg looks good */
4114 err_free:
4115 kfree(insn_state);
4116 kfree(insn_stack);
4117 return ret;
4120 /* check %cur's range satisfies %old's */
4121 static bool range_within(struct bpf_reg_state *old,
4122 struct bpf_reg_state *cur)
4124 return old->umin_value <= cur->umin_value &&
4125 old->umax_value >= cur->umax_value &&
4126 old->smin_value <= cur->smin_value &&
4127 old->smax_value >= cur->smax_value;
4130 /* Maximum number of register states that can exist at once */
4131 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4132 struct idpair {
4133 u32 old;
4134 u32 cur;
4137 /* If in the old state two registers had the same id, then they need to have
4138 * the same id in the new state as well. But that id could be different from
4139 * the old state, so we need to track the mapping from old to new ids.
4140 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4141 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4142 * regs with a different old id could still have new id 9, we don't care about
4143 * that.
4144 * So we look through our idmap to see if this old id has been seen before. If
4145 * so, we require the new id to match; otherwise, we add the id pair to the map.
4147 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4149 unsigned int i;
4151 for (i = 0; i < ID_MAP_SIZE; i++) {
4152 if (!idmap[i].old) {
4153 /* Reached an empty slot; haven't seen this id before */
4154 idmap[i].old = old_id;
4155 idmap[i].cur = cur_id;
4156 return true;
4158 if (idmap[i].old == old_id)
4159 return idmap[i].cur == cur_id;
4161 /* We ran out of idmap slots, which should be impossible */
4162 WARN_ON_ONCE(1);
4163 return false;
4166 /* Returns true if (rold safe implies rcur safe) */
4167 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4168 struct idpair *idmap)
4170 bool equal;
4172 if (!(rold->live & REG_LIVE_READ))
4173 /* explored state didn't use this */
4174 return true;
4176 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4178 if (rold->type == PTR_TO_STACK)
4179 /* two stack pointers are equal only if they're pointing to
4180 * the same stack frame, since fp-8 in foo != fp-8 in bar
4182 return equal && rold->frameno == rcur->frameno;
4184 if (equal)
4185 return true;
4187 if (rold->type == NOT_INIT)
4188 /* explored state can't have used this */
4189 return true;
4190 if (rcur->type == NOT_INIT)
4191 return false;
4192 switch (rold->type) {
4193 case SCALAR_VALUE:
4194 if (rcur->type == SCALAR_VALUE) {
4195 /* new val must satisfy old val knowledge */
4196 return range_within(rold, rcur) &&
4197 tnum_in(rold->var_off, rcur->var_off);
4198 } else {
4199 /* We're trying to use a pointer in place of a scalar.
4200 * Even if the scalar was unbounded, this could lead to
4201 * pointer leaks because scalars are allowed to leak
4202 * while pointers are not. We could make this safe in
4203 * special cases if root is calling us, but it's
4204 * probably not worth the hassle.
4206 return false;
4208 case PTR_TO_MAP_VALUE:
4209 /* If the new min/max/var_off satisfy the old ones and
4210 * everything else matches, we are OK.
4211 * We don't care about the 'id' value, because nothing
4212 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4214 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4215 range_within(rold, rcur) &&
4216 tnum_in(rold->var_off, rcur->var_off);
4217 case PTR_TO_MAP_VALUE_OR_NULL:
4218 /* a PTR_TO_MAP_VALUE could be safe to use as a
4219 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4220 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4221 * checked, doing so could have affected others with the same
4222 * id, and we can't check for that because we lost the id when
4223 * we converted to a PTR_TO_MAP_VALUE.
4225 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4226 return false;
4227 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4228 return false;
4229 /* Check our ids match any regs they're supposed to */
4230 return check_ids(rold->id, rcur->id, idmap);
4231 case PTR_TO_PACKET_META:
4232 case PTR_TO_PACKET:
4233 if (rcur->type != rold->type)
4234 return false;
4235 /* We must have at least as much range as the old ptr
4236 * did, so that any accesses which were safe before are
4237 * still safe. This is true even if old range < old off,
4238 * since someone could have accessed through (ptr - k), or
4239 * even done ptr -= k in a register, to get a safe access.
4241 if (rold->range > rcur->range)
4242 return false;
4243 /* If the offsets don't match, we can't trust our alignment;
4244 * nor can we be sure that we won't fall out of range.
4246 if (rold->off != rcur->off)
4247 return false;
4248 /* id relations must be preserved */
4249 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4250 return false;
4251 /* new val must satisfy old val knowledge */
4252 return range_within(rold, rcur) &&
4253 tnum_in(rold->var_off, rcur->var_off);
4254 case PTR_TO_CTX:
4255 case CONST_PTR_TO_MAP:
4256 case PTR_TO_PACKET_END:
4257 /* Only valid matches are exact, which memcmp() above
4258 * would have accepted
4260 default:
4261 /* Don't know what's going on, just say it's not safe */
4262 return false;
4265 /* Shouldn't get here; if we do, say it's not safe */
4266 WARN_ON_ONCE(1);
4267 return false;
4270 static bool stacksafe(struct bpf_func_state *old,
4271 struct bpf_func_state *cur,
4272 struct idpair *idmap)
4274 int i, spi;
4276 /* if explored stack has more populated slots than current stack
4277 * such stacks are not equivalent
4279 if (old->allocated_stack > cur->allocated_stack)
4280 return false;
4282 /* walk slots of the explored stack and ignore any additional
4283 * slots in the current stack, since explored(safe) state
4284 * didn't use them
4286 for (i = 0; i < old->allocated_stack; i++) {
4287 spi = i / BPF_REG_SIZE;
4289 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4290 /* explored state didn't use this */
4291 continue;
4293 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4294 continue;
4295 /* if old state was safe with misc data in the stack
4296 * it will be safe with zero-initialized stack.
