Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / kernel / rcu / tree.c
blob491bdf39f276cd9f162460899c7ca223956dcf04
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
62 #include "tree.h"
63 #include "rcu.h"
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
70 /* Data structures. */
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
156 static int rcu_scheduler_fully_active __read_mostly;
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
211 return READ_ONCE(rnp->qsmaskinitnext);
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
230 void rcu_sched_qs(void)
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
246 void rcu_bh_qs(void)
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = 1,
269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
277 static void rcu_dynticks_eqs_enter(void)
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
280 int seq;
283 * CPUs seeing atomic_add_return() must see prior RCU read-side
284 * critical sections, and we also must force ordering with the
285 * next idle sojourn.
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
300 static void rcu_dynticks_eqs_exit(void)
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
303 int seq;
306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
307 * and we also must force ordering with the next RCU read-side
308 * critical section.
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
331 static void rcu_dynticks_eqs_online(void)
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
336 return;
337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
341 * Is the current CPU in an extended quiescent state?
343 * No ordering, as we are sampling CPU-local information.
345 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
358 int snap = atomic_add_return(0, &rdtp->dynticks);
360 return snap & ~RCU_DYNTICK_CTRL_MASK;
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
367 static bool rcu_dynticks_in_eqs(int snap)
369 return !(snap & RCU_DYNTICK_CTRL_CTR);
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379 return snap != rcu_dynticks_snap(rdtp);
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
386 static void rcu_dynticks_momentary_idle(void)
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 &rdtp->dynticks);
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
403 bool rcu_eqs_special_set(int cpu)
405 int old;
406 int new;
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
409 do {
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
412 return false;
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 return true;
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
427 * The caller must have disabled interrupts.
429 static void rcu_momentary_dyntick_idle(void)
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
438 * The caller must have disabled interrupts.
440 void rcu_note_context_switch(bool preempt)
442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
443 trace_rcu_utilization(TPS("Start context switch"));
444 rcu_sched_qs();
445 rcu_preempt_note_context_switch(preempt);
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 goto out;
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
451 rcu_momentary_dyntick_idle();
452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
453 if (!preempt)
454 rcu_note_voluntary_context_switch_lite(current);
455 out:
456 trace_rcu_utilization(TPS("End context switch"));
457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
459 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
462 * Register a quiescent state for all RCU flavors. If there is an
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
465 * RCU flavors in desperate need of a quiescent state, which will normally
466 * be none of them). Either way, do a lightweight quiescent state for
467 * all RCU flavors.
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
471 * file.
474 void rcu_all_qs(void)
476 unsigned long flags;
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 return;
480 preempt_disable();
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 preempt_enable();
484 return;
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
489 local_irq_save(flags);
490 rcu_momentary_dyntick_idle();
491 local_irq_restore(flags);
493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
494 rcu_sched_qs();
495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
497 preempt_enable();
499 EXPORT_SYMBOL_GPL(rcu_all_qs);
501 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502 static long blimit = DEFAULT_RCU_BLIMIT;
503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504 static long qhimark = DEFAULT_RCU_QHIMARK;
505 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506 static long qlowmark = DEFAULT_RCU_QLOMARK;
508 module_param(blimit, long, 0444);
509 module_param(qhimark, long, 0444);
510 module_param(qlowmark, long, 0444);
512 static ulong jiffies_till_first_fqs = ULONG_MAX;
513 static ulong jiffies_till_next_fqs = ULONG_MAX;
514 static bool rcu_kick_kthreads;
516 module_param(jiffies_till_first_fqs, ulong, 0644);
517 module_param(jiffies_till_next_fqs, ulong, 0644);
518 module_param(rcu_kick_kthreads, bool, 0644);
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
524 static ulong jiffies_till_sched_qs = HZ / 10;
525 module_param(jiffies_till_sched_qs, ulong, 0444);
527 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
528 struct rcu_data *rdp);
529 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
530 static void force_quiescent_state(struct rcu_state *rsp);
531 static int rcu_pending(void);
534 * Return the number of RCU batches started thus far for debug & stats.
536 unsigned long rcu_batches_started(void)
538 return rcu_state_p->gpnum;
540 EXPORT_SYMBOL_GPL(rcu_batches_started);
543 * Return the number of RCU-sched batches started thus far for debug & stats.
545 unsigned long rcu_batches_started_sched(void)
547 return rcu_sched_state.gpnum;
549 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
552 * Return the number of RCU BH batches started thus far for debug & stats.
554 unsigned long rcu_batches_started_bh(void)
556 return rcu_bh_state.gpnum;
558 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
561 * Return the number of RCU batches completed thus far for debug & stats.
563 unsigned long rcu_batches_completed(void)
565 return rcu_state_p->completed;
567 EXPORT_SYMBOL_GPL(rcu_batches_completed);
570 * Return the number of RCU-sched batches completed thus far for debug & stats.
572 unsigned long rcu_batches_completed_sched(void)
574 return rcu_sched_state.completed;
576 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
579 * Return the number of RCU BH batches completed thus far for debug & stats.
581 unsigned long rcu_batches_completed_bh(void)
583 return rcu_bh_state.completed;
585 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
588 * Return the number of RCU expedited batches completed thus far for
589 * debug & stats. Odd numbers mean that a batch is in progress, even
590 * numbers mean idle. The value returned will thus be roughly double
591 * the cumulative batches since boot.
593 unsigned long rcu_exp_batches_completed(void)
595 return rcu_state_p->expedited_sequence;
597 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
600 * Return the number of RCU-sched expedited batches completed thus far
601 * for debug & stats. Similar to rcu_exp_batches_completed().
603 unsigned long rcu_exp_batches_completed_sched(void)
605 return rcu_sched_state.expedited_sequence;
607 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
610 * Force a quiescent state.
612 void rcu_force_quiescent_state(void)
614 force_quiescent_state(rcu_state_p);
616 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
619 * Force a quiescent state for RCU BH.
621 void rcu_bh_force_quiescent_state(void)
623 force_quiescent_state(&rcu_bh_state);
625 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
628 * Force a quiescent state for RCU-sched.
630 void rcu_sched_force_quiescent_state(void)
632 force_quiescent_state(&rcu_sched_state);
634 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
637 * Show the state of the grace-period kthreads.
639 void show_rcu_gp_kthreads(void)
641 struct rcu_state *rsp;
643 for_each_rcu_flavor(rsp) {
644 pr_info("%s: wait state: %d ->state: %#lx\n",
645 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
646 /* sched_show_task(rsp->gp_kthread); */
649 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
652 * Record the number of times rcutorture tests have been initiated and
653 * terminated. This information allows the debugfs tracing stats to be
654 * correlated to the rcutorture messages, even when the rcutorture module
655 * is being repeatedly loaded and unloaded. In other words, we cannot
656 * store this state in rcutorture itself.
658 void rcutorture_record_test_transition(void)
660 rcutorture_testseq++;
661 rcutorture_vernum = 0;
663 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
666 * Send along grace-period-related data for rcutorture diagnostics.
668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gpnum, unsigned long *completed)
671 struct rcu_state *rsp = NULL;
673 switch (test_type) {
674 case RCU_FLAVOR:
675 rsp = rcu_state_p;
676 break;
677 case RCU_BH_FLAVOR:
678 rsp = &rcu_bh_state;
679 break;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
682 break;
683 default:
684 break;
686 if (rsp == NULL)
687 return;
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gpnum = READ_ONCE(rsp->gpnum);
690 *completed = READ_ONCE(rsp->completed);
692 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
695 * Record the number of writer passes through the current rcutorture test.
696 * This is also used to correlate debugfs tracing stats with the rcutorture
697 * messages.
699 void rcutorture_record_progress(unsigned long vernum)
701 rcutorture_vernum++;
703 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
706 * Return the root node of the specified rcu_state structure.
708 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
710 return &rsp->node[0];
714 * Is there any need for future grace periods?
715 * Interrupts must be disabled. If the caller does not hold the root
716 * rnp_node structure's ->lock, the results are advisory only.
718 static int rcu_future_needs_gp(struct rcu_state *rsp)
720 struct rcu_node *rnp = rcu_get_root(rsp);
721 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
722 int *fp = &rnp->need_future_gp[idx];
724 lockdep_assert_irqs_disabled();
725 return READ_ONCE(*fp);
729 * Does the current CPU require a not-yet-started grace period?
730 * The caller must have disabled interrupts to prevent races with
731 * normal callback registry.
733 static bool
734 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
736 lockdep_assert_irqs_disabled();
737 if (rcu_gp_in_progress(rsp))
738 return false; /* No, a grace period is already in progress. */
739 if (rcu_future_needs_gp(rsp))
740 return true; /* Yes, a no-CBs CPU needs one. */
741 if (!rcu_segcblist_is_enabled(&rdp->cblist))
742 return false; /* No, this is a no-CBs (or offline) CPU. */
743 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
744 return true; /* Yes, CPU has newly registered callbacks. */
745 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
746 READ_ONCE(rsp->completed)))
747 return true; /* Yes, CBs for future grace period. */
748 return false; /* No grace period needed. */
752 * Enter an RCU extended quiescent state, which can be either the
753 * idle loop or adaptive-tickless usermode execution.
755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756 * the possibility of usermode upcalls having messed up our count
757 * of interrupt nesting level during the prior busy period.
759 static void rcu_eqs_enter(bool user)
761 struct rcu_state *rsp;
762 struct rcu_data *rdp;
763 struct rcu_dynticks *rdtp;
765 rdtp = this_cpu_ptr(&rcu_dynticks);
766 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
768 rdtp->dynticks_nesting == 0);
769 if (rdtp->dynticks_nesting != 1) {
770 rdtp->dynticks_nesting--;
771 return;
774 lockdep_assert_irqs_disabled();
775 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
776 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
777 for_each_rcu_flavor(rsp) {
778 rdp = this_cpu_ptr(rsp->rda);
779 do_nocb_deferred_wakeup(rdp);
781 rcu_prepare_for_idle();
782 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
783 rcu_dynticks_eqs_enter();
784 rcu_dynticks_task_enter();
788 * rcu_idle_enter - inform RCU that current CPU is entering idle
790 * Enter idle mode, in other words, -leave- the mode in which RCU
791 * read-side critical sections can occur. (Though RCU read-side
792 * critical sections can occur in irq handlers in idle, a possibility
793 * handled by irq_enter() and irq_exit().)
795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
796 * CONFIG_RCU_EQS_DEBUG=y.
798 void rcu_idle_enter(void)
800 lockdep_assert_irqs_disabled();
801 rcu_eqs_enter(false);
804 #ifdef CONFIG_NO_HZ_FULL
806 * rcu_user_enter - inform RCU that we are resuming userspace.
808 * Enter RCU idle mode right before resuming userspace. No use of RCU
809 * is permitted between this call and rcu_user_exit(). This way the
810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
811 * when the CPU runs in userspace.
813 * If you add or remove a call to rcu_user_enter(), be sure to test with
814 * CONFIG_RCU_EQS_DEBUG=y.
816 void rcu_user_enter(void)
818 lockdep_assert_irqs_disabled();
819 rcu_eqs_enter(true);
821 #endif /* CONFIG_NO_HZ_FULL */
824 * rcu_nmi_exit - inform RCU of exit from NMI context
826 * If we are returning from the outermost NMI handler that interrupted an
827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
828 * to let the RCU grace-period handling know that the CPU is back to
829 * being RCU-idle.
831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
832 * with CONFIG_RCU_EQS_DEBUG=y.
834 void rcu_nmi_exit(void)
836 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
839 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
840 * (We are exiting an NMI handler, so RCU better be paying attention
841 * to us!)
843 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
844 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
847 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
848 * leave it in non-RCU-idle state.
850 if (rdtp->dynticks_nmi_nesting != 1) {
851 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
852 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
853 rdtp->dynticks_nmi_nesting - 2);
854 return;
857 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
858 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
859 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
860 rcu_dynticks_eqs_enter();
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
868 * sections can occur. The caller must have disabled interrupts.
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
872 * architecture's idle loop violates this assumption, RCU will give you what
873 * you deserve, good and hard. But very infrequently and irreproducibly.
875 * Use things like work queues to work around this limitation.
877 * You have been warned.
879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
882 void rcu_irq_exit(void)
884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
886 lockdep_assert_irqs_disabled();
887 if (rdtp->dynticks_nmi_nesting == 1)
888 rcu_prepare_for_idle();
889 rcu_nmi_exit();
890 if (rdtp->dynticks_nmi_nesting == 0)
891 rcu_dynticks_task_enter();
895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
898 * with CONFIG_RCU_EQS_DEBUG=y.
900 void rcu_irq_exit_irqson(void)
902 unsigned long flags;
904 local_irq_save(flags);
905 rcu_irq_exit();
906 local_irq_restore(flags);
910 * Exit an RCU extended quiescent state, which can be either the
911 * idle loop or adaptive-tickless usermode execution.
