Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / core / skbuff.c
blob0bb0d88779544ba5d7de150b4a39356503f46500
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 skb_panic(skb, sz, addr, __func__);
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 skb_panic(skb, sz, addr, __func__);
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
130 void *obj;
131 bool ret_pfmemalloc = false;
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
151 return obj;
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
247 out:
248 return skb;
249 nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
254 EXPORT_SYMBOL(__alloc_skb);
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
302 return skb;
305 /* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
312 struct sk_buff *skb = __build_skb(data, frag_size);
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
319 return skb;
321 EXPORT_SYMBOL(build_skb);
323 #define NAPI_SKB_CACHE_SIZE 64
325 struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
354 void *netdev_alloc_frag(unsigned int fragsz)
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
358 EXPORT_SYMBOL(netdev_alloc_frag);
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
367 void *napi_alloc_frag(unsigned int fragsz)
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
371 EXPORT_SYMBOL(napi_alloc_frag);
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
384 * %NULL is returned if there is no free memory.
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
395 len += NET_SKB_PAD;
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
411 local_irq_save(flags);
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
417 local_irq_restore(flags);
419 if (unlikely(!data))
420 return NULL;
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
433 skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
437 skb_fail:
438 return skb;
440 EXPORT_SYMBOL(__netdev_alloc_skb);
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
453 * %NULL is returned if there is no free memory.
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
462 len += NET_SKB_PAD + NET_IP_ALIGN;
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
493 skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
497 skb_fail:
498 return skb;
500 EXPORT_SYMBOL(__napi_alloc_skb);
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
510 EXPORT_SYMBOL(skb_add_rx_frag);
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
524 static void skb_drop_list(struct sk_buff **listp)
526 kfree_skb_list(*listp);
527 *listp = NULL;
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
535 static void skb_clone_fraglist(struct sk_buff *skb)
537 struct sk_buff *list;
539 skb_walk_frags(skb, list)
540 skb_get(list);
543 static void skb_free_head(struct sk_buff *skb)
545 unsigned char *head = skb->head;
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
553 static void skb_release_data(struct sk_buff *skb)
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
574 * Free an skbuff by memory without cleaning the state.
576 static void kfree_skbmem(struct sk_buff *skb)
578 struct sk_buff_fclones *fclones;
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602 fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
606 void skb_release_head_state(struct sk_buff *skb)
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619 #endif
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
631 * __kfree_skb - private function
632 * @skb: buffer
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
639 void __kfree_skb(struct sk_buff *skb)
641 skb_release_all(skb);
642 kfree_skbmem(skb);
644 EXPORT_SYMBOL(__kfree_skb);
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
653 void kfree_skb(struct sk_buff *skb)
655 if (!skb_unref(skb))
656 return;
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
661 EXPORT_SYMBOL(kfree_skb);
663 void kfree_skb_list(struct sk_buff *segs)
665 while (segs) {
666 struct sk_buff *next = segs->next;
668 kfree_skb(segs);
669 segs = next;
672 EXPORT_SYMBOL(kfree_skb_list);
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
681 void skb_tx_error(struct sk_buff *skb)
683 skb_zcopy_clear(skb, true);
685 EXPORT_SYMBOL(skb_tx_error);
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
695 void consume_skb(struct sk_buff *skb)
697 if (!skb_unref(skb))
698 return;
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
703 EXPORT_SYMBOL(consume_skb);
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
712 void __consume_stateless_skb(struct sk_buff *skb)
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
719 void __kfree_skb_flush(void)
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
741 #ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744 #endif
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
753 void __kfree_skb_defer(struct sk_buff *skb)
755 _kfree_skb_defer(skb);
758 void napi_consume_skb(struct sk_buff *skb, int budget)
760 if (unlikely(!skb))
761 return;
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
769 if (!skb_unref(skb))
770 return;
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
781 _kfree_skb_defer(skb);
783 EXPORT_SYMBOL(napi_consume_skb);
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801 #endif
802 __nf_copy(new, old, false);
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
807 new->queue_mapping = old->queue_mapping;
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838 #endif
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
848 #define C(x) n->x = skb->x
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->destructor = NULL;
861 C(tail);
862 C(end);
863 C(head);
864 C(head_frag);
865 C(data);
866 C(truesize);
867 refcount_set(&n->users, 1);
869 atomic_inc(&(skb_shinfo(skb)->dataref));
870 skb->cloned = 1;
872 return n;
873 #undef C
877 * skb_morph - morph one skb into another
878 * @dst: the skb to receive the contents
879 * @src: the skb to supply the contents
881 * This is identical to skb_clone except that the target skb is
882 * supplied by the user.
884 * The target skb is returned upon exit.
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
888 skb_release_all(dst);
889 return __skb_clone(dst, src);
891 EXPORT_SYMBOL_GPL(skb_morph);
893 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
895 unsigned long max_pg, num_pg, new_pg, old_pg;
896 struct user_struct *user;
898 if (capable(CAP_IPC_LOCK) || !size)
899 return 0;
901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 user = mmp->user ? : current_user();
905 do {
906 old_pg = atomic_long_read(&user->locked_vm);
907 new_pg = old_pg + num_pg;
908 if (new_pg > max_pg)
909 return -ENOBUFS;
910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 old_pg);
913 if (!mmp->user) {
914 mmp->user = get_uid(user);
915 mmp->num_pg = num_pg;
916 } else {
917 mmp->num_pg += num_pg;
920 return 0;
923 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
925 if (mmp->user) {
926 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
927 free_uid(mmp->user);
931 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
933 struct ubuf_info *uarg;
934 struct sk_buff *skb;
936 WARN_ON_ONCE(!in_task());
938 if (!sock_flag(sk, SOCK_ZEROCOPY))
939 return NULL;
941 skb = sock_omalloc(sk, 0, GFP_KERNEL);
942 if (!skb)
943 return NULL;
945 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
946 uarg = (void *)skb->cb;
947 uarg->mmp.user = NULL;
949 if (mm_account_pinned_pages(&uarg->mmp, size)) {
950 kfree_skb(skb);
951 return NULL;
954 uarg->callback = sock_zerocopy_callback;
955 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
956 uarg->len = 1;
957 uarg->bytelen = size;
958 uarg->zerocopy = 1;
959 refcount_set(&uarg->refcnt, 1);
960 sock_hold(sk);
962 return uarg;
964 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
966 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
968 return container_of((void *)uarg, struct sk_buff, cb);
971 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
972 struct ubuf_info *uarg)
974 if (uarg) {
975 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
976 u32 bytelen, next;
978 /* realloc only when socket is locked (TCP, UDP cork),
979 * so uarg->len and sk_zckey access is serialized
981 if (!sock_owned_by_user(sk)) {
982 WARN_ON_ONCE(1);
983 return NULL;
986 bytelen = uarg->bytelen + size;
987 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
988 /* TCP can create new skb to attach new uarg */
989 if (sk->sk_type == SOCK_STREAM)
990 goto new_alloc;
991 return NULL;
994 next = (u32)atomic_read(&sk->sk_zckey);
995 if ((u32)(uarg->id + uarg->len) == next) {
996 if (mm_account_pinned_pages(&uarg->mmp, size))
997 return NULL;
998 uarg->len++;
999 uarg->bytelen = bytelen;
1000 atomic_set(&sk->sk_zckey, ++next);
1001 sock_zerocopy_get(uarg);
1002 return uarg;
1006 new_alloc:
1007 return sock_zerocopy_alloc(sk, size);
1009 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1011 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1013 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1014 u32 old_lo, old_hi;
1015 u64 sum_len;
1017 old_lo = serr->ee.ee_info;
1018 old_hi = serr->ee.ee_data;
1019 sum_len = old_hi - old_lo + 1ULL + len;
1021 if (sum_len >= (1ULL << 32))
1022 return false;
1024 if (lo != old_hi + 1)
1025 return false;
1027 serr->ee.ee_data += len;
1028 return true;
1031 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1033 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1034 struct sock_exterr_skb *serr;
1035 struct sock *sk = skb->sk;
1036 struct sk_buff_head *q;
1037 unsigned long flags;
1038 u32 lo, hi;
1039 u16 len;
1041 mm_unaccount_pinned_pages(&uarg->mmp);
1043 /* if !len, there was only 1 call, and it was aborted
1044 * so do not queue a completion notification
1046 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1047 goto release;
1049 len = uarg->len;
1050 lo = uarg->id;
1051 hi = uarg->id + len - 1;
1053 serr = SKB_EXT_ERR(skb);
1054 memset(serr, 0, sizeof(*serr));
1055 serr->ee.ee_errno = 0;
1056 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1057 serr->ee.ee_data = hi;
1058 serr->ee.ee_info = lo;
1059 if (!success)
1060 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1062 q = &sk->sk_error_queue;
1063 spin_lock_irqsave(&q->lock, flags);
1064 tail = skb_peek_tail(q);
1065 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1066 !skb_zerocopy_notify_extend(tail, lo, len)) {
1067 __skb_queue_tail(q, skb);
1068 skb = NULL;
1070 spin_unlock_irqrestore(&q->lock, flags);
1072 sk->sk_error_report(sk);
1074 release:
1075 consume_skb(skb);
1076 sock_put(sk);
1078 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1080 void sock_zerocopy_put(struct ubuf_info *uarg)
1082 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1083 if (uarg->callback)
1084 uarg->callback(uarg, uarg->zerocopy);
1085 else
1086 consume_skb(skb_from_uarg(uarg));
1089 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1091 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1093 if (uarg) {
1094 struct sock *sk = skb_from_uarg(uarg)->sk;
1096 atomic_dec(&sk->sk_zckey);
1097 uarg->len--;
1099 sock_zerocopy_put(uarg);
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 struct iov_iter *from, size_t length);
1107 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1108 struct msghdr *msg, int len,
1109 struct ubuf_info *uarg)
1111 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1112 struct iov_iter orig_iter = msg->msg_iter;
1113 int err, orig_len = skb->len;
1115 /* An skb can only point to one uarg. This edge case happens when
1116 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1118 if (orig_uarg && uarg != orig_uarg)
1119 return -EEXIST;
1121 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1122 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1123 struct sock *save_sk = skb->sk;
1125 /* Streams do not free skb on error. Reset to prev state. */
1126 msg->msg_iter = orig_iter;
1127 skb->sk = sk;
1128 ___pskb_trim(skb, orig_len);
1129 skb->sk = save_sk;
1130 return err;
1133 skb_zcopy_set(skb, uarg);
1134 return skb->len - orig_len;
1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 gfp_t gfp_mask)
1141 if (skb_zcopy(orig)) {
1142 if (skb_zcopy(nskb)) {
1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 if (!gfp_mask) {
1145 WARN_ON_ONCE(1);
1146 return -ENOMEM;
1148 if (skb_uarg(nskb) == skb_uarg(orig))
1149 return 0;
1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 return -EIO;
1153 skb_zcopy_set(nskb, skb_uarg(orig));
1155 return 0;
1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1160 * @skb: the skb to modify
1161 * @gfp_mask: allocation priority
1163 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1164 * It will copy all frags into kernel and drop the reference
1165 * to userspace pages.
1167 * If this function is called from an interrupt gfp_mask() must be
1168 * %GFP_ATOMIC.
1170 * Returns 0 on success or a negative error code on failure
1171 * to allocate kernel memory to copy to.
1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1175 int num_frags = skb_shinfo(skb)->nr_frags;
1176 struct page *page, *head = NULL;
1177 int i, new_frags;
1178 u32 d_off;
1180 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1181 return -EINVAL;
1183 if (!num_frags)
1184 goto release;
1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 for (i = 0; i < new_frags; i++) {
1188 page = alloc_page(gfp_mask);
1189 if (!page) {
1190 while (head) {
1191 struct page *next = (struct page *)page_private(head);
1192 put_page(head);
1193 head = next;
1195 return -ENOMEM;
1197 set_page_private(page, (unsigned long)head);
1198 head = page;
1201 page = head;
1202 d_off = 0;
1203 for (i = 0; i < num_frags; i++) {
1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 u32 p_off, p_len, copied;
1206 struct page *p;
1207 u8 *vaddr;
1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 p, p_off, p_len, copied) {
1211 u32 copy, done = 0;
1212 vaddr = kmap_atomic(p);
1214 while (done < p_len) {
1215 if (d_off == PAGE_SIZE) {
1216 d_off = 0;
1217 page = (struct page *)page_private(page);
1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 memcpy(page_address(page) + d_off,
1221 vaddr + p_off + done, copy);
1222 done += copy;
1223 d_off += copy;
1225 kunmap_atomic(vaddr);
1229 /* skb frags release userspace buffers */
1230 for (i = 0; i < num_frags; i++)
1231 skb_frag_unref(skb, i);
1233 /* skb frags point to kernel buffers */
1234 for (i = 0; i < new_frags - 1; i++) {
1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 head = (struct page *)page_private(head);
1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 skb_shinfo(skb)->nr_frags = new_frags;
1241 release:
1242 skb_zcopy_clear(skb, false);
1243 return 0;
1245 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1248 * skb_clone - duplicate an sk_buff
1249 * @skb: buffer to clone
1250 * @gfp_mask: allocation priority
1252 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1253 * copies share the same packet data but not structure. The new
1254 * buffer has a reference count of 1. If the allocation fails the
1255 * function returns %NULL otherwise the new buffer is returned.
1257 * If this function is called from an interrupt gfp_mask() must be
1258 * %GFP_ATOMIC.
1261 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1263 struct sk_buff_fclones *fclones = container_of(skb,
1264 struct sk_buff_fclones,
1265 skb1);
1266 struct sk_buff *n;
1268 if (skb_orphan_frags(skb, gfp_mask))
1269 return NULL;
1271 if (skb->fclone == SKB_FCLONE_ORIG &&
1272 refcount_read(&fclones->fclone_ref) == 1) {
1273 n = &fclones->skb2;
1274 refcount_set(&fclones->fclone_ref, 2);
1275 } else {
1276 if (skb_pfmemalloc(skb))
1277 gfp_mask |= __GFP_MEMALLOC;
1279 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1280 if (!n)
1281 return NULL;
1283 n->fclone = SKB_FCLONE_UNAVAILABLE;
1286 return __skb_clone(n, skb);
1288 EXPORT_SYMBOL(skb_clone);
1290 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1292 /* Only adjust this if it actually is csum_start rather than csum */
1293 if (skb->ip_summed == CHECKSUM_PARTIAL)
1294 skb->csum_start += off;
1295 /* {transport,network,mac}_header and tail are relative to skb->head */
1296 skb->transport_header += off;
1297 skb->network_header += off;
1298 if (skb_mac_header_was_set(skb))
1299 skb->mac_header += off;
1300 skb->inner_transport_header += off;
1301 skb->inner_network_header += off;
1302 skb->inner_mac_header += off;
1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1307 __copy_skb_header(new, old);
1309 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1310 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1311 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1316 if (skb_pfmemalloc(skb))
1317 return SKB_ALLOC_RX;
1318 return 0;
1322 * skb_copy - create private copy of an sk_buff
1323 * @skb: buffer to copy
1324 * @gfp_mask: allocation priority
1326 * Make a copy of both an &sk_buff and its data. This is used when the
1327 * caller wishes to modify the data and needs a private copy of the
1328 * data to alter. Returns %NULL on failure or the pointer to the buffer
1329 * on success. The returned buffer has a reference count of 1.