4297 * The opposite is not true
4299 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4300 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4301 continue;
4302 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4303 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4304 /* Ex: old explored (safe) state has STACK_SPILL in
4305 * this stack slot, but current has has STACK_MISC ->
4306 * this verifier states are not equivalent,
4307 * return false to continue verification of this path
4309 return false;
4310 if (i % BPF_REG_SIZE)
4311 continue;
4312 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4313 continue;
4314 if (!regsafe(&old->stack[spi].spilled_ptr,
4315 &cur->stack[spi].spilled_ptr,
4316 idmap))
4317 /* when explored and current stack slot are both storing
4318 * spilled registers, check that stored pointers types
4319 * are the same as well.
4320 * Ex: explored safe path could have stored
4321 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4322 * but current path has stored:
4323 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4324 * such verifier states are not equivalent.
4325 * return false to continue verification of this path
4327 return false;
4329 return true;
4332 /* compare two verifier states
4334 * all states stored in state_list are known to be valid, since
4335 * verifier reached 'bpf_exit' instruction through them
4337 * this function is called when verifier exploring different branches of
4338 * execution popped from the state stack. If it sees an old state that has
4339 * more strict register state and more strict stack state then this execution
4340 * branch doesn't need to be explored further, since verifier already
4341 * concluded that more strict state leads to valid finish.
4343 * Therefore two states are equivalent if register state is more conservative
4344 * and explored stack state is more conservative than the current one.
4345 * Example:
4346 * explored current
4347 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4348 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4350 * In other words if current stack state (one being explored) has more
4351 * valid slots than old one that already passed validation, it means
4352 * the verifier can stop exploring and conclude that current state is valid too
4354 * Similarly with registers. If explored state has register type as invalid
4355 * whereas register type in current state is meaningful, it means that
4356 * the current state will reach 'bpf_exit' instruction safely
4358 static bool func_states_equal(struct bpf_func_state *old,
4359 struct bpf_func_state *cur)
4361 struct idpair *idmap;
4362 bool ret = false;
4363 int i;
4365 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4366 /* If we failed to allocate the idmap, just say it's not safe */
4367 if (!idmap)
4368 return false;
4370 for (i = 0; i < MAX_BPF_REG; i++) {
4371 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4372 goto out_free;
4375 if (!stacksafe(old, cur, idmap))
4376 goto out_free;
4377 ret = true;
4378 out_free:
4379 kfree(idmap);
4380 return ret;
4383 static bool states_equal(struct bpf_verifier_env *env,
4384 struct bpf_verifier_state *old,
4385 struct bpf_verifier_state *cur)
4387 int i;
4389 if (old->curframe != cur->curframe)
4390 return false;
4392 /* for states to be equal callsites have to be the same
4393 * and all frame states need to be equivalent
4395 for (i = 0; i <= old->curframe; i++) {
4396 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4397 return false;
4398 if (!func_states_equal(old->frame[i], cur->frame[i]))
4399 return false;
4401 return true;
4404 /* A write screens off any subsequent reads; but write marks come from the
4405 * straight-line code between a state and its parent. When we arrive at an
4406 * equivalent state (jump target or such) we didn't arrive by the straight-line
4407 * code, so read marks in the state must propagate to the parent regardless
4408 * of the state's write marks. That's what 'parent == state->parent' comparison
4409 * in mark_reg_read() and mark_stack_slot_read() is for.
4411 static int propagate_liveness(struct bpf_verifier_env *env,
4412 const struct bpf_verifier_state *vstate,
4413 struct bpf_verifier_state *vparent)
4415 int i, frame, err = 0;
4416 struct bpf_func_state *state, *parent;
4418 if (vparent->curframe != vstate->curframe) {
4419 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4420 vparent->curframe, vstate->curframe);
4421 return -EFAULT;
4423 /* Propagate read liveness of registers... */
4424 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4425 /* We don't need to worry about FP liveness because it's read-only */
4426 for (i = 0; i < BPF_REG_FP; i++) {
4427 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4428 continue;
4429 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4430 err = mark_reg_read(env, vstate, vparent, i);
4431 if (err)
4432 return err;
4436 /* ... and stack slots */
4437 for (frame = 0; frame <= vstate->curframe; frame++) {
4438 state = vstate->frame[frame];
4439 parent = vparent->frame[frame];
4440 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4441 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4442 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4443 continue;
4444 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4445 mark_stack_slot_read(env, vstate, vparent, i, frame);
4448 return err;
4451 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4453 struct bpf_verifier_state_list *new_sl;
4454 struct bpf_verifier_state_list *sl;
4455 struct bpf_verifier_state *cur = env->cur_state;
4456 int i, j, err;
4458 sl = env->explored_states[insn_idx];
4459 if (!sl)
4460 /* this 'insn_idx' instruction wasn't marked, so we will not
4461 * be doing state search here
4463 return 0;
4465 while (sl != STATE_LIST_MARK) {
4466 if (states_equal(env, &sl->state, cur)) {
4467 /* reached equivalent register/stack state,
4468 * prune the search.
4469 * Registers read by the continuation are read by us.
4470 * If we have any write marks in env->cur_state, they
4471 * will prevent corresponding reads in the continuation
4472 * from reaching our parent (an explored_state). Our
4473 * own state will get the read marks recorded, but
4474 * they'll be immediately forgotten as we're pruning
4475 * this state and will pop a new one.
4477 err = propagate_liveness(env, &sl->state, cur);
4478 if (err)
4479 return err;
4480 return 1;
4482 sl = sl->next;
4485 /* there were no equivalent states, remember current one.
4486 * technically the current state is not proven to be safe yet,
4487 * but it will either reach outer most bpf_exit (which means it's safe)
4488 * or it will be rejected. Since there are no loops, we won't be
4489 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4490 * again on the way to bpf_exit
4492 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4493 if (!new_sl)
4494 return -ENOMEM;
4496 /* add new state to the head of linked list */
4497 err = copy_verifier_state(&new_sl->state, cur);
4498 if (err) {
4499 free_verifier_state(&new_sl->state, false);
4500 kfree(new_sl);
4501 return err;
4503 new_sl->next = env->explored_states[insn_idx];
4504 env->explored_states[insn_idx] = new_sl;
4505 /* connect new state to parentage chain */
4506 cur->parent = &new_sl->state;
4507 /* clear write marks in current state: the writes we did are not writes
4508 * our child did, so they don't screen off its reads from us.