913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
914 * allow for the possibility of usermode upcalls messing up our count of
915 * interrupt nesting level during the busy period that is just now starting.
917 static void rcu_eqs_exit(bool user)
919 struct rcu_dynticks *rdtp;
920 long oldval;
922 lockdep_assert_irqs_disabled();
923 rdtp = this_cpu_ptr(&rcu_dynticks);
924 oldval = rdtp->dynticks_nesting;
925 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
926 if (oldval) {
927 rdtp->dynticks_nesting++;
928 return;
930 rcu_dynticks_task_exit();
931 rcu_dynticks_eqs_exit();
932 rcu_cleanup_after_idle();
933 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
935 WRITE_ONCE(rdtp->dynticks_nesting, 1);
936 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
942 * Exit idle mode, in other words, -enter- the mode in which RCU
943 * read-side critical sections can occur.
945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
946 * CONFIG_RCU_EQS_DEBUG=y.
948 void rcu_idle_exit(void)
950 unsigned long flags;
952 local_irq_save(flags);
953 rcu_eqs_exit(false);
954 local_irq_restore(flags);
957 #ifdef CONFIG_NO_HZ_FULL
959 * rcu_user_exit - inform RCU that we are exiting userspace.
961 * Exit RCU idle mode while entering the kernel because it can
962 * run a RCU read side critical section anytime.
964 * If you add or remove a call to rcu_user_exit(), be sure to test with
965 * CONFIG_RCU_EQS_DEBUG=y.
967 void rcu_user_exit(void)
969 rcu_eqs_exit(1);
971 #endif /* CONFIG_NO_HZ_FULL */
974 * rcu_nmi_enter - inform RCU of entry to NMI context
976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
978 * that the CPU is active. This implementation permits nested NMIs, as
979 * long as the nesting level does not overflow an int. (You will probably
980 * run out of stack space first.)
982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
983 * with CONFIG_RCU_EQS_DEBUG=y.
985 void rcu_nmi_enter(void)
987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
988 long incby = 2;
990 /* Complain about underflow. */
991 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
994 * If idle from RCU viewpoint, atomically increment ->dynticks
995 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
996 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
997 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
998 * to be in the outermost NMI handler that interrupted an RCU-idle
999 * period (observation due to Andy Lutomirski).
1001 if (rcu_dynticks_curr_cpu_in_eqs()) {
1002 rcu_dynticks_eqs_exit();
1003 incby = 1;
1005 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006 rdtp->dynticks_nmi_nesting,
1007 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009 rdtp->dynticks_nmi_nesting + incby);
1010 barrier();
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur. The caller must have disabled interrupts.
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1028 * Use things like work queues to work around this limitation.
1030 * You have been warned.
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1035 void rcu_irq_enter(void)
1037 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1039 lockdep_assert_irqs_disabled();
1040 if (rdtp->dynticks_nmi_nesting == 0)
1041 rcu_dynticks_task_exit();
1042 rcu_nmi_enter();
1043 if (rdtp->dynticks_nmi_nesting == 1)
1044 rcu_cleanup_after_idle();
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1053 void rcu_irq_enter_irqson(void)
1055 unsigned long flags;
1057 local_irq_save(flags);
1058 rcu_irq_enter();
1059 local_irq_restore(flags);
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections. In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
1070 bool notrace rcu_is_watching(void)
1072 bool ret;
1074 preempt_disable_notrace();
1075 ret = !rcu_dynticks_curr_cpu_in_eqs();
1076 preempt_enable_notrace();
1077 return ret;
1079 EXPORT_SYMBOL_GPL(rcu_is_watching);
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU. This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU. Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1088 void rcu_request_urgent_qs_task(struct task_struct *t)
1090 int cpu;
1092 barrier();
1093 cpu = task_cpu(t);
1094 if (!task_curr(t))
1095 return; /* This task is not running on that CPU. */
1096 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1099 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1102 * Is the current CPU online? Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active. Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask. This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1122 bool rcu_lockdep_current_cpu_online(void)
1124 struct rcu_data *rdp;
1125 struct rcu_node *rnp;
1126 bool ret;
1128 if (in_nmi())
1129 return true;
1130 preempt_disable();
1131 rdp = this_cpu_ptr(&rcu_sched_data);
1132 rnp = rdp->mynode;
1133 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134 !rcu_scheduler_fully_active;
1135 preempt_enable();
1136 return ret;
1138 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1140 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true. The caller must have at least
1147 * disabled preemption.
1149 static int rcu_is_cpu_rrupt_from_idle(void)
1151 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1162 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1164 lockdep_assert_held(&rnp->lock);
1165 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1166 WRITE_ONCE(rdp->gpwrap, true);
1167 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state. Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1176 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1178 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181 rcu_gpnum_ovf(rdp->mynode, rdp);
1182 return 1;
1184 return 0;
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning. Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1193 static void rcu_iw_handler(struct irq_work *iwp)
1195 struct rcu_data *rdp;
1196 struct rcu_node *rnp;
1198 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199 rnp = rdp->mynode;
1200 raw_spin_lock_rcu_node(rnp);
1201 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202 rdp->rcu_iw_gpnum = rnp->gpnum;
1203 rdp->rcu_iw_pending = false;
1205 raw_spin_unlock_rcu_node(rnp);
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1214 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1216 unsigned long jtsq;
1217 bool *rnhqp;
1218 bool *ruqp;
1219 struct rcu_node *rnp = rdp->mynode;
1222 * If the CPU passed through or entered a dynticks idle phase with
1223 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224 * already acknowledged the request to pass through a quiescent
1225 * state. Either way, that CPU cannot possibly be in an RCU
1226 * read-side critical section that started before the beginning
1227 * of the current RCU grace period.
1229 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231 rdp->dynticks_fqs++;
1232 rcu_gpnum_ovf(rnp, rdp);
1233 return 1;
1237 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238 * beginning of the grace period? For this to be the case,
1239 * the CPU has to have noticed the current grace period. This
1240 * might not be the case for nohz_full CPUs looping in the kernel.
1242 jtsq = jiffies_till_sched_qs;
1243 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248 rcu_gpnum_ovf(rnp, rdp);
1249 return 1;
1250 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252 smp_store_release(ruqp, true);
1255 /* Check for the CPU being offline. */
1256 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258 rdp->offline_fqs++;
1259 rcu_gpnum_ovf(rnp, rdp);
1260 return 1;
1264 * A CPU running for an extended time within the kernel can
1265 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1266 * even context-switching back and forth between a pair of
1267 * in-kernel CPU-bound tasks cannot advance grace periods.
1268 * So if the grace period is old enough, make the CPU pay attention.
1269 * Note that the unsynchronized assignments to the per-CPU
1270 * rcu_need_heavy_qs variable are safe. Yes, setting of
1271 * bits can be lost, but they will be set again on the next
1272 * force-quiescent-state pass. So lost bit sets do not result
1273 * in incorrect behavior, merely in a grace period lasting
1274 * a few jiffies longer than it might otherwise. Because
1275 * there are at most four threads involved, and because the
1276 * updates are only once every few jiffies, the probability of
1277 * lossage (and thus of slight grace-period extension) is
1278 * quite low.
1280 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281 if (!READ_ONCE(*rnhqp) &&
1282 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284 WRITE_ONCE(*rnhqp, true);
1285 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 smp_store_release(ruqp, true);
1287 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1291 * If more than halfway to RCU CPU stall-warning time, do a
1292 * resched_cpu() to try to loosen things up a bit. Also check to
1293 * see if the CPU is getting hammered with interrupts, but only
1294 * once per grace period, just to keep the IPIs down to a dull roar.
1296 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297 resched_cpu(rdp->cpu);
1298 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300 (rnp->ffmask & rdp->grpmask)) {
1301 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302 rdp->rcu_iw_pending = true;
1303 rdp->rcu_iw_gpnum = rnp->gpnum;
1304 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1308 return 0;
1311 static void record_gp_stall_check_time(struct rcu_state *rsp)
1313 unsigned long j = jiffies;
1314 unsigned long j1;
1316 rsp->gp_start = j;
1317 smp_wmb(); /* Record start time before stall time. */
1318 j1 = rcu_jiffies_till_stall_check();
1319 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320 rsp->jiffies_resched = j + j1 / 2;
1321 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1325 * Convert a ->gp_state value to a character string.
1327 static const char *gp_state_getname(short gs)
1329 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330 return "???";
1331 return gp_state_names[gs];
1335 * Complain about starvation of grace-period kthread.
1337 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1339 unsigned long gpa;
1340 unsigned long j;
1342 j = jiffies;
1343 gpa = READ_ONCE(rsp->gp_activity);
1344 if (j - gpa > 2 * HZ) {
1345 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346 rsp->name, j - gpa,
1347 rsp->gpnum, rsp->completed,
1348 rsp->gp_flags,
1349 gp_state_getname(rsp->gp_state), rsp->gp_state,
1350 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352 if (rsp->gp_kthread) {
1353 sched_show_task(rsp->gp_kthread);
1354 wake_up_process(rsp->gp_kthread);
1360 * Dump stacks of all tasks running on stalled CPUs. First try using
1361 * NMIs, but fall back to manual remote stack tracing on architectures
1362 * that don't support NMI-based stack dumps. The NMI-triggered stack
1363 * traces are more accurate because they are printed by the target CPU.
1365 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367 int cpu;
1368 unsigned long flags;
1369 struct rcu_node *rnp;
1371 rcu_for_each_leaf_node(rsp, rnp) {
1372 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1373 for_each_leaf_node_possible_cpu(rnp, cpu)
1374 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1375 if (!trigger_single_cpu_backtrace(cpu))
1376 dump_cpu_task(cpu);
1377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1382 * If too much time has passed in the current grace period, and if
1383 * so configured, go kick the relevant kthreads.
1385 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387 unsigned long j;
1389 if (!rcu_kick_kthreads)
1390 return;
1391 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1392 if (time_after(jiffies, j) && rsp->gp_kthread &&
1393 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1394 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1395 rcu_ftrace_dump(DUMP_ALL);
1396 wake_up_process(rsp->gp_kthread);
1397 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1401 static inline void panic_on_rcu_stall(void)
1403 if (sysctl_panic_on_rcu_stall)
1404 panic("RCU Stall\n");
1407 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1409 int cpu;
1410 long delta;
1411 unsigned long flags;
1412 unsigned long gpa;
1413 unsigned long j;
1414 int ndetected = 0;
1415 struct rcu_node *rnp = rcu_get_root(rsp);
1416 long totqlen = 0;
1418 /* Kick and suppress, if so configured. */
1419 rcu_stall_kick_kthreads(rsp);
1420 if (rcu_cpu_stall_suppress)
1421 return;
1423 /* Only let one CPU complain about others per time interval. */
1425 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1426 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1427 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1428 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1429 return;
1431 WRITE_ONCE(rsp->jiffies_stall,
1432 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1433 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1436 * OK, time to rat on our buddy...
1437 * See Documentation/RCU/stallwarn.txt for info on how to debug
1438 * RCU CPU stall warnings.
1440 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1441 rsp->name);
1442 print_cpu_stall_info_begin();
1443 rcu_for_each_leaf_node(rsp, rnp) {
1444 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1445 ndetected += rcu_print_task_stall(rnp);
1446 if (rnp->qsmask != 0) {
1447 for_each_leaf_node_possible_cpu(rnp, cpu)
1448 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1449 print_cpu_stall_info(rsp, cpu);
1450 ndetected++;
1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1456 print_cpu_stall_info_end();
1457 for_each_possible_cpu(cpu)
1458 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1459 cpu)->cblist);
1460 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1461 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1462 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1463 if (ndetected) {
1464 rcu_dump_cpu_stacks(rsp);
1466 /* Complain about tasks blocking the grace period. */
1467 rcu_print_detail_task_stall(rsp);
1468 } else {
1469 if (READ_ONCE(rsp->gpnum) != gpnum ||
1470 READ_ONCE(rsp->completed) == gpnum) {
1471 pr_err("INFO: Stall ended before state dump start\n");
1472 } else {
1473 j = jiffies;
1474 gpa = READ_ONCE(rsp->gp_activity);
1475 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1476 rsp->name, j - gpa, j, gpa,
1477 jiffies_till_next_fqs,
1478 rcu_get_root(rsp)->qsmask);
1479 /* In this case, the current CPU might be at fault. */
1480 sched_show_task(current);
1484 rcu_check_gp_kthread_starvation(rsp);
1486 panic_on_rcu_stall();
1488 force_quiescent_state(rsp); /* Kick them all. */
1491 static void print_cpu_stall(struct rcu_state *rsp)
1493 int cpu;
1494 unsigned long flags;
1495 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1496 struct rcu_node *rnp = rcu_get_root(rsp);
1497 long totqlen = 0;
1499 /* Kick and suppress, if so configured. */
1500 rcu_stall_kick_kthreads(rsp);
1501 if (rcu_cpu_stall_suppress)
1502 return;
1505 * OK, time to rat on ourselves...
