2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
75 DEFINE_MUTEX(cgroup_mutex
);
76 DEFINE_SPINLOCK(css_set_lock
);
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex
);
80 EXPORT_SYMBOL_GPL(css_set_lock
);
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
87 static DEFINE_SPINLOCK(cgroup_idr_lock
);
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
108 static struct workqueue_struct
*cgroup_destroy_wq
;
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys
*cgroup_subsys
[] = {
113 #include <linux/cgroup_subsys.h>
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name
[] = {
120 #include <linux/cgroup_subsys.h>
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
135 #include <linux/cgroup_subsys.h>
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
141 #include <linux/cgroup_subsys.h>
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat
, cgrp_dfl_root_cpu_stat
);
148 * The default hierarchy, reserved for the subsystems that are otherwise
149 * unattached - it never has more than a single cgroup, and all tasks are
150 * part of that cgroup.
152 struct cgroup_root cgrp_dfl_root
= { .cgrp
.cpu_stat
= &cgrp_dfl_root_cpu_stat
};
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
159 static bool cgrp_dfl_visible
;
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask
;
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask
;
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask
;
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots
);
172 static int cgroup_root_count
;
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr
);
178 * Assign a monotonically increasing serial number to csses. It guarantees
179 * cgroups with bigger numbers are newer than those with smaller numbers.
180 * Also, as csses are always appended to the parent's ->children list, it
181 * guarantees that sibling csses are always sorted in the ascending serial
182 * number order on the list. Protected by cgroup_mutex.
184 static u64 css_serial_nr_next
= 1;
187 * These bitmasks identify subsystems with specific features to avoid
188 * having to do iterative checks repeatedly.
190 static u16 have_fork_callback __read_mostly
;
191 static u16 have_exit_callback __read_mostly
;
192 static u16 have_free_callback __read_mostly
;
193 static u16 have_canfork_callback __read_mostly
;
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns
= {
197 .count
= REFCOUNT_INIT(2),
198 .user_ns
= &init_user_ns
,
199 .ns
.ops
= &cgroupns_operations
,
200 .ns
.inum
= PROC_CGROUP_INIT_INO
,
201 .root_cset
= &init_css_set
,
204 static struct file_system_type cgroup2_fs_type
;
205 static struct cftype cgroup_base_files
[];
207 static int cgroup_apply_control(struct cgroup
*cgrp
);
208 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
209 static void css_task_iter_advance(struct css_task_iter
*it
);
210 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
211 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
212 struct cgroup_subsys
*ss
);
213 static void css_release(struct percpu_ref
*ref
);
214 static void kill_css(struct cgroup_subsys_state
*css
);
215 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
216 struct cgroup
*cgrp
, struct cftype cfts
[],
220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221 * @ssid: subsys ID of interest
223 * cgroup_subsys_enabled() can only be used with literal subsys names which
224 * is fine for individual subsystems but unsuitable for cgroup core. This
225 * is slower static_key_enabled() based test indexed by @ssid.
227 bool cgroup_ssid_enabled(int ssid
)
229 if (CGROUP_SUBSYS_COUNT
== 0)
232 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237 * @cgrp: the cgroup of interest
239 * The default hierarchy is the v2 interface of cgroup and this function
240 * can be used to test whether a cgroup is on the default hierarchy for
241 * cases where a subsystem should behave differnetly depending on the
244 * The set of behaviors which change on the default hierarchy are still
245 * being determined and the mount option is prefixed with __DEVEL__.
247 * List of changed behaviors:
249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250 * and "name" are disallowed.
252 * - When mounting an existing superblock, mount options should match.
254 * - Remount is disallowed.
256 * - rename(2) is disallowed.
258 * - "tasks" is removed. Everything should be at process granularity. Use
259 * "cgroup.procs" instead.
261 * - "cgroup.procs" is not sorted. pids will be unique unless they got
262 * recycled inbetween reads.
264 * - "release_agent" and "notify_on_release" are removed. Replacement
265 * notification mechanism will be implemented.
267 * - "cgroup.clone_children" is removed.
269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
270 * and its descendants contain no task; otherwise, 1. The file also
271 * generates kernfs notification which can be monitored through poll and
272 * [di]notify when the value of the file changes.
274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275 * take masks of ancestors with non-empty cpus/mems, instead of being
276 * moved to an ancestor.
278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
279 * masks of ancestors.
281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
284 * - blkcg: blk-throttle becomes properly hierarchical.
286 * - debug: disallowed on the default hierarchy.
288 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
290 return cgrp
->root
== &cgrp_dfl_root
;
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
299 idr_preload(gfp_mask
);
300 spin_lock_bh(&cgroup_idr_lock
);
301 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
302 spin_unlock_bh(&cgroup_idr_lock
);
307 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
311 spin_lock_bh(&cgroup_idr_lock
);
312 ret
= idr_replace(idr
, ptr
, id
);
313 spin_unlock_bh(&cgroup_idr_lock
);
317 static void cgroup_idr_remove(struct idr
*idr
, int id
)
319 spin_lock_bh(&cgroup_idr_lock
);
321 spin_unlock_bh(&cgroup_idr_lock
);
324 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
326 return cgrp
->nr_populated_csets
;
329 bool cgroup_is_threaded(struct cgroup
*cgrp
)
331 return cgrp
->dom_cgrp
!= cgrp
;
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
342 return !cgroup_parent(cgrp
);
345 /* can @cgrp become a thread root? should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp
))
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp
))
356 /* can only have either domain or threaded children */
357 if (cgrp
->nr_populated_domain_children
)
360 /* and no domain controllers can be enabled */
361 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp
))
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp
->nr_threaded_children
)
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
382 if (cgroup_has_tasks(cgrp
) &&
383 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp
))
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp
= cgroup_parent(cgrp
))) {
398 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
400 if (cgroup_is_threaded(cgrp
))
407 /* subsystems visibly enabled on a cgroup */
408 static u16
cgroup_control(struct cgroup
*cgrp
)
410 struct cgroup
*parent
= cgroup_parent(cgrp
);
411 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
414 u16 ss_mask
= parent
->subtree_control
;
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp
))
418 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
422 if (cgroup_on_dfl(cgrp
))
423 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
424 cgrp_dfl_implicit_ss_mask
);
428 /* subsystems enabled on a cgroup */
429 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
431 struct cgroup
*parent
= cgroup_parent(cgrp
);
434 u16 ss_mask
= parent
->subtree_ss_mask
;
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp
))
438 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
442 return cgrp
->root
->subsys_mask
;
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
456 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
457 struct cgroup_subsys
*ss
)
460 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
461 lockdep_is_held(&cgroup_mutex
));
467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest
471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
472 * or is offline, %NULL is returned.
474 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
475 struct cgroup_subsys
*ss
)
477 struct cgroup_subsys_state
*css
;
480 css
= cgroup_css(cgrp
, ss
);
481 if (!css
|| !css_tryget_online(css
))
489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
493 * Similar to cgroup_css() but returns the effective css, which is defined
494 * as the matching css of the nearest ancestor including self which has @ss
495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
496 * function is guaranteed to return non-NULL css.
498 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
499 struct cgroup_subsys
*ss
)
501 lockdep_assert_held(&cgroup_mutex
);
507 * This function is used while updating css associations and thus
508 * can't test the csses directly. Test ss_mask.
510 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
511 cgrp
= cgroup_parent(cgrp
);
516 return cgroup_css(cgrp
, ss
);
520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
521 * @cgrp: the cgroup of interest
522 * @ss: the subsystem of interest
524 * Find and get the effective css of @cgrp for @ss. The effective css is
525 * defined as the matching css of the nearest ancestor including self which
526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
527 * the root css is returned, so this function always returns a valid css.
528 * The returned css must be put using css_put().
530 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
531 struct cgroup_subsys
*ss
)
533 struct cgroup_subsys_state
*css
;
538 css
= cgroup_css(cgrp
, ss
);
540 if (css
&& css_tryget_online(css
))
542 cgrp
= cgroup_parent(cgrp
);
545 css
= init_css_set
.subsys
[ss
->id
];
552 static void cgroup_get_live(struct cgroup
*cgrp
)
554 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
555 css_get(&cgrp
->self
);
558 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
560 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
561 struct cftype
*cft
= of_cft(of
);
564 * This is open and unprotected implementation of cgroup_css().
565 * seq_css() is only called from a kernfs file operation which has
566 * an active reference on the file. Because all the subsystem
567 * files are drained before a css is disassociated with a cgroup,
568 * the matching css from the cgroup's subsys table is guaranteed to
569 * be and stay valid until the enclosing operation is complete.
572 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
576 EXPORT_SYMBOL_GPL(of_css
);
579 * for_each_css - iterate all css's of a cgroup
580 * @css: the iteration cursor
581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
582 * @cgrp: the target cgroup to iterate css's of
584 * Should be called under cgroup_[tree_]mutex.
586 #define for_each_css(css, ssid, cgrp) \
587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
588 if (!((css) = rcu_dereference_check( \
589 (cgrp)->subsys[(ssid)], \
590 lockdep_is_held(&cgroup_mutex)))) { } \
594 * for_each_e_css - iterate all effective css's of a cgroup
595 * @css: the iteration cursor
596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
597 * @cgrp: the target cgroup to iterate css's of
599 * Should be called under cgroup_[tree_]mutex.
601 #define for_each_e_css(css, ssid, cgrp) \
602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
609 * @ss: the iteration cursor
610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
611 * @ss_mask: the bitmask
613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
617 unsigned long __ss_mask = (ss_mask); \
618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
623 (ss) = cgroup_subsys[ssid]; \
626 #define while_each_subsys_mask() \
631 /* iterate over child cgrps, lock should be held throughout iteration */
632 #define cgroup_for_each_live_child(child, cgrp) \
633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
634 if (({ lockdep_assert_held(&cgroup_mutex); \
635 cgroup_is_dead(child); })) \
639 /* walk live descendants in preorder */
640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
642 if (({ lockdep_assert_held(&cgroup_mutex); \
643 (dsct) = (d_css)->cgroup; \
644 cgroup_is_dead(dsct); })) \
648 /* walk live descendants in postorder */
649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
651 if (({ lockdep_assert_held(&cgroup_mutex); \
652 (dsct) = (d_css)->cgroup; \
653 cgroup_is_dead(dsct); })) \
658 * The default css_set - used by init and its children prior to any
659 * hierarchies being mounted. It contains a pointer to the root state
660 * for each subsystem. Also used to anchor the list of css_sets. Not
661 * reference-counted, to improve performance when child cgroups
662 * haven't been created.
664 struct css_set init_css_set
= {
665 .refcount
= REFCOUNT_INIT(1),
666 .dom_cset
= &init_css_set
,
667 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
668 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
669 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
670 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
671 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
672 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
673 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
676 * The following field is re-initialized when this cset gets linked
677 * in cgroup_init(). However, let's initialize the field
678 * statically too so that the default cgroup can be accessed safely
681 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
684 static int css_set_count
= 1; /* 1 for init_css_set */
686 static bool css_set_threaded(struct css_set
*cset
)
688 return cset
->dom_cset
!= cset
;
692 * css_set_populated - does a css_set contain any tasks?
693 * @cset: target css_set
695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
696 * state. However, css_set_populated() can be called while a task is being
697 * added to or removed from the linked list before the nr_tasks is
698 * properly updated. Hence, we can't just look at ->nr_tasks here.
700 static bool css_set_populated(struct css_set
*cset
)
702 lockdep_assert_held(&css_set_lock
);
704 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
708 * cgroup_update_populated - update the populated count of a cgroup
709 * @cgrp: the target cgroup
710 * @populated: inc or dec populated count
712 * One of the css_sets associated with @cgrp is either getting its first
713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
714 * count is propagated towards root so that a given cgroup's
715 * nr_populated_children is zero iff none of its descendants contain any
718 * @cgrp's interface file "cgroup.populated" is zero if both
719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
720 * 1 otherwise. When the sum changes from or to zero, userland is notified
721 * that the content of the interface file has changed. This can be used to
722 * detect when @cgrp and its descendants become populated or empty.
724 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
726 struct cgroup
*child
= NULL
;
727 int adj
= populated
? 1 : -1;
729 lockdep_assert_held(&css_set_lock
);
732 bool was_populated
= cgroup_is_populated(cgrp
);
735 cgrp
->nr_populated_csets
+= adj
;
737 if (cgroup_is_threaded(child
))
738 cgrp
->nr_populated_threaded_children
+= adj
;
740 cgrp
->nr_populated_domain_children
+= adj
;
743 if (was_populated
== cgroup_is_populated(cgrp
))
746 cgroup1_check_for_release(cgrp
);
747 cgroup_file_notify(&cgrp
->events_file
);
750 cgrp
= cgroup_parent(cgrp
);
755 * css_set_update_populated - update populated state of a css_set
756 * @cset: target css_set
757 * @populated: whether @cset is populated or depopulated
759 * @cset is either getting the first task or losing the last. Update the
760 * populated counters of all associated cgroups accordingly.
762 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
764 struct cgrp_cset_link
*link
;
766 lockdep_assert_held(&css_set_lock
);
768 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
769 cgroup_update_populated(link
->cgrp
, populated
);
773 * css_set_move_task - move a task from one css_set to another
774 * @task: task being moved
775 * @from_cset: css_set @task currently belongs to (may be NULL)
776 * @to_cset: new css_set @task is being moved to (may be NULL)
777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
780 * css_set, @from_cset can be NULL. If @task is being disassociated
781 * instead of moved, @to_cset can be NULL.
783 * This function automatically handles populated counter updates and
784 * css_task_iter adjustments but the caller is responsible for managing
785 * @from_cset and @to_cset's reference counts.
787 static void css_set_move_task(struct task_struct
*task
,
788 struct css_set
*from_cset
, struct css_set
*to_cset
,
791 lockdep_assert_held(&css_set_lock
);
793 if (to_cset
&& !css_set_populated(to_cset
))
794 css_set_update_populated(to_cset
, true);
797 struct css_task_iter
*it
, *pos
;
799 WARN_ON_ONCE(list_empty(&task
->cg_list
));
802 * @task is leaving, advance task iterators which are
803 * pointing to it so that they can resume at the next
804 * position. Advancing an iterator might remove it from
805 * the list, use safe walk. See css_task_iter_advance*()
808 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
810 if (it
->task_pos
== &task
->cg_list
)
811 css_task_iter_advance(it
);
813 list_del_init(&task
->cg_list
);
814 if (!css_set_populated(from_cset
))
815 css_set_update_populated(from_cset
, false);
817 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
822 * We are synchronized through cgroup_threadgroup_rwsem
823 * against PF_EXITING setting such that we can't race
824 * against cgroup_exit() changing the css_set to
825 * init_css_set and dropping the old one.
827 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
829 rcu_assign_pointer(task
->cgroups
, to_cset
);
830 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
836 * hash table for cgroup groups. This improves the performance to find
837 * an existing css_set. This hash doesn't (currently) take into
838 * account cgroups in empty hierarchies.