4509 * (There are no read marks in current state, because reads always mark
4510 * their parent and current state never has children yet. Only
4511 * explored_states can get read marks.)
4513 for (i = 0; i < BPF_REG_FP; i++)
4514 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4516 /* all stack frames are accessible from callee, clear them all */
4517 for (j = 0; j <= cur->curframe; j++) {
4518 struct bpf_func_state *frame = cur->frame[j];
4520 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4521 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4523 return 0;
4526 static int do_check(struct bpf_verifier_env *env)
4528 struct bpf_verifier_state *state;
4529 struct bpf_insn *insns = env->prog->insnsi;
4530 struct bpf_reg_state *regs;
4531 int insn_cnt = env->prog->len, i;
4532 int insn_idx, prev_insn_idx = 0;
4533 int insn_processed = 0;
4534 bool do_print_state = false;
4536 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4537 if (!state)
4538 return -ENOMEM;
4539 state->curframe = 0;
4540 state->parent = NULL;
4541 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4542 if (!state->frame[0]) {
4543 kfree(state);
4544 return -ENOMEM;
4546 env->cur_state = state;
4547 init_func_state(env, state->frame[0],
4548 BPF_MAIN_FUNC /* callsite */,
4549 0 /* frameno */,
4550 0 /* subprogno, zero == main subprog */);
4551 insn_idx = 0;
4552 for (;;) {
4553 struct bpf_insn *insn;
4554 u8 class;
4555 int err;
4557 if (insn_idx >= insn_cnt) {
4558 verbose(env, "invalid insn idx %d insn_cnt %d\n",
4559 insn_idx, insn_cnt);
4560 return -EFAULT;
4563 insn = &insns[insn_idx];
4564 class = BPF_CLASS(insn->code);
4566 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4567 verbose(env,
4568 "BPF program is too large. Processed %d insn\n",
4569 insn_processed);
4570 return -E2BIG;
4573 err = is_state_visited(env, insn_idx);
4574 if (err < 0)
4575 return err;
4576 if (err == 1) {
4577 /* found equivalent state, can prune the search */
4578 if (env->log.level) {
4579 if (do_print_state)
4580 verbose(env, "\nfrom %d to %d: safe\n",
4581 prev_insn_idx, insn_idx);
4582 else
4583 verbose(env, "%d: safe\n", insn_idx);
4585 goto process_bpf_exit;
4588 if (need_resched())
4589 cond_resched();
4591 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4592 if (env->log.level > 1)
4593 verbose(env, "%d:", insn_idx);
4594 else
4595 verbose(env, "\nfrom %d to %d:",
4596 prev_insn_idx, insn_idx);
4597 print_verifier_state(env, state->frame[state->curframe]);
4598 do_print_state = false;
4601 if (env->log.level) {
4602 const struct bpf_insn_cbs cbs = {
4603 .cb_print = verbose,
4606 verbose(env, "%d: ", insn_idx);
4607 print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks);
4610 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4611 err = bpf_prog_offload_verify_insn(env, insn_idx,
4612 prev_insn_idx);
4613 if (err)
4614 return err;
4617 regs = cur_regs(env);
4618 env->insn_aux_data[insn_idx].seen = true;
4619 if (class == BPF_ALU || class == BPF_ALU64) {
4620 err = check_alu_op(env, insn);
4621 if (err)
4622 return err;
4624 } else if (class == BPF_LDX) {
4625 enum bpf_reg_type *prev_src_type, src_reg_type;
4627 /* check for reserved fields is already done */
4629 /* check src operand */
4630 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4631 if (err)
4632 return err;
4634 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4635 if (err)
4636 return err;
4638 src_reg_type = regs[insn->src_reg].type;
4640 /* check that memory (src_reg + off) is readable,
4641 * the state of dst_reg will be updated by this func
4643 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4644 BPF_SIZE(insn->code), BPF_READ,
4645 insn->dst_reg, false);
4646 if (err)
4647 return err;
4649 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4651 if (*prev_src_type == NOT_INIT) {
4652 /* saw a valid insn
4653 * dst_reg = *(u32 *)(src_reg + off)
4654 * save type to validate intersecting paths
4656 *prev_src_type = src_reg_type;
4658 } else if (src_reg_type != *prev_src_type &&
4659 (src_reg_type == PTR_TO_CTX ||
4660 *prev_src_type == PTR_TO_CTX)) {
4661 /* ABuser program is trying to use the same insn
4662 * dst_reg = *(u32*) (src_reg + off)
4663 * with different pointer types:
4664 * src_reg == ctx in one branch and
4665 * src_reg == stack|map in some other branch.
4666 * Reject it.