1331 * As by-product this function converts non-linear &sk_buff to linear
1332 * one, so that &sk_buff becomes completely private and caller is allowed
1333 * to modify all the data of returned buffer. This means that this
1334 * function is not recommended for use in circumstances when only
1335 * header is going to be modified. Use pskb_copy() instead.
1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1340 int headerlen = skb_headroom(skb);
1341 unsigned int size = skb_end_offset(skb) + skb->data_len;
1342 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1343 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1345 if (!n)
1346 return NULL;
1348 /* Set the data pointer */
1349 skb_reserve(n, headerlen);
1350 /* Set the tail pointer and length */
1351 skb_put(n, skb->len);
1353 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1355 copy_skb_header(n, skb);
1356 return n;
1358 EXPORT_SYMBOL(skb_copy);
1361 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1362 * @skb: buffer to copy
1363 * @headroom: headroom of new skb
1364 * @gfp_mask: allocation priority
1365 * @fclone: if true allocate the copy of the skb from the fclone
1366 * cache instead of the head cache; it is recommended to set this
1367 * to true for the cases where the copy will likely be cloned
1369 * Make a copy of both an &sk_buff and part of its data, located
1370 * in header. Fragmented data remain shared. This is used when
1371 * the caller wishes to modify only header of &sk_buff and needs
1372 * private copy of the header to alter. Returns %NULL on failure
1373 * or the pointer to the buffer on success.
1374 * The returned buffer has a reference count of 1.
1377 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1378 gfp_t gfp_mask, bool fclone)
1380 unsigned int size = skb_headlen(skb) + headroom;
1381 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1382 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1384 if (!n)
1385 goto out;
1387 /* Set the data pointer */
1388 skb_reserve(n, headroom);
1389 /* Set the tail pointer and length */
1390 skb_put(n, skb_headlen(skb));
1391 /* Copy the bytes */
1392 skb_copy_from_linear_data(skb, n->data, n->len);
1394 n->truesize += skb->data_len;
1395 n->data_len = skb->data_len;
1396 n->len = skb->len;
1398 if (skb_shinfo(skb)->nr_frags) {
1399 int i;
1401 if (skb_orphan_frags(skb, gfp_mask) ||
1402 skb_zerocopy_clone(n, skb, gfp_mask)) {
1403 kfree_skb(n);
1404 n = NULL;
1405 goto out;
1407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1408 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1409 skb_frag_ref(skb, i);
1411 skb_shinfo(n)->nr_frags = i;
1414 if (skb_has_frag_list(skb)) {
1415 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1416 skb_clone_fraglist(n);
1419 copy_skb_header(n, skb);
1420 out:
1421 return n;
1423 EXPORT_SYMBOL(__pskb_copy_fclone);
1426 * pskb_expand_head - reallocate header of &sk_buff
1427 * @skb: buffer to reallocate
1428 * @nhead: room to add at head
1429 * @ntail: room to add at tail
1430 * @gfp_mask: allocation priority
1432 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1433 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1434 * reference count of 1. Returns zero in the case of success or error,
1435 * if expansion failed. In the last case, &sk_buff is not changed.
1437 * All the pointers pointing into skb header may change and must be
1438 * reloaded after call to this function.
1441 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1442 gfp_t gfp_mask)
1444 int i, osize = skb_end_offset(skb);
1445 int size = osize + nhead + ntail;
1446 long off;
1447 u8 *data;
1449 BUG_ON(nhead < 0);
1451 BUG_ON(skb_shared(skb));
1453 size = SKB_DATA_ALIGN(size);
1455 if (skb_pfmemalloc(skb))
1456 gfp_mask |= __GFP_MEMALLOC;
1457 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1458 gfp_mask, NUMA_NO_NODE, NULL);
1459 if (!data)
1460 goto nodata;
1461 size = SKB_WITH_OVERHEAD(ksize(data));
1463 /* Copy only real data... and, alas, header. This should be
1464 * optimized for the cases when header is void.
1466 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1468 memcpy((struct skb_shared_info *)(data + size),
1469 skb_shinfo(skb),
1470 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1473 * if shinfo is shared we must drop the old head gracefully, but if it
1474 * is not we can just drop the old head and let the existing refcount
1475 * be since all we did is relocate the values
1477 if (skb_cloned(skb)) {
1478 if (skb_orphan_frags(skb, gfp_mask))
1479 goto nofrags;
1480 if (skb_zcopy(skb))
1481 refcount_inc(&skb_uarg(skb)->refcnt);
1482 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1483 skb_frag_ref(skb, i);
1485 if (skb_has_frag_list(skb))
1486 skb_clone_fraglist(skb);
1488 skb_release_data(skb);
1489 } else {
1490 skb_free_head(skb);
1492 off = (data + nhead) - skb->head;
1494 skb->head = data;
1495 skb->head_frag = 0;
1496 skb->data += off;
1497 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1498 skb->end = size;
1499 off = nhead;
1500 #else
1501 skb->end = skb->head + size;
1502 #endif
1503 skb->tail += off;
1504 skb_headers_offset_update(skb, nhead);
1505 skb->cloned = 0;
1506 skb->hdr_len = 0;
1507 skb->nohdr = 0;
1508 atomic_set(&skb_shinfo(skb)->dataref, 1);
1510 skb_metadata_clear(skb);
1512 /* It is not generally safe to change skb->truesize.
1513 * For the moment, we really care of rx path, or
1514 * when skb is orphaned (not attached to a socket).
1516 if (!skb->sk || skb->destructor == sock_edemux)
1517 skb->truesize += size - osize;
1519 return 0;
1521 nofrags:
1522 kfree(data);
1523 nodata:
1524 return -ENOMEM;
1526 EXPORT_SYMBOL(pskb_expand_head);
1528 /* Make private copy of skb with writable head and some headroom */
1530 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1532 struct sk_buff *skb2;
1533 int delta = headroom - skb_headroom(skb);
1535 if (delta <= 0)
1536 skb2 = pskb_copy(skb, GFP_ATOMIC);
1537 else {
1538 skb2 = skb_clone(skb, GFP_ATOMIC);
1539 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1540 GFP_ATOMIC)) {
1541 kfree_skb(skb2);
1542 skb2 = NULL;
1545 return skb2;
1547 EXPORT_SYMBOL(skb_realloc_headroom);
1550 * skb_copy_expand - copy and expand sk_buff
1551 * @skb: buffer to copy
1552 * @newheadroom: new free bytes at head
1553 * @newtailroom: new free bytes at tail
1554 * @gfp_mask: allocation priority
1556 * Make a copy of both an &sk_buff and its data and while doing so
1557 * allocate additional space.
1559 * This is used when the caller wishes to modify the data and needs a
1560 * private copy of the data to alter as well as more space for new fields.
1561 * Returns %NULL on failure or the pointer to the buffer
1562 * on success. The returned buffer has a reference count of 1.
1564 * You must pass %GFP_ATOMIC as the allocation priority if this function
1565 * is called from an interrupt.
1567 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1568 int newheadroom, int newtailroom,
1569 gfp_t gfp_mask)
1572 * Allocate the copy buffer
1574 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1575 gfp_mask, skb_alloc_rx_flag(skb),
1576 NUMA_NO_NODE);
1577 int oldheadroom = skb_headroom(skb);
1578 int head_copy_len, head_copy_off;
1580 if (!n)
1581 return NULL;
1583 skb_reserve(n, newheadroom);
1585 /* Set the tail pointer and length */
1586 skb_put(n, skb->len);
1588 head_copy_len = oldheadroom;
1589 head_copy_off = 0;
1590 if (newheadroom <= head_copy_len)
1591 head_copy_len = newheadroom;
1592 else
1593 head_copy_off = newheadroom - head_copy_len;
1595 /* Copy the linear header and data. */
1596 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1597 skb->len + head_copy_len));
1599 copy_skb_header(n, skb);
1601 skb_headers_offset_update(n, newheadroom - oldheadroom);
1603 return n;
1605 EXPORT_SYMBOL(skb_copy_expand);
1608 * __skb_pad - zero pad the tail of an skb
1609 * @skb: buffer to pad
1610 * @pad: space to pad
1611 * @free_on_error: free buffer on error
1613 * Ensure that a buffer is followed by a padding area that is zero
1614 * filled. Used by network drivers which may DMA or transfer data
1615 * beyond the buffer end onto the wire.
1617 * May return error in out of memory cases. The skb is freed on error
1618 * if @free_on_error is true.
1621 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1623 int err;
1624 int ntail;
1626 /* If the skbuff is non linear tailroom is always zero.. */
1627 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1628 memset(skb->data+skb->len, 0, pad);
1629 return 0;
1632 ntail = skb->data_len + pad - (skb->end - skb->tail);
1633 if (likely(skb_cloned(skb) || ntail > 0)) {
1634 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1635 if (unlikely(err))
1636 goto free_skb;
1639 /* FIXME: The use of this function with non-linear skb's really needs
1640 * to be audited.
1642 err = skb_linearize(skb);
1643 if (unlikely(err))
1644 goto free_skb;
1646 memset(skb->data + skb->len, 0, pad);
1647 return 0;
1649 free_skb:
1650 if (free_on_error)
1651 kfree_skb(skb);
1652 return err;
1654 EXPORT_SYMBOL(__skb_pad);
1657 * pskb_put - add data to the tail of a potentially fragmented buffer
1658 * @skb: start of the buffer to use
1659 * @tail: tail fragment of the buffer to use
1660 * @len: amount of data to add
1662 * This function extends the used data area of the potentially
1663 * fragmented buffer. @tail must be the last fragment of @skb -- or
1664 * @skb itself. If this would exceed the total buffer size the kernel
1665 * will panic. A pointer to the first byte of the extra data is
1666 * returned.
1669 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1671 if (tail != skb) {
1672 skb->data_len += len;
1673 skb->len += len;
1675 return skb_put(tail, len);
1677 EXPORT_SYMBOL_GPL(pskb_put);
1680 * skb_put - add data to a buffer
1681 * @skb: buffer to use
1682 * @len: amount of data to add
1684 * This function extends the used data area of the buffer. If this would
1685 * exceed the total buffer size the kernel will panic. A pointer to the
1686 * first byte of the extra data is returned.
1688 void *skb_put(struct sk_buff *skb, unsigned int len)
1690 void *tmp = skb_tail_pointer(skb);
1691 SKB_LINEAR_ASSERT(skb);
1692 skb->tail += len;
1693 skb->len += len;
1694 if (unlikely(skb->tail > skb->end))
1695 skb_over_panic(skb, len, __builtin_return_address(0));
1696 return tmp;
1698 EXPORT_SYMBOL(skb_put);
1701 * skb_push - add data to the start of a buffer
1702 * @skb: buffer to use
1703 * @len: amount of data to add
1705 * This function extends the used data area of the buffer at the buffer
1706 * start. If this would exceed the total buffer headroom the kernel will
1707 * panic. A pointer to the first byte of the extra data is returned.
1709 void *skb_push(struct sk_buff *skb, unsigned int len)
1711 skb->data -= len;
1712 skb->len += len;
1713 if (unlikely(skb->data<skb->head))
1714 skb_under_panic(skb, len, __builtin_return_address(0));
1715 return skb->data;
1717 EXPORT_SYMBOL(skb_push);
1720 * skb_pull - remove data from the start of a buffer
1721 * @skb: buffer to use
1722 * @len: amount of data to remove
1724 * This function removes data from the start of a buffer, returning
1725 * the memory to the headroom. A pointer to the next data in the buffer
1726 * is returned. Once the data has been pulled future pushes will overwrite
1727 * the old data.
1729 void *skb_pull(struct sk_buff *skb, unsigned int len)
1731 return skb_pull_inline(skb, len);
1733 EXPORT_SYMBOL(skb_pull);
1736 * skb_trim - remove end from a buffer
1737 * @skb: buffer to alter
1738 * @len: new length
1740 * Cut the length of a buffer down by removing data from the tail. If
1741 * the buffer is already under the length specified it is not modified.
1742 * The skb must be linear.
1744 void skb_trim(struct sk_buff *skb, unsigned int len)
1746 if (skb->len > len)
1747 __skb_trim(skb, len);
1749 EXPORT_SYMBOL(skb_trim);
1751 /* Trims skb to length len. It can change skb pointers.
1754 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1756 struct sk_buff **fragp;
1757 struct sk_buff *frag;
1758 int offset = skb_headlen(skb);
1759 int nfrags = skb_shinfo(skb)->nr_frags;
1760 int i;
1761 int err;
1763 if (skb_cloned(skb) &&
1764 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1765 return err;
1767 i = 0;
1768 if (offset >= len)
1769 goto drop_pages;
1771 for (; i < nfrags; i++) {
1772 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1774 if (end < len) {
1775 offset = end;
1776 continue;
1779 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1781 drop_pages:
1782 skb_shinfo(skb)->nr_frags = i;
1784 for (; i < nfrags; i++)
1785 skb_frag_unref(skb, i);
1787 if (skb_has_frag_list(skb))
1788 skb_drop_fraglist(skb);
1789 goto done;
1792 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1793 fragp = &frag->next) {
1794 int end = offset + frag->len;
1796 if (skb_shared(frag)) {
1797 struct sk_buff *nfrag;
1799 nfrag = skb_clone(frag, GFP_ATOMIC);
1800 if (unlikely(!nfrag))
1801 return -ENOMEM;
1803 nfrag->next = frag->next;
1804 consume_skb(frag);
1805 frag = nfrag;
1806 *fragp = frag;
1809 if (end < len) {
1810 offset = end;
1811 continue;
1814 if (end > len &&
1815 unlikely((err = pskb_trim(frag, len - offset))))
1816 return err;
1818 if (frag->next)
1819 skb_drop_list(&frag->next);
1820 break;
1823 done:
1824 if (len > skb_headlen(skb)) {
1825 skb->data_len -= skb->len - len;
1826 skb->len = len;
1827 } else {
1828 skb->len = len;
1829 skb->data_len = 0;
1830 skb_set_tail_pointer(skb, len);
1833 if (!skb->sk || skb->destructor == sock_edemux)
1834 skb_condense(skb);
1835 return 0;
1837 EXPORT_SYMBOL(___pskb_trim);
1840 * __pskb_pull_tail - advance tail of skb header
1841 * @skb: buffer to reallocate
1842 * @delta: number of bytes to advance tail
1844 * The function makes a sense only on a fragmented &sk_buff,
1845 * it expands header moving its tail forward and copying necessary
1846 * data from fragmented part.