840 #define CSS_SET_HASH_BITS 7
841 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
843 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
845 unsigned long key
= 0UL;
846 struct cgroup_subsys
*ss
;
849 for_each_subsys(ss
, i
)
850 key
+= (unsigned long)css
[i
];
851 key
= (key
>> 16) ^ key
;
856 void put_css_set_locked(struct css_set
*cset
)
858 struct cgrp_cset_link
*link
, *tmp_link
;
859 struct cgroup_subsys
*ss
;
862 lockdep_assert_held(&css_set_lock
);
864 if (!refcount_dec_and_test(&cset
->refcount
))
867 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
869 /* This css_set is dead. unlink it and release cgroup and css refs */
870 for_each_subsys(ss
, ssid
) {
871 list_del(&cset
->e_cset_node
[ssid
]);
872 css_put(cset
->subsys
[ssid
]);
874 hash_del(&cset
->hlist
);
877 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
878 list_del(&link
->cset_link
);
879 list_del(&link
->cgrp_link
);
880 if (cgroup_parent(link
->cgrp
))
881 cgroup_put(link
->cgrp
);
885 if (css_set_threaded(cset
)) {
886 list_del(&cset
->threaded_csets_node
);
887 put_css_set_locked(cset
->dom_cset
);
890 kfree_rcu(cset
, rcu_head
);
894 * compare_css_sets - helper function for find_existing_css_set().
895 * @cset: candidate css_set being tested
896 * @old_cset: existing css_set for a task
897 * @new_cgrp: cgroup that's being entered by the task
898 * @template: desired set of css pointers in css_set (pre-calculated)
900 * Returns true if "cset" matches "old_cset" except for the hierarchy
901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
903 static bool compare_css_sets(struct css_set
*cset
,
904 struct css_set
*old_cset
,
905 struct cgroup
*new_cgrp
,
906 struct cgroup_subsys_state
*template[])
908 struct cgroup
*new_dfl_cgrp
;
909 struct list_head
*l1
, *l2
;
912 * On the default hierarchy, there can be csets which are
913 * associated with the same set of cgroups but different csses.
914 * Let's first ensure that csses match.
916 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
920 /* @cset's domain should match the default cgroup's */
921 if (cgroup_on_dfl(new_cgrp
))
922 new_dfl_cgrp
= new_cgrp
;
924 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
926 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
930 * Compare cgroup pointers in order to distinguish between
931 * different cgroups in hierarchies. As different cgroups may
932 * share the same effective css, this comparison is always
935 l1
= &cset
->cgrp_links
;
936 l2
= &old_cset
->cgrp_links
;
938 struct cgrp_cset_link
*link1
, *link2
;
939 struct cgroup
*cgrp1
, *cgrp2
;
943 /* See if we reached the end - both lists are equal length. */
944 if (l1
== &cset
->cgrp_links
) {
945 BUG_ON(l2
!= &old_cset
->cgrp_links
);
948 BUG_ON(l2
== &old_cset
->cgrp_links
);
950 /* Locate the cgroups associated with these links. */
951 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
952 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
955 /* Hierarchies should be linked in the same order. */
956 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
959 * If this hierarchy is the hierarchy of the cgroup
960 * that's changing, then we need to check that this
961 * css_set points to the new cgroup; if it's any other
962 * hierarchy, then this css_set should point to the
963 * same cgroup as the old css_set.
965 if (cgrp1
->root
== new_cgrp
->root
) {
966 if (cgrp1
!= new_cgrp
)
977 * find_existing_css_set - init css array and find the matching css_set
978 * @old_cset: the css_set that we're using before the cgroup transition
979 * @cgrp: the cgroup that we're moving into
980 * @template: out param for the new set of csses, should be clear on entry
982 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
984 struct cgroup_subsys_state
*template[])
986 struct cgroup_root
*root
= cgrp
->root
;
987 struct cgroup_subsys
*ss
;
988 struct css_set
*cset
;
993 * Build the set of subsystem state objects that we want to see in the
994 * new css_set. while subsystems can change globally, the entries here
995 * won't change, so no need for locking.
997 for_each_subsys(ss
, i
) {
998 if (root
->subsys_mask
& (1UL << i
)) {
1000 * @ss is in this hierarchy, so we want the
1001 * effective css from @cgrp.
1003 template[i
] = cgroup_e_css(cgrp
, ss
);
1006 * @ss is not in this hierarchy, so we don't want
1007 * to change the css.
1009 template[i
] = old_cset
->subsys
[i
];
1013 key
= css_set_hash(template);
1014 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1015 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1018 /* This css_set matches what we need */
1022 /* No existing cgroup group matched */
1026 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1028 struct cgrp_cset_link
*link
, *tmp_link
;
1030 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1031 list_del(&link
->cset_link
);
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link. Returns 0 on success or -errno.
1044 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1046 struct cgrp_cset_link
*link
;
1049 INIT_LIST_HEAD(tmp_links
);
1051 for (i
= 0; i
< count
; i
++) {
1052 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1054 free_cgrp_cset_links(tmp_links
);
1057 list_add(&link
->cset_link
, tmp_links
);
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1068 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1069 struct cgroup
*cgrp
)
1071 struct cgrp_cset_link
*link
;
1073 BUG_ON(list_empty(tmp_links
));
1075 if (cgroup_on_dfl(cgrp
))
1076 cset
->dfl_cgrp
= cgrp
;
1078 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1083 * Always add links to the tail of the lists so that the lists are
1084 * in choronological order.
1086 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1087 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1089 if (cgroup_parent(cgrp
))
1090 cgroup_get_live(cgrp
);
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1101 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1102 struct cgroup
*cgrp
)
1104 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1105 struct css_set
*cset
;
1106 struct list_head tmp_links
;
1107 struct cgrp_cset_link
*link
;
1108 struct cgroup_subsys
*ss
;
1112 lockdep_assert_held(&cgroup_mutex
);
1114 /* First see if we already have a cgroup group that matches
1115 * the desired set */
1116 spin_lock_irq(&css_set_lock
);
1117 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1120 spin_unlock_irq(&css_set_lock
);
1125 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1129 /* Allocate all the cgrp_cset_link objects that we'll need */
1130 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1135 refcount_set(&cset
->refcount
, 1);
1136 cset
->dom_cset
= cset
;
1137 INIT_LIST_HEAD(&cset
->tasks
);
1138 INIT_LIST_HEAD(&cset
->mg_tasks
);
1139 INIT_LIST_HEAD(&cset
->task_iters
);
1140 INIT_LIST_HEAD(&cset
->threaded_csets
);
1141 INIT_HLIST_NODE(&cset
->hlist
);
1142 INIT_LIST_HEAD(&cset
->cgrp_links
);
1143 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1144 INIT_LIST_HEAD(&cset
->mg_node
);
1146 /* Copy the set of subsystem state objects generated in
1147 * find_existing_css_set() */
1148 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1150 spin_lock_irq(&css_set_lock
);
1151 /* Add reference counts and links from the new css_set. */
1152 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1153 struct cgroup
*c
= link
->cgrp
;
1155 if (c
->root
== cgrp
->root
)
1157 link_css_set(&tmp_links
, cset
, c
);
1160 BUG_ON(!list_empty(&tmp_links
));
1164 /* Add @cset to the hash table */
1165 key
= css_set_hash(cset
->subsys
);
1166 hash_add(css_set_table
, &cset
->hlist
, key
);
1168 for_each_subsys(ss
, ssid
) {
1169 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1171 list_add_tail(&cset
->e_cset_node
[ssid
],
1172 &css
->cgroup
->e_csets
[ssid
]);
1176 spin_unlock_irq(&css_set_lock
);
1179 * If @cset should be threaded, look up the matching dom_cset and
1180 * link them up. We first fully initialize @cset then look for the
1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1182 * to stay empty until we return.
1184 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1185 struct css_set
*dcset
;
1187 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1193 spin_lock_irq(&css_set_lock
);
1194 cset
->dom_cset
= dcset
;
1195 list_add_tail(&cset
->threaded_csets_node
,
1196 &dcset
->threaded_csets
);
1197 spin_unlock_irq(&css_set_lock
);
1203 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1205 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1207 return root_cgrp
->root
;
1210 static int cgroup_init_root_id(struct cgroup_root
*root
)
1214 lockdep_assert_held(&cgroup_mutex
);
1216 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1220 root
->hierarchy_id
= id
;
1224 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1226 lockdep_assert_held(&cgroup_mutex
);
1228 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1231 void cgroup_free_root(struct cgroup_root
*root
)
1234 idr_destroy(&root
->cgroup_idr
);
1239 static void cgroup_destroy_root(struct cgroup_root
*root
)
1241 struct cgroup
*cgrp
= &root
->cgrp
;
1242 struct cgrp_cset_link
*link
, *tmp_link
;
1244 trace_cgroup_destroy_root(root
);
1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1248 BUG_ON(atomic_read(&root
->nr_cgrps
));
1249 BUG_ON(!list_empty(&cgrp
->self
.children
));
1251 /* Rebind all subsystems back to the default hierarchy */
1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1255 * Release all the links from cset_links to this hierarchy's
1258 spin_lock_irq(&css_set_lock
);
1260 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1261 list_del(&link
->cset_link
);
1262 list_del(&link
->cgrp_link
);
1266 spin_unlock_irq(&css_set_lock
);
1268 if (!list_empty(&root
->root_list
)) {
1269 list_del(&root
->root_list
);
1270 cgroup_root_count
--;
1273 cgroup_exit_root_id(root
);
1275 mutex_unlock(&cgroup_mutex
);
1277 kernfs_destroy_root(root
->kf_root
);
1278 cgroup_free_root(root
);
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1285 static struct cgroup
*
1286 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1288 struct cgroup
*res
= NULL
;
1289 struct css_set
*cset
;
1291 lockdep_assert_held(&css_set_lock
);
1295 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1296 if (cset
== &init_css_set
) {
1299 struct cgrp_cset_link
*link
;
1301 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1302 struct cgroup
*c
= link
->cgrp
;
1304 if (c
->root
== root
) {
1316 /* look up cgroup associated with given css_set on the specified hierarchy */
1317 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1318 struct cgroup_root
*root
)
1320 struct cgroup
*res
= NULL
;
1322 lockdep_assert_held(&cgroup_mutex
);
1323 lockdep_assert_held(&css_set_lock
);
1325 if (cset
== &init_css_set
) {
1327 } else if (root
== &cgrp_dfl_root
) {
1328 res
= cset
->dfl_cgrp
;
1330 struct cgrp_cset_link
*link
;
1332 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1333 struct cgroup
*c
= link
->cgrp
;
1335 if (c
->root
== root
) {
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1350 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1351 struct cgroup_root
*root
)
1354 * No need to lock the task - since we hold cgroup_mutex the
1355 * task can't change groups, so the only thing that can happen
1356 * is that it exits and its css is set back to init_css_set.
1358 return cset_cgroup_from_root(task_css_set(task
), root
);
1362 * A task must hold cgroup_mutex to modify cgroups.
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing. However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again. Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count). So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty. Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks. So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1383 * P.S. One more locking exception. RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1389 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1392 struct cgroup_subsys
*ss
= cft
->ss
;
1394 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1395 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1396 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1397 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1400 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1408 * S_IRUGO for read, S_IWUSR for write.
1410 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1414 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1417 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1418 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask. In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1439 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1441 u16 cur_ss_mask
= subtree_control
;
1442 struct cgroup_subsys
*ss
;
1445 lockdep_assert_held(&cgroup_mutex
);
1447 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1450 u16 new_ss_mask
= cur_ss_mask
;
1452 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1453 new_ss_mask
|= ss
->depends_on
;
1454 } while_each_subsys_mask();
1457 * Mask out subsystems which aren't available. This can
1458 * happen only if some depended-upon subsystems were bound
1459 * to non-default hierarchies.
1461 new_ss_mask
&= this_ss_mask
;
1463 if (new_ss_mask
== cur_ss_mask
)
1465 cur_ss_mask
= new_ss_mask
;
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded. Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time. If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1481 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1483 struct cgroup
*cgrp
;
1485 if (kernfs_type(kn
) == KERNFS_DIR
)
1488 cgrp
= kn
->parent
->priv
;
1490 mutex_unlock(&cgroup_mutex
);
1492 kernfs_unbreak_active_protection(kn
);
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn. It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive. Returns the cgroup if
1504 * alive; otherwise, %NULL. A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper. It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1513 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1515 struct cgroup
*cgrp
;
1517 if (kernfs_type(kn
) == KERNFS_DIR
)
1520 cgrp
= kn
->parent
->priv
;
1523 * We're gonna grab cgroup_mutex which nests outside kernfs
1524 * active_ref. cgroup liveliness check alone provides enough
1525 * protection against removal. Ensure @cgrp stays accessible and
1526 * break the active_ref protection.
1528 if (!cgroup_tryget(cgrp
))
1530 kernfs_break_active_protection(kn
);
1533 cgroup_lock_and_drain_offline(cgrp
);
1535 mutex_lock(&cgroup_mutex
);
1537 if (!cgroup_is_dead(cgrp
))
1540 cgroup_kn_unlock(kn
);
1544 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1546 char name
[CGROUP_FILE_NAME_MAX
];
1548 lockdep_assert_held(&cgroup_mutex
);
1550 if (cft
->file_offset
) {
1551 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1552 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1554 spin_lock_irq(&cgroup_file_kn_lock
);
1556 spin_unlock_irq(&cgroup_file_kn_lock
);
1559 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1563 * css_clear_dir - remove subsys files in a cgroup directory
1566 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1568 struct cgroup
*cgrp
= css
->cgroup
;
1569 struct cftype
*cfts
;
1571 if (!(css
->flags
& CSS_VISIBLE
))
1574 css
->flags
&= ~CSS_VISIBLE
;
1576 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1577 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1581 * css_populate_dir - create subsys files in a cgroup directory
1584 * On failure, no file is added.
1586 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1588 struct cgroup
*cgrp
= css
->cgroup
;
1589 struct cftype
*cfts
, *failed_cfts
;
1592 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1596 if (cgroup_on_dfl(cgrp
))
1597 cfts
= cgroup_base_files
;
1599 cfts
= cgroup1_base_files
;
1601 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1604 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1605 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1612 css
->flags
|= CSS_VISIBLE
;
1616 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1617 if (cfts
== failed_cfts
)
1619 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1624 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1626 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1627 struct cgroup_subsys
*ss
;
1630 lockdep_assert_held(&cgroup_mutex
);
1632 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1634 * If @ss has non-root csses attached to it, can't move.
1635 * If @ss is an implicit controller, it is exempt from this
1636 * rule and can be stolen.