4668 verbose(env, "same insn cannot be used with different pointers\n");
4669 return -EINVAL;
4672 } else if (class == BPF_STX) {
4673 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4675 if (BPF_MODE(insn->code) == BPF_XADD) {
4676 err = check_xadd(env, insn_idx, insn);
4677 if (err)
4678 return err;
4679 insn_idx++;
4680 continue;
4683 /* check src1 operand */
4684 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4685 if (err)
4686 return err;
4687 /* check src2 operand */
4688 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4689 if (err)
4690 return err;
4692 dst_reg_type = regs[insn->dst_reg].type;
4694 /* check that memory (dst_reg + off) is writeable */
4695 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4696 BPF_SIZE(insn->code), BPF_WRITE,
4697 insn->src_reg, false);
4698 if (err)
4699 return err;
4701 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4703 if (*prev_dst_type == NOT_INIT) {
4704 *prev_dst_type = dst_reg_type;
4705 } else if (dst_reg_type != *prev_dst_type &&
4706 (dst_reg_type == PTR_TO_CTX ||
4707 *prev_dst_type == PTR_TO_CTX)) {
4708 verbose(env, "same insn cannot be used with different pointers\n");
4709 return -EINVAL;
4712 } else if (class == BPF_ST) {
4713 if (BPF_MODE(insn->code) != BPF_MEM ||
4714 insn->src_reg != BPF_REG_0) {
4715 verbose(env, "BPF_ST uses reserved fields\n");
4716 return -EINVAL;
4718 /* check src operand */
4719 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4720 if (err)
4721 return err;
4723 if (is_ctx_reg(env, insn->dst_reg)) {
4724 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4725 insn->dst_reg);
4726 return -EACCES;
4729 /* check that memory (dst_reg + off) is writeable */
4730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4731 BPF_SIZE(insn->code), BPF_WRITE,
4732 -1, false);
4733 if (err)
4734 return err;
4736 } else if (class == BPF_JMP) {
4737 u8 opcode = BPF_OP(insn->code);
4739 if (opcode == BPF_CALL) {
4740 if (BPF_SRC(insn->code) != BPF_K ||
4741 insn->off != 0 ||
4742 (insn->src_reg != BPF_REG_0 &&
4743 insn->src_reg != BPF_PSEUDO_CALL) ||
4744 insn->dst_reg != BPF_REG_0) {
4745 verbose(env, "BPF_CALL uses reserved fields\n");
4746 return -EINVAL;
4749 if (insn->src_reg == BPF_PSEUDO_CALL)
4750 err = check_func_call(env, insn, &insn_idx);
4751 else
4752 err = check_helper_call(env, insn->imm, insn_idx);
4753 if (err)
4754 return err;
4756 } else if (opcode == BPF_JA) {
4757 if (BPF_SRC(insn->code) != BPF_K ||
4758 insn->imm != 0 ||
4759 insn->src_reg != BPF_REG_0 ||
4760 insn->dst_reg != BPF_REG_0) {
4761 verbose(env, "BPF_JA uses reserved fields\n");
4762 return -EINVAL;
4765 insn_idx += insn->off + 1;
4766 continue;
4768 } else if (opcode == BPF_EXIT) {
4769 if (BPF_SRC(insn->code) != BPF_K ||
4770 insn->imm != 0 ||
4771 insn->src_reg != BPF_REG_0 ||
4772 insn->dst_reg != BPF_REG_0) {
4773 verbose(env, "BPF_EXIT uses reserved fields\n");
4774 return -EINVAL;
4777 if (state->curframe) {
4778 /* exit from nested function */
4779 prev_insn_idx = insn_idx;
4780 err = prepare_func_exit(env, &insn_idx);
4781 if (err)
4782 return err;
4783 do_print_state = true;
4784 continue;
4787 /* eBPF calling convetion is such that R0 is used
4788 * to return the value from eBPF program.
4789 * Make sure that it's readable at this time
4790 * of bpf_exit, which means that program wrote
4791 * something into it earlier
4793 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4794 if (err)
4795 return err;
4797 if (is_pointer_value(env, BPF_REG_0)) {
4798 verbose(env, "R0 leaks addr as return value\n");
4799 return -EACCES;
4802 err = check_return_code(env);
4803 if (err)
4804 return err;
4805 process_bpf_exit:
4806 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4807 if (err < 0) {
4808 if (err != -ENOENT)
4809 return err;
4810 break;
4811 } else {
4812 do_print_state = true;
4813 continue;
4815 } else {
4816 err = check_cond_jmp_op(env, insn, &insn_idx);
4817 if (err)
4818 return err;
4820 } else if (class == BPF_LD) {
4821 u8 mode = BPF_MODE(insn->code);
4823 if (mode == BPF_ABS || mode == BPF_IND) {
4824 err = check_ld_abs(env, insn);
4825 if (err)
4826 return err;
4828 } else if (mode == BPF_IMM) {
4829 err = check_ld_imm(env, insn);
4830 if (err)
4831 return err;
4833 insn_idx++;
4834 env->insn_aux_data[insn_idx].seen = true;
4835 } else {
4836 verbose(env, "invalid BPF_LD mode\n");
4837 return -EINVAL;
4839 } else {
4840 verbose(env, "unknown insn class %d\n", class);
4841 return -EINVAL;
4844 insn_idx++;
4847 verbose(env, "processed %d insns (limit %d), stack depth ",
4848 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4849 for (i = 0; i < env->subprog_cnt + 1; i++) {
4850 u32 depth = env->subprog_stack_depth[i];
4852 verbose(env, "%d", depth);
4853 if (i + 1 < env->subprog_cnt + 1)
4854 verbose(env, "+");
4856 verbose(env, "\n");
4857 env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4858 return 0;
4861 static int check_map_prealloc(struct bpf_map *map)
4863 return (map->map_type != BPF_MAP_TYPE_HASH &&
4864 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4865 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4866 !(map->map_flags & BPF_F_NO_PREALLOC);
4869 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4870 struct bpf_map *map,
4871 struct bpf_prog *prog)
4874 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4875 * preallocated hash maps, since doing memory allocation
4876 * in overflow_handler can crash depending on where nmi got
4877 * triggered.