1848 * &sk_buff MUST have reference count of 1.
1850 * Returns %NULL (and &sk_buff does not change) if pull failed
1851 * or value of new tail of skb in the case of success.
1853 * All the pointers pointing into skb header may change and must be
1854 * reloaded after call to this function.
1857 /* Moves tail of skb head forward, copying data from fragmented part,
1858 * when it is necessary.
1859 * 1. It may fail due to malloc failure.
1860 * 2. It may change skb pointers.
1862 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1864 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1866 /* If skb has not enough free space at tail, get new one
1867 * plus 128 bytes for future expansions. If we have enough
1868 * room at tail, reallocate without expansion only if skb is cloned.
1870 int i, k, eat = (skb->tail + delta) - skb->end;
1872 if (eat > 0 || skb_cloned(skb)) {
1873 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1874 GFP_ATOMIC))
1875 return NULL;
1878 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1879 skb_tail_pointer(skb), delta));
1881 /* Optimization: no fragments, no reasons to preestimate
1882 * size of pulled pages. Superb.
1884 if (!skb_has_frag_list(skb))
1885 goto pull_pages;
1887 /* Estimate size of pulled pages. */
1888 eat = delta;
1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1892 if (size >= eat)
1893 goto pull_pages;
1894 eat -= size;
1897 /* If we need update frag list, we are in troubles.
1898 * Certainly, it is possible to add an offset to skb data,
1899 * but taking into account that pulling is expected to
1900 * be very rare operation, it is worth to fight against
1901 * further bloating skb head and crucify ourselves here instead.
1902 * Pure masohism, indeed. 8)8)
1904 if (eat) {
1905 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1906 struct sk_buff *clone = NULL;
1907 struct sk_buff *insp = NULL;
1909 do {
1910 BUG_ON(!list);
1912 if (list->len <= eat) {
1913 /* Eaten as whole. */
1914 eat -= list->len;
1915 list = list->next;
1916 insp = list;
1917 } else {
1918 /* Eaten partially. */
1920 if (skb_shared(list)) {
1921 /* Sucks! We need to fork list. :-( */
1922 clone = skb_clone(list, GFP_ATOMIC);
1923 if (!clone)
1924 return NULL;
1925 insp = list->next;
1926 list = clone;
1927 } else {
1928 /* This may be pulled without
1929 * problems. */
1930 insp = list;
1932 if (!pskb_pull(list, eat)) {
1933 kfree_skb(clone);
1934 return NULL;
1936 break;
1938 } while (eat);
1940 /* Free pulled out fragments. */
1941 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1942 skb_shinfo(skb)->frag_list = list->next;
1943 kfree_skb(list);
1945 /* And insert new clone at head. */
1946 if (clone) {
1947 clone->next = list;
1948 skb_shinfo(skb)->frag_list = clone;
1951 /* Success! Now we may commit changes to skb data. */
1953 pull_pages:
1954 eat = delta;
1955 k = 0;
1956 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1957 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1959 if (size <= eat) {
1960 skb_frag_unref(skb, i);
1961 eat -= size;
1962 } else {
1963 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1964 if (eat) {
1965 skb_shinfo(skb)->frags[k].page_offset += eat;
1966 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1967 if (!i)
1968 goto end;
1969 eat = 0;
1971 k++;
1974 skb_shinfo(skb)->nr_frags = k;
1976 end:
1977 skb->tail += delta;
1978 skb->data_len -= delta;
1980 if (!skb->data_len)
1981 skb_zcopy_clear(skb, false);
1983 return skb_tail_pointer(skb);
1985 EXPORT_SYMBOL(__pskb_pull_tail);
1988 * skb_copy_bits - copy bits from skb to kernel buffer
1989 * @skb: source skb
1990 * @offset: offset in source
1991 * @to: destination buffer
1992 * @len: number of bytes to copy
1994 * Copy the specified number of bytes from the source skb to the
1995 * destination buffer.
1997 * CAUTION ! :
1998 * If its prototype is ever changed,
1999 * check arch/{*}/net/{*}.S files,
2000 * since it is called from BPF assembly code.
2002 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2004 int start = skb_headlen(skb);
2005 struct sk_buff *frag_iter;
2006 int i, copy;
2008 if (offset > (int)skb->len - len)
2009 goto fault;
2011 /* Copy header. */
2012 if ((copy = start - offset) > 0) {
2013 if (copy > len)
2014 copy = len;
2015 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2016 if ((len -= copy) == 0)
2017 return 0;
2018 offset += copy;
2019 to += copy;
2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 int end;
2024 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2026 WARN_ON(start > offset + len);
2028 end = start + skb_frag_size(f);
2029 if ((copy = end - offset) > 0) {
2030 u32 p_off, p_len, copied;
2031 struct page *p;
2032 u8 *vaddr;
2034 if (copy > len)
2035 copy = len;
2037 skb_frag_foreach_page(f,
2038 f->page_offset + offset - start,
2039 copy, p, p_off, p_len, copied) {
2040 vaddr = kmap_atomic(p);
2041 memcpy(to + copied, vaddr + p_off, p_len);
2042 kunmap_atomic(vaddr);
2045 if ((len -= copy) == 0)
2046 return 0;
2047 offset += copy;
2048 to += copy;
2050 start = end;
2053 skb_walk_frags(skb, frag_iter) {
2054 int end;
2056 WARN_ON(start > offset + len);
2058 end = start + frag_iter->len;
2059 if ((copy = end - offset) > 0) {
2060 if (copy > len)
2061 copy = len;
2062 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2063 goto fault;
2064 if ((len -= copy) == 0)
2065 return 0;
2066 offset += copy;
2067 to += copy;
2069 start = end;
2072 if (!len)
2073 return 0;
2075 fault:
2076 return -EFAULT;
2078 EXPORT_SYMBOL(skb_copy_bits);
2081 * Callback from splice_to_pipe(), if we need to release some pages
2082 * at the end of the spd in case we error'ed out in filling the pipe.
2084 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2086 put_page(spd->pages[i]);
2089 static struct page *linear_to_page(struct page *page, unsigned int *len,
2090 unsigned int *offset,
2091 struct sock *sk)
2093 struct page_frag *pfrag = sk_page_frag(sk);
2095 if (!sk_page_frag_refill(sk, pfrag))
2096 return NULL;
2098 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2100 memcpy(page_address(pfrag->page) + pfrag->offset,
2101 page_address(page) + *offset, *len);
2102 *offset = pfrag->offset;
2103 pfrag->offset += *len;
2105 return pfrag->page;
2108 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2109 struct page *page,
2110 unsigned int offset)
2112 return spd->nr_pages &&
2113 spd->pages[spd->nr_pages - 1] == page &&
2114 (spd->partial[spd->nr_pages - 1].offset +
2115 spd->partial[spd->nr_pages - 1].len == offset);
2119 * Fill page/offset/length into spd, if it can hold more pages.
2121 static bool spd_fill_page(struct splice_pipe_desc *spd,
2122 struct pipe_inode_info *pipe, struct page *page,
2123 unsigned int *len, unsigned int offset,
2124 bool linear,
2125 struct sock *sk)
2127 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2128 return true;
2130 if (linear) {
2131 page = linear_to_page(page, len, &offset, sk);
2132 if (!page)
2133 return true;
2135 if (spd_can_coalesce(spd, page, offset)) {
2136 spd->partial[spd->nr_pages - 1].len += *len;
2137 return false;
2139 get_page(page);
2140 spd->pages[spd->nr_pages] = page;
2141 spd->partial[spd->nr_pages].len = *len;
2142 spd->partial[spd->nr_pages].offset = offset;
2143 spd->nr_pages++;
2145 return false;
2148 static bool __splice_segment(struct page *page, unsigned int poff,
2149 unsigned int plen, unsigned int *off,
2150 unsigned int *len,
2151 struct splice_pipe_desc *spd, bool linear,
2152 struct sock *sk,
2153 struct pipe_inode_info *pipe)
2155 if (!*len)
2156 return true;
2158 /* skip this segment if already processed */
2159 if (*off >= plen) {
2160 *off -= plen;
2161 return false;
2164 /* ignore any bits we already processed */
2165 poff += *off;
2166 plen -= *off;
2167 *off = 0;
2169 do {
2170 unsigned int flen = min(*len, plen);
2172 if (spd_fill_page(spd, pipe, page, &flen, poff,
2173 linear, sk))
2174 return true;
2175 poff += flen;
2176 plen -= flen;
2177 *len -= flen;
2178 } while (*len && plen);
2180 return false;
2184 * Map linear and fragment data from the skb to spd. It reports true if the
2185 * pipe is full or if we already spliced the requested length.
2187 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2188 unsigned int *offset, unsigned int *len,
2189 struct splice_pipe_desc *spd, struct sock *sk)
2191 int seg;
2192 struct sk_buff *iter;
2194 /* map the linear part :
2195 * If skb->head_frag is set, this 'linear' part is backed by a
2196 * fragment, and if the head is not shared with any clones then
2197 * we can avoid a copy since we own the head portion of this page.
2199 if (__splice_segment(virt_to_page(skb->data),
2200 (unsigned long) skb->data & (PAGE_SIZE - 1),
2201 skb_headlen(skb),
2202 offset, len, spd,
2203 skb_head_is_locked(skb),
2204 sk, pipe))
2205 return true;
2208 * then map the fragments
2210 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2211 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2213 if (__splice_segment(skb_frag_page(f),
2214 f->page_offset, skb_frag_size(f),
2215 offset, len, spd, false, sk, pipe))
2216 return true;
2219 skb_walk_frags(skb, iter) {
2220 if (*offset >= iter->len) {
2221 *offset -= iter->len;
2222 continue;
2224 /* __skb_splice_bits() only fails if the output has no room
2225 * left, so no point in going over the frag_list for the error
2226 * case.
2228 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2229 return true;
2232 return false;
2236 * Map data from the skb to a pipe. Should handle both the linear part,
2237 * the fragments, and the frag list.
2239 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2240 struct pipe_inode_info *pipe, unsigned int tlen,
2241 unsigned int flags)
2243 struct partial_page partial[MAX_SKB_FRAGS];
2244 struct page *pages[MAX_SKB_FRAGS];
2245 struct splice_pipe_desc spd = {
2246 .pages = pages,
2247 .partial = partial,
2248 .nr_pages_max = MAX_SKB_FRAGS,
2249 .ops = &nosteal_pipe_buf_ops,
2250 .spd_release = sock_spd_release,
2252 int ret = 0;
2254 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2256 if (spd.nr_pages)
2257 ret = splice_to_pipe(pipe, &spd);
2259 return ret;
2261 EXPORT_SYMBOL_GPL(skb_splice_bits);
2263 /* Send skb data on a socket. Socket must be locked. */
2264 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2265 int len)
2267 unsigned int orig_len = len;
2268 struct sk_buff *head = skb;
2269 unsigned short fragidx;
2270 int slen, ret;
2272 do_frag_list:
2274 /* Deal with head data */
2275 while (offset < skb_headlen(skb) && len) {
2276 struct kvec kv;
2277 struct msghdr msg;
2279 slen = min_t(int, len, skb_headlen(skb) - offset);
2280 kv.iov_base = skb->data + offset;
2281 kv.iov_len = slen;
2282 memset(&msg, 0, sizeof(msg));
2284 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2285 if (ret <= 0)
2286 goto error;
2288 offset += ret;
2289 len -= ret;
2292 /* All the data was skb head? */
2293 if (!len)
2294 goto out;
2296 /* Make offset relative to start of frags */
2297 offset -= skb_headlen(skb);
2299 /* Find where we are in frag list */
2300 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2301 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2303 if (offset < frag->size)
2304 break;
2306 offset -= frag->size;
2309 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2310 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2312 slen = min_t(size_t, len, frag->size - offset);
2314 while (slen) {
2315 ret = kernel_sendpage_locked(sk, frag->page.p,
2316 frag->page_offset + offset,
2317 slen, MSG_DONTWAIT);
2318 if (ret <= 0)
2319 goto error;
2321 len -= ret;
2322 offset += ret;
2323 slen -= ret;
2326 offset = 0;
2329 if (len) {
2330 /* Process any frag lists */
2332 if (skb == head) {
2333 if (skb_has_frag_list(skb)) {
2334 skb = skb_shinfo(skb)->frag_list;
2335 goto do_frag_list;
2337 } else if (skb->next) {
2338 skb = skb->next;
2339 goto do_frag_list;
2343 out:
2344 return orig_len - len;
2346 error:
2347 return orig_len == len ? ret : orig_len - len;
2349 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2351 /* Send skb data on a socket. */
2352 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2354 int ret = 0;
2356 lock_sock(sk);
2357 ret = skb_send_sock_locked(sk, skb, offset, len);
2358 release_sock(sk);
2360 return ret;
2362 EXPORT_SYMBOL_GPL(skb_send_sock);
2365 * skb_store_bits - store bits from kernel buffer to skb
2366 * @skb: destination buffer
2367 * @offset: offset in destination
2368 * @from: source buffer
2369 * @len: number of bytes to copy
2371 * Copy the specified number of bytes from the source buffer to the
2372 * destination skb. This function handles all the messy bits of
2373 * traversing fragment lists and such.