1638 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1639 !ss
->implicit_on_dfl
)
1642 /* can't move between two non-dummy roots either */
1643 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1645 } while_each_subsys_mask();
1647 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1648 struct cgroup_root
*src_root
= ss
->root
;
1649 struct cgroup
*scgrp
= &src_root
->cgrp
;
1650 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1651 struct css_set
*cset
;
1653 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1655 /* disable from the source */
1656 src_root
->subsys_mask
&= ~(1 << ssid
);
1657 WARN_ON(cgroup_apply_control(scgrp
));
1658 cgroup_finalize_control(scgrp
, 0);
1661 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1662 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1663 ss
->root
= dst_root
;
1664 css
->cgroup
= dcgrp
;
1666 spin_lock_irq(&css_set_lock
);
1667 hash_for_each(css_set_table
, i
, cset
, hlist
)
1668 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1669 &dcgrp
->e_csets
[ss
->id
]);
1670 spin_unlock_irq(&css_set_lock
);
1672 /* default hierarchy doesn't enable controllers by default */
1673 dst_root
->subsys_mask
|= 1 << ssid
;
1674 if (dst_root
== &cgrp_dfl_root
) {
1675 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1677 dcgrp
->subtree_control
|= 1 << ssid
;
1678 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1681 ret
= cgroup_apply_control(dcgrp
);
1683 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1688 } while_each_subsys_mask();
1690 kernfs_activate(dcgrp
->kn
);
1694 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1695 struct kernfs_root
*kf_root
)
1699 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1700 struct cgroup
*ns_cgroup
;
1702 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1706 spin_lock_irq(&css_set_lock
);
1707 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1708 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1709 spin_unlock_irq(&css_set_lock
);
1711 if (len
>= PATH_MAX
)
1714 seq_escape(sf
, buf
, " \t\n\\");
1721 static int parse_cgroup_root_flags(char *data
, unsigned int *root_flags
)
1730 while ((token
= strsep(&data
, ",")) != NULL
) {
1731 if (!strcmp(token
, "nsdelegate")) {
1732 *root_flags
|= CGRP_ROOT_NS_DELEGATE
;
1736 pr_err("cgroup2: unknown option \"%s\"\n", token
);
1743 static void apply_cgroup_root_flags(unsigned int root_flags
)
1745 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1746 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1747 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1749 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1753 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1755 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1756 seq_puts(seq
, ",nsdelegate");
1760 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1762 unsigned int root_flags
;
1765 ret
= parse_cgroup_root_flags(data
, &root_flags
);
1769 apply_cgroup_root_flags(root_flags
);
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1779 static bool use_task_css_set_links __read_mostly
;
1781 static void cgroup_enable_task_cg_lists(void)
1783 struct task_struct
*p
, *g
;
1785 spin_lock_irq(&css_set_lock
);
1787 if (use_task_css_set_links
)
1790 use_task_css_set_links
= true;
1793 * We need tasklist_lock because RCU is not safe against
1794 * while_each_thread(). Besides, a forking task that has passed
1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796 * is not guaranteed to have its child immediately visible in the
1797 * tasklist if we walk through it with RCU.
1799 read_lock(&tasklist_lock
);
1800 do_each_thread(g
, p
) {
1801 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1802 task_css_set(p
) != &init_css_set
);
1805 * We should check if the process is exiting, otherwise
1806 * it will race with cgroup_exit() in that the list
1807 * entry won't be deleted though the process has exited.
1808 * Do it while holding siglock so that we don't end up
1809 * racing against cgroup_exit().
1811 * Interrupts were already disabled while acquiring
1812 * the css_set_lock, so we do not need to disable it
1813 * again when acquiring the sighand->siglock here.
1815 spin_lock(&p
->sighand
->siglock
);
1816 if (!(p
->flags
& PF_EXITING
)) {
1817 struct css_set
*cset
= task_css_set(p
);
1819 if (!css_set_populated(cset
))
1820 css_set_update_populated(cset
, true);
1821 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1825 spin_unlock(&p
->sighand
->siglock
);
1826 } while_each_thread(g
, p
);
1827 read_unlock(&tasklist_lock
);
1829 spin_unlock_irq(&css_set_lock
);
1832 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1834 struct cgroup_subsys
*ss
;
1837 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1838 INIT_LIST_HEAD(&cgrp
->self
.children
);
1839 INIT_LIST_HEAD(&cgrp
->cset_links
);
1840 INIT_LIST_HEAD(&cgrp
->pidlists
);
1841 mutex_init(&cgrp
->pidlist_mutex
);
1842 cgrp
->self
.cgroup
= cgrp
;
1843 cgrp
->self
.flags
|= CSS_ONLINE
;
1844 cgrp
->dom_cgrp
= cgrp
;
1845 cgrp
->max_descendants
= INT_MAX
;
1846 cgrp
->max_depth
= INT_MAX
;
1848 for_each_subsys(ss
, ssid
)
1849 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1851 init_waitqueue_head(&cgrp
->offline_waitq
);
1852 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1855 void init_cgroup_root(struct cgroup_root
*root
, struct cgroup_sb_opts
*opts
)
1857 struct cgroup
*cgrp
= &root
->cgrp
;
1859 INIT_LIST_HEAD(&root
->root_list
);
1860 atomic_set(&root
->nr_cgrps
, 1);
1862 init_cgroup_housekeeping(cgrp
);
1863 idr_init(&root
->cgroup_idr
);
1865 root
->flags
= opts
->flags
;
1866 if (opts
->release_agent
)
1867 strscpy(root
->release_agent_path
, opts
->release_agent
, PATH_MAX
);
1869 strscpy(root
->name
, opts
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1870 if (opts
->cpuset_clone_children
)
1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1874 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
, int ref_flags
)
1876 LIST_HEAD(tmp_links
);
1877 struct cgroup
*root_cgrp
= &root
->cgrp
;
1878 struct kernfs_syscall_ops
*kf_sops
;
1879 struct css_set
*cset
;
1882 lockdep_assert_held(&cgroup_mutex
);
1884 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1887 root_cgrp
->id
= ret
;
1888 root_cgrp
->ancestor_ids
[0] = ret
;
1890 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1891 ref_flags
, GFP_KERNEL
);
1896 * We're accessing css_set_count without locking css_set_lock here,
1897 * but that's OK - it can only be increased by someone holding
1898 * cgroup_lock, and that's us. Later rebinding may disable
1899 * controllers on the default hierarchy and thus create new csets,
1900 * which can't be more than the existing ones. Allocate 2x.
1902 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1906 ret
= cgroup_init_root_id(root
);
1910 kf_sops
= root
== &cgrp_dfl_root
?
1911 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1913 root
->kf_root
= kernfs_create_root(kf_sops
,
1914 KERNFS_ROOT_CREATE_DEACTIVATED
|
1915 KERNFS_ROOT_SUPPORT_EXPORTOP
,
1917 if (IS_ERR(root
->kf_root
)) {
1918 ret
= PTR_ERR(root
->kf_root
);
1921 root_cgrp
->kn
= root
->kf_root
->kn
;
1923 ret
= css_populate_dir(&root_cgrp
->self
);
1927 ret
= rebind_subsystems(root
, ss_mask
);
1931 ret
= cgroup_bpf_inherit(root_cgrp
);
1934 trace_cgroup_setup_root(root
);
1937 * There must be no failure case after here, since rebinding takes
1938 * care of subsystems' refcounts, which are explicitly dropped in
1939 * the failure exit path.
1941 list_add(&root
->root_list
, &cgroup_roots
);
1942 cgroup_root_count
++;
1945 * Link the root cgroup in this hierarchy into all the css_set
1948 spin_lock_irq(&css_set_lock
);
1949 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1950 link_css_set(&tmp_links
, cset
, root_cgrp
);
1951 if (css_set_populated(cset
))
1952 cgroup_update_populated(root_cgrp
, true);
1954 spin_unlock_irq(&css_set_lock
);
1956 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1957 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1959 kernfs_activate(root_cgrp
->kn
);
1964 kernfs_destroy_root(root
->kf_root
);
1965 root
->kf_root
= NULL
;
1967 cgroup_exit_root_id(root
);
1969 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1971 free_cgrp_cset_links(&tmp_links
);
1975 struct dentry
*cgroup_do_mount(struct file_system_type
*fs_type
, int flags
,
1976 struct cgroup_root
*root
, unsigned long magic
,
1977 struct cgroup_namespace
*ns
)
1979 struct dentry
*dentry
;
1982 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
, magic
, &new_sb
);
1985 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986 * we return the dentry corresponding to the cgroupns->root_cgrp.
1988 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
1989 struct dentry
*nsdentry
;
1990 struct cgroup
*cgrp
;
1992 mutex_lock(&cgroup_mutex
);
1993 spin_lock_irq(&css_set_lock
);
1995 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
1997 spin_unlock_irq(&css_set_lock
);
1998 mutex_unlock(&cgroup_mutex
);
2000 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2005 if (IS_ERR(dentry
) || !new_sb
)
2006 cgroup_put(&root
->cgrp
);
2011 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2012 int flags
, const char *unused_dev_name
,
2015 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2016 struct dentry
*dentry
;
2021 /* Check if the caller has permission to mount. */
2022 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2024 return ERR_PTR(-EPERM
);
2028 * The first time anyone tries to mount a cgroup, enable the list
2029 * linking each css_set to its tasks and fix up all existing tasks.
2031 if (!use_task_css_set_links
)
2032 cgroup_enable_task_cg_lists();
2034 if (fs_type
== &cgroup2_fs_type
) {
2035 unsigned int root_flags
;
2037 ret
= parse_cgroup_root_flags(data
, &root_flags
);
2040 return ERR_PTR(ret
);
2043 cgrp_dfl_visible
= true;
2044 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2046 dentry
= cgroup_do_mount(&cgroup2_fs_type
, flags
, &cgrp_dfl_root
,
2047 CGROUP2_SUPER_MAGIC
, ns
);
2048 if (!IS_ERR(dentry
))
2049 apply_cgroup_root_flags(root_flags
);
2051 dentry
= cgroup1_mount(&cgroup_fs_type
, flags
, data
,
2052 CGROUP_SUPER_MAGIC
, ns
);
2059 static void cgroup_kill_sb(struct super_block
*sb
)
2061 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2062 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2065 * If @root doesn't have any mounts or children, start killing it.
2066 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067 * cgroup_mount() may wait for @root's release.
2069 * And don't kill the default root.
2071 if (!list_empty(&root
->cgrp
.self
.children
) ||
2072 root
== &cgrp_dfl_root
)
2073 cgroup_put(&root
->cgrp
);
2075 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2080 struct file_system_type cgroup_fs_type
= {
2082 .mount
= cgroup_mount
,
2083 .kill_sb
= cgroup_kill_sb
,
2084 .fs_flags
= FS_USERNS_MOUNT
,
2087 static struct file_system_type cgroup2_fs_type
= {
2089 .mount
= cgroup_mount
,
2090 .kill_sb
= cgroup_kill_sb
,
2091 .fs_flags
= FS_USERNS_MOUNT
,
2094 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2095 struct cgroup_namespace
*ns
)
2097 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2099 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2102 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2103 struct cgroup_namespace
*ns
)
2107 mutex_lock(&cgroup_mutex
);
2108 spin_lock_irq(&css_set_lock
);
2110 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2112 spin_unlock_irq(&css_set_lock
);
2113 mutex_unlock(&cgroup_mutex
);
2117 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2130 * Return value is the same as kernfs_path().
2132 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2134 struct cgroup_root
*root
;
2135 struct cgroup
*cgrp
;
2136 int hierarchy_id
= 1;
2139 mutex_lock(&cgroup_mutex
);
2140 spin_lock_irq(&css_set_lock
);
2142 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2145 cgrp
= task_cgroup_from_root(task
, root
);
2146 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2148 /* if no hierarchy exists, everyone is in "/" */
2149 ret
= strlcpy(buf
, "/", buflen
);
2152 spin_unlock_irq(&css_set_lock
);
2153 mutex_unlock(&cgroup_mutex
);
2156 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2163 * Add @task, which is a migration target, to @mgctx->tset. This function
2164 * becomes noop if @task doesn't need to be migrated. @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2168 static void cgroup_migrate_add_task(struct task_struct
*task
,
2169 struct cgroup_mgctx
*mgctx
)
2171 struct css_set
*cset
;
2173 lockdep_assert_held(&css_set_lock
);
2175 /* @task either already exited or can't exit until the end */
2176 if (task
->flags
& PF_EXITING
)
2179 /* leave @task alone if post_fork() hasn't linked it yet */
2180 if (list_empty(&task
->cg_list
))
2183 cset
= task_css_set(task
);
2184 if (!cset
->mg_src_cgrp
)
2187 mgctx
->tset
.nr_tasks
++;
2189 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2190 if (list_empty(&cset
->mg_node
))
2191 list_add_tail(&cset
->mg_node
,
2192 &mgctx
->tset
.src_csets
);
2193 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2194 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2195 &mgctx
->tset
.dst_csets
);
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2203 * @tset iteration is initialized and the first task is returned.
2205 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2206 struct cgroup_subsys_state
**dst_cssp
)
2208 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2209 tset
->cur_task
= NULL
;
2211 return cgroup_taskset_next(tset
, dst_cssp
);
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2219 * Return the next task in @tset. Iteration must have been initialized
2220 * with cgroup_taskset_first().
2222 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2223 struct cgroup_subsys_state
**dst_cssp
)
2225 struct css_set
*cset
= tset
->cur_cset
;
2226 struct task_struct
*task
= tset
->cur_task
;
2228 while (&cset
->mg_node
!= tset
->csets
) {
2230 task
= list_first_entry(&cset
->mg_tasks
,
2231 struct task_struct
, cg_list
);
2233 task
= list_next_entry(task
, cg_list
);
2235 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2236 tset
->cur_cset
= cset
;
2237 tset
->cur_task
= task
;
2240 * This function may be called both before and
2241 * after cgroup_taskset_migrate(). The two cases
2242 * can be distinguished by looking at whether @cset
2243 * has its ->mg_dst_cset set.
2245 if (cset
->mg_dst_cset
)
2246 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2248 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2253 cset
= list_next_entry(cset
, mg_node
);
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2269 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2271 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2272 struct cgroup_subsys
*ss
;
2273 struct task_struct
*task
, *tmp_task
;
2274 struct css_set
*cset
, *tmp_cset
;
2275 int ssid
, failed_ssid
, ret
;
2277 /* check that we can legitimately attach to the cgroup */
2278 if (tset
->nr_tasks
) {
2279 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2280 if (ss
->can_attach
) {
2282 ret
= ss
->can_attach(tset
);
2285 goto out_cancel_attach
;
2288 } while_each_subsys_mask();
2292 * Now that we're guaranteed success, proceed to move all tasks to
2293 * the new cgroup. There are no failure cases after here, so this
2294 * is the commit point.
2296 spin_lock_irq(&css_set_lock
);
2297 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2298 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2299 struct css_set
*from_cset
= task_css_set(task
);
2300 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2302 get_css_set(to_cset
);
2303 to_cset
->nr_tasks
++;
2304 css_set_move_task(task
, from_cset
, to_cset
, true);
2305 put_css_set_locked(from_cset
);
2306 from_cset
->nr_tasks
--;
2309 spin_unlock_irq(&css_set_lock
);
2312 * Migration is committed, all target tasks are now on dst_csets.
2313 * Nothing is sensitive to fork() after this point. Notify
2314 * controllers that migration is complete.