4879 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4880 if (!check_map_prealloc(map)) {
4881 verbose(env, "perf_event programs can only use preallocated hash map\n");
4882 return -EINVAL;
4884 if (map->inner_map_meta &&
4885 !check_map_prealloc(map->inner_map_meta)) {
4886 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4887 return -EINVAL;
4891 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4892 !bpf_offload_dev_match(prog, map)) {
4893 verbose(env, "offload device mismatch between prog and map\n");
4894 return -EINVAL;
4897 return 0;
4900 /* look for pseudo eBPF instructions that access map FDs and
4901 * replace them with actual map pointers
4903 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4905 struct bpf_insn *insn = env->prog->insnsi;
4906 int insn_cnt = env->prog->len;
4907 int i, j, err;
4909 err = bpf_prog_calc_tag(env->prog);
4910 if (err)
4911 return err;
4913 for (i = 0; i < insn_cnt; i++, insn++) {
4914 if (BPF_CLASS(insn->code) == BPF_LDX &&
4915 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4916 verbose(env, "BPF_LDX uses reserved fields\n");
4917 return -EINVAL;
4920 if (BPF_CLASS(insn->code) == BPF_STX &&
4921 ((BPF_MODE(insn->code) != BPF_MEM &&
4922 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4923 verbose(env, "BPF_STX uses reserved fields\n");
4924 return -EINVAL;
4927 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4928 struct bpf_map *map;
4929 struct fd f;
4931 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4932 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4933 insn[1].off != 0) {
4934 verbose(env, "invalid bpf_ld_imm64 insn\n");
4935 return -EINVAL;
4938 if (insn->src_reg == 0)
4939 /* valid generic load 64-bit imm */
4940 goto next_insn;
4942 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4943 verbose(env,
4944 "unrecognized bpf_ld_imm64 insn\n");
4945 return -EINVAL;
4948 f = fdget(insn->imm);
4949 map = __bpf_map_get(f);
4950 if (IS_ERR(map)) {
4951 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4952 insn->imm);
4953 return PTR_ERR(map);
4956 err = check_map_prog_compatibility(env, map, env->prog);
4957 if (err) {
4958 fdput(f);
4959 return err;
4962 /* store map pointer inside BPF_LD_IMM64 instruction */
4963 insn[0].imm = (u32) (unsigned long) map;
4964 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4966 /* check whether we recorded this map already */
4967 for (j = 0; j < env->used_map_cnt; j++)
4968 if (env->used_maps[j] == map) {
4969 fdput(f);
4970 goto next_insn;
4973 if (env->used_map_cnt >= MAX_USED_MAPS) {
4974 fdput(f);
4975 return -E2BIG;
4978 /* hold the map. If the program is rejected by verifier,
4979 * the map will be released by release_maps() or it
4980 * will be used by the valid program until it's unloaded
4981 * and all maps are released in free_bpf_prog_info()
4983 map = bpf_map_inc(map, false);
4984 if (IS_ERR(map)) {
4985 fdput(f);
4986 return PTR_ERR(map);
4988 env->used_maps[env->used_map_cnt++] = map;
4990 fdput(f);
4991 next_insn:
4992 insn++;
4993 i++;
4994 continue;
4997 /* Basic sanity check before we invest more work here. */
4998 if (!bpf_opcode_in_insntable(insn->code)) {
4999 verbose(env, "unknown opcode %02x\n", insn->code);
5000 return -EINVAL;
5004 /* now all pseudo BPF_LD_IMM64 instructions load valid
5005 * 'struct bpf_map *' into a register instead of user map_fd.
5006 * These pointers will be used later by verifier to validate map access.
5008 return 0;
5011 /* drop refcnt of maps used by the rejected program */
5012 static void release_maps(struct bpf_verifier_env *env)
5014 int i;
5016 for (i = 0; i < env->used_map_cnt; i++)
5017 bpf_map_put(env->used_maps[i]);
5020 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5021 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5023 struct bpf_insn *insn = env->prog->insnsi;
5024 int insn_cnt = env->prog->len;
5025 int i;
5027 for (i = 0; i < insn_cnt; i++, insn++)
5028 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5029 insn->src_reg = 0;
5032 /* single env->prog->insni[off] instruction was replaced with the range
5033 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5034 * [0, off) and [off, end) to new locations, so the patched range stays zero
5036 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5037 u32 off, u32 cnt)
5039 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5040 int i;
5042 if (cnt == 1)
5043 return 0;
5044 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5045 if (!new_data)
5046 return -ENOMEM;
5047 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5048 memcpy(new_data + off + cnt - 1, old_data + off,
5049 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5050 for (i = off; i < off + cnt - 1; i++)
5051 new_data[i].seen = true;
5052 env->insn_aux_data = new_data;
5053 vfree(old_data);
5054 return 0;
5057 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5059 int i;
5061 if (len == 1)
5062 return;
5063 for (i = 0; i < env->subprog_cnt; i++) {
5064 if (env->subprog_starts[i] < off)
5065 continue;
5066 env->subprog_starts[i] += len - 1;
5070 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5071 const struct bpf_insn *patch, u32 len)
5073 struct bpf_prog *new_prog;
5075 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5076 if (!new_prog)
5077 return NULL;
5078 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5079 return NULL;
5080 adjust_subprog_starts(env, off, len);
5081 return new_prog;
5084 /* The verifier does more data flow analysis than llvm and will not
5085 * explore branches that are dead at run time. Malicious programs can
5086 * have dead code too. Therefore replace all dead at-run-time code
5087 * with 'ja -1'.
5089 * Just nops are not optimal, e.g. if they would sit at the end of the
5090 * program and through another bug we would manage to jump there, then
5091 * we'd execute beyond program memory otherwise. Returning exception
5092 * code also wouldn't work since we can have subprogs where the dead
5093 * code could be located.
5095 static void sanitize_dead_code(struct bpf_verifier_env *env)
5097 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5098 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5099 struct bpf_insn *insn = env->prog->insnsi;
5100 const int insn_cnt = env->prog->len;
5101 int i;
5103 for (i = 0; i < insn_cnt; i++) {
5104 if (aux_data[i].seen)
5105 continue;
5106 memcpy(insn + i, &trap, sizeof(trap));
5110 /* convert load instructions that access fields of 'struct __sk_buff'
5111 * into sequence of instructions that access fields of 'struct sk_buff'
5113 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5115 const struct bpf_verifier_ops *ops = env->ops;
5116 int i, cnt, size, ctx_field_size, delta = 0;
5117 const int insn_cnt = env->prog->len;
5118 struct bpf_insn insn_buf[16], *insn;
5119 struct bpf_prog *new_prog;
5120 enum bpf_access_type type;
5121 bool is_narrower_load;
5122 u32 target_size;
5124 if (ops->gen_prologue) {
5125 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5126 env->prog);
5127 if (cnt >= ARRAY_SIZE(insn_buf)) {
5128 verbose(env, "bpf verifier is misconfigured\n");
5129 return -EINVAL;
5130 } else if (cnt) {
5131 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5132 if (!new_prog)
5133 return -ENOMEM;
5135 env->prog = new_prog;
5136 delta += cnt - 1;
5140 if (!ops->convert_ctx_access)
5141 return 0;
5143 insn = env->prog->insnsi + delta;
5145 for (i = 0; i < insn_cnt; i++, insn++) {
5146 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5147 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5148 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5149 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5150 type = BPF_READ;
5151 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5152 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5153 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5154 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5155 type = BPF_WRITE;
5156 else
5157 continue;
5159 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5160 continue;
5162 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5163 size = BPF_LDST_BYTES(insn);
5165 /* If the read access is a narrower load of the field,
5166 * convert to a 4/8-byte load, to minimum program type specific
5167 * convert_ctx_access changes. If conversion is successful,
5168 * we will apply proper mask to the result.