2376 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2378 int start = skb_headlen(skb);
2379 struct sk_buff *frag_iter;
2380 int i, copy;
2382 if (offset > (int)skb->len - len)
2383 goto fault;
2385 if ((copy = start - offset) > 0) {
2386 if (copy > len)
2387 copy = len;
2388 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2389 if ((len -= copy) == 0)
2390 return 0;
2391 offset += copy;
2392 from += copy;
2395 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2396 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2397 int end;
2399 WARN_ON(start > offset + len);
2401 end = start + skb_frag_size(frag);
2402 if ((copy = end - offset) > 0) {
2403 u32 p_off, p_len, copied;
2404 struct page *p;
2405 u8 *vaddr;
2407 if (copy > len)
2408 copy = len;
2410 skb_frag_foreach_page(frag,
2411 frag->page_offset + offset - start,
2412 copy, p, p_off, p_len, copied) {
2413 vaddr = kmap_atomic(p);
2414 memcpy(vaddr + p_off, from + copied, p_len);
2415 kunmap_atomic(vaddr);
2418 if ((len -= copy) == 0)
2419 return 0;
2420 offset += copy;
2421 from += copy;
2423 start = end;
2426 skb_walk_frags(skb, frag_iter) {
2427 int end;
2429 WARN_ON(start > offset + len);
2431 end = start + frag_iter->len;
2432 if ((copy = end - offset) > 0) {
2433 if (copy > len)
2434 copy = len;
2435 if (skb_store_bits(frag_iter, offset - start,
2436 from, copy))
2437 goto fault;
2438 if ((len -= copy) == 0)
2439 return 0;
2440 offset += copy;
2441 from += copy;
2443 start = end;
2445 if (!len)
2446 return 0;
2448 fault:
2449 return -EFAULT;
2451 EXPORT_SYMBOL(skb_store_bits);
2453 /* Checksum skb data. */
2454 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2455 __wsum csum, const struct skb_checksum_ops *ops)
2457 int start = skb_headlen(skb);
2458 int i, copy = start - offset;
2459 struct sk_buff *frag_iter;
2460 int pos = 0;
2462 /* Checksum header. */
2463 if (copy > 0) {
2464 if (copy > len)
2465 copy = len;
2466 csum = ops->update(skb->data + offset, copy, csum);
2467 if ((len -= copy) == 0)
2468 return csum;
2469 offset += copy;
2470 pos = copy;
2473 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2474 int end;
2475 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2477 WARN_ON(start > offset + len);
2479 end = start + skb_frag_size(frag);
2480 if ((copy = end - offset) > 0) {
2481 u32 p_off, p_len, copied;
2482 struct page *p;
2483 __wsum csum2;
2484 u8 *vaddr;
2486 if (copy > len)
2487 copy = len;
2489 skb_frag_foreach_page(frag,
2490 frag->page_offset + offset - start,
2491 copy, p, p_off, p_len, copied) {
2492 vaddr = kmap_atomic(p);
2493 csum2 = ops->update(vaddr + p_off, p_len, 0);
2494 kunmap_atomic(vaddr);
2495 csum = ops->combine(csum, csum2, pos, p_len);
2496 pos += p_len;
2499 if (!(len -= copy))
2500 return csum;
2501 offset += copy;
2503 start = end;
2506 skb_walk_frags(skb, frag_iter) {
2507 int end;
2509 WARN_ON(start > offset + len);
2511 end = start + frag_iter->len;
2512 if ((copy = end - offset) > 0) {
2513 __wsum csum2;
2514 if (copy > len)
2515 copy = len;
2516 csum2 = __skb_checksum(frag_iter, offset - start,
2517 copy, 0, ops);
2518 csum = ops->combine(csum, csum2, pos, copy);
2519 if ((len -= copy) == 0)
2520 return csum;
2521 offset += copy;
2522 pos += copy;
2524 start = end;
2526 BUG_ON(len);
2528 return csum;
2530 EXPORT_SYMBOL(__skb_checksum);
2532 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2533 int len, __wsum csum)
2535 const struct skb_checksum_ops ops = {
2536 .update = csum_partial_ext,
2537 .combine = csum_block_add_ext,
2540 return __skb_checksum(skb, offset, len, csum, &ops);
2542 EXPORT_SYMBOL(skb_checksum);
2544 /* Both of above in one bottle. */
2546 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2547 u8 *to, int len, __wsum csum)
2549 int start = skb_headlen(skb);
2550 int i, copy = start - offset;
2551 struct sk_buff *frag_iter;
2552 int pos = 0;
2554 /* Copy header. */
2555 if (copy > 0) {
2556 if (copy > len)
2557 copy = len;
2558 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2559 copy, csum);
2560 if ((len -= copy) == 0)
2561 return csum;
2562 offset += copy;
2563 to += copy;
2564 pos = copy;
2567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 int end;
2570 WARN_ON(start > offset + len);
2572 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2573 if ((copy = end - offset) > 0) {
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 u32 p_off, p_len, copied;
2576 struct page *p;
2577 __wsum csum2;
2578 u8 *vaddr;
2580 if (copy > len)
2581 copy = len;
2583 skb_frag_foreach_page(frag,
2584 frag->page_offset + offset - start,
2585 copy, p, p_off, p_len, copied) {
2586 vaddr = kmap_atomic(p);
2587 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2588 to + copied,
2589 p_len, 0);
2590 kunmap_atomic(vaddr);
2591 csum = csum_block_add(csum, csum2, pos);
2592 pos += p_len;
2595 if (!(len -= copy))
2596 return csum;
2597 offset += copy;
2598 to += copy;
2600 start = end;
2603 skb_walk_frags(skb, frag_iter) {
2604 __wsum csum2;
2605 int end;
2607 WARN_ON(start > offset + len);
2609 end = start + frag_iter->len;
2610 if ((copy = end - offset) > 0) {
2611 if (copy > len)
2612 copy = len;
2613 csum2 = skb_copy_and_csum_bits(frag_iter,
2614 offset - start,
2615 to, copy, 0);
2616 csum = csum_block_add(csum, csum2, pos);
2617 if ((len -= copy) == 0)
2618 return csum;
2619 offset += copy;
2620 to += copy;
2621 pos += copy;
2623 start = end;
2625 BUG_ON(len);
2626 return csum;
2628 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2630 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2632 net_warn_ratelimited(
2633 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2634 __func__);
2635 return 0;
2638 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2639 int offset, int len)
2641 net_warn_ratelimited(
2642 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2643 __func__);
2644 return 0;
2647 static const struct skb_checksum_ops default_crc32c_ops = {
2648 .update = warn_crc32c_csum_update,
2649 .combine = warn_crc32c_csum_combine,
2652 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2653 &default_crc32c_ops;
2654 EXPORT_SYMBOL(crc32c_csum_stub);
2657 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2658 * @from: source buffer
2660 * Calculates the amount of linear headroom needed in the 'to' skb passed
2661 * into skb_zerocopy().
2663 unsigned int
2664 skb_zerocopy_headlen(const struct sk_buff *from)
2666 unsigned int hlen = 0;
2668 if (!from->head_frag ||
2669 skb_headlen(from) < L1_CACHE_BYTES ||
2670 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2671 hlen = skb_headlen(from);
2673 if (skb_has_frag_list(from))
2674 hlen = from->len;
2676 return hlen;
2678 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2681 * skb_zerocopy - Zero copy skb to skb
2682 * @to: destination buffer
2683 * @from: source buffer
2684 * @len: number of bytes to copy from source buffer
2685 * @hlen: size of linear headroom in destination buffer
2687 * Copies up to `len` bytes from `from` to `to` by creating references
2688 * to the frags in the source buffer.
2690 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2691 * headroom in the `to` buffer.
2693 * Return value:
2694 * 0: everything is OK
2695 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2696 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2699 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2701 int i, j = 0;
2702 int plen = 0; /* length of skb->head fragment */
2703 int ret;
2704 struct page *page;
2705 unsigned int offset;
2707 BUG_ON(!from->head_frag && !hlen);
2709 /* dont bother with small payloads */
2710 if (len <= skb_tailroom(to))
2711 return skb_copy_bits(from, 0, skb_put(to, len), len);
2713 if (hlen) {
2714 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2715 if (unlikely(ret))
2716 return ret;
2717 len -= hlen;
2718 } else {
2719 plen = min_t(int, skb_headlen(from), len);
2720 if (plen) {
2721 page = virt_to_head_page(from->head);
2722 offset = from->data - (unsigned char *)page_address(page);
2723 __skb_fill_page_desc(to, 0, page, offset, plen);
2724 get_page(page);
2725 j = 1;
2726 len -= plen;
2730 to->truesize += len + plen;
2731 to->len += len + plen;
2732 to->data_len += len + plen;
2734 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2735 skb_tx_error(from);
2736 return -ENOMEM;
2738 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2740 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2741 if (!len)
2742 break;
2743 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2744 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2745 len -= skb_shinfo(to)->frags[j].size;
2746 skb_frag_ref(to, j);
2747 j++;
2749 skb_shinfo(to)->nr_frags = j;
2751 return 0;
2753 EXPORT_SYMBOL_GPL(skb_zerocopy);
2755 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2757 __wsum csum;
2758 long csstart;
2760 if (skb->ip_summed == CHECKSUM_PARTIAL)
2761 csstart = skb_checksum_start_offset(skb);
2762 else
2763 csstart = skb_headlen(skb);
2765 BUG_ON(csstart > skb_headlen(skb));
2767 skb_copy_from_linear_data(skb, to, csstart);
2769 csum = 0;
2770 if (csstart != skb->len)
2771 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2772 skb->len - csstart, 0);
2774 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2775 long csstuff = csstart + skb->csum_offset;
2777 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2780 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2783 * skb_dequeue - remove from the head of the queue
2784 * @list: list to dequeue from
2786 * Remove the head of the list. The list lock is taken so the function
2787 * may be used safely with other locking list functions. The head item is
2788 * returned or %NULL if the list is empty.
2791 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2793 unsigned long flags;
2794 struct sk_buff *result;
2796 spin_lock_irqsave(&list->lock, flags);
2797 result = __skb_dequeue(list);
2798 spin_unlock_irqrestore(&list->lock, flags);
2799 return result;
2801 EXPORT_SYMBOL(skb_dequeue);
2804 * skb_dequeue_tail - remove from the tail of the queue
2805 * @list: list to dequeue from
2807 * Remove the tail of the list. The list lock is taken so the function
2808 * may be used safely with other locking list functions. The tail item is
2809 * returned or %NULL if the list is empty.
2811 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2813 unsigned long flags;
2814 struct sk_buff *result;
2816 spin_lock_irqsave(&list->lock, flags);
2817 result = __skb_dequeue_tail(list);
2818 spin_unlock_irqrestore(&list->lock, flags);
2819 return result;
2821 EXPORT_SYMBOL(skb_dequeue_tail);
2824 * skb_queue_purge - empty a list
2825 * @list: list to empty
2827 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2828 * the list and one reference dropped. This function takes the list
2829 * lock and is atomic with respect to other list locking functions.
2831 void skb_queue_purge(struct sk_buff_head *list)
2833 struct sk_buff *skb;
2834 while ((skb = skb_dequeue(list)) != NULL)
2835 kfree_skb(skb);
2837 EXPORT_SYMBOL(skb_queue_purge);
2840 * skb_rbtree_purge - empty a skb rbtree
2841 * @root: root of the rbtree to empty
2843 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2844 * the list and one reference dropped. This function does not take
2845 * any lock. Synchronization should be handled by the caller (e.g., TCP
2846 * out-of-order queue is protected by the socket lock).
2848 void skb_rbtree_purge(struct rb_root *root)
2850 struct rb_node *p = rb_first(root);
2852 while (p) {
2853 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2855 p = rb_next(p);
2856 rb_erase(&skb->rbnode, root);
2857 kfree_skb(skb);
2862 * skb_queue_head - queue a buffer at the list head
2863 * @list: list to use
2864 * @newsk: buffer to queue
2866 * Queue a buffer at the start of the list. This function takes the
2867 * list lock and can be used safely with other locking &sk_buff functions
2868 * safely.
2870 * A buffer cannot be placed on two lists at the same time.
2872 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2874 unsigned long flags;
2876 spin_lock_irqsave(&list->lock, flags);
2877 __skb_queue_head(list, newsk);
2878 spin_unlock_irqrestore(&list->lock, flags);
2880 EXPORT_SYMBOL(skb_queue_head);
2883 * skb_queue_tail - queue a buffer at the list tail
2884 * @list: list to use
2885 * @newsk: buffer to queue
2887 * Queue a buffer at the tail of the list. This function takes the
2888 * list lock and can be used safely with other locking &sk_buff functions
2889 * safely.
2891 * A buffer cannot be placed on two lists at the same time.
2893 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2895 unsigned long flags;
2897 spin_lock_irqsave(&list->lock, flags);
2898 __skb_queue_tail(list, newsk);
2899 spin_unlock_irqrestore(&list->lock, flags);
2901 EXPORT_SYMBOL(skb_queue_tail);
2904 * skb_unlink - remove a buffer from a list
2905 * @skb: buffer to remove
2906 * @list: list to use
2908 * Remove a packet from a list. The list locks are taken and this
2909 * function is atomic with respect to other list locked calls
2911 * You must know what list the SKB is on.
2913 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2915 unsigned long flags;
2917 spin_lock_irqsave(&list->lock, flags);
2918 __skb_unlink(skb, list);
2919 spin_unlock_irqrestore(&list->lock, flags);
2921 EXPORT_SYMBOL(skb_unlink);
2924 * skb_append - append a buffer
2925 * @old: buffer to insert after
2926 * @newsk: buffer to insert
2927 * @list: list to use
2929 * Place a packet after a given packet in a list. The list locks are taken
2930 * and this function is atomic with respect to other list locked calls.
2931 * A buffer cannot be placed on two lists at the same time.
2933 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2935 unsigned long flags;
2937 spin_lock_irqsave(&list->lock, flags);
2938 __skb_queue_after(list, old, newsk);
2939 spin_unlock_irqrestore(&list->lock, flags);
2941 EXPORT_SYMBOL(skb_append);
2944 * skb_insert - insert a buffer
2945 * @old: buffer to insert before
2946 * @newsk: buffer to insert
2947 * @list: list to use
2949 * Place a packet before a given packet in a list. The list locks are
2950 * taken and this function is atomic with respect to other list locked
2951 * calls.
2953 * A buffer cannot be placed on two lists at the same time.
2955 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2957 unsigned long flags;
2959 spin_lock_irqsave(&list->lock, flags);
2960 __skb_insert(newsk, old->prev, old, list);
2961 spin_unlock_irqrestore(&list->lock, flags);
2963 EXPORT_SYMBOL(skb_insert);
2965 static inline void skb_split_inside_header(struct sk_buff *skb,
2966 struct sk_buff* skb1,
2967 const u32 len, const int pos)
2969 int i;
2971 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2972 pos - len);
2973 /* And move data appendix as is. */
2974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2975 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2977 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2978 skb_shinfo(skb)->nr_frags = 0;
2979 skb1->data_len = skb->data_len;
2980 skb1->len += skb1->data_len;
2981 skb->data_len = 0;
2982 skb->len = len;
2983 skb_set_tail_pointer(skb, len);
2986 static inline void skb_split_no_header(struct sk_buff *skb,
2987 struct sk_buff* skb1,
2988 const u32 len, int pos)
2990 int i, k = 0;
2991 const int nfrags = skb_shinfo(skb)->nr_frags;
2993 skb_shinfo(skb)->nr_frags = 0;
2994 skb1->len = skb1->data_len = skb->len - len;
2995 skb->len = len;
2996 skb->data_len = len - pos;
2998 for (i = 0; i < nfrags; i++) {
2999 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3001 if (pos + size > len) {
3002 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3004 if (pos < len) {
3005 /* Split frag.