2316 tset
->csets
= &tset
->dst_csets
;
2318 if (tset
->nr_tasks
) {
2319 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2324 } while_each_subsys_mask();
2328 goto out_release_tset
;
2331 if (tset
->nr_tasks
) {
2332 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2333 if (ssid
== failed_ssid
)
2335 if (ss
->cancel_attach
) {
2337 ss
->cancel_attach(tset
);
2339 } while_each_subsys_mask();
2342 spin_lock_irq(&css_set_lock
);
2343 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2344 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2345 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2346 list_del_init(&cset
->mg_node
);
2348 spin_unlock_irq(&css_set_lock
);
2351 * Re-initialize the cgroup_taskset structure in case it is reused
2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2356 tset
->csets
= &tset
->src_csets
;
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2369 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2371 /* v1 doesn't have any restriction */
2372 if (!cgroup_on_dfl(dst_cgrp
))
2375 /* verify @dst_cgrp can host resources */
2376 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2379 /* mixables don't care */
2380 if (cgroup_is_mixable(dst_cgrp
))
2384 * If @dst_cgrp is already or can become a thread root or is
2385 * threaded, it doesn't matter.
2387 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2390 /* apply no-internal-process constraint */
2391 if (dst_cgrp
->subtree_control
)
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2402 * those functions for details.
2404 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2406 LIST_HEAD(preloaded
);
2407 struct css_set
*cset
, *tmp_cset
;
2409 lockdep_assert_held(&cgroup_mutex
);
2411 spin_lock_irq(&css_set_lock
);
2413 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2414 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2416 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2417 cset
->mg_src_cgrp
= NULL
;
2418 cset
->mg_dst_cgrp
= NULL
;
2419 cset
->mg_dst_cset
= NULL
;
2420 list_del_init(&cset
->mg_preload_node
);
2421 put_css_set_locked(cset
);
2424 spin_unlock_irq(&css_set_lock
);
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process. Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2443 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2444 struct cgroup
*dst_cgrp
,
2445 struct cgroup_mgctx
*mgctx
)
2447 struct cgroup
*src_cgrp
;
2449 lockdep_assert_held(&cgroup_mutex
);
2450 lockdep_assert_held(&css_set_lock
);
2453 * If ->dead, @src_set is associated with one or more dead cgroups
2454 * and doesn't contain any migratable tasks. Ignore it early so
2455 * that the rest of migration path doesn't get confused by it.
2460 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2462 if (!list_empty(&src_cset
->mg_preload_node
))
2465 WARN_ON(src_cset
->mg_src_cgrp
);
2466 WARN_ON(src_cset
->mg_dst_cgrp
);
2467 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2468 WARN_ON(!list_empty(&src_cset
->mg_node
));
2470 src_cset
->mg_src_cgrp
= src_cgrp
;
2471 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2472 get_css_set(src_cset
);
2473 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2492 struct css_set
*src_cset
, *tmp_cset
;
2494 lockdep_assert_held(&cgroup_mutex
);
2496 /* look up the dst cset for each src cset and link it to src */
2497 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2499 struct css_set
*dst_cset
;
2500 struct cgroup_subsys
*ss
;
2503 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2507 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2510 * If src cset equals dst, it's noop. Drop the src.
2511 * cgroup_migrate() will skip the cset too. Note that we
2512 * can't handle src == dst as some nodes are used by both.
2514 if (src_cset
== dst_cset
) {
2515 src_cset
->mg_src_cgrp
= NULL
;
2516 src_cset
->mg_dst_cgrp
= NULL
;
2517 list_del_init(&src_cset
->mg_preload_node
);
2518 put_css_set(src_cset
);
2519 put_css_set(dst_cset
);
2523 src_cset
->mg_dst_cset
= dst_cset
;
2525 if (list_empty(&dst_cset
->mg_preload_node
))
2526 list_add_tail(&dst_cset
->mg_preload_node
,
2527 &mgctx
->preloaded_dst_csets
);
2529 put_css_set(dst_cset
);
2531 for_each_subsys(ss
, ssid
)
2532 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2533 mgctx
->ss_mask
|= 1 << ssid
;
2538 cgroup_migrate_finish(mgctx
);
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2548 * Migrate a process or task denoted by @leader. If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed. This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2560 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2561 struct cgroup_mgctx
*mgctx
)
2563 struct task_struct
*task
;
2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567 * already PF_EXITING could be freed from underneath us unless we
2568 * take an rcu_read_lock.
2570 spin_lock_irq(&css_set_lock
);
2574 cgroup_migrate_add_task(task
, mgctx
);
2577 } while_each_thread(leader
, task
);
2579 spin_unlock_irq(&css_set_lock
);
2581 return cgroup_migrate_execute(mgctx
);
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2592 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2595 DEFINE_CGROUP_MGCTX(mgctx
);
2596 struct task_struct
*task
;
2599 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2603 /* look up all src csets */
2604 spin_lock_irq(&css_set_lock
);
2608 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2611 } while_each_thread(leader
, task
);
2613 spin_unlock_irq(&css_set_lock
);
2615 /* prepare dst csets and commit */
2616 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2618 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2620 cgroup_migrate_finish(&mgctx
);
2623 trace_cgroup_attach_task(dst_cgrp
, leader
, threadgroup
);
2628 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2629 __acquires(&cgroup_threadgroup_rwsem
)
2631 struct task_struct
*tsk
;
2634 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2635 return ERR_PTR(-EINVAL
);
2637 percpu_down_write(&cgroup_threadgroup_rwsem
);
2641 tsk
= find_task_by_vpid(pid
);
2643 tsk
= ERR_PTR(-ESRCH
);
2644 goto out_unlock_threadgroup
;
2651 tsk
= tsk
->group_leader
;
2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655 * If userland migrates such a kthread to a non-root cgroup, it can
2656 * become trapped in a cpuset, or RT kthread may be born in a
2657 * cgroup with no rt_runtime allocated. Just say no.
2659 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2660 tsk
= ERR_PTR(-EINVAL
);
2661 goto out_unlock_threadgroup
;
2664 get_task_struct(tsk
);
2665 goto out_unlock_rcu
;
2667 out_unlock_threadgroup
:
2668 percpu_up_write(&cgroup_threadgroup_rwsem
);
2674 void cgroup_procs_write_finish(struct task_struct
*task
)
2675 __releases(&cgroup_threadgroup_rwsem
)
2677 struct cgroup_subsys
*ss
;
2680 /* release reference from cgroup_procs_write_start() */
2681 put_task_struct(task
);
2683 percpu_up_write(&cgroup_threadgroup_rwsem
);
2684 for_each_subsys(ss
, ssid
)
2685 if (ss
->post_attach
)
2689 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2691 struct cgroup_subsys
*ss
;
2692 bool printed
= false;
2695 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2698 seq_printf(seq
, "%s", ss
->name
);
2700 } while_each_subsys_mask();
2702 seq_putc(seq
, '\n');
2705 /* show controllers which are enabled from the parent */
2706 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2708 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2710 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2714 /* show controllers which are enabled for a given cgroup's children */
2715 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2717 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2719 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly. This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2732 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2734 DEFINE_CGROUP_MGCTX(mgctx
);
2735 struct cgroup_subsys_state
*d_css
;
2736 struct cgroup
*dsct
;
2737 struct css_set
*src_cset
;
2740 lockdep_assert_held(&cgroup_mutex
);
2742 percpu_down_write(&cgroup_threadgroup_rwsem
);
2744 /* look up all csses currently attached to @cgrp's subtree */
2745 spin_lock_irq(&css_set_lock
);
2746 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2747 struct cgrp_cset_link
*link
;
2749 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2750 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2752 spin_unlock_irq(&css_set_lock
);
2754 /* NULL dst indicates self on default hierarchy */
2755 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2759 spin_lock_irq(&css_set_lock
);
2760 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2761 struct task_struct
*task
, *ntask
;
2763 /* all tasks in src_csets need to be migrated */
2764 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2765 cgroup_migrate_add_task(task
, &mgctx
);
2767 spin_unlock_irq(&css_set_lock
);
2769 ret
= cgroup_migrate_execute(&mgctx
);
2771 cgroup_migrate_finish(&mgctx
);
2772 percpu_up_write(&cgroup_threadgroup_rwsem
);
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around. This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2784 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2785 __acquires(&cgroup_mutex
)
2787 struct cgroup
*dsct
;
2788 struct cgroup_subsys_state
*d_css
;
2789 struct cgroup_subsys
*ss
;
2793 mutex_lock(&cgroup_mutex
);
2795 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2796 for_each_subsys(ss
, ssid
) {
2797 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2800 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2803 cgroup_get_live(dsct
);
2804 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2805 TASK_UNINTERRUPTIBLE
);
2807 mutex_unlock(&cgroup_mutex
);
2809 finish_wait(&dsct
->offline_waitq
, &wait
);
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2824 static void cgroup_save_control(struct cgroup
*cgrp
)
2826 struct cgroup
*dsct
;
2827 struct cgroup_subsys_state
*d_css
;
2829 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2830 dsct
->old_subtree_control
= dsct
->subtree_control
;
2831 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2843 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2845 struct cgroup
*dsct
;
2846 struct cgroup_subsys_state
*d_css
;
2848 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2849 dsct
->subtree_control
&= cgroup_control(dsct
);
2850 dsct
->subtree_ss_mask
=
2851 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2852 cgroup_ss_mask(dsct
));
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2863 static void cgroup_restore_control(struct cgroup
*cgrp
)
2865 struct cgroup
*dsct
;
2866 struct cgroup_subsys_state
*d_css
;
2868 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2869 dsct
->subtree_control
= dsct
->old_subtree_control
;
2870 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
2874 static bool css_visible(struct cgroup_subsys_state
*css
)
2876 struct cgroup_subsys
*ss
= css
->ss
;
2877 struct cgroup
*cgrp
= css
->cgroup
;
2879 if (cgroup_control(cgrp
) & (1 << ss
->id
))
2881 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
2883 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible. A css is created invisible if it's being implicitly enabled
2892 * through dependency. An invisible css is made visible when the userland
2893 * explicitly enables it.
2895 * Returns 0 on success, -errno on failure. On failure, csses which have
2896 * been processed already aren't cleaned up. The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2899 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
2901 struct cgroup
*dsct
;
2902 struct cgroup_subsys_state
*d_css
;
2903 struct cgroup_subsys
*ss
;
2906 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2907 for_each_subsys(ss
, ssid
) {
2908 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2910 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2912 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
2916 css
= css_create(dsct
, ss
);
2918 return PTR_ERR(css
);
2921 if (css_visible(css
)) {
2922 ret
= css_populate_dir(css
);
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it. The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2945 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
2947 struct cgroup
*dsct
;
2948 struct cgroup_subsys_state
*d_css
;
2949 struct cgroup_subsys
*ss
;
2952 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2953 for_each_subsys(ss
, ssid
) {
2954 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2956 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2962 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
2964 } else if (!css_visible(css
)) {
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2977 * subsystems can be enabled and disabled in a subtree using the following
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2990 static int cgroup_apply_control(struct cgroup
*cgrp
)
2994 cgroup_propagate_control(cgrp
);
2996 ret
= cgroup_apply_control_enable(cgrp
);
3001 * At this point, cgroup_e_css() results reflect the new csses
3002 * making the following cgroup_update_dfl_csses() properly update
3003 * css associations of all tasks in the subtree.
3005 ret
= cgroup_update_dfl_csses(cgrp
);
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3017 * Finalize control mask update. See cgroup_apply_control() for more info.
3019 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3022 cgroup_restore_control(cgrp
);
3023 cgroup_propagate_control(cgrp
);
3026 cgroup_apply_control_disable(cgrp
);
3029 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3031 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3033 /* if nothing is getting enabled, nothing to worry about */
3037 /* can @cgrp host any resources? */
3038 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3041 /* mixables don't care */
3042 if (cgroup_is_mixable(cgrp
))
3045 if (domain_enable
) {
3046 /* can't enable domain controllers inside a thread subtree */
3047 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3051 * Threaded controllers can handle internal competitions
3052 * and are always allowed inside a (prospective) thread
3055 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3060 * Controllers can't be enabled for a cgroup with tasks to avoid
3061 * child cgroups competing against tasks.
3063 if (cgroup_has_tasks(cgrp
))
3069 /* change the enabled child controllers for a cgroup in the default hierarchy */
3070 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3071 char *buf
, size_t nbytes
,
3074 u16 enable
= 0, disable
= 0;
3075 struct cgroup
*cgrp
, *child
;
3076 struct cgroup_subsys
*ss
;
3081 * Parse input - space separated list of subsystem names prefixed
3082 * with either + or -.