5170 is_narrower_load = size < ctx_field_size;
5171 if (is_narrower_load) {
5172 u32 off = insn->off;
5173 u8 size_code;
5175 if (type == BPF_WRITE) {
5176 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5177 return -EINVAL;
5180 size_code = BPF_H;
5181 if (ctx_field_size == 4)
5182 size_code = BPF_W;
5183 else if (ctx_field_size == 8)
5184 size_code = BPF_DW;
5186 insn->off = off & ~(ctx_field_size - 1);
5187 insn->code = BPF_LDX | BPF_MEM | size_code;
5190 target_size = 0;
5191 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5192 &target_size);
5193 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5194 (ctx_field_size && !target_size)) {
5195 verbose(env, "bpf verifier is misconfigured\n");
5196 return -EINVAL;
5199 if (is_narrower_load && size < target_size) {
5200 if (ctx_field_size <= 4)
5201 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5202 (1 << size * 8) - 1);
5203 else
5204 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5205 (1 << size * 8) - 1);
5208 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5209 if (!new_prog)
5210 return -ENOMEM;
5212 delta += cnt - 1;
5214 /* keep walking new program and skip insns we just inserted */
5215 env->prog = new_prog;
5216 insn = new_prog->insnsi + i + delta;
5219 return 0;
5222 static int jit_subprogs(struct bpf_verifier_env *env)
5224 struct bpf_prog *prog = env->prog, **func, *tmp;
5225 int i, j, subprog_start, subprog_end = 0, len, subprog;
5226 struct bpf_insn *insn;
5227 void *old_bpf_func;
5228 int err = -ENOMEM;
5230 if (env->subprog_cnt == 0)
5231 return 0;
5233 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5234 if (insn->code != (BPF_JMP | BPF_CALL) ||
5235 insn->src_reg != BPF_PSEUDO_CALL)
5236 continue;
5237 subprog = find_subprog(env, i + insn->imm + 1);
5238 if (subprog < 0) {
5239 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5240 i + insn->imm + 1);
5241 return -EFAULT;
5243 /* temporarily remember subprog id inside insn instead of
5244 * aux_data, since next loop will split up all insns into funcs
5246 insn->off = subprog + 1;
5247 /* remember original imm in case JIT fails and fallback
5248 * to interpreter will be needed
5250 env->insn_aux_data[i].call_imm = insn->imm;
5251 /* point imm to __bpf_call_base+1 from JITs point of view */
5252 insn->imm = 1;
5255 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
5256 if (!func)
5257 return -ENOMEM;
5259 for (i = 0; i <= env->subprog_cnt; i++) {
5260 subprog_start = subprog_end;
5261 if (env->subprog_cnt == i)
5262 subprog_end = prog->len;
5263 else
5264 subprog_end = env->subprog_starts[i];
5266 len = subprog_end - subprog_start;
5267 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5268 if (!func[i])
5269 goto out_free;
5270 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5271 len * sizeof(struct bpf_insn));
5272 func[i]->type = prog->type;
5273 func[i]->len = len;
5274 if (bpf_prog_calc_tag(func[i]))
5275 goto out_free;
5276 func[i]->is_func = 1;
5277 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5278 * Long term would need debug info to populate names
5280 func[i]->aux->name[0] = 'F';
5281 func[i]->aux->stack_depth = env->subprog_stack_depth[i];
5282 func[i]->jit_requested = 1;
5283 func[i] = bpf_int_jit_compile(func[i]);
5284 if (!func[i]->jited) {
5285 err = -ENOTSUPP;
5286 goto out_free;
5288 cond_resched();
5290 /* at this point all bpf functions were successfully JITed
5291 * now populate all bpf_calls with correct addresses and
5292 * run last pass of JIT
5294 for (i = 0; i <= env->subprog_cnt; i++) {
5295 insn = func[i]->insnsi;
5296 for (j = 0; j < func[i]->len; j++, insn++) {
5297 if (insn->code != (BPF_JMP | BPF_CALL) ||
5298 insn->src_reg != BPF_PSEUDO_CALL)
5299 continue;
5300 subprog = insn->off;
5301 insn->off = 0;
5302 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5303 func[subprog]->bpf_func -
5304 __bpf_call_base;
5307 for (i = 0; i <= env->subprog_cnt; i++) {
5308 old_bpf_func = func[i]->bpf_func;
5309 tmp = bpf_int_jit_compile(func[i]);
5310 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5311 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5312 err = -EFAULT;
5313 goto out_free;
5315 cond_resched();
5318 /* finally lock prog and jit images for all functions and
5319 * populate kallsysm
5321 for (i = 0; i <= env->subprog_cnt; i++) {
5322 bpf_prog_lock_ro(func[i]);
5323 bpf_prog_kallsyms_add(func[i]);
5326 /* Last step: make now unused interpreter insns from main
5327 * prog consistent for later dump requests, so they can
5328 * later look the same as if they were interpreted only.