3006 * We have two variants in this case:
3007 * 1. Move all the frag to the second
3008 * part, if it is possible. F.e.
3009 * this approach is mandatory for TUX,
3010 * where splitting is expensive.
3011 * 2. Split is accurately. We make this.
3013 skb_frag_ref(skb, i);
3014 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3015 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3016 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3017 skb_shinfo(skb)->nr_frags++;
3019 k++;
3020 } else
3021 skb_shinfo(skb)->nr_frags++;
3022 pos += size;
3024 skb_shinfo(skb1)->nr_frags = k;
3028 * skb_split - Split fragmented skb to two parts at length len.
3029 * @skb: the buffer to split
3030 * @skb1: the buffer to receive the second part
3031 * @len: new length for skb
3033 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3035 int pos = skb_headlen(skb);
3037 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3038 SKBTX_SHARED_FRAG;
3039 skb_zerocopy_clone(skb1, skb, 0);
3040 if (len < pos) /* Split line is inside header. */
3041 skb_split_inside_header(skb, skb1, len, pos);
3042 else /* Second chunk has no header, nothing to copy. */
3043 skb_split_no_header(skb, skb1, len, pos);
3045 EXPORT_SYMBOL(skb_split);
3047 /* Shifting from/to a cloned skb is a no-go.
3049 * Caller cannot keep skb_shinfo related pointers past calling here!
3051 static int skb_prepare_for_shift(struct sk_buff *skb)
3053 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3057 * skb_shift - Shifts paged data partially from skb to another
3058 * @tgt: buffer into which tail data gets added
3059 * @skb: buffer from which the paged data comes from
3060 * @shiftlen: shift up to this many bytes
3062 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3063 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3064 * It's up to caller to free skb if everything was shifted.
3066 * If @tgt runs out of frags, the whole operation is aborted.
3068 * Skb cannot include anything else but paged data while tgt is allowed
3069 * to have non-paged data as well.
3071 * TODO: full sized shift could be optimized but that would need
3072 * specialized skb free'er to handle frags without up-to-date nr_frags.
3074 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3076 int from, to, merge, todo;
3077 struct skb_frag_struct *fragfrom, *fragto;
3079 BUG_ON(shiftlen > skb->len);
3081 if (skb_headlen(skb))
3082 return 0;
3083 if (skb_zcopy(tgt) || skb_zcopy(skb))
3084 return 0;
3086 todo = shiftlen;
3087 from = 0;
3088 to = skb_shinfo(tgt)->nr_frags;
3089 fragfrom = &skb_shinfo(skb)->frags[from];
3091 /* Actual merge is delayed until the point when we know we can
3092 * commit all, so that we don't have to undo partial changes
3094 if (!to ||
3095 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3096 fragfrom->page_offset)) {
3097 merge = -1;
3098 } else {
3099 merge = to - 1;
3101 todo -= skb_frag_size(fragfrom);
3102 if (todo < 0) {
3103 if (skb_prepare_for_shift(skb) ||
3104 skb_prepare_for_shift(tgt))
3105 return 0;
3107 /* All previous frag pointers might be stale! */
3108 fragfrom = &skb_shinfo(skb)->frags[from];
3109 fragto = &skb_shinfo(tgt)->frags[merge];
3111 skb_frag_size_add(fragto, shiftlen);
3112 skb_frag_size_sub(fragfrom, shiftlen);
3113 fragfrom->page_offset += shiftlen;
3115 goto onlymerged;
3118 from++;
3121 /* Skip full, not-fitting skb to avoid expensive operations */
3122 if ((shiftlen == skb->len) &&
3123 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3124 return 0;
3126 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3127 return 0;
3129 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3130 if (to == MAX_SKB_FRAGS)
3131 return 0;
3133 fragfrom = &skb_shinfo(skb)->frags[from];
3134 fragto = &skb_shinfo(tgt)->frags[to];
3136 if (todo >= skb_frag_size(fragfrom)) {
3137 *fragto = *fragfrom;
3138 todo -= skb_frag_size(fragfrom);
3139 from++;
3140 to++;
3142 } else {
3143 __skb_frag_ref(fragfrom);
3144 fragto->page = fragfrom->page;
3145 fragto->page_offset = fragfrom->page_offset;
3146 skb_frag_size_set(fragto, todo);
3148 fragfrom->page_offset += todo;
3149 skb_frag_size_sub(fragfrom, todo);
3150 todo = 0;
3152 to++;
3153 break;
3157 /* Ready to "commit" this state change to tgt */
3158 skb_shinfo(tgt)->nr_frags = to;
3160 if (merge >= 0) {
3161 fragfrom = &skb_shinfo(skb)->frags[0];
3162 fragto = &skb_shinfo(tgt)->frags[merge];
3164 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3165 __skb_frag_unref(fragfrom);
3168 /* Reposition in the original skb */
3169 to = 0;
3170 while (from < skb_shinfo(skb)->nr_frags)
3171 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3172 skb_shinfo(skb)->nr_frags = to;
3174 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3176 onlymerged:
3177 /* Most likely the tgt won't ever need its checksum anymore, skb on
3178 * the other hand might need it if it needs to be resent
3180 tgt->ip_summed = CHECKSUM_PARTIAL;
3181 skb->ip_summed = CHECKSUM_PARTIAL;
3183 /* Yak, is it really working this way? Some helper please? */
3184 skb->len -= shiftlen;
3185 skb->data_len -= shiftlen;
3186 skb->truesize -= shiftlen;
3187 tgt->len += shiftlen;
3188 tgt->data_len += shiftlen;
3189 tgt->truesize += shiftlen;
3191 return shiftlen;
3195 * skb_prepare_seq_read - Prepare a sequential read of skb data
3196 * @skb: the buffer to read
3197 * @from: lower offset of data to be read
3198 * @to: upper offset of data to be read
3199 * @st: state variable
3201 * Initializes the specified state variable. Must be called before
3202 * invoking skb_seq_read() for the first time.
3204 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3205 unsigned int to, struct skb_seq_state *st)
3207 st->lower_offset = from;
3208 st->upper_offset = to;
3209 st->root_skb = st->cur_skb = skb;
3210 st->frag_idx = st->stepped_offset = 0;
3211 st->frag_data = NULL;
3213 EXPORT_SYMBOL(skb_prepare_seq_read);
3216 * skb_seq_read - Sequentially read skb data
3217 * @consumed: number of bytes consumed by the caller so far
3218 * @data: destination pointer for data to be returned
3219 * @st: state variable
3221 * Reads a block of skb data at @consumed relative to the
3222 * lower offset specified to skb_prepare_seq_read(). Assigns
3223 * the head of the data block to @data and returns the length
3224 * of the block or 0 if the end of the skb data or the upper
3225 * offset has been reached.
3227 * The caller is not required to consume all of the data
3228 * returned, i.e. @consumed is typically set to the number
3229 * of bytes already consumed and the next call to
3230 * skb_seq_read() will return the remaining part of the block.
3232 * Note 1: The size of each block of data returned can be arbitrary,
3233 * this limitation is the cost for zerocopy sequential
3234 * reads of potentially non linear data.
3236 * Note 2: Fragment lists within fragments are not implemented
3237 * at the moment, state->root_skb could be replaced with
3238 * a stack for this purpose.
3240 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3241 struct skb_seq_state *st)
3243 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3244 skb_frag_t *frag;
3246 if (unlikely(abs_offset >= st->upper_offset)) {
3247 if (st->frag_data) {
3248 kunmap_atomic(st->frag_data);
3249 st->frag_data = NULL;
3251 return 0;
3254 next_skb:
3255 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3257 if (abs_offset < block_limit && !st->frag_data) {
3258 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3259 return block_limit - abs_offset;
3262 if (st->frag_idx == 0 && !st->frag_data)
3263 st->stepped_offset += skb_headlen(st->cur_skb);
3265 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3266 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3267 block_limit = skb_frag_size(frag) + st->stepped_offset;
3269 if (abs_offset < block_limit) {
3270 if (!st->frag_data)
3271 st->frag_data = kmap_atomic(skb_frag_page(frag));
3273 *data = (u8 *) st->frag_data + frag->page_offset +
3274 (abs_offset - st->stepped_offset);
3276 return block_limit - abs_offset;
3279 if (st->frag_data) {
3280 kunmap_atomic(st->frag_data);
3281 st->frag_data = NULL;
3284 st->frag_idx++;
3285 st->stepped_offset += skb_frag_size(frag);
3288 if (st->frag_data) {
3289 kunmap_atomic(st->frag_data);
3290 st->frag_data = NULL;
3293 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3294 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3295 st->frag_idx = 0;
3296 goto next_skb;
3297 } else if (st->cur_skb->next) {
3298 st->cur_skb = st->cur_skb->next;
3299 st->frag_idx = 0;
3300 goto next_skb;
3303 return 0;
3305 EXPORT_SYMBOL(skb_seq_read);
3308 * skb_abort_seq_read - Abort a sequential read of skb data
3309 * @st: state variable
3311 * Must be called if skb_seq_read() was not called until it
3312 * returned 0.
3314 void skb_abort_seq_read(struct skb_seq_state *st)
3316 if (st->frag_data)
3317 kunmap_atomic(st->frag_data);
3319 EXPORT_SYMBOL(skb_abort_seq_read);
3321 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3323 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3324 struct ts_config *conf,
3325 struct ts_state *state)
3327 return skb_seq_read(offset, text, TS_SKB_CB(state));
3330 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3332 skb_abort_seq_read(TS_SKB_CB(state));
3336 * skb_find_text - Find a text pattern in skb data
3337 * @skb: the buffer to look in
3338 * @from: search offset
3339 * @to: search limit
3340 * @config: textsearch configuration
3342 * Finds a pattern in the skb data according to the specified
3343 * textsearch configuration. Use textsearch_next() to retrieve
3344 * subsequent occurrences of the pattern. Returns the offset
3345 * to the first occurrence or UINT_MAX if no match was found.
3347 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3348 unsigned int to, struct ts_config *config)
3350 struct ts_state state;
3351 unsigned int ret;
3353 config->get_next_block = skb_ts_get_next_block;
3354 config->finish = skb_ts_finish;
3356 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3358 ret = textsearch_find(config, &state);
3359 return (ret <= to - from ? ret : UINT_MAX);
3361 EXPORT_SYMBOL(skb_find_text);
3364 * skb_append_datato_frags - append the user data to a skb
3365 * @sk: sock structure
3366 * @skb: skb structure to be appended with user data.
3367 * @getfrag: call back function to be used for getting the user data
3368 * @from: pointer to user message iov
3369 * @length: length of the iov message
3371 * Description: This procedure append the user data in the fragment part
3372 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3374 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3375 int (*getfrag)(void *from, char *to, int offset,
3376 int len, int odd, struct sk_buff *skb),
3377 void *from, int length)
3379 int frg_cnt = skb_shinfo(skb)->nr_frags;
3380 int copy;
3381 int offset = 0;
3382 int ret;
3383 struct page_frag *pfrag = &current->task_frag;
3385 do {
3386 /* Return error if we don't have space for new frag */
3387 if (frg_cnt >= MAX_SKB_FRAGS)
3388 return -EMSGSIZE;
3390 if (!sk_page_frag_refill(sk, pfrag))
3391 return -ENOMEM;
3393 /* copy the user data to page */
3394 copy = min_t(int, length, pfrag->size - pfrag->offset);
3396 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3397 offset, copy, 0, skb);
3398 if (ret < 0)
3399 return -EFAULT;
3401 /* copy was successful so update the size parameters */
3402 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3403 copy);
3404 frg_cnt++;
3405 pfrag->offset += copy;
3406 get_page(pfrag->page);
3408 skb->truesize += copy;
3409 refcount_add(copy, &sk->sk_wmem_alloc);
3410 skb->len += copy;
3411 skb->data_len += copy;
3412 offset += copy;
3413 length -= copy;
3415 } while (length > 0);
3417 return 0;
3419 EXPORT_SYMBOL(skb_append_datato_frags);
3421 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3422 int offset, size_t size)
3424 int i = skb_shinfo(skb)->nr_frags;
3426 if (skb_can_coalesce(skb, i, page, offset)) {
3427 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3428 } else if (i < MAX_SKB_FRAGS) {
3429 get_page(page);
3430 skb_fill_page_desc(skb, i, page, offset, size);
3431 } else {
3432 return -EMSGSIZE;
3435 return 0;
3437 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3440 * skb_pull_rcsum - pull skb and update receive checksum
3441 * @skb: buffer to update
3442 * @len: length of data pulled
3444 * This function performs an skb_pull on the packet and updates
3445 * the CHECKSUM_COMPLETE checksum. It should be used on
3446 * receive path processing instead of skb_pull unless you know
3447 * that the checksum difference is zero (e.g., a valid IP header)
3448 * or you are setting ip_summed to CHECKSUM_NONE.
3450 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3452 unsigned char *data = skb->data;
3454 BUG_ON(len > skb->len);
3455 __skb_pull(skb, len);
3456 skb_postpull_rcsum(skb, data, len);
3457 return skb->data;
3459 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3462 * skb_segment - Perform protocol segmentation on skb.
3463 * @head_skb: buffer to segment
3464 * @features: features for the output path (see dev->features)
3466 * This function performs segmentation on the given skb. It returns
3467 * a pointer to the first in a list of new skbs for the segments.
3468 * In case of error it returns ERR_PTR(err).
3470 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3471 netdev_features_t features)
3473 struct sk_buff *segs = NULL;
3474 struct sk_buff *tail = NULL;
3475 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3476 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3477 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3478 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3479 struct sk_buff *frag_skb = head_skb;
3480 unsigned int offset = doffset;
3481 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3482 unsigned int partial_segs = 0;
3483 unsigned int headroom;
3484 unsigned int len = head_skb->len;
3485 __be16 proto;
3486 bool csum, sg;
3487 int nfrags = skb_shinfo(head_skb)->nr_frags;
3488 int err = -ENOMEM;
3489 int i = 0;
3490 int pos;
3491 int dummy;
3493 __skb_push(head_skb, doffset);
3494 proto = skb_network_protocol(head_skb, &dummy);
3495 if (unlikely(!proto))
3496 return ERR_PTR(-EINVAL);
3498 sg = !!(features & NETIF_F_SG);
3499 csum = !!can_checksum_protocol(features, proto);
3501 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3502 if (!(features & NETIF_F_GSO_PARTIAL)) {
3503 struct sk_buff *iter;
3504 unsigned int frag_len;
3506 if (!list_skb ||
3507 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3508 goto normal;
3510 /* If we get here then all the required
3511 * GSO features except frag_list are supported.