1506 * See Documentation/RCU/stallwarn.txt for info on how to debug
1507 * RCU CPU stall warnings.
1509 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1510 print_cpu_stall_info_begin();
1511 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1512 print_cpu_stall_info(rsp, smp_processor_id());
1513 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1514 print_cpu_stall_info_end();
1515 for_each_possible_cpu(cpu)
1516 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1517 cpu)->cblist);
1518 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1519 jiffies - rsp->gp_start,
1520 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1522 rcu_check_gp_kthread_starvation(rsp);
1524 rcu_dump_cpu_stacks(rsp);
1526 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1527 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1528 WRITE_ONCE(rsp->jiffies_stall,
1529 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1530 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1532 panic_on_rcu_stall();
1535 * Attempt to revive the RCU machinery by forcing a context switch.
1537 * A context switch would normally allow the RCU state machine to make
1538 * progress and it could be we're stuck in kernel space without context
1539 * switches for an entirely unreasonable amount of time.
1541 resched_cpu(smp_processor_id());
1544 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546 unsigned long completed;
1547 unsigned long gpnum;
1548 unsigned long gps;
1549 unsigned long j;
1550 unsigned long js;
1551 struct rcu_node *rnp;
1553 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1554 !rcu_gp_in_progress(rsp))
1555 return;
1556 rcu_stall_kick_kthreads(rsp);
1557 j = jiffies;
1560 * Lots of memory barriers to reject false positives.
1562 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1563 * then rsp->gp_start, and finally rsp->completed. These values
1564 * are updated in the opposite order with memory barriers (or
1565 * equivalent) during grace-period initialization and cleanup.
1566 * Now, a false positive can occur if we get an new value of
1567 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1568 * the memory barriers, the only way that this can happen is if one
1569 * grace period ends and another starts between these two fetches.
1570 * Detect this by comparing rsp->completed with the previous fetch
1571 * from rsp->gpnum.
1573 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1574 * and rsp->gp_start suffice to forestall false positives.
1576 gpnum = READ_ONCE(rsp->gpnum);
1577 smp_rmb(); /* Pick up ->gpnum first... */
1578 js = READ_ONCE(rsp->jiffies_stall);
1579 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1580 gps = READ_ONCE(rsp->gp_start);
1581 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1582 completed = READ_ONCE(rsp->completed);
1583 if (ULONG_CMP_GE(completed, gpnum) ||
1584 ULONG_CMP_LT(j, js) ||
1585 ULONG_CMP_GE(gps, js))
1586 return; /* No stall or GP completed since entering function. */
1587 rnp = rdp->mynode;
1588 if (rcu_gp_in_progress(rsp) &&
1589 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1591 /* We haven't checked in, so go dump stack. */
1592 print_cpu_stall(rsp);
1594 } else if (rcu_gp_in_progress(rsp) &&
1595 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1597 /* They had a few time units to dump stack, so complain. */
1598 print_other_cpu_stall(rsp, gpnum);
1603 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 * Set the stall-warning timeout way off into the future, thus preventing
1606 * any RCU CPU stall-warning messages from appearing in the current set of
1607 * RCU grace periods.
1609 * The caller must disable hard irqs.
1611 void rcu_cpu_stall_reset(void)
1613 struct rcu_state *rsp;
1615 for_each_rcu_flavor(rsp)
1616 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1620 * Determine the value that ->completed will have at the end of the
1621 * next subsequent grace period. This is used to tag callbacks so that
1622 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1623 * been dyntick-idle for an extended period with callbacks under the
1624 * influence of RCU_FAST_NO_HZ.
1626 * The caller must hold rnp->lock with interrupts disabled.
1628 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1629 struct rcu_node *rnp)
1631 lockdep_assert_held(&rnp->lock);
1634 * If RCU is idle, we just wait for the next grace period.
1635 * But we can only be sure that RCU is idle if we are looking
1636 * at the root rcu_node structure -- otherwise, a new grace
1637 * period might have started, but just not yet gotten around
1638 * to initializing the current non-root rcu_node structure.
1640 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1641 return rnp->completed + 1;
1644 * Otherwise, wait for a possible partial grace period and
1645 * then the subsequent full grace period.
1647 return rnp->completed + 2;
1651 * Trace-event helper function for rcu_start_future_gp() and
1652 * rcu_nocb_wait_gp().
1654 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1655 unsigned long c, const char *s)
1657 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1658 rnp->completed, c, rnp->level,
1659 rnp->grplo, rnp->grphi, s);
1663 * Start some future grace period, as needed to handle newly arrived
1664 * callbacks. The required future grace periods are recorded in each
1665 * rcu_node structure's ->need_future_gp field. Returns true if there
1666 * is reason to awaken the grace-period kthread.
1668 * The caller must hold the specified rcu_node structure's ->lock.
1670 static bool __maybe_unused
1671 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1672 unsigned long *c_out)
1674 unsigned long c;
1675 bool ret = false;
1676 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678 lockdep_assert_held(&rnp->lock);
1681 * Pick up grace-period number for new callbacks. If this
1682 * grace period is already marked as needed, return to the caller.
1684 c = rcu_cbs_completed(rdp->rsp, rnp);
1685 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1686 if (rnp->need_future_gp[c & 0x1]) {
1687 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1688 goto out;
1692 * If either this rcu_node structure or the root rcu_node structure
1693 * believe that a grace period is in progress, then we must wait
1694 * for the one following, which is in "c". Because our request
1695 * will be noticed at the end of the current grace period, we don't
1696 * need to explicitly start one. We only do the lockless check
1697 * of rnp_root's fields if the current rcu_node structure thinks
1698 * there is no grace period in flight, and because we hold rnp->lock,
1699 * the only possible change is when rnp_root's two fields are
1700 * equal, in which case rnp_root->gpnum might be concurrently
1701 * incremented. But that is OK, as it will just result in our
1702 * doing some extra useless work.
1704 if (rnp->gpnum != rnp->completed ||
1705 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1706 rnp->need_future_gp[c & 0x1]++;
1707 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1708 goto out;
1712 * There might be no grace period in progress. If we don't already
1713 * hold it, acquire the root rcu_node structure's lock in order to
1714 * start one (if needed).
1716 if (rnp != rnp_root)
1717 raw_spin_lock_rcu_node(rnp_root);
1720 * Get a new grace-period number. If there really is no grace
1721 * period in progress, it will be smaller than the one we obtained
1722 * earlier. Adjust callbacks as needed.
1724 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1725 if (!rcu_is_nocb_cpu(rdp->cpu))
1726 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1729 * If the needed for the required grace period is already
1730 * recorded, trace and leave.
1732 if (rnp_root->need_future_gp[c & 0x1]) {
1733 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1734 goto unlock_out;
1737 /* Record the need for the future grace period. */
1738 rnp_root->need_future_gp[c & 0x1]++;
1740 /* If a grace period is not already in progress, start one. */
1741 if (rnp_root->gpnum != rnp_root->completed) {
1742 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1743 } else {
1744 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1745 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1747 unlock_out:
1748 if (rnp != rnp_root)
1749 raw_spin_unlock_rcu_node(rnp_root);
1750 out:
1751 if (c_out != NULL)
1752 *c_out = c;
1753 return ret;
1757 * Clean up any old requests for the just-ended grace period. Also return
1758 * whether any additional grace periods have been requested.
1760 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762 int c = rnp->completed;
1763 int needmore;
1764 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766 rnp->need_future_gp[c & 0x1] = 0;
1767 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1768 trace_rcu_future_gp(rnp, rdp, c,
1769 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1770 return needmore;
1774 * Awaken the grace-period kthread for the specified flavor of RCU.
1775 * Don't do a self-awaken, and don't bother awakening when there is
1776 * nothing for the grace-period kthread to do (as in several CPUs
1777 * raced to awaken, and we lost), and finally don't try to awaken
1778 * a kthread that has not yet been created.
1780 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782 if (current == rsp->gp_kthread ||
1783 !READ_ONCE(rsp->gp_flags) ||
1784 !rsp->gp_kthread)
1785 return;
1786 swake_up(&rsp->gp_wq);
1790 * If there is room, assign a ->completed number to any callbacks on
1791 * this CPU that have not already been assigned. Also accelerate any
1792 * callbacks that were previously assigned a ->completed number that has
1793 * since proven to be too conservative, which can happen if callbacks get
1794 * assigned a ->completed number while RCU is idle, but with reference to
1795 * a non-root rcu_node structure. This function is idempotent, so it does
1796 * not hurt to call it repeatedly. Returns an flag saying that we should
1797 * awaken the RCU grace-period kthread.
1799 * The caller must hold rnp->lock with interrupts disabled.
1801 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1802 struct rcu_data *rdp)
1804 bool ret = false;
1806 lockdep_assert_held(&rnp->lock);
1808 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1809 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1810 return false;
1813 * Callbacks are often registered with incomplete grace-period
1814 * information. Something about the fact that getting exact
1815 * information requires acquiring a global lock... RCU therefore
1816 * makes a conservative estimate of the grace period number at which
1817 * a given callback will become ready to invoke. The following
1818 * code checks this estimate and improves it when possible, thus
1819 * accelerating callback invocation to an earlier grace-period
1820 * number.
1822 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1823 ret = rcu_start_future_gp(rnp, rdp, NULL);
1825 /* Trace depending on how much we were able to accelerate. */
1826 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1827 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1828 else
1829 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1830 return ret;
1834 * Move any callbacks whose grace period has completed to the
1835 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1836 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1837 * sublist. This function is idempotent, so it does not hurt to
1838 * invoke it repeatedly. As long as it is not invoked -too- often...
1839 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 * The caller must hold rnp->lock with interrupts disabled.
1843 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1844 struct rcu_data *rdp)
1846 lockdep_assert_held(&rnp->lock);
1848 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1850 return false;
1853 * Find all callbacks whose ->completed numbers indicate that they
1854 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1858 /* Classify any remaining callbacks. */
1859 return rcu_accelerate_cbs(rsp, rnp, rdp);
1863 * Update CPU-local rcu_data state to record the beginnings and ends of
1864 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1865 * structure corresponding to the current CPU, and must have irqs disabled.
1866 * Returns true if the grace-period kthread needs to be awakened.
1868 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1869 struct rcu_data *rdp)
1871 bool ret;
1872 bool need_gp;
1874 lockdep_assert_held(&rnp->lock);
1876 /* Handle the ends of any preceding grace periods first. */
1877 if (rdp->completed == rnp->completed &&
1878 !unlikely(READ_ONCE(rdp->gpwrap))) {
1880 /* No grace period end, so just accelerate recent callbacks. */
1881 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1883 } else {
1885 /* Advance callbacks. */
1886 ret = rcu_advance_cbs(rsp, rnp, rdp);
1888 /* Remember that we saw this grace-period completion. */
1889 rdp->completed = rnp->completed;
1890 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1893 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1895 * If the current grace period is waiting for this CPU,
1896 * set up to detect a quiescent state, otherwise don't
1897 * go looking for one.
1899 rdp->gpnum = rnp->gpnum;
1900 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1901 need_gp = !!(rnp->qsmask & rdp->grpmask);
1902 rdp->cpu_no_qs.b.norm = need_gp;
1903 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1904 rdp->core_needs_qs = need_gp;
1905 zero_cpu_stall_ticks(rdp);
1906 WRITE_ONCE(rdp->gpwrap, false);
1907 rcu_gpnum_ovf(rnp, rdp);
1909 return ret;
1912 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1914 unsigned long flags;
1915 bool needwake;
1916 struct rcu_node *rnp;
1918 local_irq_save(flags);
1919 rnp = rdp->mynode;
1920 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1921 rdp->completed == READ_ONCE(rnp->completed) &&
1922 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1923 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1924 local_irq_restore(flags);
1925 return;
1927 needwake = __note_gp_changes(rsp, rnp, rdp);
1928 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1929 if (needwake)
1930 rcu_gp_kthread_wake(rsp);
1933 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1935 if (delay > 0 &&
1936 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1937 schedule_timeout_uninterruptible(delay);
1941 * Initialize a new grace period. Return false if no grace period required.
1943 static bool rcu_gp_init(struct rcu_state *rsp)
1945 unsigned long oldmask;
1946 struct rcu_data *rdp;
1947 struct rcu_node *rnp = rcu_get_root(rsp);
1949 WRITE_ONCE(rsp->gp_activity, jiffies);
1950 raw_spin_lock_irq_rcu_node(rnp);
1951 if (!READ_ONCE(rsp->gp_flags)) {
1952 /* Spurious wakeup, tell caller to go back to sleep. */
1953 raw_spin_unlock_irq_rcu_node(rnp);
1954 return false;
1956 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1958 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960 * Grace period already in progress, don't start another.
1961 * Not supposed to be able to happen.