5330 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5331 unsigned long addr;
5333 if (insn->code != (BPF_JMP | BPF_CALL) ||
5334 insn->src_reg != BPF_PSEUDO_CALL)
5335 continue;
5336 insn->off = env->insn_aux_data[i].call_imm;
5337 subprog = find_subprog(env, i + insn->off + 1);
5338 addr = (unsigned long)func[subprog + 1]->bpf_func;
5339 addr &= PAGE_MASK;
5340 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5341 addr - __bpf_call_base;
5344 prog->jited = 1;
5345 prog->bpf_func = func[0]->bpf_func;
5346 prog->aux->func = func;
5347 prog->aux->func_cnt = env->subprog_cnt + 1;
5348 return 0;
5349 out_free:
5350 for (i = 0; i <= env->subprog_cnt; i++)
5351 if (func[i])
5352 bpf_jit_free(func[i]);
5353 kfree(func);
5354 /* cleanup main prog to be interpreted */
5355 prog->jit_requested = 0;
5356 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5357 if (insn->code != (BPF_JMP | BPF_CALL) ||
5358 insn->src_reg != BPF_PSEUDO_CALL)
5359 continue;
5360 insn->off = 0;
5361 insn->imm = env->insn_aux_data[i].call_imm;
5363 return err;
5366 static int fixup_call_args(struct bpf_verifier_env *env)
5368 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5369 struct bpf_prog *prog = env->prog;
5370 struct bpf_insn *insn = prog->insnsi;
5371 int i, depth;
5372 #endif
5373 int err;
5375 err = 0;
5376 if (env->prog->jit_requested) {
5377 err = jit_subprogs(env);
5378 if (err == 0)
5379 return 0;
5381 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5382 for (i = 0; i < prog->len; i++, insn++) {
5383 if (insn->code != (BPF_JMP | BPF_CALL) ||
5384 insn->src_reg != BPF_PSEUDO_CALL)
5385 continue;
5386 depth = get_callee_stack_depth(env, insn, i);
5387 if (depth < 0)
5388 return depth;
5389 bpf_patch_call_args(insn, depth);
5391 err = 0;
5392 #endif
5393 return err;
5396 /* fixup insn->imm field of bpf_call instructions
5397 * and inline eligible helpers as explicit sequence of BPF instructions
5399 * this function is called after eBPF program passed verification
5401 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5403 struct bpf_prog *prog = env->prog;
5404 struct bpf_insn *insn = prog->insnsi;
5405 const struct bpf_func_proto *fn;
5406 const int insn_cnt = prog->len;
5407 struct bpf_insn insn_buf[16];
5408 struct bpf_prog *new_prog;
5409 struct bpf_map *map_ptr;
5410 int i, cnt, delta = 0;
5412 for (i = 0; i < insn_cnt; i++, insn++) {
5413 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5414 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5415 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5416 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5417 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5418 struct bpf_insn mask_and_div[] = {
5419 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5420 /* Rx div 0 -> 0 */
5421 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5422 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5423 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5424 *insn,
5426 struct bpf_insn mask_and_mod[] = {
5427 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5428 /* Rx mod 0 -> Rx */
5429 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5430 *insn,
5432 struct bpf_insn *patchlet;
5434 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5435 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5436 patchlet = mask_and_div + (is64 ? 1 : 0);
5437 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5438 } else {
5439 patchlet = mask_and_mod + (is64 ? 1 : 0);
5440 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5443 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5444 if (!new_prog)
5445 return -ENOMEM;
5447 delta += cnt - 1;
5448 env->prog = prog = new_prog;
5449 insn = new_prog->insnsi + i + delta;
5450 continue;
5453 if (insn->code != (BPF_JMP | BPF_CALL))
5454 continue;
5455 if (insn->src_reg == BPF_PSEUDO_CALL)
5456 continue;
5458 if (insn->imm == BPF_FUNC_get_route_realm)
5459 prog->dst_needed = 1;
5460 if (insn->imm == BPF_FUNC_get_prandom_u32)
5461 bpf_user_rnd_init_once();
5462 if (insn->imm == BPF_FUNC_override_return)
5463 prog->kprobe_override = 1;
5464 if (insn->imm == BPF_FUNC_tail_call) {
5465 /* If we tail call into other programs, we
5466 * cannot make any assumptions since they can
5467 * be replaced dynamically during runtime in
5468 * the program array.
5470 prog->cb_access = 1;
5471 env->prog->aux->stack_depth = MAX_BPF_STACK;
5473 /* mark bpf_tail_call as different opcode to avoid
5474 * conditional branch in the interpeter for every normal
5475 * call and to prevent accidental JITing by JIT compiler
5476 * that doesn't support bpf_tail_call yet
5478 insn->imm = 0;
5479 insn->code = BPF_JMP | BPF_TAIL_CALL;
5481 /* instead of changing every JIT dealing with tail_call
5482 * emit two extra insns:
5483 * if (index >= max_entries) goto out;
5484 * index &= array->index_mask;
5485 * to avoid out-of-bounds cpu speculation
5487 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5488 if (map_ptr == BPF_MAP_PTR_POISON) {
5489 verbose(env, "tail_call abusing map_ptr\n");
5490 return -EINVAL;
5492 if (!map_ptr->unpriv_array)
5493 continue;
5494 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5495 map_ptr->max_entries, 2);
5496 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5497 container_of(map_ptr,
5498 struct bpf_array,
5499 map)->index_mask);
5500 insn_buf[2] = *insn;
5501 cnt = 3;
5502 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5503 if (!new_prog)
5504 return -ENOMEM;
5506 delta += cnt - 1;
5507 env->prog = prog = new_prog;
5508 insn = new_prog->insnsi + i + delta;
5509 continue;
5512 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5513 * handlers are currently limited to 64 bit only.