3512 * Try to split the SKB to multiple GSO SKBs
3513 * with no frag_list.
3514 * Currently we can do that only when the buffers don't
3515 * have a linear part and all the buffers except
3516 * the last are of the same length.
3518 frag_len = list_skb->len;
3519 skb_walk_frags(head_skb, iter) {
3520 if (frag_len != iter->len && iter->next)
3521 goto normal;
3522 if (skb_headlen(iter) && !iter->head_frag)
3523 goto normal;
3525 len -= iter->len;
3528 if (len != frag_len)
3529 goto normal;
3532 /* GSO partial only requires that we trim off any excess that
3533 * doesn't fit into an MSS sized block, so take care of that
3534 * now.
3536 partial_segs = len / mss;
3537 if (partial_segs > 1)
3538 mss *= partial_segs;
3539 else
3540 partial_segs = 0;
3543 normal:
3544 headroom = skb_headroom(head_skb);
3545 pos = skb_headlen(head_skb);
3547 do {
3548 struct sk_buff *nskb;
3549 skb_frag_t *nskb_frag;
3550 int hsize;
3551 int size;
3553 if (unlikely(mss == GSO_BY_FRAGS)) {
3554 len = list_skb->len;
3555 } else {
3556 len = head_skb->len - offset;
3557 if (len > mss)
3558 len = mss;
3561 hsize = skb_headlen(head_skb) - offset;
3562 if (hsize < 0)
3563 hsize = 0;
3564 if (hsize > len || !sg)
3565 hsize = len;
3567 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3568 (skb_headlen(list_skb) == len || sg)) {
3569 BUG_ON(skb_headlen(list_skb) > len);
3571 i = 0;
3572 nfrags = skb_shinfo(list_skb)->nr_frags;
3573 frag = skb_shinfo(list_skb)->frags;
3574 frag_skb = list_skb;
3575 pos += skb_headlen(list_skb);
3577 while (pos < offset + len) {
3578 BUG_ON(i >= nfrags);
3580 size = skb_frag_size(frag);
3581 if (pos + size > offset + len)
3582 break;
3584 i++;
3585 pos += size;
3586 frag++;
3589 nskb = skb_clone(list_skb, GFP_ATOMIC);
3590 list_skb = list_skb->next;
3592 if (unlikely(!nskb))
3593 goto err;
3595 if (unlikely(pskb_trim(nskb, len))) {
3596 kfree_skb(nskb);
3597 goto err;
3600 hsize = skb_end_offset(nskb);
3601 if (skb_cow_head(nskb, doffset + headroom)) {
3602 kfree_skb(nskb);
3603 goto err;
3606 nskb->truesize += skb_end_offset(nskb) - hsize;
3607 skb_release_head_state(nskb);
3608 __skb_push(nskb, doffset);
3609 } else {
3610 nskb = __alloc_skb(hsize + doffset + headroom,
3611 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3612 NUMA_NO_NODE);
3614 if (unlikely(!nskb))
3615 goto err;
3617 skb_reserve(nskb, headroom);
3618 __skb_put(nskb, doffset);
3621 if (segs)
3622 tail->next = nskb;
3623 else
3624 segs = nskb;
3625 tail = nskb;
3627 __copy_skb_header(nskb, head_skb);
3629 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3630 skb_reset_mac_len(nskb);
3632 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3633 nskb->data - tnl_hlen,
3634 doffset + tnl_hlen);
3636 if (nskb->len == len + doffset)
3637 goto perform_csum_check;
3639 if (!sg) {
3640 if (!nskb->remcsum_offload)
3641 nskb->ip_summed = CHECKSUM_NONE;
3642 SKB_GSO_CB(nskb)->csum =
3643 skb_copy_and_csum_bits(head_skb, offset,
3644 skb_put(nskb, len),
3645 len, 0);
3646 SKB_GSO_CB(nskb)->csum_start =
3647 skb_headroom(nskb) + doffset;
3648 continue;
3651 nskb_frag = skb_shinfo(nskb)->frags;
3653 skb_copy_from_linear_data_offset(head_skb, offset,
3654 skb_put(nskb, hsize), hsize);
3656 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3657 SKBTX_SHARED_FRAG;
3659 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3660 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3661 goto err;
3663 while (pos < offset + len) {
3664 if (i >= nfrags) {
3665 BUG_ON(skb_headlen(list_skb));
3667 i = 0;
3668 nfrags = skb_shinfo(list_skb)->nr_frags;
3669 frag = skb_shinfo(list_skb)->frags;
3670 frag_skb = list_skb;
3672 BUG_ON(!nfrags);
3674 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3675 skb_zerocopy_clone(nskb, frag_skb,
3676 GFP_ATOMIC))
3677 goto err;
3679 list_skb = list_skb->next;
3682 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3683 MAX_SKB_FRAGS)) {
3684 net_warn_ratelimited(
3685 "skb_segment: too many frags: %u %u\n",
3686 pos, mss);
3687 goto err;
3690 *nskb_frag = *frag;
3691 __skb_frag_ref(nskb_frag);
3692 size = skb_frag_size(nskb_frag);
3694 if (pos < offset) {
3695 nskb_frag->page_offset += offset - pos;
3696 skb_frag_size_sub(nskb_frag, offset - pos);
3699 skb_shinfo(nskb)->nr_frags++;
3701 if (pos + size <= offset + len) {
3702 i++;
3703 frag++;
3704 pos += size;
3705 } else {
3706 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3707 goto skip_fraglist;
3710 nskb_frag++;
3713 skip_fraglist:
3714 nskb->data_len = len - hsize;
3715 nskb->len += nskb->data_len;
3716 nskb->truesize += nskb->data_len;
3718 perform_csum_check:
3719 if (!csum) {
3720 if (skb_has_shared_frag(nskb)) {
3721 err = __skb_linearize(nskb);
3722 if (err)
3723 goto err;
3725 if (!nskb->remcsum_offload)
3726 nskb->ip_summed = CHECKSUM_NONE;
3727 SKB_GSO_CB(nskb)->csum =
3728 skb_checksum(nskb, doffset,
3729 nskb->len - doffset, 0);
3730 SKB_GSO_CB(nskb)->csum_start =
3731 skb_headroom(nskb) + doffset;
3733 } while ((offset += len) < head_skb->len);
3735 /* Some callers want to get the end of the list.
3736 * Put it in segs->prev to avoid walking the list.
3737 * (see validate_xmit_skb_list() for example)
3739 segs->prev = tail;
3741 if (partial_segs) {
3742 struct sk_buff *iter;
3743 int type = skb_shinfo(head_skb)->gso_type;
3744 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3746 /* Update type to add partial and then remove dodgy if set */
3747 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3748 type &= ~SKB_GSO_DODGY;
3750 /* Update GSO info and prepare to start updating headers on
3751 * our way back down the stack of protocols.
3753 for (iter = segs; iter; iter = iter->next) {
3754 skb_shinfo(iter)->gso_size = gso_size;
3755 skb_shinfo(iter)->gso_segs = partial_segs;
3756 skb_shinfo(iter)->gso_type = type;
3757 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3760 if (tail->len - doffset <= gso_size)
3761 skb_shinfo(tail)->gso_size = 0;
3762 else if (tail != segs)
3763 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3766 /* Following permits correct backpressure, for protocols
3767 * using skb_set_owner_w().
3768 * Idea is to tranfert ownership from head_skb to last segment.
3770 if (head_skb->destructor == sock_wfree) {
3771 swap(tail->truesize, head_skb->truesize);
3772 swap(tail->destructor, head_skb->destructor);
3773 swap(tail->sk, head_skb->sk);
3775 return segs;
3777 err:
3778 kfree_skb_list(segs);
3779 return ERR_PTR(err);
3781 EXPORT_SYMBOL_GPL(skb_segment);
3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3785 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3786 unsigned int offset = skb_gro_offset(skb);
3787 unsigned int headlen = skb_headlen(skb);
3788 unsigned int len = skb_gro_len(skb);
3789 struct sk_buff *lp, *p = *head;
3790 unsigned int delta_truesize;
3792 if (unlikely(p->len + len >= 65536))
3793 return -E2BIG;
3795 lp = NAPI_GRO_CB(p)->last;
3796 pinfo = skb_shinfo(lp);
3798 if (headlen <= offset) {
3799 skb_frag_t *frag;
3800 skb_frag_t *frag2;
3801 int i = skbinfo->nr_frags;
3802 int nr_frags = pinfo->nr_frags + i;
3804 if (nr_frags > MAX_SKB_FRAGS)
3805 goto merge;
3807 offset -= headlen;
3808 pinfo->nr_frags = nr_frags;
3809 skbinfo->nr_frags = 0;
3811 frag = pinfo->frags + nr_frags;
3812 frag2 = skbinfo->frags + i;
3813 do {
3814 *--frag = *--frag2;
3815 } while (--i);
3817 frag->page_offset += offset;
3818 skb_frag_size_sub(frag, offset);
3820 /* all fragments truesize : remove (head size + sk_buff) */
3821 delta_truesize = skb->truesize -
3822 SKB_TRUESIZE(skb_end_offset(skb));
3824 skb->truesize -= skb->data_len;
3825 skb->len -= skb->data_len;
3826 skb->data_len = 0;
3828 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3829 goto done;
3830 } else if (skb->head_frag) {
3831 int nr_frags = pinfo->nr_frags;
3832 skb_frag_t *frag = pinfo->frags + nr_frags;
3833 struct page *page = virt_to_head_page(skb->head);
3834 unsigned int first_size = headlen - offset;
3835 unsigned int first_offset;
3837 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3838 goto merge;
3840 first_offset = skb->data -
3841 (unsigned char *)page_address(page) +
3842 offset;
3844 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3846 frag->page.p = page;
3847 frag->page_offset = first_offset;
3848 skb_frag_size_set(frag, first_size);
3850 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3851 /* We dont need to clear skbinfo->nr_frags here */
3853 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3854 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3855 goto done;
3858 merge:
3859 delta_truesize = skb->truesize;
3860 if (offset > headlen) {
3861 unsigned int eat = offset - headlen;
3863 skbinfo->frags[0].page_offset += eat;
3864 skb_frag_size_sub(&skbinfo->frags[0], eat);
3865 skb->data_len -= eat;
3866 skb->len -= eat;
3867 offset = headlen;
3870 __skb_pull(skb, offset);
3872 if (NAPI_GRO_CB(p)->last == p)
3873 skb_shinfo(p)->frag_list = skb;
3874 else
3875 NAPI_GRO_CB(p)->last->next = skb;
3876 NAPI_GRO_CB(p)->last = skb;
3877 __skb_header_release(skb);
3878 lp = p;
3880 done:
3881 NAPI_GRO_CB(p)->count++;
3882 p->data_len += len;
3883 p->truesize += delta_truesize;
3884 p->len += len;
3885 if (lp != p) {
3886 lp->data_len += len;
3887 lp->truesize += delta_truesize;
3888 lp->len += len;
3890 NAPI_GRO_CB(skb)->same_flow = 1;
3891 return 0;
3893 EXPORT_SYMBOL_GPL(skb_gro_receive);
3895 void __init skb_init(void)
3897 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3898 sizeof(struct sk_buff),
3900 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 offsetof(struct sk_buff, cb),
3902 sizeof_field(struct sk_buff, cb),
3903 NULL);
3904 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3905 sizeof(struct sk_buff_fclones),
3907 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3908 NULL);
3911 static int
3912 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3913 unsigned int recursion_level)
3915 int start = skb_headlen(skb);
3916 int i, copy = start - offset;
3917 struct sk_buff *frag_iter;
3918 int elt = 0;
3920 if (unlikely(recursion_level >= 24))
3921 return -EMSGSIZE;
3923 if (copy > 0) {
3924 if (copy > len)
3925 copy = len;
3926 sg_set_buf(sg, skb->data + offset, copy);
3927 elt++;
3928 if ((len -= copy) == 0)
3929 return elt;
3930 offset += copy;
3933 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3934 int end;
3936 WARN_ON(start > offset + len);
3938 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3939 if ((copy = end - offset) > 0) {
3940 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3941 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3942 return -EMSGSIZE;
3944 if (copy > len)
3945 copy = len;
3946 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3947 frag->page_offset+offset-start);
3948 elt++;
3949 if (!(len -= copy))
3950 return elt;
3951 offset += copy;
3953 start = end;
3956 skb_walk_frags(skb, frag_iter) {
3957 int end, ret;
3959 WARN_ON(start > offset + len);
3961 end = start + frag_iter->len;
3962 if ((copy = end - offset) > 0) {
3963 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3964 return -EMSGSIZE;
3966 if (copy > len)
3967 copy = len;
3968 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3969 copy, recursion_level + 1);
3970 if (unlikely(ret < 0))
3971 return ret;
3972 elt += ret;
3973 if ((len -= copy) == 0)
3974 return elt;
3975 offset += copy;
3977 start = end;
3979 BUG_ON(len);
3980 return elt;
3984 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3985 * @skb: Socket buffer containing the buffers to be mapped
3986 * @sg: The scatter-gather list to map into
3987 * @offset: The offset into the buffer's contents to start mapping
3988 * @len: Length of buffer space to be mapped
3990 * Fill the specified scatter-gather list with mappings/pointers into a
3991 * region of the buffer space attached to a socket buffer. Returns either
3992 * the number of scatterlist items used, or -EMSGSIZE if the contents
3993 * could not fit.
3995 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3997 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3999 if (nsg <= 0)
4000 return nsg;
4002 sg_mark_end(&sg[nsg - 1]);
4004 return nsg;
4006 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4008 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4009 * sglist without mark the sg which contain last skb data as the end.
4010 * So the caller can mannipulate sg list as will when padding new data after
4011 * the first call without calling sg_unmark_end to expend sg list.
4013 * Scenario to use skb_to_sgvec_nomark:
4014 * 1. sg_init_table
4015 * 2. skb_to_sgvec_nomark(payload1)
4016 * 3. skb_to_sgvec_nomark(payload2)
4018 * This is equivalent to:
4019 * 1. sg_init_table
4020 * 2. skb_to_sgvec(payload1)
4021 * 3. sg_unmark_end
4022 * 4. skb_to_sgvec(payload2)
4024 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4025 * is more preferable.