3084 buf
= strstrip(buf
);
3085 while ((tok
= strsep(&buf
, " "))) {
3088 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3089 if (!cgroup_ssid_enabled(ssid
) ||
3090 strcmp(tok
+ 1, ss
->name
))
3094 enable
|= 1 << ssid
;
3095 disable
&= ~(1 << ssid
);
3096 } else if (*tok
== '-') {
3097 disable
|= 1 << ssid
;
3098 enable
&= ~(1 << ssid
);
3103 } while_each_subsys_mask();
3104 if (ssid
== CGROUP_SUBSYS_COUNT
)
3108 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3112 for_each_subsys(ss
, ssid
) {
3113 if (enable
& (1 << ssid
)) {
3114 if (cgrp
->subtree_control
& (1 << ssid
)) {
3115 enable
&= ~(1 << ssid
);
3119 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3123 } else if (disable
& (1 << ssid
)) {
3124 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3125 disable
&= ~(1 << ssid
);
3129 /* a child has it enabled? */
3130 cgroup_for_each_live_child(child
, cgrp
) {
3131 if (child
->subtree_control
& (1 << ssid
)) {
3139 if (!enable
&& !disable
) {
3144 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3148 /* save and update control masks and prepare csses */
3149 cgroup_save_control(cgrp
);
3151 cgrp
->subtree_control
|= enable
;
3152 cgrp
->subtree_control
&= ~disable
;
3154 ret
= cgroup_apply_control(cgrp
);
3155 cgroup_finalize_control(cgrp
, ret
);
3159 kernfs_activate(cgrp
->kn
);
3161 cgroup_kn_unlock(of
->kn
);
3162 return ret
?: nbytes
;
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3174 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3176 struct cgroup
*parent
= cgroup_parent(cgrp
);
3177 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3180 lockdep_assert_held(&cgroup_mutex
);
3182 /* noop if already threaded */
3183 if (cgroup_is_threaded(cgrp
))
3186 /* we're joining the parent's domain, ensure its validity */
3187 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3188 !cgroup_can_be_thread_root(dom_cgrp
))
3192 * The following shouldn't cause actual migrations and should
3195 cgroup_save_control(cgrp
);
3197 cgrp
->dom_cgrp
= dom_cgrp
;
3198 ret
= cgroup_apply_control(cgrp
);
3200 parent
->nr_threaded_children
++;
3202 cgrp
->dom_cgrp
= cgrp
;
3204 cgroup_finalize_control(cgrp
, ret
);
3208 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3210 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3212 if (cgroup_is_threaded(cgrp
))
3213 seq_puts(seq
, "threaded\n");
3214 else if (!cgroup_is_valid_domain(cgrp
))
3215 seq_puts(seq
, "domain invalid\n");
3216 else if (cgroup_is_thread_root(cgrp
))
3217 seq_puts(seq
, "domain threaded\n");
3219 seq_puts(seq
, "domain\n");
3224 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3225 size_t nbytes
, loff_t off
)
3227 struct cgroup
*cgrp
;
3230 /* only switching to threaded mode is supported */
3231 if (strcmp(strstrip(buf
), "threaded"))
3234 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3238 /* threaded can only be enabled */
3239 ret
= cgroup_enable_threaded(cgrp
);
3241 cgroup_kn_unlock(of
->kn
);
3242 return ret
?: nbytes
;
3245 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3247 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3248 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3250 if (descendants
== INT_MAX
)
3251 seq_puts(seq
, "max\n");
3253 seq_printf(seq
, "%d\n", descendants
);
3258 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3259 char *buf
, size_t nbytes
, loff_t off
)
3261 struct cgroup
*cgrp
;
3265 buf
= strstrip(buf
);
3266 if (!strcmp(buf
, "max")) {
3267 descendants
= INT_MAX
;
3269 ret
= kstrtoint(buf
, 0, &descendants
);
3274 if (descendants
< 0)
3277 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3281 cgrp
->max_descendants
= descendants
;
3283 cgroup_kn_unlock(of
->kn
);
3288 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3290 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3291 int depth
= READ_ONCE(cgrp
->max_depth
);
3293 if (depth
== INT_MAX
)
3294 seq_puts(seq
, "max\n");
3296 seq_printf(seq
, "%d\n", depth
);
3301 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3302 char *buf
, size_t nbytes
, loff_t off
)
3304 struct cgroup
*cgrp
;
3308 buf
= strstrip(buf
);
3309 if (!strcmp(buf
, "max")) {
3312 ret
= kstrtoint(buf
, 0, &depth
);
3320 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3324 cgrp
->max_depth
= depth
;
3326 cgroup_kn_unlock(of
->kn
);
3331 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3333 seq_printf(seq
, "populated %d\n",
3334 cgroup_is_populated(seq_css(seq
)->cgroup
));
3338 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3340 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3342 seq_printf(seq
, "nr_descendants %d\n",
3343 cgroup
->nr_descendants
);
3344 seq_printf(seq
, "nr_dying_descendants %d\n",
3345 cgroup
->nr_dying_descendants
);
3350 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3351 struct cgroup
*cgrp
, int ssid
)
3353 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3354 struct cgroup_subsys_state
*css
;
3357 if (!ss
->css_extra_stat_show
)
3360 css
= cgroup_tryget_css(cgrp
, ss
);
3364 ret
= ss
->css_extra_stat_show(seq
, css
);
3369 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3371 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3374 cgroup_stat_show_cputime(seq
);
3375 #ifdef CONFIG_CGROUP_SCHED
3376 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3381 static int cgroup_file_open(struct kernfs_open_file
*of
)
3383 struct cftype
*cft
= of
->kn
->priv
;
3386 return cft
->open(of
);
3390 static void cgroup_file_release(struct kernfs_open_file
*of
)
3392 struct cftype
*cft
= of
->kn
->priv
;
3398 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3399 size_t nbytes
, loff_t off
)
3401 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3402 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3403 struct cftype
*cft
= of
->kn
->priv
;
3404 struct cgroup_subsys_state
*css
;
3408 * If namespaces are delegation boundaries, disallow writes to
3409 * files in an non-init namespace root from inside the namespace
3410 * except for the files explicitly marked delegatable -
3411 * cgroup.procs and cgroup.subtree_control.
3413 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3414 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3415 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3419 return cft
->write(of
, buf
, nbytes
, off
);
3422 * kernfs guarantees that a file isn't deleted with operations in
3423 * flight, which means that the matching css is and stays alive and
3424 * doesn't need to be pinned. The RCU locking is not necessary
3425 * either. It's just for the convenience of using cgroup_css().
3428 css
= cgroup_css(cgrp
, cft
->ss
);
3431 if (cft
->write_u64
) {
3432 unsigned long long v
;
3433 ret
= kstrtoull(buf
, 0, &v
);
3435 ret
= cft
->write_u64(css
, cft
, v
);
3436 } else if (cft
->write_s64
) {
3438 ret
= kstrtoll(buf
, 0, &v
);
3440 ret
= cft
->write_s64(css
, cft
, v
);
3445 return ret
?: nbytes
;
3448 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3450 return seq_cft(seq
)->seq_start(seq
, ppos
);
3453 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3455 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3458 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3460 if (seq_cft(seq
)->seq_stop
)
3461 seq_cft(seq
)->seq_stop(seq
, v
);
3464 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3466 struct cftype
*cft
= seq_cft(m
);
3467 struct cgroup_subsys_state
*css
= seq_css(m
);
3470 return cft
->seq_show(m
, arg
);
3473 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3474 else if (cft
->read_s64
)
3475 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3481 static struct kernfs_ops cgroup_kf_single_ops
= {
3482 .atomic_write_len
= PAGE_SIZE
,
3483 .open
= cgroup_file_open
,
3484 .release
= cgroup_file_release
,
3485 .write
= cgroup_file_write
,
3486 .seq_show
= cgroup_seqfile_show
,
3489 static struct kernfs_ops cgroup_kf_ops
= {
3490 .atomic_write_len
= PAGE_SIZE
,
3491 .open
= cgroup_file_open
,
3492 .release
= cgroup_file_release
,
3493 .write
= cgroup_file_write
,
3494 .seq_start
= cgroup_seqfile_start
,
3495 .seq_next
= cgroup_seqfile_next
,
3496 .seq_stop
= cgroup_seqfile_stop
,
3497 .seq_show
= cgroup_seqfile_show
,
3500 /* set uid and gid of cgroup dirs and files to that of the creator */
3501 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3503 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3504 .ia_uid
= current_fsuid(),
3505 .ia_gid
= current_fsgid(), };
3507 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3508 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3511 return kernfs_setattr(kn
, &iattr
);
3514 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3517 char name
[CGROUP_FILE_NAME_MAX
];
3518 struct kernfs_node
*kn
;
3519 struct lock_class_key
*key
= NULL
;
3522 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3523 key
= &cft
->lockdep_key
;
3525 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3526 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3531 ret
= cgroup_kn_set_ugid(kn
);
3537 if (cft
->file_offset
) {
3538 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3540 spin_lock_irq(&cgroup_file_kn_lock
);
3542 spin_unlock_irq(&cgroup_file_kn_lock
);
3549 * cgroup_addrm_files - add or remove files to a cgroup directory
3550 * @css: the target css
3551 * @cgrp: the target cgroup (usually css->cgroup)
3552 * @cfts: array of cftypes to be added
3553 * @is_add: whether to add or remove
3555 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3556 * For removals, this function never fails.
3558 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3559 struct cgroup
*cgrp
, struct cftype cfts
[],
3562 struct cftype
*cft
, *cft_end
= NULL
;
3565 lockdep_assert_held(&cgroup_mutex
);
3568 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3569 /* does cft->flags tell us to skip this file on @cgrp? */
3570 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3572 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3574 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3576 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3580 ret
= cgroup_add_file(css
, cgrp
, cft
);
3582 pr_warn("%s: failed to add %s, err=%d\n",
3583 __func__
, cft
->name
, ret
);
3589 cgroup_rm_file(cgrp
, cft
);
3595 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3597 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3598 struct cgroup
*root
= &ss
->root
->cgrp
;
3599 struct cgroup_subsys_state
*css
;
3602 lockdep_assert_held(&cgroup_mutex
);
3604 /* add/rm files for all cgroups created before */
3605 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3606 struct cgroup
*cgrp
= css
->cgroup
;
3608 if (!(css
->flags
& CSS_VISIBLE
))
3611 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3617 kernfs_activate(root
->kn
);
3621 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3625 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3626 /* free copy for custom atomic_write_len, see init_cftypes() */
3627 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3632 /* revert flags set by cgroup core while adding @cfts */
3633 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3637 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3641 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3642 struct kernfs_ops
*kf_ops
;
3644 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3647 kf_ops
= &cgroup_kf_ops
;
3649 kf_ops
= &cgroup_kf_single_ops
;
3652 * Ugh... if @cft wants a custom max_write_len, we need to
3653 * make a copy of kf_ops to set its atomic_write_len.
3655 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3656 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3658 cgroup_exit_cftypes(cfts
);
3661 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3664 cft
->kf_ops
= kf_ops
;
3671 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3673 lockdep_assert_held(&cgroup_mutex
);
3675 if (!cfts
|| !cfts
[0].ss
)
3678 list_del(&cfts
->node
);
3679 cgroup_apply_cftypes(cfts
, false);
3680 cgroup_exit_cftypes(cfts
);
3685 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3686 * @cfts: zero-length name terminated array of cftypes
3688 * Unregister @cfts. Files described by @cfts are removed from all
3689 * existing cgroups and all future cgroups won't have them either. This
3690 * function can be called anytime whether @cfts' subsys is attached or not.
3692 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3695 int cgroup_rm_cftypes(struct cftype
*cfts
)
3699 mutex_lock(&cgroup_mutex
);
3700 ret
= cgroup_rm_cftypes_locked(cfts
);
3701 mutex_unlock(&cgroup_mutex
);
3706 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3707 * @ss: target cgroup subsystem
3708 * @cfts: zero-length name terminated array of cftypes
3710 * Register @cfts to @ss. Files described by @cfts are created for all
3711 * existing cgroups to which @ss is attached and all future cgroups will
3712 * have them too. This function can be called anytime whether @ss is
3715 * Returns 0 on successful registration, -errno on failure. Note that this
3716 * function currently returns 0 as long as @cfts registration is successful
3717 * even if some file creation attempts on existing cgroups fail.
3719 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3723 if (!cgroup_ssid_enabled(ss
->id
))
3726 if (!cfts
|| cfts
[0].name
[0] == '\0')
3729 ret
= cgroup_init_cftypes(ss
, cfts
);
3733 mutex_lock(&cgroup_mutex
);
3735 list_add_tail(&cfts
->node
, &ss
->cfts
);
3736 ret
= cgroup_apply_cftypes(cfts
, true);
3738 cgroup_rm_cftypes_locked(cfts
);
3740 mutex_unlock(&cgroup_mutex
);
3745 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3746 * @ss: target cgroup subsystem
3747 * @cfts: zero-length name terminated array of cftypes
3749 * Similar to cgroup_add_cftypes() but the added files are only used for
3750 * the default hierarchy.
3752 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3756 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3757 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3758 return cgroup_add_cftypes(ss
, cfts
);
3762 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3763 * @ss: target cgroup subsystem
3764 * @cfts: zero-length name terminated array of cftypes
3766 * Similar to cgroup_add_cftypes() but the added files are only used for
3767 * the legacy hierarchies.
3769 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3773 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3774 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3775 return cgroup_add_cftypes(ss
, cfts
);
3779 * cgroup_file_notify - generate a file modified event for a cgroup_file
3780 * @cfile: target cgroup_file
3782 * @cfile must have been obtained by setting cftype->file_offset.
3784 void cgroup_file_notify(struct cgroup_file
*cfile
)
3786 unsigned long flags
;
3788 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3790 kernfs_notify(cfile
->kn
);
3791 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3795 * css_next_child - find the next child of a given css
3796 * @pos: the current position (%NULL to initiate traversal)
3797 * @parent: css whose children to walk
3799 * This function returns the next child of @parent and should be called
3800 * under either cgroup_mutex or RCU read lock. The only requirement is
3801 * that @parent and @pos are accessible. The next sibling is guaranteed to
3802 * be returned regardless of their states.
3804 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3805 * css which finished ->css_online() is guaranteed to be visible in the
3806 * future iterations and will stay visible until the last reference is put.
3807 * A css which hasn't finished ->css_online() or already finished
3808 * ->css_offline() may show up during traversal. It's each subsystem's
3809 * responsibility to synchronize against on/offlining.
3811 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3812 struct cgroup_subsys_state
*parent
)
3814 struct cgroup_subsys_state
*next
;
3816 cgroup_assert_mutex_or_rcu_locked();
3819 * @pos could already have been unlinked from the sibling list.
3820 * Once a cgroup is removed, its ->sibling.next is no longer
3821 * updated when its next sibling changes. CSS_RELEASED is set when
3822 * @pos is taken off list, at which time its next pointer is valid,
3823 * and, as releases are serialized, the one pointed to by the next
3824 * pointer is guaranteed to not have started release yet. This
3825 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3826 * critical section, the one pointed to by its next pointer is
3827 * guaranteed to not have finished its RCU grace period even if we
3828 * have dropped rcu_read_lock() inbetween iterations.
3830 * If @pos has CSS_RELEASED set, its next pointer can't be
3831 * dereferenced; however, as each css is given a monotonically
3832 * increasing unique serial number and always appended to the
3833 * sibling list, the next one can be found by walking the parent's
3834 * children until the first css with higher serial number than
3835 * @pos's. While this path can be slower, it happens iff iteration
3836 * races against release and the race window is very small.
3839 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3840 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3841 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3843 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3844 if (next
->serial_nr
> pos
->serial_nr
)
3849 * @next, if not pointing to the head, can be dereferenced and is
3852 if (&next
->sibling
!= &parent
->children
)
3858 * css_next_descendant_pre - find the next descendant for pre-order walk
3859 * @pos: the current position (%NULL to initiate traversal)
3860 * @root: css whose descendants to walk
3862 * To be used by css_for_each_descendant_pre(). Find the next descendant
3863 * to visit for pre-order traversal of @root's descendants. @root is
3864 * included in the iteration and the first node to be visited.
3866 * While this function requires cgroup_mutex or RCU read locking, it
3867 * doesn't require the whole traversal to be contained in a single critical
3868 * section. This function will return the correct next descendant as long
3869 * as both @pos and @root are accessible and @pos is a descendant of @root.
3871 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3872 * css which finished ->css_online() is guaranteed to be visible in the
3873 * future iterations and will stay visible until the last reference is put.
3874 * A css which hasn't finished ->css_online() or already finished
3875 * ->css_offline() may show up during traversal. It's each subsystem's
3876 * responsibility to synchronize against on/offlining.
3878 struct cgroup_subsys_state
*
3879 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3880 struct cgroup_subsys_state
*root
)
3882 struct cgroup_subsys_state
*next
;
3884 cgroup_assert_mutex_or_rcu_locked();
3886 /* if first iteration, visit @root */
3890 /* visit the first child if exists */
3891 next
= css_next_child(NULL
, pos
);
3895 /* no child, visit my or the closest ancestor's next sibling */
3896 while (pos
!= root
) {
3897 next
= css_next_child(pos
, pos
->parent
);
3907 * css_rightmost_descendant - return the rightmost descendant of a css
3908 * @pos: css of interest
3910 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3911 * is returned. This can be used during pre-order traversal to skip
3914 * While this function requires cgroup_mutex or RCU read locking, it
3915 * doesn't require the whole traversal to be contained in a single critical
3916 * section. This function will return the correct rightmost descendant as
3917 * long as @pos is accessible.