1963 raw_spin_unlock_irq_rcu_node(rnp);
1964 return false;
1967 /* Advance to a new grace period and initialize state. */
1968 record_gp_stall_check_time(rsp);
1969 /* Record GP times before starting GP, hence smp_store_release(). */
1970 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1971 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1972 raw_spin_unlock_irq_rcu_node(rnp);
1975 * Apply per-leaf buffered online and offline operations to the
1976 * rcu_node tree. Note that this new grace period need not wait
1977 * for subsequent online CPUs, and that quiescent-state forcing
1978 * will handle subsequent offline CPUs.
1980 rcu_for_each_leaf_node(rsp, rnp) {
1981 rcu_gp_slow(rsp, gp_preinit_delay);
1982 raw_spin_lock_irq_rcu_node(rnp);
1983 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1984 !rnp->wait_blkd_tasks) {
1985 /* Nothing to do on this leaf rcu_node structure. */
1986 raw_spin_unlock_irq_rcu_node(rnp);
1987 continue;
1990 /* Record old state, apply changes to ->qsmaskinit field. */
1991 oldmask = rnp->qsmaskinit;
1992 rnp->qsmaskinit = rnp->qsmaskinitnext;
1994 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1995 if (!oldmask != !rnp->qsmaskinit) {
1996 if (!oldmask) /* First online CPU for this rcu_node. */
1997 rcu_init_new_rnp(rnp);
1998 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1999 rnp->wait_blkd_tasks = true;
2000 else /* Last offline CPU and can propagate. */
2001 rcu_cleanup_dead_rnp(rnp);
2005 * If all waited-on tasks from prior grace period are
2006 * done, and if all this rcu_node structure's CPUs are
2007 * still offline, propagate up the rcu_node tree and
2008 * clear ->wait_blkd_tasks. Otherwise, if one of this
2009 * rcu_node structure's CPUs has since come back online,
2010 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2011 * checks for this, so just call it unconditionally).
2013 if (rnp->wait_blkd_tasks &&
2014 (!rcu_preempt_has_tasks(rnp) ||
2015 rnp->qsmaskinit)) {
2016 rnp->wait_blkd_tasks = false;
2017 rcu_cleanup_dead_rnp(rnp);
2020 raw_spin_unlock_irq_rcu_node(rnp);
2024 * Set the quiescent-state-needed bits in all the rcu_node
2025 * structures for all currently online CPUs in breadth-first order,
2026 * starting from the root rcu_node structure, relying on the layout
2027 * of the tree within the rsp->node[] array. Note that other CPUs
2028 * will access only the leaves of the hierarchy, thus seeing that no
2029 * grace period is in progress, at least until the corresponding
2030 * leaf node has been initialized.
2032 * The grace period cannot complete until the initialization
2033 * process finishes, because this kthread handles both.
2035 rcu_for_each_node_breadth_first(rsp, rnp) {
2036 rcu_gp_slow(rsp, gp_init_delay);
2037 raw_spin_lock_irq_rcu_node(rnp);
2038 rdp = this_cpu_ptr(rsp->rda);
2039 rcu_preempt_check_blocked_tasks(rnp);
2040 rnp->qsmask = rnp->qsmaskinit;
2041 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2042 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2043 WRITE_ONCE(rnp->completed, rsp->completed);
2044 if (rnp == rdp->mynode)
2045 (void)__note_gp_changes(rsp, rnp, rdp);
2046 rcu_preempt_boost_start_gp(rnp);
2047 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2048 rnp->level, rnp->grplo,
2049 rnp->grphi, rnp->qsmask);
2050 raw_spin_unlock_irq_rcu_node(rnp);
2051 cond_resched_rcu_qs();
2052 WRITE_ONCE(rsp->gp_activity, jiffies);
2055 return true;
2059 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2060 * time.
2062 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064 struct rcu_node *rnp = rcu_get_root(rsp);
2066 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2067 *gfp = READ_ONCE(rsp->gp_flags);
2068 if (*gfp & RCU_GP_FLAG_FQS)
2069 return true;
2071 /* The current grace period has completed. */
2072 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2073 return true;
2075 return false;
2079 * Do one round of quiescent-state forcing.
2081 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2083 struct rcu_node *rnp = rcu_get_root(rsp);
2085 WRITE_ONCE(rsp->gp_activity, jiffies);
2086 rsp->n_force_qs++;
2087 if (first_time) {
2088 /* Collect dyntick-idle snapshots. */
2089 force_qs_rnp(rsp, dyntick_save_progress_counter);
2090 } else {
2091 /* Handle dyntick-idle and offline CPUs. */
2092 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2094 /* Clear flag to prevent immediate re-entry. */
2095 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2096 raw_spin_lock_irq_rcu_node(rnp);
2097 WRITE_ONCE(rsp->gp_flags,
2098 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2099 raw_spin_unlock_irq_rcu_node(rnp);
2104 * Clean up after the old grace period.
2106 static void rcu_gp_cleanup(struct rcu_state *rsp)
2108 unsigned long gp_duration;
2109 bool needgp = false;
2110 int nocb = 0;
2111 struct rcu_data *rdp;
2112 struct rcu_node *rnp = rcu_get_root(rsp);
2113 struct swait_queue_head *sq;
2115 WRITE_ONCE(rsp->gp_activity, jiffies);
2116 raw_spin_lock_irq_rcu_node(rnp);
2117 gp_duration = jiffies - rsp->gp_start;
2118 if (gp_duration > rsp->gp_max)
2119 rsp->gp_max = gp_duration;
2122 * We know the grace period is complete, but to everyone else
2123 * it appears to still be ongoing. But it is also the case
2124 * that to everyone else it looks like there is nothing that
2125 * they can do to advance the grace period. It is therefore
2126 * safe for us to drop the lock in order to mark the grace
2127 * period as completed in all of the rcu_node structures.
2129 raw_spin_unlock_irq_rcu_node(rnp);
2132 * Propagate new ->completed value to rcu_node structures so
2133 * that other CPUs don't have to wait until the start of the next
2134 * grace period to process their callbacks. This also avoids
2135 * some nasty RCU grace-period initialization races by forcing
2136 * the end of the current grace period to be completely recorded in
2137 * all of the rcu_node structures before the beginning of the next
2138 * grace period is recorded in any of the rcu_node structures.
2140 rcu_for_each_node_breadth_first(rsp, rnp) {
2141 raw_spin_lock_irq_rcu_node(rnp);
2142 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2143 WARN_ON_ONCE(rnp->qsmask);
2144 WRITE_ONCE(rnp->completed, rsp->gpnum);
2145 rdp = this_cpu_ptr(rsp->rda);
2146 if (rnp == rdp->mynode)
2147 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2148 /* smp_mb() provided by prior unlock-lock pair. */
2149 nocb += rcu_future_gp_cleanup(rsp, rnp);
2150 sq = rcu_nocb_gp_get(rnp);
2151 raw_spin_unlock_irq_rcu_node(rnp);
2152 rcu_nocb_gp_cleanup(sq);
2153 cond_resched_rcu_qs();
2154 WRITE_ONCE(rsp->gp_activity, jiffies);
2155 rcu_gp_slow(rsp, gp_cleanup_delay);
2157 rnp = rcu_get_root(rsp);
2158 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2159 rcu_nocb_gp_set(rnp, nocb);
2161 /* Declare grace period done. */
2162 WRITE_ONCE(rsp->completed, rsp->gpnum);
2163 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2164 rsp->gp_state = RCU_GP_IDLE;
2165 rdp = this_cpu_ptr(rsp->rda);
2166 /* Advance CBs to reduce false positives below. */
2167 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2168 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2169 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2170 trace_rcu_grace_period(rsp->name,
2171 READ_ONCE(rsp->gpnum),
2172 TPS("newreq"));
2174 raw_spin_unlock_irq_rcu_node(rnp);
2178 * Body of kthread that handles grace periods.
2180 static int __noreturn rcu_gp_kthread(void *arg)
2182 bool first_gp_fqs;
2183 int gf;
2184 unsigned long j;
2185 int ret;
2186 struct rcu_state *rsp = arg;
2187 struct rcu_node *rnp = rcu_get_root(rsp);
2189 rcu_bind_gp_kthread();
2190 for (;;) {
2192 /* Handle grace-period start. */
2193 for (;;) {
2194 trace_rcu_grace_period(rsp->name,
2195 READ_ONCE(rsp->gpnum),
2196 TPS("reqwait"));
2197 rsp->gp_state = RCU_GP_WAIT_GPS;
2198 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2199 RCU_GP_FLAG_INIT);
2200 rsp->gp_state = RCU_GP_DONE_GPS;
2201 /* Locking provides needed memory barrier. */
2202 if (rcu_gp_init(rsp))
2203 break;
2204 cond_resched_rcu_qs();
2205 WRITE_ONCE(rsp->gp_activity, jiffies);
2206 WARN_ON(signal_pending(current));
2207 trace_rcu_grace_period(rsp->name,
2208 READ_ONCE(rsp->gpnum),
2209 TPS("reqwaitsig"));
2212 /* Handle quiescent-state forcing. */
2213 first_gp_fqs = true;
2214 j = jiffies_till_first_fqs;
2215 if (j > HZ) {
2216 j = HZ;
2217 jiffies_till_first_fqs = HZ;
2219 ret = 0;
2220 for (;;) {
2221 if (!ret) {
2222 rsp->jiffies_force_qs = jiffies + j;
2223 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2224 jiffies + 3 * j);
2226 trace_rcu_grace_period(rsp->name,
2227 READ_ONCE(rsp->gpnum),
2228 TPS("fqswait"));
2229 rsp->gp_state = RCU_GP_WAIT_FQS;
2230 ret = swait_event_idle_timeout(rsp->gp_wq,
2231 rcu_gp_fqs_check_wake(rsp, &gf), j);
2232 rsp->gp_state = RCU_GP_DOING_FQS;
2233 /* Locking provides needed memory barriers. */
2234 /* If grace period done, leave loop. */
2235 if (!READ_ONCE(rnp->qsmask) &&
2236 !rcu_preempt_blocked_readers_cgp(rnp))
2237 break;
2238 /* If time for quiescent-state forcing, do it. */
2239 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2240 (gf & RCU_GP_FLAG_FQS)) {
2241 trace_rcu_grace_period(rsp->name,
2242 READ_ONCE(rsp->gpnum),
2243 TPS("fqsstart"));
2244 rcu_gp_fqs(rsp, first_gp_fqs);
2245 first_gp_fqs = false;
2246 trace_rcu_grace_period(rsp->name,
2247 READ_ONCE(rsp->gpnum),
2248 TPS("fqsend"));
2249 cond_resched_rcu_qs();
2250 WRITE_ONCE(rsp->gp_activity, jiffies);
2251 ret = 0; /* Force full wait till next FQS. */
2252 j = jiffies_till_next_fqs;
2253 if (j > HZ) {
2254 j = HZ;
2255 jiffies_till_next_fqs = HZ;
2256 } else if (j < 1) {
2257 j = 1;
2258 jiffies_till_next_fqs = 1;
2260 } else {
2261 /* Deal with stray signal. */
2262 cond_resched_rcu_qs();
2263 WRITE_ONCE(rsp->gp_activity, jiffies);
2264 WARN_ON(signal_pending(current));
2265 trace_rcu_grace_period(rsp->name,
2266 READ_ONCE(rsp->gpnum),
2267 TPS("fqswaitsig"));
2268 ret = 1; /* Keep old FQS timing. */
2269 j = jiffies;
2270 if (time_after(jiffies, rsp->jiffies_force_qs))
2271 j = 1;
2272 else
2273 j = rsp->jiffies_force_qs - j;
2277 /* Handle grace-period end. */
2278 rsp->gp_state = RCU_GP_CLEANUP;
2279 rcu_gp_cleanup(rsp);
2280 rsp->gp_state = RCU_GP_CLEANED;
2285 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2286 * in preparation for detecting the next grace period. The caller must hold
2287 * the root node's ->lock and hard irqs must be disabled.
2289 * Note that it is legal for a dying CPU (which is marked as offline) to
2290 * invoke this function. This can happen when the dying CPU reports its
2291 * quiescent state.
2293 * Returns true if the grace-period kthread must be awakened.
2295 static bool
2296 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2297 struct rcu_data *rdp)
2299 lockdep_assert_held(&rnp->lock);
2300 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2302 * Either we have not yet spawned the grace-period
2303 * task, this CPU does not need another grace period,
2304 * or a grace period is already in progress.
2305 * Either way, don't start a new grace period.
2307 return false;
2309 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2310 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2311 TPS("newreq"));
2314 * We can't do wakeups while holding the rnp->lock, as that
2315 * could cause possible deadlocks with the rq->lock. Defer
2316 * the wakeup to our caller.
2318 return true;
2322 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2323 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2324 * is invoked indirectly from rcu_advance_cbs(), which would result in
2325 * endless recursion -- or would do so if it wasn't for the self-deadlock
2326 * that is encountered beforehand.