4027 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4028 int offset, int len)
4030 return __skb_to_sgvec(skb, sg, offset, len, 0);
4032 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4037 * skb_cow_data - Check that a socket buffer's data buffers are writable
4038 * @skb: The socket buffer to check.
4039 * @tailbits: Amount of trailing space to be added
4040 * @trailer: Returned pointer to the skb where the @tailbits space begins
4042 * Make sure that the data buffers attached to a socket buffer are
4043 * writable. If they are not, private copies are made of the data buffers
4044 * and the socket buffer is set to use these instead.
4046 * If @tailbits is given, make sure that there is space to write @tailbits
4047 * bytes of data beyond current end of socket buffer. @trailer will be
4048 * set to point to the skb in which this space begins.
4050 * The number of scatterlist elements required to completely map the
4051 * COW'd and extended socket buffer will be returned.
4053 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4055 int copyflag;
4056 int elt;
4057 struct sk_buff *skb1, **skb_p;
4059 /* If skb is cloned or its head is paged, reallocate
4060 * head pulling out all the pages (pages are considered not writable
4061 * at the moment even if they are anonymous).
4063 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4064 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4065 return -ENOMEM;
4067 /* Easy case. Most of packets will go this way. */
4068 if (!skb_has_frag_list(skb)) {
4069 /* A little of trouble, not enough of space for trailer.
4070 * This should not happen, when stack is tuned to generate
4071 * good frames. OK, on miss we reallocate and reserve even more
4072 * space, 128 bytes is fair. */
4074 if (skb_tailroom(skb) < tailbits &&
4075 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4076 return -ENOMEM;
4078 /* Voila! */
4079 *trailer = skb;
4080 return 1;
4083 /* Misery. We are in troubles, going to mincer fragments... */
4085 elt = 1;
4086 skb_p = &skb_shinfo(skb)->frag_list;
4087 copyflag = 0;
4089 while ((skb1 = *skb_p) != NULL) {
4090 int ntail = 0;
4092 /* The fragment is partially pulled by someone,
4093 * this can happen on input. Copy it and everything
4094 * after it. */
4096 if (skb_shared(skb1))
4097 copyflag = 1;
4099 /* If the skb is the last, worry about trailer. */
4101 if (skb1->next == NULL && tailbits) {
4102 if (skb_shinfo(skb1)->nr_frags ||
4103 skb_has_frag_list(skb1) ||
4104 skb_tailroom(skb1) < tailbits)
4105 ntail = tailbits + 128;
4108 if (copyflag ||
4109 skb_cloned(skb1) ||
4110 ntail ||
4111 skb_shinfo(skb1)->nr_frags ||
4112 skb_has_frag_list(skb1)) {
4113 struct sk_buff *skb2;
4115 /* Fuck, we are miserable poor guys... */
4116 if (ntail == 0)
4117 skb2 = skb_copy(skb1, GFP_ATOMIC);
4118 else
4119 skb2 = skb_copy_expand(skb1,
4120 skb_headroom(skb1),
4121 ntail,
4122 GFP_ATOMIC);
4123 if (unlikely(skb2 == NULL))
4124 return -ENOMEM;
4126 if (skb1->sk)
4127 skb_set_owner_w(skb2, skb1->sk);
4129 /* Looking around. Are we still alive?
4130 * OK, link new skb, drop old one */
4132 skb2->next = skb1->next;
4133 *skb_p = skb2;
4134 kfree_skb(skb1);
4135 skb1 = skb2;
4137 elt++;
4138 *trailer = skb1;
4139 skb_p = &skb1->next;
4142 return elt;
4144 EXPORT_SYMBOL_GPL(skb_cow_data);
4146 static void sock_rmem_free(struct sk_buff *skb)
4148 struct sock *sk = skb->sk;
4150 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4153 static void skb_set_err_queue(struct sk_buff *skb)
4155 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4156 * So, it is safe to (mis)use it to mark skbs on the error queue.
4158 skb->pkt_type = PACKET_OUTGOING;
4159 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4163 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4165 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4167 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4168 (unsigned int)sk->sk_rcvbuf)
4169 return -ENOMEM;
4171 skb_orphan(skb);
4172 skb->sk = sk;
4173 skb->destructor = sock_rmem_free;
4174 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4175 skb_set_err_queue(skb);
4177 /* before exiting rcu section, make sure dst is refcounted */
4178 skb_dst_force(skb);
4180 skb_queue_tail(&sk->sk_error_queue, skb);
4181 if (!sock_flag(sk, SOCK_DEAD))
4182 sk->sk_data_ready(sk);
4183 return 0;
4185 EXPORT_SYMBOL(sock_queue_err_skb);
4187 static bool is_icmp_err_skb(const struct sk_buff *skb)
4189 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4190 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4193 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4195 struct sk_buff_head *q = &sk->sk_error_queue;
4196 struct sk_buff *skb, *skb_next = NULL;
4197 bool icmp_next = false;
4198 unsigned long flags;
4200 spin_lock_irqsave(&q->lock, flags);
4201 skb = __skb_dequeue(q);
4202 if (skb && (skb_next = skb_peek(q))) {
4203 icmp_next = is_icmp_err_skb(skb_next);
4204 if (icmp_next)
4205 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4207 spin_unlock_irqrestore(&q->lock, flags);
4209 if (is_icmp_err_skb(skb) && !icmp_next)
4210 sk->sk_err = 0;
4212 if (skb_next)
4213 sk->sk_error_report(sk);
4215 return skb;
4217 EXPORT_SYMBOL(sock_dequeue_err_skb);
4220 * skb_clone_sk - create clone of skb, and take reference to socket
4221 * @skb: the skb to clone
4223 * This function creates a clone of a buffer that holds a reference on
4224 * sk_refcnt. Buffers created via this function are meant to be
4225 * returned using sock_queue_err_skb, or free via kfree_skb.
4227 * When passing buffers allocated with this function to sock_queue_err_skb
4228 * it is necessary to wrap the call with sock_hold/sock_put in order to
4229 * prevent the socket from being released prior to being enqueued on
4230 * the sk_error_queue.
4232 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4234 struct sock *sk = skb->sk;
4235 struct sk_buff *clone;
4237 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4238 return NULL;
4240 clone = skb_clone(skb, GFP_ATOMIC);
4241 if (!clone) {
4242 sock_put(sk);
4243 return NULL;
4246 clone->sk = sk;
4247 clone->destructor = sock_efree;
4249 return clone;
4251 EXPORT_SYMBOL(skb_clone_sk);
4253 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4254 struct sock *sk,
4255 int tstype,
4256 bool opt_stats)
4258 struct sock_exterr_skb *serr;
4259 int err;
4261 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4263 serr = SKB_EXT_ERR(skb);
4264 memset(serr, 0, sizeof(*serr));
4265 serr->ee.ee_errno = ENOMSG;
4266 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4267 serr->ee.ee_info = tstype;
4268 serr->opt_stats = opt_stats;
4269 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4270 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4271 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4272 if (sk->sk_protocol == IPPROTO_TCP &&
4273 sk->sk_type == SOCK_STREAM)
4274 serr->ee.ee_data -= sk->sk_tskey;
4277 err = sock_queue_err_skb(sk, skb);
4279 if (err)
4280 kfree_skb(skb);
4283 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4285 bool ret;
4287 if (likely(sysctl_tstamp_allow_data || tsonly))
4288 return true;
4290 read_lock_bh(&sk->sk_callback_lock);
4291 ret = sk->sk_socket && sk->sk_socket->file &&
4292 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4293 read_unlock_bh(&sk->sk_callback_lock);
4294 return ret;
4297 void skb_complete_tx_timestamp(struct sk_buff *skb,
4298 struct skb_shared_hwtstamps *hwtstamps)
4300 struct sock *sk = skb->sk;
4302 if (!skb_may_tx_timestamp(sk, false))
4303 goto err;
4305 /* Take a reference to prevent skb_orphan() from freeing the socket,
4306 * but only if the socket refcount is not zero.
4308 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4309 *skb_hwtstamps(skb) = *hwtstamps;
4310 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4311 sock_put(sk);
4312 return;
4315 err:
4316 kfree_skb(skb);
4318 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4320 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4321 struct skb_shared_hwtstamps *hwtstamps,
4322 struct sock *sk, int tstype)
4324 struct sk_buff *skb;
4325 bool tsonly, opt_stats = false;
4327 if (!sk)
4328 return;
4330 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4331 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4332 return;
4334 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4335 if (!skb_may_tx_timestamp(sk, tsonly))
4336 return;
4338 if (tsonly) {
4339 #ifdef CONFIG_INET
4340 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4341 sk->sk_protocol == IPPROTO_TCP &&
4342 sk->sk_type == SOCK_STREAM) {
4343 skb = tcp_get_timestamping_opt_stats(sk);
4344 opt_stats = true;
4345 } else
4346 #endif
4347 skb = alloc_skb(0, GFP_ATOMIC);
4348 } else {
4349 skb = skb_clone(orig_skb, GFP_ATOMIC);
4351 if (!skb)
4352 return;
4354 if (tsonly) {
4355 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4356 SKBTX_ANY_TSTAMP;
4357 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4360 if (hwtstamps)
4361 *skb_hwtstamps(skb) = *hwtstamps;
4362 else
4363 skb->tstamp = ktime_get_real();
4365 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4367 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4369 void skb_tstamp_tx(struct sk_buff *orig_skb,
4370 struct skb_shared_hwtstamps *hwtstamps)
4372 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4373 SCM_TSTAMP_SND);
4375 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4379 struct sock *sk = skb->sk;
4380 struct sock_exterr_skb *serr;
4381 int err = 1;
4383 skb->wifi_acked_valid = 1;
4384 skb->wifi_acked = acked;
4386 serr = SKB_EXT_ERR(skb);
4387 memset(serr, 0, sizeof(*serr));
4388 serr->ee.ee_errno = ENOMSG;
4389 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4391 /* Take a reference to prevent skb_orphan() from freeing the socket,
4392 * but only if the socket refcount is not zero.
4394 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4395 err = sock_queue_err_skb(sk, skb);
4396 sock_put(sk);
4398 if (err)
4399 kfree_skb(skb);
4401 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4404 * skb_partial_csum_set - set up and verify partial csum values for packet
4405 * @skb: the skb to set
4406 * @start: the number of bytes after skb->data to start checksumming.
4407 * @off: the offset from start to place the checksum.
4409 * For untrusted partially-checksummed packets, we need to make sure the values
4410 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4412 * This function checks and sets those values and skb->ip_summed: if this
4413 * returns false you should drop the packet.
4415 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4417 if (unlikely(start > skb_headlen(skb)) ||
4418 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4419 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4420 start, off, skb_headlen(skb));
4421 return false;
4423 skb->ip_summed = CHECKSUM_PARTIAL;
4424 skb->csum_start = skb_headroom(skb) + start;
4425 skb->csum_offset = off;
4426 skb_set_transport_header(skb, start);
4427 return true;
4429 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4431 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4432 unsigned int max)
4434 if (skb_headlen(skb) >= len)
4435 return 0;
4437 /* If we need to pullup then pullup to the max, so we
4438 * won't need to do it again.
4440 if (max > skb->len)
4441 max = skb->len;
4443 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4444 return -ENOMEM;
4446 if (skb_headlen(skb) < len)
4447 return -EPROTO;
4449 return 0;
4452 #define MAX_TCP_HDR_LEN (15 * 4)
4454 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4455 typeof(IPPROTO_IP) proto,
4456 unsigned int off)
4458 switch (proto) {
4459 int err;
4461 case IPPROTO_TCP:
4462 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4463 off + MAX_TCP_HDR_LEN);
4464 if (!err && !skb_partial_csum_set(skb, off,
4465 offsetof(struct tcphdr,
4466 check)))
4467 err = -EPROTO;
4468 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4470 case IPPROTO_UDP:
4471 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4472 off + sizeof(struct udphdr));
4473 if (!err && !skb_partial_csum_set(skb, off,
4474 offsetof(struct udphdr,
4475 check)))
4476 err = -EPROTO;
4477 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4480 return ERR_PTR(-EPROTO);
4483 /* This value should be large enough to cover a tagged ethernet header plus
4484 * maximally sized IP and TCP or UDP headers.
4486 #define MAX_IP_HDR_LEN 128
4488 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4490 unsigned int off;
4491 bool fragment;
4492 __sum16 *csum;
4493 int err;
4495 fragment = false;
4497 err = skb_maybe_pull_tail(skb,
4498 sizeof(struct iphdr),
4499 MAX_IP_HDR_LEN);
4500 if (err < 0)
4501 goto out;
4503 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4504 fragment = true;
4506 off = ip_hdrlen(skb);
4508 err = -EPROTO;
4510 if (fragment)
4511 goto out;
4513 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4514 if (IS_ERR(csum))
4515 return PTR_ERR(csum);
4517 if (recalculate)
4518 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4519 ip_hdr(skb)->daddr,
4520 skb->len - off,
4521 ip_hdr(skb)->protocol, 0);
4522 err = 0;
4524 out:
4525 return err;
4528 /* This value should be large enough to cover a tagged ethernet header plus
4529 * an IPv6 header, all options, and a maximal TCP or UDP header.