3919 struct cgroup_subsys_state
*
3920 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3922 struct cgroup_subsys_state
*last
, *tmp
;
3924 cgroup_assert_mutex_or_rcu_locked();
3928 /* ->prev isn't RCU safe, walk ->next till the end */
3930 css_for_each_child(tmp
, last
)
3937 static struct cgroup_subsys_state
*
3938 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3940 struct cgroup_subsys_state
*last
;
3944 pos
= css_next_child(NULL
, pos
);
3951 * css_next_descendant_post - find the next descendant for post-order walk
3952 * @pos: the current position (%NULL to initiate traversal)
3953 * @root: css whose descendants to walk
3955 * To be used by css_for_each_descendant_post(). Find the next descendant
3956 * to visit for post-order traversal of @root's descendants. @root is
3957 * included in the iteration and the last node to be visited.
3959 * While this function requires cgroup_mutex or RCU read locking, it
3960 * doesn't require the whole traversal to be contained in a single critical
3961 * section. This function will return the correct next descendant as long
3962 * as both @pos and @cgroup are accessible and @pos is a descendant of
3965 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3966 * css which finished ->css_online() is guaranteed to be visible in the
3967 * future iterations and will stay visible until the last reference is put.
3968 * A css which hasn't finished ->css_online() or already finished
3969 * ->css_offline() may show up during traversal. It's each subsystem's
3970 * responsibility to synchronize against on/offlining.
3972 struct cgroup_subsys_state
*
3973 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3974 struct cgroup_subsys_state
*root
)
3976 struct cgroup_subsys_state
*next
;
3978 cgroup_assert_mutex_or_rcu_locked();
3980 /* if first iteration, visit leftmost descendant which may be @root */
3982 return css_leftmost_descendant(root
);
3984 /* if we visited @root, we're done */
3988 /* if there's an unvisited sibling, visit its leftmost descendant */
3989 next
= css_next_child(pos
, pos
->parent
);
3991 return css_leftmost_descendant(next
);
3993 /* no sibling left, visit parent */
3998 * css_has_online_children - does a css have online children
3999 * @css: the target css
4001 * Returns %true if @css has any online children; otherwise, %false. This
4002 * function can be called from any context but the caller is responsible
4003 * for synchronizing against on/offlining as necessary.
4005 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4007 struct cgroup_subsys_state
*child
;
4011 css_for_each_child(child
, css
) {
4012 if (child
->flags
& CSS_ONLINE
) {
4021 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4023 struct list_head
*l
;
4024 struct cgrp_cset_link
*link
;
4025 struct css_set
*cset
;
4027 lockdep_assert_held(&css_set_lock
);
4029 /* find the next threaded cset */
4030 if (it
->tcset_pos
) {
4031 l
= it
->tcset_pos
->next
;
4033 if (l
!= it
->tcset_head
) {
4035 return container_of(l
, struct css_set
,
4036 threaded_csets_node
);
4039 it
->tcset_pos
= NULL
;
4042 /* find the next cset */
4045 if (l
== it
->cset_head
) {
4046 it
->cset_pos
= NULL
;
4051 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4053 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4059 /* initialize threaded css_set walking */
4060 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4062 put_css_set_locked(it
->cur_dcset
);
4063 it
->cur_dcset
= cset
;
4066 it
->tcset_head
= &cset
->threaded_csets
;
4067 it
->tcset_pos
= &cset
->threaded_csets
;
4074 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4075 * @it: the iterator to advance
4077 * Advance @it to the next css_set to walk.
4079 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4081 struct css_set
*cset
;
4083 lockdep_assert_held(&css_set_lock
);
4085 /* Advance to the next non-empty css_set */
4087 cset
= css_task_iter_next_css_set(it
);
4089 it
->task_pos
= NULL
;
4092 } while (!css_set_populated(cset
));
4094 if (!list_empty(&cset
->tasks
))
4095 it
->task_pos
= cset
->tasks
.next
;
4097 it
->task_pos
= cset
->mg_tasks
.next
;
4099 it
->tasks_head
= &cset
->tasks
;
4100 it
->mg_tasks_head
= &cset
->mg_tasks
;
4103 * We don't keep css_sets locked across iteration steps and thus
4104 * need to take steps to ensure that iteration can be resumed after
4105 * the lock is re-acquired. Iteration is performed at two levels -
4106 * css_sets and tasks in them.
4108 * Once created, a css_set never leaves its cgroup lists, so a
4109 * pinned css_set is guaranteed to stay put and we can resume
4110 * iteration afterwards.
4112 * Tasks may leave @cset across iteration steps. This is resolved
4113 * by registering each iterator with the css_set currently being
4114 * walked and making css_set_move_task() advance iterators whose
4115 * next task is leaving.
4118 list_del(&it
->iters_node
);
4119 put_css_set_locked(it
->cur_cset
);
4122 it
->cur_cset
= cset
;
4123 list_add(&it
->iters_node
, &cset
->task_iters
);
4126 static void css_task_iter_advance(struct css_task_iter
*it
)
4128 struct list_head
*next
;
4130 lockdep_assert_held(&css_set_lock
);
4133 * Advance iterator to find next entry. cset->tasks is consumed
4134 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4137 next
= it
->task_pos
->next
;
4139 if (next
== it
->tasks_head
)
4140 next
= it
->mg_tasks_head
->next
;
4142 if (next
== it
->mg_tasks_head
)
4143 css_task_iter_advance_css_set(it
);
4145 it
->task_pos
= next
;
4147 /* if PROCS, skip over tasks which aren't group leaders */
4148 if ((it
->flags
& CSS_TASK_ITER_PROCS
) && it
->task_pos
&&
4149 !thread_group_leader(list_entry(it
->task_pos
, struct task_struct
,
4155 * css_task_iter_start - initiate task iteration
4156 * @css: the css to walk tasks of
4157 * @flags: CSS_TASK_ITER_* flags
4158 * @it: the task iterator to use
4160 * Initiate iteration through the tasks of @css. The caller can call
4161 * css_task_iter_next() to walk through the tasks until the function
4162 * returns NULL. On completion of iteration, css_task_iter_end() must be
4165 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4166 struct css_task_iter
*it
)
4168 /* no one should try to iterate before mounting cgroups */
4169 WARN_ON_ONCE(!use_task_css_set_links
);
4171 memset(it
, 0, sizeof(*it
));
4173 spin_lock_irq(&css_set_lock
);
4179 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4181 it
->cset_pos
= &css
->cgroup
->cset_links
;
4183 it
->cset_head
= it
->cset_pos
;
4185 css_task_iter_advance_css_set(it
);
4187 spin_unlock_irq(&css_set_lock
);
4191 * css_task_iter_next - return the next task for the iterator
4192 * @it: the task iterator being iterated
4194 * The "next" function for task iteration. @it should have been
4195 * initialized via css_task_iter_start(). Returns NULL when the iteration
4198 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4201 put_task_struct(it
->cur_task
);
4202 it
->cur_task
= NULL
;
4205 spin_lock_irq(&css_set_lock
);
4208 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4210 get_task_struct(it
->cur_task
);
4211 css_task_iter_advance(it
);
4214 spin_unlock_irq(&css_set_lock
);
4216 return it
->cur_task
;
4220 * css_task_iter_end - finish task iteration
4221 * @it: the task iterator to finish
4223 * Finish task iteration started by css_task_iter_start().
4225 void css_task_iter_end(struct css_task_iter
*it
)
4228 spin_lock_irq(&css_set_lock
);
4229 list_del(&it
->iters_node
);
4230 put_css_set_locked(it
->cur_cset
);
4231 spin_unlock_irq(&css_set_lock
);
4235 put_css_set(it
->cur_dcset
);
4238 put_task_struct(it
->cur_task
);
4241 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4244 css_task_iter_end(of
->priv
);
4249 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4251 struct kernfs_open_file
*of
= s
->private;
4252 struct css_task_iter
*it
= of
->priv
;
4254 return css_task_iter_next(it
);
4257 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4258 unsigned int iter_flags
)
4260 struct kernfs_open_file
*of
= s
->private;
4261 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4262 struct css_task_iter
*it
= of
->priv
;
4265 * When a seq_file is seeked, it's always traversed sequentially
4266 * from position 0, so we can simply keep iterating on !0 *pos.
4269 if (WARN_ON_ONCE((*pos
)++))
4270 return ERR_PTR(-EINVAL
);
4272 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4274 return ERR_PTR(-ENOMEM
);
4276 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4277 } else if (!(*pos
)++) {
4278 css_task_iter_end(it
);
4279 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4282 return cgroup_procs_next(s
, NULL
, NULL
);
4285 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4287 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4290 * All processes of a threaded subtree belong to the domain cgroup
4291 * of the subtree. Only threads can be distributed across the
4292 * subtree. Reject reads on cgroup.procs in the subtree proper.
4293 * They're always empty anyway.
4295 if (cgroup_is_threaded(cgrp
))
4296 return ERR_PTR(-EOPNOTSUPP
);
4298 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4299 CSS_TASK_ITER_THREADED
);
4302 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4304 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4308 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4309 struct cgroup
*dst_cgrp
,
4310 struct super_block
*sb
)
4312 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4313 struct cgroup
*com_cgrp
= src_cgrp
;
4314 struct inode
*inode
;
4317 lockdep_assert_held(&cgroup_mutex
);
4319 /* find the common ancestor */
4320 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4321 com_cgrp
= cgroup_parent(com_cgrp
);
4323 /* %current should be authorized to migrate to the common ancestor */
4324 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4328 ret
= inode_permission(inode
, MAY_WRITE
);
4334 * If namespaces are delegation boundaries, %current must be able
4335 * to see both source and destination cgroups from its namespace.
4337 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4338 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4339 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4345 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4346 char *buf
, size_t nbytes
, loff_t off
)
4348 struct cgroup
*src_cgrp
, *dst_cgrp
;
4349 struct task_struct
*task
;
4352 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4356 task
= cgroup_procs_write_start(buf
, true);
4357 ret
= PTR_ERR_OR_ZERO(task
);
4361 /* find the source cgroup */
4362 spin_lock_irq(&css_set_lock
);
4363 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4364 spin_unlock_irq(&css_set_lock
);
4366 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4367 of
->file
->f_path
.dentry
->d_sb
);
4371 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4374 cgroup_procs_write_finish(task
);
4376 cgroup_kn_unlock(of
->kn
);
4378 return ret
?: nbytes
;
4381 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4383 return __cgroup_procs_start(s
, pos
, 0);
4386 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4387 char *buf
, size_t nbytes
, loff_t off
)
4389 struct cgroup
*src_cgrp
, *dst_cgrp
;
4390 struct task_struct
*task
;
4393 buf
= strstrip(buf
);
4395 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4399 task
= cgroup_procs_write_start(buf
, false);
4400 ret
= PTR_ERR_OR_ZERO(task
);
4404 /* find the source cgroup */
4405 spin_lock_irq(&css_set_lock
);
4406 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4407 spin_unlock_irq(&css_set_lock
);
4409 /* thread migrations follow the cgroup.procs delegation rule */
4410 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4411 of
->file
->f_path
.dentry
->d_sb
);
4415 /* and must be contained in the same domain */
4417 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4420 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4423 cgroup_procs_write_finish(task
);
4425 cgroup_kn_unlock(of
->kn
);
4427 return ret
?: nbytes
;
4430 /* cgroup core interface files for the default hierarchy */
4431 static struct cftype cgroup_base_files
[] = {
4433 .name
= "cgroup.type",
4434 .flags
= CFTYPE_NOT_ON_ROOT
,
4435 .seq_show
= cgroup_type_show
,
4436 .write
= cgroup_type_write
,
4439 .name
= "cgroup.procs",
4440 .flags
= CFTYPE_NS_DELEGATABLE
,
4441 .file_offset
= offsetof(struct cgroup
, procs_file
),
4442 .release
= cgroup_procs_release
,
4443 .seq_start
= cgroup_procs_start
,
4444 .seq_next
= cgroup_procs_next
,
4445 .seq_show
= cgroup_procs_show
,
4446 .write
= cgroup_procs_write
,
4449 .name
= "cgroup.threads",
4450 .flags
= CFTYPE_NS_DELEGATABLE
,
4451 .release
= cgroup_procs_release
,
4452 .seq_start
= cgroup_threads_start
,
4453 .seq_next
= cgroup_procs_next
,
4454 .seq_show
= cgroup_procs_show
,
4455 .write
= cgroup_threads_write
,
4458 .name
= "cgroup.controllers",
4459 .seq_show
= cgroup_controllers_show
,
4462 .name
= "cgroup.subtree_control",
4463 .flags
= CFTYPE_NS_DELEGATABLE
,
4464 .seq_show
= cgroup_subtree_control_show
,
4465 .write
= cgroup_subtree_control_write
,
4468 .name
= "cgroup.events",
4469 .flags
= CFTYPE_NOT_ON_ROOT
,
4470 .file_offset
= offsetof(struct cgroup
, events_file
),
4471 .seq_show
= cgroup_events_show
,
4474 .name
= "cgroup.max.descendants",
4475 .seq_show
= cgroup_max_descendants_show
,
4476 .write
= cgroup_max_descendants_write
,
4479 .name
= "cgroup.max.depth",
4480 .seq_show
= cgroup_max_depth_show
,
4481 .write
= cgroup_max_depth_write
,
4484 .name
= "cgroup.stat",
4485 .seq_show
= cgroup_stat_show
,
4489 .flags
= CFTYPE_NOT_ON_ROOT
,
4490 .seq_show
= cpu_stat_show
,
4496 * css destruction is four-stage process.
4498 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4499 * Implemented in kill_css().
4501 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4502 * and thus css_tryget_online() is guaranteed to fail, the css can be
4503 * offlined by invoking offline_css(). After offlining, the base ref is
4504 * put. Implemented in css_killed_work_fn().
4506 * 3. When the percpu_ref reaches zero, the only possible remaining
4507 * accessors are inside RCU read sections. css_release() schedules the
4510 * 4. After the grace period, the css can be freed. Implemented in
4511 * css_free_work_fn().
4513 * It is actually hairier because both step 2 and 4 require process context
4514 * and thus involve punting to css->destroy_work adding two additional
4515 * steps to the already complex sequence.
4517 static void css_free_work_fn(struct work_struct
*work
)
4519 struct cgroup_subsys_state
*css
=
4520 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4521 struct cgroup_subsys
*ss
= css
->ss
;
4522 struct cgroup
*cgrp
= css
->cgroup
;
4524 percpu_ref_exit(&css
->refcnt
);
4528 struct cgroup_subsys_state
*parent
= css
->parent
;
4532 cgroup_idr_remove(&ss
->css_idr
, id
);
4538 /* cgroup free path */
4539 atomic_dec(&cgrp
->root
->nr_cgrps
);
4540 cgroup1_pidlist_destroy_all(cgrp
);
4541 cancel_work_sync(&cgrp
->release_agent_work
);
4543 if (cgroup_parent(cgrp
)) {
4545 * We get a ref to the parent, and put the ref when
4546 * this cgroup is being freed, so it's guaranteed
4547 * that the parent won't be destroyed before its
4550 cgroup_put(cgroup_parent(cgrp
));
4551 kernfs_put(cgrp
->kn
);
4552 if (cgroup_on_dfl(cgrp
))
4553 cgroup_stat_exit(cgrp
);
4557 * This is root cgroup's refcnt reaching zero,
4558 * which indicates that the root should be
4561 cgroup_destroy_root(cgrp
->root
);
4566 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4568 struct cgroup_subsys_state
*css
=
4569 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4571 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4572 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4575 static void css_release_work_fn(struct work_struct
*work
)
4577 struct cgroup_subsys_state
*css
=
4578 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4579 struct cgroup_subsys
*ss
= css
->ss
;
4580 struct cgroup
*cgrp
= css
->cgroup
;
4582 mutex_lock(&cgroup_mutex
);
4584 css
->flags
|= CSS_RELEASED
;
4585 list_del_rcu(&css
->sibling
);
4588 /* css release path */
4589 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4590 if (ss
->css_released
)
4591 ss
->css_released(css
);
4593 struct cgroup
*tcgrp
;
4595 /* cgroup release path */
4596 trace_cgroup_release(cgrp
);
4598 if (cgroup_on_dfl(cgrp
))
4599 cgroup_stat_flush(cgrp
);
4601 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4602 tcgrp
= cgroup_parent(tcgrp
))
4603 tcgrp
->nr_dying_descendants
--;
4605 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4609 * There are two control paths which try to determine
4610 * cgroup from dentry without going through kernfs -
4611 * cgroupstats_build() and css_tryget_online_from_dir().