5515 if (prog->jit_requested && BITS_PER_LONG == 64 &&
5516 insn->imm == BPF_FUNC_map_lookup_elem) {
5517 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5518 if (map_ptr == BPF_MAP_PTR_POISON ||
5519 !map_ptr->ops->map_gen_lookup)
5520 goto patch_call_imm;
5522 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5523 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5524 verbose(env, "bpf verifier is misconfigured\n");
5525 return -EINVAL;
5528 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5529 cnt);
5530 if (!new_prog)
5531 return -ENOMEM;
5533 delta += cnt - 1;
5535 /* keep walking new program and skip insns we just inserted */
5536 env->prog = prog = new_prog;
5537 insn = new_prog->insnsi + i + delta;
5538 continue;
5541 if (insn->imm == BPF_FUNC_redirect_map) {
5542 /* Note, we cannot use prog directly as imm as subsequent
5543 * rewrites would still change the prog pointer. The only
5544 * stable address we can use is aux, which also works with
5545 * prog clones during blinding.
5547 u64 addr = (unsigned long)prog->aux;
5548 struct bpf_insn r4_ld[] = {
5549 BPF_LD_IMM64(BPF_REG_4, addr),
5550 *insn,
5552 cnt = ARRAY_SIZE(r4_ld);
5554 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5555 if (!new_prog)
5556 return -ENOMEM;
5558 delta += cnt - 1;
5559 env->prog = prog = new_prog;
5560 insn = new_prog->insnsi + i + delta;
5562 patch_call_imm:
5563 fn = env->ops->get_func_proto(insn->imm);
5564 /* all functions that have prototype and verifier allowed
5565 * programs to call them, must be real in-kernel functions
5567 if (!fn->func) {
5568 verbose(env,
5569 "kernel subsystem misconfigured func %s#%d\n",
5570 func_id_name(insn->imm), insn->imm);
5571 return -EFAULT;
5573 insn->imm = fn->func - __bpf_call_base;
5576 return 0;
5579 static void free_states(struct bpf_verifier_env *env)
5581 struct bpf_verifier_state_list *sl, *sln;
5582 int i;
5584 if (!env->explored_states)
5585 return;
5587 for (i = 0; i < env->prog->len; i++) {
5588 sl = env->explored_states[i];
5590 if (sl)
5591 while (sl != STATE_LIST_MARK) {
5592 sln = sl->next;
5593 free_verifier_state(&sl->state, false);
5594 kfree(sl);
5595 sl = sln;
5599 kfree(env->explored_states);
5602 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5604 struct bpf_verifier_env *env;
5605 struct bpf_verifer_log *log;
5606 int ret = -EINVAL;
5608 /* no program is valid */
5609 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5610 return -EINVAL;
5612 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5613 * allocate/free it every time bpf_check() is called
5615 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5616 if (!env)
5617 return -ENOMEM;
5618 log = &env->log;
5620 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5621 (*prog)->len);
5622 ret = -ENOMEM;
5623 if (!env->insn_aux_data)
5624 goto err_free_env;
5625 env->prog = *prog;
5626 env->ops = bpf_verifier_ops[env->prog->type];
5628 /* grab the mutex to protect few globals used by verifier */
5629 mutex_lock(&bpf_verifier_lock);
5631 if (attr->log_level || attr->log_buf || attr->log_size) {
5632 /* user requested verbose verifier output
5633 * and supplied buffer to store the verification trace
5635 log->level = attr->log_level;
5636 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5637 log->len_total = attr->log_size;
5639 ret = -EINVAL;
5640 /* log attributes have to be sane */
5641 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5642 !log->level || !log->ubuf)
5643 goto err_unlock;
5646 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5647 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5648 env->strict_alignment = true;
5650 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5651 ret = bpf_prog_offload_verifier_prep(env);
5652 if (ret)
5653 goto err_unlock;
5656 ret = replace_map_fd_with_map_ptr(env);
5657 if (ret < 0)
5658 goto skip_full_check;
5660 env->explored_states = kcalloc(env->prog->len,
5661 sizeof(struct bpf_verifier_state_list *),
5662 GFP_USER);
5663 ret = -ENOMEM;
5664 if (!env->explored_states)
5665 goto skip_full_check;
5667 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5669 ret = check_cfg(env);
5670 if (ret < 0)
5671 goto skip_full_check;
5673 ret = do_check(env);
5674 if (env->cur_state) {
5675 free_verifier_state(env->cur_state, true);
5676 env->cur_state = NULL;
5679 skip_full_check:
5680 while (!pop_stack(env, NULL, NULL));
5681 free_states(env);
5683 if (ret == 0)
5684 sanitize_dead_code(env);
5686 if (ret == 0)
5687 ret = check_max_stack_depth(env);
5689 if (ret == 0)
5690 /* program is valid, convert *(u32*)(ctx + off) accesses */
5691 ret = convert_ctx_accesses(env);
5693 if (ret == 0)
5694 ret = fixup_bpf_calls(env);
5696 if (ret == 0)
5697 ret = fixup_call_args(env);
5699 if (log->level && bpf_verifier_log_full(log))
5700 ret = -ENOSPC;
5701 if (log->level && !log->ubuf) {
5702 ret = -EFAULT;
5703 goto err_release_maps;
5706 if (ret == 0 && env->used_map_cnt) {
5707 /* if program passed verifier, update used_maps in bpf_prog_info */
5708 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5709 sizeof(env->used_maps[0]),
5710 GFP_KERNEL);
5712 if (!env->prog->aux->used_maps) {
5713 ret = -ENOMEM;
5714 goto err_release_maps;
5717 memcpy(env->prog->aux->used_maps, env->used_maps,
5718 sizeof(env->used_maps[0]) * env->used_map_cnt);
5719 env->prog->aux->used_map_cnt = env->used_map_cnt;
5721 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5722 * bpf_ld_imm64 instructions
5724 convert_pseudo_ld_imm64(env);
5727 err_release_maps:
5728 if (!env->prog->aux->used_maps)
5729 /* if we didn't copy map pointers into bpf_prog_info, release
5730 * them now. Otherwise free_bpf_prog_info() will release them.
5732 release_maps(env);
5733 *prog = env->prog;
5734 err_unlock:
5735 mutex_unlock(&bpf_verifier_lock);
5736 vfree(env->insn_aux_data);
5737 err_free_env:
5738 kfree(env);
5739 return ret;