2328 * Returns true if the grace-period kthread needs to be awakened.
2330 static bool rcu_start_gp(struct rcu_state *rsp)
2332 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2333 struct rcu_node *rnp = rcu_get_root(rsp);
2334 bool ret = false;
2337 * If there is no grace period in progress right now, any
2338 * callbacks we have up to this point will be satisfied by the
2339 * next grace period. Also, advancing the callbacks reduces the
2340 * probability of false positives from cpu_needs_another_gp()
2341 * resulting in pointless grace periods. So, advance callbacks
2342 * then start the grace period!
2344 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2345 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2346 return ret;
2350 * Report a full set of quiescent states to the specified rcu_state data
2351 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2352 * kthread if another grace period is required. Whether we wake
2353 * the grace-period kthread or it awakens itself for the next round
2354 * of quiescent-state forcing, that kthread will clean up after the
2355 * just-completed grace period. Note that the caller must hold rnp->lock,
2356 * which is released before return.
2358 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2359 __releases(rcu_get_root(rsp)->lock)
2361 lockdep_assert_held(&rcu_get_root(rsp)->lock);
2362 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2363 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2364 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2365 rcu_gp_kthread_wake(rsp);
2369 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2370 * Allows quiescent states for a group of CPUs to be reported at one go
2371 * to the specified rcu_node structure, though all the CPUs in the group
2372 * must be represented by the same rcu_node structure (which need not be a
2373 * leaf rcu_node structure, though it often will be). The gps parameter
2374 * is the grace-period snapshot, which means that the quiescent states
2375 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2376 * must be held upon entry, and it is released before return.
2378 static void
2379 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2380 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2381 __releases(rnp->lock)
2383 unsigned long oldmask = 0;
2384 struct rcu_node *rnp_c;
2386 lockdep_assert_held(&rnp->lock);
2388 /* Walk up the rcu_node hierarchy. */
2389 for (;;) {
2390 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2393 * Our bit has already been cleared, or the
2394 * relevant grace period is already over, so done.
2396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2397 return;
2399 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2400 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2401 rcu_preempt_blocked_readers_cgp(rnp));
2402 rnp->qsmask &= ~mask;
2403 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2404 mask, rnp->qsmask, rnp->level,
2405 rnp->grplo, rnp->grphi,
2406 !!rnp->gp_tasks);
2407 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2409 /* Other bits still set at this level, so done. */
2410 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2411 return;
2413 mask = rnp->grpmask;
2414 if (rnp->parent == NULL) {
2416 /* No more levels. Exit loop holding root lock. */
2418 break;
2420 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421 rnp_c = rnp;
2422 rnp = rnp->parent;
2423 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2424 oldmask = rnp_c->qsmask;
2428 * Get here if we are the last CPU to pass through a quiescent
2429 * state for this grace period. Invoke rcu_report_qs_rsp()
2430 * to clean up and start the next grace period if one is needed.
2432 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2436 * Record a quiescent state for all tasks that were previously queued
2437 * on the specified rcu_node structure and that were blocking the current
2438 * RCU grace period. The caller must hold the specified rnp->lock with
2439 * irqs disabled, and this lock is released upon return, but irqs remain
2440 * disabled.
2442 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2443 struct rcu_node *rnp, unsigned long flags)
2444 __releases(rnp->lock)
2446 unsigned long gps;
2447 unsigned long mask;
2448 struct rcu_node *rnp_p;
2450 lockdep_assert_held(&rnp->lock);
2451 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2452 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2454 return; /* Still need more quiescent states! */
2457 rnp_p = rnp->parent;
2458 if (rnp_p == NULL) {
2460 * Only one rcu_node structure in the tree, so don't
2461 * try to report up to its nonexistent parent!
2463 rcu_report_qs_rsp(rsp, flags);
2464 return;
2467 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2468 gps = rnp->gpnum;
2469 mask = rnp->grpmask;
2470 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2471 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2472 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2476 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2477 * structure. This must be called from the specified CPU.
2479 static void
2480 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2482 unsigned long flags;
2483 unsigned long mask;
2484 bool needwake;
2485 struct rcu_node *rnp;
2487 rnp = rdp->mynode;
2488 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2489 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2490 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2493 * The grace period in which this quiescent state was
2494 * recorded has ended, so don't report it upwards.
2495 * We will instead need a new quiescent state that lies
2496 * within the current grace period.
2498 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2499 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2500 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2501 return;
2503 mask = rdp->grpmask;
2504 if ((rnp->qsmask & mask) == 0) {
2505 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2506 } else {
2507 rdp->core_needs_qs = false;
2510 * This GP can't end until cpu checks in, so all of our
2511 * callbacks can be processed during the next GP.
2513 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2515 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2516 /* ^^^ Released rnp->lock */
2517 if (needwake)
2518 rcu_gp_kthread_wake(rsp);
2523 * Check to see if there is a new grace period of which this CPU
2524 * is not yet aware, and if so, set up local rcu_data state for it.
2525 * Otherwise, see if this CPU has just passed through its first
2526 * quiescent state for this grace period, and record that fact if so.
2528 static void
2529 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531 /* Check for grace-period ends and beginnings. */
2532 note_gp_changes(rsp, rdp);
2535 * Does this CPU still need to do its part for current grace period?
2536 * If no, return and let the other CPUs do their part as well.
2538 if (!rdp->core_needs_qs)
2539 return;
2542 * Was there a quiescent state since the beginning of the grace
2543 * period? If no, then exit and wait for the next call.
2545 if (rdp->cpu_no_qs.b.norm)
2546 return;
2549 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2550 * judge of that).
2552 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2556 * Trace the fact that this CPU is going offline.
2558 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560 RCU_TRACE(unsigned long mask;)
2561 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2562 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2564 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2565 return;
2567 RCU_TRACE(mask = rdp->grpmask;)
2568 trace_rcu_grace_period(rsp->name,
2569 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2570 TPS("cpuofl"));
2574 * All CPUs for the specified rcu_node structure have gone offline,
2575 * and all tasks that were preempted within an RCU read-side critical
2576 * section while running on one of those CPUs have since exited their RCU
2577 * read-side critical section. Some other CPU is reporting this fact with
2578 * the specified rcu_node structure's ->lock held and interrupts disabled.
2579 * This function therefore goes up the tree of rcu_node structures,
2580 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2581 * the leaf rcu_node structure's ->qsmaskinit field has already been
2582 * updated
2584 * This function does check that the specified rcu_node structure has
2585 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2586 * prematurely. That said, invoking it after the fact will cost you
2587 * a needless lock acquisition. So once it has done its work, don't
2588 * invoke it again.
2590 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592 long mask;
2593 struct rcu_node *rnp = rnp_leaf;
2595 lockdep_assert_held(&rnp->lock);
2596 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2597 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2598 return;
2599 for (;;) {
2600 mask = rnp->grpmask;
2601 rnp = rnp->parent;
2602 if (!rnp)
2603 break;
2604 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2605 rnp->qsmaskinit &= ~mask;
2606 rnp->qsmask &= ~mask;
2607 if (rnp->qsmaskinit) {
2608 raw_spin_unlock_rcu_node(rnp);
2609 /* irqs remain disabled. */
2610 return;
2612 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2617 * The CPU has been completely removed, and some other CPU is reporting
2618 * this fact from process context. Do the remainder of the cleanup.
2619 * There can only be one CPU hotplug operation at a time, so no need for
2620 * explicit locking.
2622 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2624 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2625 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2627 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2628 return;
2630 /* Adjust any no-longer-needed kthreads. */
2631 rcu_boost_kthread_setaffinity(rnp, -1);
2635 * Invoke any RCU callbacks that have made it to the end of their grace
2636 * period. Thottle as specified by rdp->blimit.
2638 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2640 unsigned long flags;
2641 struct rcu_head *rhp;
2642 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2643 long bl, count;
2645 /* If no callbacks are ready, just return. */
2646 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2647 trace_rcu_batch_start(rsp->name,
2648 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2649 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2650 trace_rcu_batch_end(rsp->name, 0,
2651 !rcu_segcblist_empty(&rdp->cblist),
2652 need_resched(), is_idle_task(current),
2653 rcu_is_callbacks_kthread());
2654 return;
2658 * Extract the list of ready callbacks, disabling to prevent
2659 * races with call_rcu() from interrupt handlers. Leave the
2660 * callback counts, as rcu_barrier() needs to be conservative.
2662 local_irq_save(flags);
2663 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664 bl = rdp->blimit;
2665 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2666 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2667 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2668 local_irq_restore(flags);
2670 /* Invoke callbacks. */
2671 rhp = rcu_cblist_dequeue(&rcl);
2672 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2673 debug_rcu_head_unqueue(rhp);
2674 if (__rcu_reclaim(rsp->name, rhp))
2675 rcu_cblist_dequeued_lazy(&rcl);
2677 * Stop only if limit reached and CPU has something to do.
2678 * Note: The rcl structure counts down from zero.
2680 if (-rcl.len >= bl &&
2681 (need_resched() ||
2682 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2683 break;
2686 local_irq_save(flags);
2687 count = -rcl.len;
2688 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2689 is_idle_task(current), rcu_is_callbacks_kthread());
2691 /* Update counts and requeue any remaining callbacks. */
2692 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2693 smp_mb(); /* List handling before counting for rcu_barrier(). */
2694 rdp->n_cbs_invoked += count;
2695 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2697 /* Reinstate batch limit if we have worked down the excess. */
2698 count = rcu_segcblist_n_cbs(&rdp->cblist);
2699 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700 rdp->blimit = blimit;
2702 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704 rdp->qlen_last_fqs_check = 0;
2705 rdp->n_force_qs_snap = rsp->n_force_qs;
2706 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2707 rdp->qlen_last_fqs_check = count;
2710 * The following usually indicates a double call_rcu(). To track
2711 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2713 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2715 local_irq_restore(flags);
2717 /* Re-invoke RCU core processing if there are callbacks remaining. */
2718 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719 invoke_rcu_core();
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2727 * This function must be called from hardirq context. It is normally
2728 * invoked from the scheduling-clock interrupt.
2730 void rcu_check_callbacks(int user)
2732 trace_rcu_utilization(TPS("Start scheduler-tick"));
2733 increment_cpu_stall_ticks();
2734 if (user || rcu_is_cpu_rrupt_from_idle()) {
2737 * Get here if this CPU took its interrupt from user
2738 * mode or from the idle loop, and if this is not a
2739 * nested interrupt. In this case, the CPU is in
2740 * a quiescent state, so note it.
2742 * No memory barrier is required here because both
2743 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744 * variables that other CPUs neither access nor modify,
2745 * at least not while the corresponding CPU is online.
2748 rcu_sched_qs();
2749 rcu_bh_qs();
2751 } else if (!in_softirq()) {
2754 * Get here if this CPU did not take its interrupt from
2755 * softirq, in other words, if it is not interrupting
2756 * a rcu_bh read-side critical section. This is an _bh
2757 * critical section, so note it.
2760 rcu_bh_qs();
2762 rcu_preempt_check_callbacks();
2763 if (rcu_pending())
2764 invoke_rcu_core();
2765 if (user)
2766 rcu_note_voluntary_context_switch(current);
2767 trace_rcu_utilization(TPS("End scheduler-tick"));
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2775 * The caller must have suppressed start of new grace periods.
2777 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2779 int cpu;
2780 unsigned long flags;
2781 unsigned long mask;
2782 struct rcu_node *rnp;
2784 rcu_for_each_leaf_node(rsp, rnp) {
2785 cond_resched_rcu_qs();
2786 mask = 0;
2787 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2788 if (rnp->qsmask == 0) {
2789 if (rcu_state_p == &rcu_sched_state ||
2790 rsp != rcu_state_p ||
2791 rcu_preempt_blocked_readers_cgp(rnp)) {
2793 * No point in scanning bits because they
2794 * are all zero. But we might need to
2795 * priority-boost blocked readers.
2797 rcu_initiate_boost(rnp, flags);
2798 /* rcu_initiate_boost() releases rnp->lock */
2799 continue;
2801 if (rnp->parent &&
2802 (rnp->parent->qsmask & rnp->grpmask)) {
2804 * Race between grace-period
2805 * initialization and task exiting RCU
2806 * read-side critical section: Report.