4612 * Those are supported by RCU protecting clearing of
4613 * cgrp->kn->priv backpointer.
4616 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4619 cgroup_bpf_put(cgrp
);
4622 mutex_unlock(&cgroup_mutex
);
4624 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4627 static void css_release(struct percpu_ref
*ref
)
4629 struct cgroup_subsys_state
*css
=
4630 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4632 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4633 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4636 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4637 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4639 lockdep_assert_held(&cgroup_mutex
);
4641 cgroup_get_live(cgrp
);
4643 memset(css
, 0, sizeof(*css
));
4647 INIT_LIST_HEAD(&css
->sibling
);
4648 INIT_LIST_HEAD(&css
->children
);
4649 css
->serial_nr
= css_serial_nr_next
++;
4650 atomic_set(&css
->online_cnt
, 0);
4652 if (cgroup_parent(cgrp
)) {
4653 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4654 css_get(css
->parent
);
4657 BUG_ON(cgroup_css(cgrp
, ss
));
4660 /* invoke ->css_online() on a new CSS and mark it online if successful */
4661 static int online_css(struct cgroup_subsys_state
*css
)
4663 struct cgroup_subsys
*ss
= css
->ss
;
4666 lockdep_assert_held(&cgroup_mutex
);
4669 ret
= ss
->css_online(css
);
4671 css
->flags
|= CSS_ONLINE
;
4672 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4674 atomic_inc(&css
->online_cnt
);
4676 atomic_inc(&css
->parent
->online_cnt
);
4681 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4682 static void offline_css(struct cgroup_subsys_state
*css
)
4684 struct cgroup_subsys
*ss
= css
->ss
;
4686 lockdep_assert_held(&cgroup_mutex
);
4688 if (!(css
->flags
& CSS_ONLINE
))
4691 if (ss
->css_offline
)
4692 ss
->css_offline(css
);
4694 css
->flags
&= ~CSS_ONLINE
;
4695 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4697 wake_up_all(&css
->cgroup
->offline_waitq
);
4701 * css_create - create a cgroup_subsys_state
4702 * @cgrp: the cgroup new css will be associated with
4703 * @ss: the subsys of new css
4705 * Create a new css associated with @cgrp - @ss pair. On success, the new
4706 * css is online and installed in @cgrp. This function doesn't create the
4707 * interface files. Returns 0 on success, -errno on failure.
4709 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
4710 struct cgroup_subsys
*ss
)
4712 struct cgroup
*parent
= cgroup_parent(cgrp
);
4713 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4714 struct cgroup_subsys_state
*css
;
4717 lockdep_assert_held(&cgroup_mutex
);
4719 css
= ss
->css_alloc(parent_css
);
4721 css
= ERR_PTR(-ENOMEM
);
4725 init_and_link_css(css
, ss
, cgrp
);
4727 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4731 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4736 /* @css is ready to be brought online now, make it visible */
4737 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4738 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4740 err
= online_css(css
);
4744 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4745 cgroup_parent(parent
)) {
4746 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4747 current
->comm
, current
->pid
, ss
->name
);
4748 if (!strcmp(ss
->name
, "memory"))
4749 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4750 ss
->warned_broken_hierarchy
= true;
4756 list_del_rcu(&css
->sibling
);
4758 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4759 return ERR_PTR(err
);
4763 * The returned cgroup is fully initialized including its control mask, but
4764 * it isn't associated with its kernfs_node and doesn't have the control
4767 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
4769 struct cgroup_root
*root
= parent
->root
;
4770 struct cgroup
*cgrp
, *tcgrp
;
4771 int level
= parent
->level
+ 1;
4774 /* allocate the cgroup and its ID, 0 is reserved for the root */
4775 cgrp
= kzalloc(sizeof(*cgrp
) +
4776 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
4778 return ERR_PTR(-ENOMEM
);
4780 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4784 if (cgroup_on_dfl(parent
)) {
4785 ret
= cgroup_stat_init(cgrp
);
4787 goto out_cancel_ref
;
4791 * Temporarily set the pointer to NULL, so idr_find() won't return
4792 * a half-baked cgroup.
4794 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4800 init_cgroup_housekeeping(cgrp
);
4802 cgrp
->self
.parent
= &parent
->self
;
4804 cgrp
->level
= level
;
4805 ret
= cgroup_bpf_inherit(cgrp
);
4809 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
4810 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
4813 tcgrp
->nr_descendants
++;
4816 if (notify_on_release(parent
))
4817 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4819 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4820 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4822 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4824 /* allocation complete, commit to creation */
4825 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4826 atomic_inc(&root
->nr_cgrps
);
4827 cgroup_get_live(parent
);
4830 * @cgrp is now fully operational. If something fails after this
4831 * point, it'll be released via the normal destruction path.
4833 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4836 * On the default hierarchy, a child doesn't automatically inherit
4837 * subtree_control from the parent. Each is configured manually.
4839 if (!cgroup_on_dfl(cgrp
))
4840 cgrp
->subtree_control
= cgroup_control(cgrp
);
4842 cgroup_propagate_control(cgrp
);
4847 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4849 if (cgroup_on_dfl(parent
))
4850 cgroup_stat_exit(cgrp
);
4852 percpu_ref_exit(&cgrp
->self
.refcnt
);
4855 return ERR_PTR(ret
);
4858 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
4860 struct cgroup
*cgroup
;
4864 lockdep_assert_held(&cgroup_mutex
);
4866 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
4867 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
4870 if (level
> cgroup
->max_depth
)
4881 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
4883 struct cgroup
*parent
, *cgrp
;
4884 struct kernfs_node
*kn
;
4887 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4888 if (strchr(name
, '\n'))
4891 parent
= cgroup_kn_lock_live(parent_kn
, false);
4895 if (!cgroup_check_hierarchy_limits(parent
)) {
4900 cgrp
= cgroup_create(parent
);
4902 ret
= PTR_ERR(cgrp
);
4906 /* create the directory */
4907 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4915 * This extra ref will be put in cgroup_free_fn() and guarantees
4916 * that @cgrp->kn is always accessible.
4920 ret
= cgroup_kn_set_ugid(kn
);
4924 ret
= css_populate_dir(&cgrp
->self
);
4928 ret
= cgroup_apply_control_enable(cgrp
);
4932 trace_cgroup_mkdir(cgrp
);
4934 /* let's create and online css's */
4935 kernfs_activate(kn
);
4941 cgroup_destroy_locked(cgrp
);
4943 cgroup_kn_unlock(parent_kn
);
4948 * This is called when the refcnt of a css is confirmed to be killed.
4949 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4950 * initate destruction and put the css ref from kill_css().
4952 static void css_killed_work_fn(struct work_struct
*work
)
4954 struct cgroup_subsys_state
*css
=
4955 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4957 mutex_lock(&cgroup_mutex
);
4962 /* @css can't go away while we're holding cgroup_mutex */
4964 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
4966 mutex_unlock(&cgroup_mutex
);
4969 /* css kill confirmation processing requires process context, bounce */
4970 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4972 struct cgroup_subsys_state
*css
=
4973 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4975 if (atomic_dec_and_test(&css
->online_cnt
)) {
4976 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4977 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4982 * kill_css - destroy a css
4983 * @css: css to destroy
4985 * This function initiates destruction of @css by removing cgroup interface
4986 * files and putting its base reference. ->css_offline() will be invoked
4987 * asynchronously once css_tryget_online() is guaranteed to fail and when
4988 * the reference count reaches zero, @css will be released.
4990 static void kill_css(struct cgroup_subsys_state
*css
)
4992 lockdep_assert_held(&cgroup_mutex
);
4994 if (css
->flags
& CSS_DYING
)
4997 css
->flags
|= CSS_DYING
;
5000 * This must happen before css is disassociated with its cgroup.
5001 * See seq_css() for details.
5006 * Killing would put the base ref, but we need to keep it alive
5007 * until after ->css_offline().
5012 * cgroup core guarantees that, by the time ->css_offline() is
5013 * invoked, no new css reference will be given out via
5014 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5015 * proceed to offlining css's because percpu_ref_kill() doesn't
5016 * guarantee that the ref is seen as killed on all CPUs on return.
5018 * Use percpu_ref_kill_and_confirm() to get notifications as each
5019 * css is confirmed to be seen as killed on all CPUs.
5021 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5025 * cgroup_destroy_locked - the first stage of cgroup destruction
5026 * @cgrp: cgroup to be destroyed
5028 * css's make use of percpu refcnts whose killing latency shouldn't be
5029 * exposed to userland and are RCU protected. Also, cgroup core needs to
5030 * guarantee that css_tryget_online() won't succeed by the time
5031 * ->css_offline() is invoked. To satisfy all the requirements,
5032 * destruction is implemented in the following two steps.
5034 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5035 * userland visible parts and start killing the percpu refcnts of
5036 * css's. Set up so that the next stage will be kicked off once all
5037 * the percpu refcnts are confirmed to be killed.
5039 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5040 * rest of destruction. Once all cgroup references are gone, the
5041 * cgroup is RCU-freed.
5043 * This function implements s1. After this step, @cgrp is gone as far as
5044 * the userland is concerned and a new cgroup with the same name may be
5045 * created. As cgroup doesn't care about the names internally, this
5046 * doesn't cause any problem.
5048 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5049 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5051 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5052 struct cgroup_subsys_state
*css
;
5053 struct cgrp_cset_link
*link
;
5056 lockdep_assert_held(&cgroup_mutex
);
5059 * Only migration can raise populated from zero and we're already
5060 * holding cgroup_mutex.
5062 if (cgroup_is_populated(cgrp
))
5066 * Make sure there's no live children. We can't test emptiness of
5067 * ->self.children as dead children linger on it while being
5068 * drained; otherwise, "rmdir parent/child parent" may fail.
5070 if (css_has_online_children(&cgrp
->self
))
5074 * Mark @cgrp and the associated csets dead. The former prevents
5075 * further task migration and child creation by disabling
5076 * cgroup_lock_live_group(). The latter makes the csets ignored by
5077 * the migration path.
5079 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5081 spin_lock_irq(&css_set_lock
);
5082 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5083 link
->cset
->dead
= true;
5084 spin_unlock_irq(&css_set_lock
);
5086 /* initiate massacre of all css's */
5087 for_each_css(css
, ssid
, cgrp
)
5091 * Remove @cgrp directory along with the base files. @cgrp has an
5092 * extra ref on its kn.
5094 kernfs_remove(cgrp
->kn
);
5096 if (parent
&& cgroup_is_threaded(cgrp
))
5097 parent
->nr_threaded_children
--;
5099 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5100 tcgrp
->nr_descendants
--;
5101 tcgrp
->nr_dying_descendants
++;
5104 cgroup1_check_for_release(parent
);
5106 /* put the base reference */
5107 percpu_ref_kill(&cgrp
->self
.refcnt
);
5112 int cgroup_rmdir(struct kernfs_node
*kn
)
5114 struct cgroup
*cgrp
;
5117 cgrp
= cgroup_kn_lock_live(kn
, false);
5121 ret
= cgroup_destroy_locked(cgrp
);
5124 trace_cgroup_rmdir(cgrp
);
5126 cgroup_kn_unlock(kn
);
5130 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5131 .show_options
= cgroup_show_options
,
5132 .remount_fs
= cgroup_remount
,
5133 .mkdir
= cgroup_mkdir
,
5134 .rmdir
= cgroup_rmdir
,
5135 .show_path
= cgroup_show_path
,
5138 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5140 struct cgroup_subsys_state
*css
;
5142 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5144 mutex_lock(&cgroup_mutex
);
5146 idr_init(&ss
->css_idr
);
5147 INIT_LIST_HEAD(&ss
->cfts
);
5149 /* Create the root cgroup state for this subsystem */
5150 ss
->root
= &cgrp_dfl_root
;
5151 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5152 /* We don't handle early failures gracefully */
5153 BUG_ON(IS_ERR(css
));
5154 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5157 * Root csses are never destroyed and we can't initialize
5158 * percpu_ref during early init. Disable refcnting.
5160 css
->flags
|= CSS_NO_REF
;
5163 /* allocation can't be done safely during early init */
5166 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5167 BUG_ON(css
->id
< 0);
5170 /* Update the init_css_set to contain a subsys
5171 * pointer to this state - since the subsystem is
5172 * newly registered, all tasks and hence the
5173 * init_css_set is in the subsystem's root cgroup. */
5174 init_css_set
.subsys
[ss
->id
] = css
;
5176 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5177 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5178 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5179 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5181 /* At system boot, before all subsystems have been
5182 * registered, no tasks have been forked, so we don't
5183 * need to invoke fork callbacks here. */
5184 BUG_ON(!list_empty(&init_task
.tasks
));
5186 BUG_ON(online_css(css
));
5188 mutex_unlock(&cgroup_mutex
);
5192 * cgroup_init_early - cgroup initialization at system boot
5194 * Initialize cgroups at system boot, and initialize any
5195 * subsystems that request early init.
5197 int __init
cgroup_init_early(void)
5199 static struct cgroup_sb_opts __initdata opts
;
5200 struct cgroup_subsys
*ss
;
5203 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5204 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5206 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5208 for_each_subsys(ss
, i
) {
5209 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5210 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5211 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5213 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5214 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5217 ss
->name
= cgroup_subsys_name
[i
];
5218 if (!ss
->legacy_name
)
5219 ss
->legacy_name
= cgroup_subsys_name
[i
];
5222 cgroup_init_subsys(ss
, true);
5227 static u16 cgroup_disable_mask __initdata
;
5230 * cgroup_init - cgroup initialization
5232 * Register cgroup filesystem and /proc file, and initialize
5233 * any subsystems that didn't request early init.
5235 int __init
cgroup_init(void)
5237 struct cgroup_subsys
*ss
;
5240 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5241 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5242 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5243 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5248 * The latency of the synchronize_sched() is too high for cgroups,
5249 * avoid it at the cost of forcing all readers into the slow path.