2808 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2810 continue;
2813 for_each_leaf_node_possible_cpu(rnp, cpu) {
2814 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815 if ((rnp->qsmask & bit) != 0) {
2816 if (f(per_cpu_ptr(rsp->rda, cpu)))
2817 mask |= bit;
2820 if (mask != 0) {
2821 /* Idle/offline CPUs, report (releases rnp->lock. */
2822 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823 } else {
2824 /* Nothing to do here, so just drop the lock. */
2825 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2834 static void force_quiescent_state(struct rcu_state *rsp)
2836 unsigned long flags;
2837 bool ret;
2838 struct rcu_node *rnp;
2839 struct rcu_node *rnp_old = NULL;
2841 /* Funnel through hierarchy to reduce memory contention. */
2842 rnp = __this_cpu_read(rsp->rda->mynode);
2843 for (; rnp != NULL; rnp = rnp->parent) {
2844 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845 !raw_spin_trylock(&rnp->fqslock);
2846 if (rnp_old != NULL)
2847 raw_spin_unlock(&rnp_old->fqslock);
2848 if (ret) {
2849 rsp->n_force_qs_lh++;
2850 return;
2852 rnp_old = rnp;
2854 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2856 /* Reached the root of the rcu_node tree, acquire lock. */
2857 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2858 raw_spin_unlock(&rnp_old->fqslock);
2859 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2860 rsp->n_force_qs_lh++;
2861 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2862 return; /* Someone beat us to it. */
2864 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2865 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2866 rcu_gp_kthread_wake(rsp);
2870 * This does the RCU core processing work for the specified rcu_state
2871 * and rcu_data structures. This may be called only from the CPU to
2872 * whom the rdp belongs.
2874 static void
2875 __rcu_process_callbacks(struct rcu_state *rsp)
2877 unsigned long flags;
2878 bool needwake;
2879 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2881 WARN_ON_ONCE(!rdp->beenonline);
2883 /* Update RCU state based on any recent quiescent states. */
2884 rcu_check_quiescent_state(rsp, rdp);
2886 /* Does this CPU require a not-yet-started grace period? */
2887 local_irq_save(flags);
2888 if (cpu_needs_another_gp(rsp, rdp)) {
2889 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2890 needwake = rcu_start_gp(rsp);
2891 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2892 if (needwake)
2893 rcu_gp_kthread_wake(rsp);
2894 } else {
2895 local_irq_restore(flags);
2898 /* If there are callbacks ready, invoke them. */
2899 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2900 invoke_rcu_callbacks(rsp, rdp);
2902 /* Do any needed deferred wakeups of rcuo kthreads. */
2903 do_nocb_deferred_wakeup(rdp);
2907 * Do RCU core processing for the current CPU.
2909 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2911 struct rcu_state *rsp;
2913 if (cpu_is_offline(smp_processor_id()))
2914 return;
2915 trace_rcu_utilization(TPS("Start RCU core"));
2916 for_each_rcu_flavor(rsp)
2917 __rcu_process_callbacks(rsp);
2918 trace_rcu_utilization(TPS("End RCU core"));
2922 * Schedule RCU callback invocation. If the specified type of RCU
2923 * does not support RCU priority boosting, just do a direct call,
2924 * otherwise wake up the per-CPU kernel kthread. Note that because we
2925 * are running on the current CPU with softirqs disabled, the
2926 * rcu_cpu_kthread_task cannot disappear out from under us.
2928 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2930 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2931 return;
2932 if (likely(!rsp->boost)) {
2933 rcu_do_batch(rsp, rdp);
2934 return;
2936 invoke_rcu_callbacks_kthread();
2939 static void invoke_rcu_core(void)
2941 if (cpu_online(smp_processor_id()))
2942 raise_softirq(RCU_SOFTIRQ);
2946 * Handle any core-RCU processing required by a call_rcu() invocation.
2948 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2949 struct rcu_head *head, unsigned long flags)
2951 bool needwake;
2954 * If called from an extended quiescent state, invoke the RCU
2955 * core in order to force a re-evaluation of RCU's idleness.
2957 if (!rcu_is_watching())
2958 invoke_rcu_core();
2960 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2961 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2962 return;
2965 * Force the grace period if too many callbacks or too long waiting.
2966 * Enforce hysteresis, and don't invoke force_quiescent_state()
2967 * if some other CPU has recently done so. Also, don't bother
2968 * invoking force_quiescent_state() if the newly enqueued callback
2969 * is the only one waiting for a grace period to complete.
2971 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2972 rdp->qlen_last_fqs_check + qhimark)) {
2974 /* Are we ignoring a completed grace period? */
2975 note_gp_changes(rsp, rdp);
2977 /* Start a new grace period if one not already started. */
2978 if (!rcu_gp_in_progress(rsp)) {
2979 struct rcu_node *rnp_root = rcu_get_root(rsp);
2981 raw_spin_lock_rcu_node(rnp_root);
2982 needwake = rcu_start_gp(rsp);
2983 raw_spin_unlock_rcu_node(rnp_root);
2984 if (needwake)
2985 rcu_gp_kthread_wake(rsp);
2986 } else {
2987 /* Give the grace period a kick. */
2988 rdp->blimit = LONG_MAX;
2989 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2990 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2991 force_quiescent_state(rsp);
2992 rdp->n_force_qs_snap = rsp->n_force_qs;
2993 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2999 * RCU callback function to leak a callback.
3001 static void rcu_leak_callback(struct rcu_head *rhp)
3006 * Helper function for call_rcu() and friends. The cpu argument will
3007 * normally be -1, indicating "currently running CPU". It may specify
3008 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3009 * is expected to specify a CPU.
3011 static void
3012 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3013 struct rcu_state *rsp, int cpu, bool lazy)
3015 unsigned long flags;
3016 struct rcu_data *rdp;
3018 /* Misaligned rcu_head! */
3019 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3021 if (debug_rcu_head_queue(head)) {
3023 * Probable double call_rcu(), so leak the callback.
3024 * Use rcu:rcu_callback trace event to find the previous
3025 * time callback was passed to __call_rcu().
3027 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3028 head, head->func);
3029 WRITE_ONCE(head->func, rcu_leak_callback);
3030 return;
3032 head->func = func;
3033 head->next = NULL;
3034 local_irq_save(flags);
3035 rdp = this_cpu_ptr(rsp->rda);
3037 /* Add the callback to our list. */
3038 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3039 int offline;
3041 if (cpu != -1)
3042 rdp = per_cpu_ptr(rsp->rda, cpu);
3043 if (likely(rdp->mynode)) {
3044 /* Post-boot, so this should be for a no-CBs CPU. */
3045 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3046 WARN_ON_ONCE(offline);
3047 /* Offline CPU, _call_rcu() illegal, leak callback. */
3048 local_irq_restore(flags);
3049 return;
3052 * Very early boot, before rcu_init(). Initialize if needed
3053 * and then drop through to queue the callback.
3055 BUG_ON(cpu != -1);
3056 WARN_ON_ONCE(!rcu_is_watching());
3057 if (rcu_segcblist_empty(&rdp->cblist))
3058 rcu_segcblist_init(&rdp->cblist);
3060 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3061 if (!lazy)
3062 rcu_idle_count_callbacks_posted();
3064 if (__is_kfree_rcu_offset((unsigned long)func))
3065 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3066 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3067 rcu_segcblist_n_cbs(&rdp->cblist));
3068 else
3069 trace_rcu_callback(rsp->name, head,
3070 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3071 rcu_segcblist_n_cbs(&rdp->cblist));
3073 /* Go handle any RCU core processing required. */
3074 __call_rcu_core(rsp, rdp, head, flags);
3075 local_irq_restore(flags);
3079 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3080 * @head: structure to be used for queueing the RCU updates.
3081 * @func: actual callback function to be invoked after the grace period
3083 * The callback function will be invoked some time after a full grace
3084 * period elapses, in other words after all currently executing RCU
3085 * read-side critical sections have completed. call_rcu_sched() assumes
3086 * that the read-side critical sections end on enabling of preemption
3087 * or on voluntary preemption.
3088 * RCU read-side critical sections are delimited by:
3090 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3091 * - anything that disables preemption.
3093 * These may be nested.
3095 * See the description of call_rcu() for more detailed information on
3096 * memory ordering guarantees.
3098 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3100 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3102 EXPORT_SYMBOL_GPL(call_rcu_sched);
3105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3106 * @head: structure to be used for queueing the RCU updates.
3107 * @func: actual callback function to be invoked after the grace period
3109 * The callback function will be invoked some time after a full grace
3110 * period elapses, in other words after all currently executing RCU
3111 * read-side critical sections have completed. call_rcu_bh() assumes
3112 * that the read-side critical sections end on completion of a softirq
3113 * handler. This means that read-side critical sections in process
3114 * context must not be interrupted by softirqs. This interface is to be
3115 * used when most of the read-side critical sections are in softirq context.
3116 * RCU read-side critical sections are delimited by:
3118 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3121 * These may be nested.
3123 * See the description of call_rcu() for more detailed information on
3124 * memory ordering guarantees.
3126 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3128 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3130 EXPORT_SYMBOL_GPL(call_rcu_bh);
3133 * Queue an RCU callback for lazy invocation after a grace period.
3134 * This will likely be later named something like "call_rcu_lazy()",
3135 * but this change will require some way of tagging the lazy RCU
3136 * callbacks in the list of pending callbacks. Until then, this
3137 * function may only be called from __kfree_rcu().
3139 void kfree_call_rcu(struct rcu_head *head,
3140 rcu_callback_t func)
3142 __call_rcu(head, func, rcu_state_p, -1, 1);
3144 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3147 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3148 * any blocking grace-period wait automatically implies a grace period
3149 * if there is only one CPU online at any point time during execution
3150 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3151 * occasionally incorrectly indicate that there are multiple CPUs online
3152 * when there was in fact only one the whole time, as this just adds
3153 * some overhead: RCU still operates correctly.
3155 static inline int rcu_blocking_is_gp(void)
3157 int ret;
3159 might_sleep(); /* Check for RCU read-side critical section. */
3160 preempt_disable();
3161 ret = num_online_cpus() <= 1;
3162 preempt_enable();
3163 return ret;
3167 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3169 * Control will return to the caller some time after a full rcu-sched
3170 * grace period has elapsed, in other words after all currently executing
3171 * rcu-sched read-side critical sections have completed. These read-side
3172 * critical sections are delimited by rcu_read_lock_sched() and
3173 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3174 * local_irq_disable(), and so on may be used in place of
3175 * rcu_read_lock_sched().
3177 * This means that all preempt_disable code sequences, including NMI and
3178 * non-threaded hardware-interrupt handlers, in progress on entry will
3179 * have completed before this primitive returns. However, this does not
3180 * guarantee that softirq handlers will have completed, since in some
3181 * kernels, these handlers can run in process context, and can block.
3183 * Note that this guarantee implies further memory-ordering guarantees.
3184 * On systems with more than one CPU, when synchronize_sched() returns,
3185 * each CPU is guaranteed to have executed a full memory barrier since the
3186 * end of its last RCU-sched read-side critical section whose beginning
3187 * preceded the call to synchronize_sched(). In addition, each CPU having
3188 * an RCU read-side critical section that extends beyond the return from
3189 * synchronize_sched() is guaranteed to have executed a full memory barrier
3190 * after the beginning of synchronize_sched() and before the beginning of
3191 * that RCU read-side critical section. Note that these guarantees include
3192 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3193 * that are executing in the kernel.
3195 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3196 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3197 * to have executed a full memory barrier during the execution of
3198 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3199 * again only if the system has more than one CPU).
3201 void synchronize_sched(void)
3203 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3204 lock_is_held(&rcu_lock_map) ||
3205 lock_is_held(&rcu_sched_lock_map),
3206 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 if (rcu_blocking_is_gp())
3208 return;
3209 if (rcu_gp_is_expedited())
3210 synchronize_sched_expedited();
3211 else
3212 wait_rcu_gp(call_rcu_sched);
3214 EXPORT_SYMBOL_GPL(synchronize_sched);
3217 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3219 * Control will return to the caller some time after a full rcu_bh grace
3220 * period has elapsed, in other words after all currently executing rcu_bh
3221 * read-side critical sections have completed. RCU read-side critical
3222 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223 * and may be nested.
3225 * See the description of synchronize_sched() for more detailed information
3226 * on memory ordering guarantees.
3228 void synchronize_rcu_bh(void)
3230 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3231 lock_is_held(&rcu_lock_map) ||
3232 lock_is_held(&rcu_sched_lock_map),
3233 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 if (rcu_blocking_is_gp())
3235 return;
3236 if (rcu_gp_is_expedited())
3237 synchronize_rcu_bh_expedited();
3238 else
3239 wait_rcu_gp(call_rcu_bh);
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3244 * get_state_synchronize_rcu - Snapshot current RCU state
3246 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247 * to determine whether or not a full grace period has elapsed in the
3248 * meantime.
3250 unsigned long get_state_synchronize_rcu(void)
3253 * Any prior manipulation of RCU-protected data must happen
3254 * before the load from ->gpnum.
3256 smp_mb(); /* ^^^ */
3259 * Make sure this load happens before the purportedly
3260 * time-consuming work between get_state_synchronize_rcu()
3261 * and cond_synchronize_rcu().
3263 return smp_load_acquire(&rcu_state_p->gpnum);
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3268 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3270 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3272 * If a full RCU grace period has elapsed since the earlier call to
3273 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3274 * synchronize_rcu() to wait for a full grace period.
3276 * Yes, this function does not take counter wrap into account. But
3277 * counter wrap is harmless. If the counter wraps, we have waited for
3278 * more than 2 billion grace periods (and way more on a 64-bit system!),
3279 * so waiting for one additional grace period should be just fine.
3281 void cond_synchronize_rcu(unsigned long oldstate)
3283 unsigned long newstate;
3286 * Ensure that this load happens before any RCU-destructive
3287 * actions the caller might carry out after we return.
3289 newstate = smp_load_acquire(&rcu_state_p->completed);
3290 if (ULONG_CMP_GE(oldstate, newstate))
3291 synchronize_rcu();
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3296 * get_state_synchronize_sched - Snapshot current RCU-sched state
3298 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299 * to determine whether or not a full grace period has elapsed in the
3300 * meantime.
3302 unsigned long get_state_synchronize_sched(void)
3305 * Any prior manipulation of RCU-protected data must happen
3306 * before the load from ->gpnum.
3308 smp_mb(); /* ^^^ */
3311 * Make sure this load happens before the purportedly
3312 * time-consuming work between get_state_synchronize_sched()
3313 * and cond_synchronize_sched().
3315 return smp_load_acquire(&rcu_sched_state.gpnum);
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3320 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3322 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3324 * If a full RCU-sched grace period has elapsed since the earlier call to
3325 * get_state_synchronize_sched(), just return. Otherwise, invoke
3326 * synchronize_sched() to wait for a full grace period.
3328 * Yes, this function does not take counter wrap into account. But
3329 * counter wrap is harmless. If the counter wraps, we have waited for
3330 * more than 2 billion grace periods (and way more on a 64-bit system!),
3331 * so waiting for one additional grace period should be just fine.
3333 void cond_synchronize_sched(unsigned long oldstate)
3335 unsigned long newstate;
3338 * Ensure that this load happens before any RCU-destructive
3339 * actions the caller might carry out after we return.
3341 newstate = smp_load_acquire(&rcu_sched_state.completed);
3342 if (ULONG_CMP_GE(oldstate, newstate))
3343 synchronize_sched();
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3348 * Check to see if there is any immediate RCU-related work to be done
3349 * by the current CPU, for the specified type of RCU, returning 1 if so.
3350 * The checks are in order of increasing expense: checks that can be
3351 * carried out against CPU-local state are performed first. However,
3352 * we must check for CPU stalls first, else we might not get a chance.
3354 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3356 struct rcu_node *rnp = rdp->mynode;
3358 rdp->n_rcu_pending++;
3360 /* Check for CPU stalls, if enabled. */
3361 check_cpu_stall(rsp, rdp);
3363 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3364 if (rcu_nohz_full_cpu(rsp))
3365 return 0;
3367 /* Is the RCU core waiting for a quiescent state from this CPU? */
3368 if (rcu_scheduler_fully_active &&
3369 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3370 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3371 rdp->n_rp_core_needs_qs++;
3372 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3373 rdp->n_rp_report_qs++;
3374 return 1;
3377 /* Does this CPU have callbacks ready to invoke? */
3378 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3379 rdp->n_rp_cb_ready++;
3380 return 1;
3383 /* Has RCU gone idle with this CPU needing another grace period? */
3384 if (cpu_needs_another_gp(rsp, rdp)) {
3385 rdp->n_rp_cpu_needs_gp++;
3386 return 1;
3389 /* Has another RCU grace period completed? */
3390 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3391 rdp->n_rp_gp_completed++;
3392 return 1;
3395 /* Has a new RCU grace period started? */
3396 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3397 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3398 rdp->n_rp_gp_started++;
3399 return 1;
3402 /* Does this CPU need a deferred NOCB wakeup? */
3403 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3404 rdp->n_rp_nocb_defer_wakeup++;
3405 return 1;
3408 /* nothing to do */
3409 rdp->n_rp_need_nothing++;
3410 return 0;
3414 * Check to see if there is any immediate RCU-related work to be done
3415 * by the current CPU, returning 1 if so. This function is part of the
3416 * RCU implementation; it is -not- an exported member of the RCU API.
3418 static int rcu_pending(void)
3420 struct rcu_state *rsp;
3422 for_each_rcu_flavor(rsp)
3423 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3424 return 1;
3425 return 0;
3429 * Return true if the specified CPU has any callback. If all_lazy is
3430 * non-NULL, store an indication of whether all callbacks are lazy.
3431 * (If there are no callbacks, all of them are deemed to be lazy.)
3433 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3435 bool al = true;
3436 bool hc = false;
3437 struct rcu_data *rdp;
3438 struct rcu_state *rsp;
3440 for_each_rcu_flavor(rsp) {
3441 rdp = this_cpu_ptr(rsp->rda);
3442 if (rcu_segcblist_empty(&rdp->cblist))
3443 continue;
3444 hc = true;
3445 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3446 al = false;
3447 break;
3450 if (all_lazy)
3451 *all_lazy = al;
3452 return hc;
3456 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3457 * the compiler is expected to optimize this away.
3459 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3460 int cpu, unsigned long done)
3462 trace_rcu_barrier(rsp->name, s, cpu,
3463 atomic_read(&rsp->barrier_cpu_count), done);
3467 * RCU callback function for _rcu_barrier(). If we are last, wake
3468 * up the task executing _rcu_barrier().
3470 static void rcu_barrier_callback(struct rcu_head *rhp)
3472 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3473 struct rcu_state *rsp = rdp->rsp;
3475 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3476 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3477 rsp->barrier_sequence);
3478 complete(&rsp->barrier_completion);
3479 } else {
3480 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3485 * Called with preemption disabled, and from cross-cpu IRQ context.
3487 static void rcu_barrier_func(void *type)
3489 struct rcu_state *rsp = type;
3490 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3492 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3493 rdp->barrier_head.func = rcu_barrier_callback;
3494 debug_rcu_head_queue(&rdp->barrier_head);
3495 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3496 atomic_inc(&rsp->barrier_cpu_count);
3497 } else {
3498 debug_rcu_head_unqueue(&rdp->barrier_head);
3499 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3500 rsp->barrier_sequence);
3505 * Orchestrate the specified type of RCU barrier, waiting for all
3506 * RCU callbacks of the specified type to complete.
3508 static void _rcu_barrier(struct rcu_state *rsp)
3510 int cpu;
3511 struct rcu_data *rdp;
3512 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3514 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3516 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3517 mutex_lock(&rsp->barrier_mutex);
3519 /* Did someone else do our work for us? */
3520 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3521 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3522 rsp->barrier_sequence);
3523 smp_mb(); /* caller's subsequent code after above check. */
3524 mutex_unlock(&rsp->barrier_mutex);
3525 return;
3528 /* Mark the start of the barrier operation. */
3529 rcu_seq_start(&rsp->barrier_sequence);
3530 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3533 * Initialize the count to one rather than to zero in order to
3534 * avoid a too-soon return to zero in case of a short grace period
3535 * (or preemption of this task). Exclude CPU-hotplug operations
3536 * to ensure that no offline CPU has callbacks queued.
3538 init_completion(&rsp->barrier_completion);
3539 atomic_set(&rsp->barrier_cpu_count, 1);
3540 get_online_cpus();
3543 * Force each CPU with callbacks to register a new callback.
3544 * When that callback is invoked, we will know that all of the
3545 * corresponding CPU's preceding callbacks have been invoked.
3547 for_each_possible_cpu(cpu) {
3548 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3549 continue;
3550 rdp = per_cpu_ptr(rsp->rda, cpu);
3551 if (rcu_is_nocb_cpu(cpu)) {
3552 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3553 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3554 rsp->barrier_sequence);
3555 } else {
3556 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3557 rsp->barrier_sequence);
3558 smp_mb__before_atomic();
3559 atomic_inc(&rsp->barrier_cpu_count);
3560 __call_rcu(&rdp->barrier_head,
3561 rcu_barrier_callback, rsp, cpu, 0);
3563 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3564 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3565 rsp->barrier_sequence);
3566 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3567 } else {
3568 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3569 rsp->barrier_sequence);
3572 put_online_cpus();
3575 * Now that we have an rcu_barrier_callback() callback on each
3576 * CPU, and thus each counted, remove the initial count.
3578 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3579 complete(&rsp->barrier_completion);
3581 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3582 wait_for_completion(&rsp->barrier_completion);
3584 /* Mark the end of the barrier operation. */
3585 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3586 rcu_seq_end(&rsp->barrier_sequence);
3588 /* Other rcu_barrier() invocations can now safely proceed. */
3589 mutex_unlock(&rsp->barrier_mutex);
3593 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3595 void rcu_barrier_bh(void)
3597 _rcu_barrier(&rcu_bh_state);
3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3602 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3604 void rcu_barrier_sched(void)
3606 _rcu_barrier(&rcu_sched_state);
3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3611 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3612 * first CPU in a given leaf rcu_node structure coming online. The caller
3613 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3614 * disabled.
3616 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3618 long mask;
3619 struct rcu_node *rnp = rnp_leaf;
3621 lockdep_assert_held(&rnp->lock);
3622 for (;;) {
3623 mask = rnp->grpmask;
3624 rnp = rnp->parent;
3625 if (rnp == NULL)
3626 return;
3627 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3628 rnp->qsmaskinit |= mask;
3629 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3634 * Do boot-time initialization of a CPU's per-CPU RCU data.
3636 static void __init
3637 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3639 unsigned long flags;
3640 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3641 struct rcu_node *rnp = rcu_get_root(rsp);
3643 /* Set up local state, ensuring consistent view of global state. */
3644 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3645 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3646 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3647 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3648 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3649 rdp->cpu = cpu;
3650 rdp->rsp = rsp;
3651 rcu_boot_init_nocb_percpu_data(rdp);
3652 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3656 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3657 * offline event can be happening at a given time. Note also that we
3658 * can accept some slop in the rsp->completed access due to the fact
3659 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3661 static void
3662 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3664 unsigned long flags;
3665 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3666 struct rcu_node *rnp = rcu_get_root(rsp);
3668 /* Set up local state, ensuring consistent view of global state. */
3669 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3670 rdp->qlen_last_fqs_check = 0;
3671 rdp->n_force_qs_snap = rsp->n_force_qs;
3672 rdp->blimit = blimit;
3673 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3674 !init_nocb_callback_list(rdp))
3675 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3676 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
3677 rcu_dynticks_eqs_online();
3678 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3681 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3682 * propagation up the rcu_node tree will happen at the beginning
3683 * of the next grace period.
3685 rnp = rdp->mynode;
3686 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3687 rdp->beenonline = true; /* We have now been online. */
3688 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3689 rdp->completed = rnp->completed;
3690 rdp->cpu_no_qs.b.norm = true;
3691 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3692 rdp->core_needs_qs = false;
3693 rdp->rcu_iw_pending = false;
3694 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3695 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3696 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3700 * Invoked early in the CPU-online process, when pretty much all
3701 * services are available. The incoming CPU is not present.
3703 int rcutree_prepare_cpu(unsigned int cpu)
3705 struct rcu_state *rsp;
3707 for_each_rcu_flavor(rsp)
3708 rcu_init_percpu_data(cpu, rsp);
3710 rcu_prepare_kthreads(cpu);
3711 rcu_spawn_all_nocb_kthreads(cpu);
3713 return 0;
3717 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3719 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3721 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3723 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3727 * Near the end of the CPU-online process. Pretty much all services
3728 * enabled, and the CPU is now very much alive.
3730 int rcutree_online_cpu(unsigned int cpu)
3732 unsigned long flags;
3733 struct rcu_data *rdp;
3734 struct rcu_node *rnp;
3735 struct rcu_state *rsp;
3737 for_each_rcu_flavor(rsp) {
3738 rdp = per_cpu_ptr(rsp->rda, cpu);
3739 rnp = rdp->mynode;
3740 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3741 rnp->ffmask |= rdp->grpmask;
3742 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744 if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 srcu_online_cpu(cpu);
3746 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3747 return 0; /* Too early in boot for scheduler work. */
3748 sync_sched_exp_online_cleanup(cpu);
3749 rcutree_affinity_setting(cpu, -1);
3750 return 0;
3754 * Near the beginning of the process. The CPU is still very much alive
3755 * with pretty much all services enabled.
3757 int rcutree_offline_cpu(unsigned int cpu)
3759 unsigned long flags;
3760 struct rcu_data *rdp;
3761 struct rcu_node *rnp;
3762 struct rcu_state *rsp;
3764 for_each_rcu_flavor(rsp) {
3765 rdp = per_cpu_ptr(rsp->rda, cpu);
3766 rnp = rdp->mynode;
3767 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3768 rnp->ffmask &= ~rdp->grpmask;
3769 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3772 rcutree_affinity_setting(cpu, cpu);
3773 if (IS_ENABLED(CONFIG_TREE_SRCU))
3774 srcu_offline_cpu(cpu);
3775 return 0;
3779 * Near the end of the offline process. We do only tracing here.