5251 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5253 get_user_ns(init_cgroup_ns
.user_ns
);
5255 mutex_lock(&cgroup_mutex
);
5258 * Add init_css_set to the hash table so that dfl_root can link to
5261 hash_add(css_set_table
, &init_css_set
.hlist
,
5262 css_set_hash(init_css_set
.subsys
));
5264 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0, 0));
5266 mutex_unlock(&cgroup_mutex
);
5268 for_each_subsys(ss
, ssid
) {
5269 if (ss
->early_init
) {
5270 struct cgroup_subsys_state
*css
=
5271 init_css_set
.subsys
[ss
->id
];
5273 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5275 BUG_ON(css
->id
< 0);
5277 cgroup_init_subsys(ss
, false);
5280 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5281 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5284 * Setting dfl_root subsys_mask needs to consider the
5285 * disabled flag and cftype registration needs kmalloc,
5286 * both of which aren't available during early_init.
5288 if (cgroup_disable_mask
& (1 << ssid
)) {
5289 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5290 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5295 if (cgroup1_ssid_disabled(ssid
))
5296 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5299 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5301 /* implicit controllers must be threaded too */
5302 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5304 if (ss
->implicit_on_dfl
)
5305 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5306 else if (!ss
->dfl_cftypes
)
5307 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5310 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5312 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5313 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5315 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5316 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5320 ss
->bind(init_css_set
.subsys
[ssid
]);
5322 mutex_lock(&cgroup_mutex
);
5323 css_populate_dir(init_css_set
.subsys
[ssid
]);
5324 mutex_unlock(&cgroup_mutex
);
5327 /* init_css_set.subsys[] has been updated, re-hash */
5328 hash_del(&init_css_set
.hlist
);
5329 hash_add(css_set_table
, &init_css_set
.hlist
,
5330 css_set_hash(init_css_set
.subsys
));
5332 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5333 WARN_ON(register_filesystem(&cgroup_fs_type
));
5334 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5335 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5340 static int __init
cgroup_wq_init(void)
5343 * There isn't much point in executing destruction path in
5344 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5345 * Use 1 for @max_active.
5347 * We would prefer to do this in cgroup_init() above, but that
5348 * is called before init_workqueues(): so leave this until after.
5350 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5351 BUG_ON(!cgroup_destroy_wq
);
5354 core_initcall(cgroup_wq_init
);
5356 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5357 char *buf
, size_t buflen
)
5359 struct kernfs_node
*kn
;
5361 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5364 kernfs_path(kn
, buf
, buflen
);
5369 * proc_cgroup_show()
5370 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5371 * - Used for /proc/<pid>/cgroup.
5373 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5374 struct pid
*pid
, struct task_struct
*tsk
)
5378 struct cgroup_root
*root
;
5381 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5385 mutex_lock(&cgroup_mutex
);
5386 spin_lock_irq(&css_set_lock
);
5388 for_each_root(root
) {
5389 struct cgroup_subsys
*ss
;
5390 struct cgroup
*cgrp
;
5391 int ssid
, count
= 0;
5393 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5396 seq_printf(m
, "%d:", root
->hierarchy_id
);
5397 if (root
!= &cgrp_dfl_root
)
5398 for_each_subsys(ss
, ssid
)
5399 if (root
->subsys_mask
& (1 << ssid
))
5400 seq_printf(m
, "%s%s", count
++ ? "," : "",
5402 if (strlen(root
->name
))
5403 seq_printf(m
, "%sname=%s", count
? "," : "",
5407 cgrp
= task_cgroup_from_root(tsk
, root
);
5410 * On traditional hierarchies, all zombie tasks show up as
5411 * belonging to the root cgroup. On the default hierarchy,
5412 * while a zombie doesn't show up in "cgroup.procs" and
5413 * thus can't be migrated, its /proc/PID/cgroup keeps
5414 * reporting the cgroup it belonged to before exiting. If
5415 * the cgroup is removed before the zombie is reaped,
5416 * " (deleted)" is appended to the cgroup path.
5418 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5419 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5420 current
->nsproxy
->cgroup_ns
);
5421 if (retval
>= PATH_MAX
)
5422 retval
= -ENAMETOOLONG
;
5431 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5432 seq_puts(m
, " (deleted)\n");
5439 spin_unlock_irq(&css_set_lock
);
5440 mutex_unlock(&cgroup_mutex
);
5447 * cgroup_fork - initialize cgroup related fields during copy_process()
5448 * @child: pointer to task_struct of forking parent process.
5450 * A task is associated with the init_css_set until cgroup_post_fork()
5451 * attaches it to the parent's css_set. Empty cg_list indicates that
5452 * @child isn't holding reference to its css_set.
5454 void cgroup_fork(struct task_struct
*child
)
5456 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5457 INIT_LIST_HEAD(&child
->cg_list
);
5461 * cgroup_can_fork - called on a new task before the process is exposed
5462 * @child: the task in question.
5464 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5465 * returns an error, the fork aborts with that error code. This allows for
5466 * a cgroup subsystem to conditionally allow or deny new forks.
5468 int cgroup_can_fork(struct task_struct
*child
)
5470 struct cgroup_subsys
*ss
;
5473 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5474 ret
= ss
->can_fork(child
);
5477 } while_each_subsys_mask();
5482 for_each_subsys(ss
, j
) {
5485 if (ss
->cancel_fork
)
5486 ss
->cancel_fork(child
);
5493 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5494 * @child: the task in question
5496 * This calls the cancel_fork() callbacks if a fork failed *after*
5497 * cgroup_can_fork() succeded.
5499 void cgroup_cancel_fork(struct task_struct
*child
)
5501 struct cgroup_subsys
*ss
;
5504 for_each_subsys(ss
, i
)
5505 if (ss
->cancel_fork
)
5506 ss
->cancel_fork(child
);
5510 * cgroup_post_fork - called on a new task after adding it to the task list
5511 * @child: the task in question
5513 * Adds the task to the list running through its css_set if necessary and
5514 * call the subsystem fork() callbacks. Has to be after the task is
5515 * visible on the task list in case we race with the first call to
5516 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5519 void cgroup_post_fork(struct task_struct
*child
)
5521 struct cgroup_subsys
*ss
;
5525 * This may race against cgroup_enable_task_cg_lists(). As that
5526 * function sets use_task_css_set_links before grabbing
5527 * tasklist_lock and we just went through tasklist_lock to add
5528 * @child, it's guaranteed that either we see the set
5529 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5530 * @child during its iteration.
5532 * If we won the race, @child is associated with %current's
5533 * css_set. Grabbing css_set_lock guarantees both that the
5534 * association is stable, and, on completion of the parent's
5535 * migration, @child is visible in the source of migration or
5536 * already in the destination cgroup. This guarantee is necessary
5537 * when implementing operations which need to migrate all tasks of
5538 * a cgroup to another.
5540 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5541 * will remain in init_css_set. This is safe because all tasks are
5542 * in the init_css_set before cg_links is enabled and there's no
5543 * operation which transfers all tasks out of init_css_set.
5545 if (use_task_css_set_links
) {
5546 struct css_set
*cset
;
5548 spin_lock_irq(&css_set_lock
);
5549 cset
= task_css_set(current
);
5550 if (list_empty(&child
->cg_list
)) {
5553 css_set_move_task(child
, NULL
, cset
, false);
5555 spin_unlock_irq(&css_set_lock
);
5559 * Call ss->fork(). This must happen after @child is linked on
5560 * css_set; otherwise, @child might change state between ->fork()
5561 * and addition to css_set.
5563 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5565 } while_each_subsys_mask();
5569 * cgroup_exit - detach cgroup from exiting task
5570 * @tsk: pointer to task_struct of exiting process
5572 * Description: Detach cgroup from @tsk and release it.
5574 * Note that cgroups marked notify_on_release force every task in
5575 * them to take the global cgroup_mutex mutex when exiting.
5576 * This could impact scaling on very large systems. Be reluctant to
5577 * use notify_on_release cgroups where very high task exit scaling
5578 * is required on large systems.
5580 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5581 * call cgroup_exit() while the task is still competent to handle
5582 * notify_on_release(), then leave the task attached to the root cgroup in
5583 * each hierarchy for the remainder of its exit. No need to bother with
5584 * init_css_set refcnting. init_css_set never goes away and we can't race
5585 * with migration path - PF_EXITING is visible to migration path.
5587 void cgroup_exit(struct task_struct
*tsk
)
5589 struct cgroup_subsys
*ss
;
5590 struct css_set
*cset
;
5594 * Unlink from @tsk from its css_set. As migration path can't race
5595 * with us, we can check css_set and cg_list without synchronization.
5597 cset
= task_css_set(tsk
);
5599 if (!list_empty(&tsk
->cg_list
)) {
5600 spin_lock_irq(&css_set_lock
);
5601 css_set_move_task(tsk
, cset
, NULL
, false);
5603 spin_unlock_irq(&css_set_lock
);
5608 /* see cgroup_post_fork() for details */
5609 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5611 } while_each_subsys_mask();
5614 void cgroup_free(struct task_struct
*task
)
5616 struct css_set
*cset
= task_css_set(task
);
5617 struct cgroup_subsys
*ss
;
5620 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5622 } while_each_subsys_mask();
5627 static int __init
cgroup_disable(char *str
)
5629 struct cgroup_subsys
*ss
;
5633 while ((token
= strsep(&str
, ",")) != NULL
) {
5637 for_each_subsys(ss
, i
) {
5638 if (strcmp(token
, ss
->name
) &&
5639 strcmp(token
, ss
->legacy_name
))
5641 cgroup_disable_mask
|= 1 << i
;
5646 __setup("cgroup_disable=", cgroup_disable
);
5649 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5650 * @dentry: directory dentry of interest
5651 * @ss: subsystem of interest
5653 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5654 * to get the corresponding css and return it. If such css doesn't exist
5655 * or can't be pinned, an ERR_PTR value is returned.
5657 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5658 struct cgroup_subsys
*ss
)
5660 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5661 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
5662 struct cgroup_subsys_state
*css
= NULL
;
5663 struct cgroup
*cgrp
;
5665 /* is @dentry a cgroup dir? */
5666 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
5667 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
5668 return ERR_PTR(-EBADF
);
5673 * This path doesn't originate from kernfs and @kn could already
5674 * have been or be removed at any point. @kn->priv is RCU
5675 * protected for this access. See css_release_work_fn() for details.
5677 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
5679 css
= cgroup_css(cgrp
, ss
);
5681 if (!css
|| !css_tryget_online(css
))
5682 css
= ERR_PTR(-ENOENT
);
5689 * css_from_id - lookup css by id
5690 * @id: the cgroup id
5691 * @ss: cgroup subsys to be looked into
5693 * Returns the css if there's valid one with @id, otherwise returns NULL.
5694 * Should be called under rcu_read_lock().
5696 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5698 WARN_ON_ONCE(!rcu_read_lock_held());
5699 return idr_find(&ss
->css_idr
, id
);
5703 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5704 * @path: path on the default hierarchy
5706 * Find the cgroup at @path on the default hierarchy, increment its
5707 * reference count and return it. Returns pointer to the found cgroup on
5708 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5709 * if @path points to a non-directory.
5711 struct cgroup
*cgroup_get_from_path(const char *path
)
5713 struct kernfs_node
*kn
;
5714 struct cgroup
*cgrp
;
5716 mutex_lock(&cgroup_mutex
);
5718 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
5720 if (kernfs_type(kn
) == KERNFS_DIR
) {
5722 cgroup_get_live(cgrp
);
5724 cgrp
= ERR_PTR(-ENOTDIR
);
5728 cgrp
= ERR_PTR(-ENOENT
);
5731 mutex_unlock(&cgroup_mutex
);
5734 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
5737 * cgroup_get_from_fd - get a cgroup pointer from a fd
5738 * @fd: fd obtained by open(cgroup2_dir)
5740 * Find the cgroup from a fd which should be obtained
5741 * by opening a cgroup directory. Returns a pointer to the
5742 * cgroup on success. ERR_PTR is returned if the cgroup
5745 struct cgroup
*cgroup_get_from_fd(int fd
)
5747 struct cgroup_subsys_state
*css
;
5748 struct cgroup
*cgrp
;
5753 return ERR_PTR(-EBADF
);
5755 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5758 return ERR_CAST(css
);
5761 if (!cgroup_on_dfl(cgrp
)) {
5763 return ERR_PTR(-EBADF
);
5768 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
5771 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5772 * definition in cgroup-defs.h.
5774 #ifdef CONFIG_SOCK_CGROUP_DATA
5776 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5778 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
5779 static bool cgroup_sk_alloc_disabled __read_mostly
;
5781 void cgroup_sk_alloc_disable(void)
5783 if (cgroup_sk_alloc_disabled
)
5785 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5786 cgroup_sk_alloc_disabled
= true;
5791 #define cgroup_sk_alloc_disabled false
5795 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
5797 if (cgroup_sk_alloc_disabled
)
5800 /* Socket clone path */
5803 * We might be cloning a socket which is left in an empty
5804 * cgroup and the cgroup might have already been rmdir'd.
5805 * Don't use cgroup_get_live().
5807 cgroup_get(sock_cgroup_ptr(skcd
));
5814 struct css_set
*cset
;
5816 cset
= task_css_set(current
);
5817 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
5818 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
5827 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
5829 cgroup_put(sock_cgroup_ptr(skcd
));
5832 #endif /* CONFIG_SOCK_CGROUP_DATA */
5834 #ifdef CONFIG_CGROUP_BPF
5835 int cgroup_bpf_attach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5836 enum bpf_attach_type type
, u32 flags
)
5840 mutex_lock(&cgroup_mutex
);
5841 ret
= __cgroup_bpf_attach(cgrp
, prog
, type
, flags
);
5842 mutex_unlock(&cgroup_mutex
);
5845 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5846 enum bpf_attach_type type
, u32 flags
)
5850 mutex_lock(&cgroup_mutex
);
5851 ret
= __cgroup_bpf_detach(cgrp
, prog
, type
, flags
);
5852 mutex_unlock(&cgroup_mutex
);
5855 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
5856 union bpf_attr __user
*uattr
)
5860 mutex_lock(&cgroup_mutex
);
5861 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
5862 mutex_unlock(&cgroup_mutex
);
5865 #endif /* CONFIG_CGROUP_BPF */
5868 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
5869 ssize_t size
, const char *prefix
)
5874 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
5875 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
5879 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
5881 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
5883 if (unlikely(ret
>= size
)) {
5892 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5895 struct cgroup_subsys
*ss
;
5899 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
5902 for_each_subsys(ss
, ssid
)
5903 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
5905 cgroup_subsys_name
[ssid
]);
5909 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
5911 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5914 return snprintf(buf
, PAGE_SIZE
, "nsdelegate\n");
5916 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
5918 static struct attribute
*cgroup_sysfs_attrs
[] = {
5919 &cgroup_delegate_attr
.attr
,
5920 &cgroup_features_attr
.attr
,
5924 static const struct attribute_group cgroup_sysfs_attr_group
= {
5925 .attrs
= cgroup_sysfs_attrs
,
5929 static int __init
cgroup_sysfs_init(void)
5931 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
5933 subsys_initcall(cgroup_sysfs_init
);
5934 #endif /* CONFIG_SYSFS */