3781 int rcutree_dying_cpu(unsigned int cpu)
3783 struct rcu_state *rsp;
3785 for_each_rcu_flavor(rsp)
3786 rcu_cleanup_dying_cpu(rsp);
3787 return 0;
3791 * The outgoing CPU is gone and we are running elsewhere.
3793 int rcutree_dead_cpu(unsigned int cpu)
3795 struct rcu_state *rsp;
3797 for_each_rcu_flavor(rsp) {
3798 rcu_cleanup_dead_cpu(cpu, rsp);
3799 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3801 return 0;
3805 * Mark the specified CPU as being online so that subsequent grace periods
3806 * (both expedited and normal) will wait on it. Note that this means that
3807 * incoming CPUs are not allowed to use RCU read-side critical sections
3808 * until this function is called. Failing to observe this restriction
3809 * will result in lockdep splats.
3811 * Note that this function is special in that it is invoked directly
3812 * from the incoming CPU rather than from the cpuhp_step mechanism.
3813 * This is because this function must be invoked at a precise location.
3815 void rcu_cpu_starting(unsigned int cpu)
3817 unsigned long flags;
3818 unsigned long mask;
3819 int nbits;
3820 unsigned long oldmask;
3821 struct rcu_data *rdp;
3822 struct rcu_node *rnp;
3823 struct rcu_state *rsp;
3825 for_each_rcu_flavor(rsp) {
3826 rdp = per_cpu_ptr(rsp->rda, cpu);
3827 rnp = rdp->mynode;
3828 mask = rdp->grpmask;
3829 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3830 rnp->qsmaskinitnext |= mask;
3831 oldmask = rnp->expmaskinitnext;
3832 rnp->expmaskinitnext |= mask;
3833 oldmask ^= rnp->expmaskinitnext;
3834 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3835 /* Allow lockless access for expedited grace periods. */
3836 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3837 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3839 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3842 #ifdef CONFIG_HOTPLUG_CPU
3844 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3845 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3846 * bit masks.
3848 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3850 unsigned long flags;
3851 unsigned long mask;
3852 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3853 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3855 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3856 mask = rdp->grpmask;
3857 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3858 rnp->qsmaskinitnext &= ~mask;
3859 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3863 * The outgoing function has no further need of RCU, so remove it from
3864 * the list of CPUs that RCU must track.
3866 * Note that this function is special in that it is invoked directly
3867 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3868 * This is because this function must be invoked at a precise location.
3870 void rcu_report_dead(unsigned int cpu)
3872 struct rcu_state *rsp;
3874 /* QS for any half-done expedited RCU-sched GP. */
3875 preempt_disable();
3876 rcu_report_exp_rdp(&rcu_sched_state,
3877 this_cpu_ptr(rcu_sched_state.rda), true);
3878 preempt_enable();
3879 for_each_rcu_flavor(rsp)
3880 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3883 /* Migrate the dead CPU's callbacks to the current CPU. */
3884 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3886 unsigned long flags;
3887 struct rcu_data *my_rdp;
3888 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3889 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3891 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3892 return; /* No callbacks to migrate. */
3894 local_irq_save(flags);
3895 my_rdp = this_cpu_ptr(rsp->rda);
3896 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3897 local_irq_restore(flags);
3898 return;
3900 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3901 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3902 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3903 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3904 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3905 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3906 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3907 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3908 !rcu_segcblist_empty(&rdp->cblist),
3909 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3910 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3911 rcu_segcblist_first_cb(&rdp->cblist));
3915 * The outgoing CPU has just passed through the dying-idle state,
3916 * and we are being invoked from the CPU that was IPIed to continue the
3917 * offline operation. We need to migrate the outgoing CPU's callbacks.
3919 void rcutree_migrate_callbacks(int cpu)
3921 struct rcu_state *rsp;
3923 for_each_rcu_flavor(rsp)
3924 rcu_migrate_callbacks(cpu, rsp);
3926 #endif
3929 * On non-huge systems, use expedited RCU grace periods to make suspend
3930 * and hibernation run faster.
3932 static int rcu_pm_notify(struct notifier_block *self,
3933 unsigned long action, void *hcpu)
3935 switch (action) {
3936 case PM_HIBERNATION_PREPARE:
3937 case PM_SUSPEND_PREPARE:
3938 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3939 rcu_expedite_gp();
3940 break;
3941 case PM_POST_HIBERNATION:
3942 case PM_POST_SUSPEND:
3943 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3944 rcu_unexpedite_gp();
3945 break;
3946 default:
3947 break;
3949 return NOTIFY_OK;
3953 * Spawn the kthreads that handle each RCU flavor's grace periods.
3955 static int __init rcu_spawn_gp_kthread(void)
3957 unsigned long flags;
3958 int kthread_prio_in = kthread_prio;
3959 struct rcu_node *rnp;
3960 struct rcu_state *rsp;
3961 struct sched_param sp;
3962 struct task_struct *t;
3964 /* Force priority into range. */
3965 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3966 kthread_prio = 1;
3967 else if (kthread_prio < 0)
3968 kthread_prio = 0;
3969 else if (kthread_prio > 99)
3970 kthread_prio = 99;
3971 if (kthread_prio != kthread_prio_in)
3972 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3973 kthread_prio, kthread_prio_in);
3975 rcu_scheduler_fully_active = 1;
3976 for_each_rcu_flavor(rsp) {
3977 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3978 BUG_ON(IS_ERR(t));
3979 rnp = rcu_get_root(rsp);
3980 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3981 rsp->gp_kthread = t;
3982 if (kthread_prio) {
3983 sp.sched_priority = kthread_prio;
3984 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3986 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3987 wake_up_process(t);
3989 rcu_spawn_nocb_kthreads();
3990 rcu_spawn_boost_kthreads();
3991 return 0;
3993 early_initcall(rcu_spawn_gp_kthread);
3996 * This function is invoked towards the end of the scheduler's
3997 * initialization process. Before this is called, the idle task might
3998 * contain synchronous grace-period primitives (during which time, this idle
3999 * task is booting the system, and such primitives are no-ops). After this
4000 * function is called, any synchronous grace-period primitives are run as
4001 * expedited, with the requesting task driving the grace period forward.
4002 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4003 * runtime RCU functionality.
4005 void rcu_scheduler_starting(void)
4007 WARN_ON(num_online_cpus() != 1);
4008 WARN_ON(nr_context_switches() > 0);
4009 rcu_test_sync_prims();
4010 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4011 rcu_test_sync_prims();
4015 * Helper function for rcu_init() that initializes one rcu_state structure.
4017 static void __init rcu_init_one(struct rcu_state *rsp)
4019 static const char * const buf[] = RCU_NODE_NAME_INIT;
4020 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4021 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4022 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4024 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4025 int cpustride = 1;
4026 int i;
4027 int j;
4028 struct rcu_node *rnp;
4030 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4032 /* Silence gcc 4.8 false positive about array index out of range. */
4033 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4034 panic("rcu_init_one: rcu_num_lvls out of range");
4036 /* Initialize the level-tracking arrays. */
4038 for (i = 1; i < rcu_num_lvls; i++)
4039 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4040 rcu_init_levelspread(levelspread, num_rcu_lvl);
4042 /* Initialize the elements themselves, starting from the leaves. */
4044 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4045 cpustride *= levelspread[i];
4046 rnp = rsp->level[i];
4047 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4048 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4049 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4050 &rcu_node_class[i], buf[i]);
4051 raw_spin_lock_init(&rnp->fqslock);
4052 lockdep_set_class_and_name(&rnp->fqslock,
4053 &rcu_fqs_class[i], fqs[i]);
4054 rnp->gpnum = rsp->gpnum;
4055 rnp->completed = rsp->completed;
4056 rnp->qsmask = 0;
4057 rnp->qsmaskinit = 0;
4058 rnp->grplo = j * cpustride;
4059 rnp->grphi = (j + 1) * cpustride - 1;
4060 if (rnp->grphi >= nr_cpu_ids)
4061 rnp->grphi = nr_cpu_ids - 1;
4062 if (i == 0) {
4063 rnp->grpnum = 0;
4064 rnp->grpmask = 0;
4065 rnp->parent = NULL;
4066 } else {
4067 rnp->grpnum = j % levelspread[i - 1];
4068 rnp->grpmask = 1UL << rnp->grpnum;
4069 rnp->parent = rsp->level[i - 1] +
4070 j / levelspread[i - 1];
4072 rnp->level = i;
4073 INIT_LIST_HEAD(&rnp->blkd_tasks);
4074 rcu_init_one_nocb(rnp);
4075 init_waitqueue_head(&rnp->exp_wq[0]);
4076 init_waitqueue_head(&rnp->exp_wq[1]);
4077 init_waitqueue_head(&rnp->exp_wq[2]);
4078 init_waitqueue_head(&rnp->exp_wq[3]);
4079 spin_lock_init(&rnp->exp_lock);
4083 init_swait_queue_head(&rsp->gp_wq);
4084 init_swait_queue_head(&rsp->expedited_wq);
4085 rnp = rsp->level[rcu_num_lvls - 1];
4086 for_each_possible_cpu(i) {
4087 while (i > rnp->grphi)
4088 rnp++;
4089 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4090 rcu_boot_init_percpu_data(i, rsp);
4092 list_add(&rsp->flavors, &rcu_struct_flavors);
4096 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4097 * replace the definitions in tree.h because those are needed to size
4098 * the ->node array in the rcu_state structure.
4100 static void __init rcu_init_geometry(void)
4102 ulong d;
4103 int i;
4104 int rcu_capacity[RCU_NUM_LVLS];
4107 * Initialize any unspecified boot parameters.
4108 * The default values of jiffies_till_first_fqs and
4109 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4110 * value, which is a function of HZ, then adding one for each
4111 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4113 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4114 if (jiffies_till_first_fqs == ULONG_MAX)
4115 jiffies_till_first_fqs = d;
4116 if (jiffies_till_next_fqs == ULONG_MAX)
4117 jiffies_till_next_fqs = d;
4119 /* If the compile-time values are accurate, just leave. */
4120 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4121 nr_cpu_ids == NR_CPUS)
4122 return;
4123 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4124 rcu_fanout_leaf, nr_cpu_ids);
4127 * The boot-time rcu_fanout_leaf parameter must be at least two
4128 * and cannot exceed the number of bits in the rcu_node masks.
4129 * Complain and fall back to the compile-time values if this
4130 * limit is exceeded.
4132 if (rcu_fanout_leaf < 2 ||
4133 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4134 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4135 WARN_ON(1);
4136 return;
4140 * Compute number of nodes that can be handled an rcu_node tree
4141 * with the given number of levels.
4143 rcu_capacity[0] = rcu_fanout_leaf;
4144 for (i = 1; i < RCU_NUM_LVLS; i++)
4145 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4148 * The tree must be able to accommodate the configured number of CPUs.
4149 * If this limit is exceeded, fall back to the compile-time values.
4151 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4152 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4153 WARN_ON(1);
4154 return;
4157 /* Calculate the number of levels in the tree. */
4158 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4160 rcu_num_lvls = i + 1;
4162 /* Calculate the number of rcu_nodes at each level of the tree. */
4163 for (i = 0; i < rcu_num_lvls; i++) {
4164 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4165 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4168 /* Calculate the total number of rcu_node structures. */
4169 rcu_num_nodes = 0;
4170 for (i = 0; i < rcu_num_lvls; i++)
4171 rcu_num_nodes += num_rcu_lvl[i];
4175 * Dump out the structure of the rcu_node combining tree associated
4176 * with the rcu_state structure referenced by rsp.
4178 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4180 int level = 0;
4181 struct rcu_node *rnp;
4183 pr_info("rcu_node tree layout dump\n");
4184 pr_info(" ");
4185 rcu_for_each_node_breadth_first(rsp, rnp) {
4186 if (rnp->level != level) {
4187 pr_cont("\n");
4188 pr_info(" ");
4189 level = rnp->level;
4191 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4193 pr_cont("\n");
4196 void __init rcu_init(void)
4198 int cpu;
4200 rcu_early_boot_tests();
4202 rcu_bootup_announce();
4203 rcu_init_geometry();
4204 rcu_init_one(&rcu_bh_state);
4205 rcu_init_one(&rcu_sched_state);
4206 if (dump_tree)
4207 rcu_dump_rcu_node_tree(&rcu_sched_state);
4208 __rcu_init_preempt();
4209 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4212 * We don't need protection against CPU-hotplug here because
4213 * this is called early in boot, before either interrupts
4214 * or the scheduler are operational.
4216 pm_notifier(rcu_pm_notify, 0);
4217 for_each_online_cpu(cpu) {
4218 rcutree_prepare_cpu(cpu);
4219 rcu_cpu_starting(cpu);
4220 rcutree_online_cpu(cpu);
4224 #include "tree_exp.h"
4225 #include "tree_plugin.h"