4531 #define MAX_IPV6_HDR_LEN 256
4533 #define OPT_HDR(type, skb, off) \
4534 (type *)(skb_network_header(skb) + (off))
4536 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4538 int err;
4539 u8 nexthdr;
4540 unsigned int off;
4541 unsigned int len;
4542 bool fragment;
4543 bool done;
4544 __sum16 *csum;
4546 fragment = false;
4547 done = false;
4549 off = sizeof(struct ipv6hdr);
4551 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4552 if (err < 0)
4553 goto out;
4555 nexthdr = ipv6_hdr(skb)->nexthdr;
4557 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4558 while (off <= len && !done) {
4559 switch (nexthdr) {
4560 case IPPROTO_DSTOPTS:
4561 case IPPROTO_HOPOPTS:
4562 case IPPROTO_ROUTING: {
4563 struct ipv6_opt_hdr *hp;
4565 err = skb_maybe_pull_tail(skb,
4566 off +
4567 sizeof(struct ipv6_opt_hdr),
4568 MAX_IPV6_HDR_LEN);
4569 if (err < 0)
4570 goto out;
4572 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4573 nexthdr = hp->nexthdr;
4574 off += ipv6_optlen(hp);
4575 break;
4577 case IPPROTO_AH: {
4578 struct ip_auth_hdr *hp;
4580 err = skb_maybe_pull_tail(skb,
4581 off +
4582 sizeof(struct ip_auth_hdr),
4583 MAX_IPV6_HDR_LEN);
4584 if (err < 0)
4585 goto out;
4587 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4588 nexthdr = hp->nexthdr;
4589 off += ipv6_authlen(hp);
4590 break;
4592 case IPPROTO_FRAGMENT: {
4593 struct frag_hdr *hp;
4595 err = skb_maybe_pull_tail(skb,
4596 off +
4597 sizeof(struct frag_hdr),
4598 MAX_IPV6_HDR_LEN);
4599 if (err < 0)
4600 goto out;
4602 hp = OPT_HDR(struct frag_hdr, skb, off);
4604 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4605 fragment = true;
4607 nexthdr = hp->nexthdr;
4608 off += sizeof(struct frag_hdr);
4609 break;
4611 default:
4612 done = true;
4613 break;
4617 err = -EPROTO;
4619 if (!done || fragment)
4620 goto out;
4622 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4623 if (IS_ERR(csum))
4624 return PTR_ERR(csum);
4626 if (recalculate)
4627 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4628 &ipv6_hdr(skb)->daddr,
4629 skb->len - off, nexthdr, 0);
4630 err = 0;
4632 out:
4633 return err;
4637 * skb_checksum_setup - set up partial checksum offset
4638 * @skb: the skb to set up
4639 * @recalculate: if true the pseudo-header checksum will be recalculated
4641 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4643 int err;
4645 switch (skb->protocol) {
4646 case htons(ETH_P_IP):
4647 err = skb_checksum_setup_ipv4(skb, recalculate);
4648 break;
4650 case htons(ETH_P_IPV6):
4651 err = skb_checksum_setup_ipv6(skb, recalculate);
4652 break;
4654 default:
4655 err = -EPROTO;
4656 break;
4659 return err;
4661 EXPORT_SYMBOL(skb_checksum_setup);
4664 * skb_checksum_maybe_trim - maybe trims the given skb
4665 * @skb: the skb to check
4666 * @transport_len: the data length beyond the network header
4668 * Checks whether the given skb has data beyond the given transport length.
4669 * If so, returns a cloned skb trimmed to this transport length.
4670 * Otherwise returns the provided skb. Returns NULL in error cases
4671 * (e.g. transport_len exceeds skb length or out-of-memory).
4673 * Caller needs to set the skb transport header and free any returned skb if it
4674 * differs from the provided skb.
4676 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4677 unsigned int transport_len)
4679 struct sk_buff *skb_chk;
4680 unsigned int len = skb_transport_offset(skb) + transport_len;
4681 int ret;
4683 if (skb->len < len)
4684 return NULL;
4685 else if (skb->len == len)
4686 return skb;
4688 skb_chk = skb_clone(skb, GFP_ATOMIC);
4689 if (!skb_chk)
4690 return NULL;
4692 ret = pskb_trim_rcsum(skb_chk, len);
4693 if (ret) {
4694 kfree_skb(skb_chk);
4695 return NULL;
4698 return skb_chk;
4702 * skb_checksum_trimmed - validate checksum of an skb
4703 * @skb: the skb to check
4704 * @transport_len: the data length beyond the network header
4705 * @skb_chkf: checksum function to use
4707 * Applies the given checksum function skb_chkf to the provided skb.
4708 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4710 * If the skb has data beyond the given transport length, then a
4711 * trimmed & cloned skb is checked and returned.
4713 * Caller needs to set the skb transport header and free any returned skb if it
4714 * differs from the provided skb.
4716 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4717 unsigned int transport_len,
4718 __sum16(*skb_chkf)(struct sk_buff *skb))
4720 struct sk_buff *skb_chk;
4721 unsigned int offset = skb_transport_offset(skb);
4722 __sum16 ret;
4724 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4725 if (!skb_chk)
4726 goto err;
4728 if (!pskb_may_pull(skb_chk, offset))
4729 goto err;
4731 skb_pull_rcsum(skb_chk, offset);
4732 ret = skb_chkf(skb_chk);
4733 skb_push_rcsum(skb_chk, offset);
4735 if (ret)
4736 goto err;
4738 return skb_chk;
4740 err:
4741 if (skb_chk && skb_chk != skb)
4742 kfree_skb(skb_chk);
4744 return NULL;
4747 EXPORT_SYMBOL(skb_checksum_trimmed);
4749 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4751 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4752 skb->dev->name);
4754 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4756 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4758 if (head_stolen) {
4759 skb_release_head_state(skb);
4760 kmem_cache_free(skbuff_head_cache, skb);
4761 } else {
4762 __kfree_skb(skb);
4765 EXPORT_SYMBOL(kfree_skb_partial);
4768 * skb_try_coalesce - try to merge skb to prior one
4769 * @to: prior buffer
4770 * @from: buffer to add
4771 * @fragstolen: pointer to boolean
4772 * @delta_truesize: how much more was allocated than was requested
4774 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4775 bool *fragstolen, int *delta_truesize)
4777 struct skb_shared_info *to_shinfo, *from_shinfo;
4778 int i, delta, len = from->len;
4780 *fragstolen = false;
4782 if (skb_cloned(to))
4783 return false;
4785 if (len <= skb_tailroom(to)) {
4786 if (len)
4787 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4788 *delta_truesize = 0;
4789 return true;
4792 to_shinfo = skb_shinfo(to);
4793 from_shinfo = skb_shinfo(from);
4794 if (to_shinfo->frag_list || from_shinfo->frag_list)
4795 return false;
4796 if (skb_zcopy(to) || skb_zcopy(from))
4797 return false;
4799 if (skb_headlen(from) != 0) {
4800 struct page *page;
4801 unsigned int offset;
4803 if (to_shinfo->nr_frags +
4804 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4805 return false;
4807 if (skb_head_is_locked(from))
4808 return false;
4810 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4812 page = virt_to_head_page(from->head);
4813 offset = from->data - (unsigned char *)page_address(page);
4815 skb_fill_page_desc(to, to_shinfo->nr_frags,
4816 page, offset, skb_headlen(from));
4817 *fragstolen = true;
4818 } else {
4819 if (to_shinfo->nr_frags +
4820 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4821 return false;
4823 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4826 WARN_ON_ONCE(delta < len);
4828 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4829 from_shinfo->frags,
4830 from_shinfo->nr_frags * sizeof(skb_frag_t));
4831 to_shinfo->nr_frags += from_shinfo->nr_frags;
4833 if (!skb_cloned(from))
4834 from_shinfo->nr_frags = 0;
4836 /* if the skb is not cloned this does nothing
4837 * since we set nr_frags to 0.
4839 for (i = 0; i < from_shinfo->nr_frags; i++)
4840 __skb_frag_ref(&from_shinfo->frags[i]);
4842 to->truesize += delta;
4843 to->len += len;
4844 to->data_len += len;
4846 *delta_truesize = delta;
4847 return true;
4849 EXPORT_SYMBOL(skb_try_coalesce);
4852 * skb_scrub_packet - scrub an skb
4854 * @skb: buffer to clean
4855 * @xnet: packet is crossing netns
4857 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4858 * into/from a tunnel. Some information have to be cleared during these
4859 * operations.
4860 * skb_scrub_packet can also be used to clean a skb before injecting it in
4861 * another namespace (@xnet == true). We have to clear all information in the
4862 * skb that could impact namespace isolation.
4864 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4866 skb->tstamp = 0;
4867 skb->pkt_type = PACKET_HOST;
4868 skb->skb_iif = 0;
4869 skb->ignore_df = 0;
4870 skb_dst_drop(skb);
4871 secpath_reset(skb);
4872 nf_reset(skb);
4873 nf_reset_trace(skb);
4875 if (!xnet)
4876 return;
4878 ipvs_reset(skb);
4879 skb_orphan(skb);
4880 skb->mark = 0;
4882 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4885 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4887 * @skb: GSO skb
4889 * skb_gso_transport_seglen is used to determine the real size of the
4890 * individual segments, including Layer4 headers (TCP/UDP).
4892 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4894 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4896 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4897 unsigned int thlen = 0;
4899 if (skb->encapsulation) {
4900 thlen = skb_inner_transport_header(skb) -
4901 skb_transport_header(skb);
4903 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4904 thlen += inner_tcp_hdrlen(skb);
4905 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4906 thlen = tcp_hdrlen(skb);
4907 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4908 thlen = sizeof(struct sctphdr);
4910 /* UFO sets gso_size to the size of the fragmentation
4911 * payload, i.e. the size of the L4 (UDP) header is already
4912 * accounted for.
4914 return thlen + shinfo->gso_size;
4918 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4920 * @skb: GSO skb
4922 * skb_gso_network_seglen is used to determine the real size of the
4923 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4925 * The MAC/L2 header is not accounted for.
4927 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4929 unsigned int hdr_len = skb_transport_header(skb) -
4930 skb_network_header(skb);
4932 return hdr_len + skb_gso_transport_seglen(skb);
4936 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4938 * @skb: GSO skb
4940 * skb_gso_mac_seglen is used to determine the real size of the
4941 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4942 * headers (TCP/UDP).
4944 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4946 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4948 return hdr_len + skb_gso_transport_seglen(skb);
4952 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4954 * There are a couple of instances where we have a GSO skb, and we
4955 * want to determine what size it would be after it is segmented.
4957 * We might want to check:
4958 * - L3+L4+payload size (e.g. IP forwarding)
4959 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4961 * This is a helper to do that correctly considering GSO_BY_FRAGS.
4963 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4964 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4966 * @max_len: The maximum permissible length.
4968 * Returns true if the segmented length <= max length.
4970 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4971 unsigned int seg_len,
4972 unsigned int max_len) {
4973 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4974 const struct sk_buff *iter;
4976 if (shinfo->gso_size != GSO_BY_FRAGS)
4977 return seg_len <= max_len;
4979 /* Undo this so we can re-use header sizes */
4980 seg_len -= GSO_BY_FRAGS;
4982 skb_walk_frags(skb, iter) {
4983 if (seg_len + skb_headlen(iter) > max_len)
4984 return false;
4987 return true;
4991 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
4993 * @skb: GSO skb
4994 * @mtu: MTU to validate against
4996 * skb_gso_validate_network_len validates if a given skb will fit a
4997 * wanted MTU once split. It considers L3 headers, L4 headers, and the
4998 * payload.
5000 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5002 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5004 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5007 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5009 * @skb: GSO skb
5010 * @len: length to validate against
5012 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5013 * length once split, including L2, L3 and L4 headers and the payload.
5015 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5017 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5019 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5021 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5023 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5024 kfree_skb(skb);
5025 return NULL;
5028 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
5029 2 * ETH_ALEN);
5030 skb->mac_header += VLAN_HLEN;
5031 return skb;
5034 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5036 struct vlan_hdr *vhdr;
5037 u16 vlan_tci;
5039 if (unlikely(skb_vlan_tag_present(skb))) {
5040 /* vlan_tci is already set-up so leave this for another time */
5041 return skb;
5044 skb = skb_share_check(skb, GFP_ATOMIC);
5045 if (unlikely(!skb))
5046 goto err_free;
5048 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5049 goto err_free;
5051 vhdr = (struct vlan_hdr *)skb->data;
5052 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5053 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5055 skb_pull_rcsum(skb, VLAN_HLEN);
5056 vlan_set_encap_proto(skb, vhdr);
5058 skb = skb_reorder_vlan_header(skb);
5059 if (unlikely(!skb))
5060 goto err_free;
5062 skb_reset_network_header(skb);
5063 skb_reset_transport_header(skb);
5064 skb_reset_mac_len(skb);
5066 return skb;
5068 err_free:
5069 kfree_skb(skb);
5070 return NULL;
5072 EXPORT_SYMBOL(skb_vlan_untag);
5074 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5076 if (!pskb_may_pull(skb, write_len))
5077 return -ENOMEM;
5079 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5080 return 0;
5082 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5084 EXPORT_SYMBOL(skb_ensure_writable);
5086 /* remove VLAN header from packet and update csum accordingly.
5087 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5089 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5091 struct vlan_hdr *vhdr;
5092 int offset = skb->data - skb_mac_header(skb);
5093 int err;
5095 if (WARN_ONCE(offset,
5096 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5097 offset)) {
5098 return -EINVAL;
5101 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5102 if (unlikely(err))
5103 return err;
5105 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5107 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5108 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5110 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5111 __skb_pull(skb, VLAN_HLEN);
5113 vlan_set_encap_proto(skb, vhdr);
5114 skb->mac_header += VLAN_HLEN;
5116 if (skb_network_offset(skb) < ETH_HLEN)
5117 skb_set_network_header(skb, ETH_HLEN);
5119 skb_reset_mac_len(skb);
5121 return err;
5123 EXPORT_SYMBOL(__skb_vlan_pop);
5125 /* Pop a vlan tag either from hwaccel or from payload.
5126 * Expects skb->data at mac header.
5128 int skb_vlan_pop(struct sk_buff *skb)
5130 u16 vlan_tci;
5131 __be16 vlan_proto;
5132 int err;
5134 if (likely(skb_vlan_tag_present(skb))) {
5135 skb->vlan_tci = 0;
5136 } else {
5137 if (unlikely(!eth_type_vlan(skb->protocol)))
5138 return 0;
5140 err = __skb_vlan_pop(skb, &vlan_tci);
5141 if (err)
5142 return err;
5144 /* move next vlan tag to hw accel tag */
5145 if (likely(!eth_type_vlan(skb->protocol)))
5146 return 0;
5148 vlan_proto = skb->protocol;
5149 err = __skb_vlan_pop(skb, &vlan_tci);
5150 if (unlikely(err))
5151 return err;
5153 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5154 return 0;
5156 EXPORT_SYMBOL(skb_vlan_pop);
5158 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5159 * Expects skb->data at mac header.
5161 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5163 if (skb_vlan_tag_present(skb)) {
5164 int offset = skb->data - skb_mac_header(skb);
5165 int err;
5167 if (WARN_ONCE(offset,
5168 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5169 offset)) {
5170 return -EINVAL;
5173 err = __vlan_insert_tag(skb, skb->vlan_proto,
5174 skb_vlan_tag_get(skb));
5175 if (err)
5176 return err;
5178 skb->protocol = skb->vlan_proto;
5179 skb->mac_len += VLAN_HLEN;
5181 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5183 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5184 return 0;
5186 EXPORT_SYMBOL(skb_vlan_push);
5189 * alloc_skb_with_frags - allocate skb with page frags
5191 * @header_len: size of linear part
5192 * @data_len: needed length in frags
5193 * @max_page_order: max page order desired.
5194 * @errcode: pointer to error code if any
5195 * @gfp_mask: allocation mask
5197 * This can be used to allocate a paged skb, given a maximal order for frags.
5199 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5200 unsigned long data_len,
5201 int max_page_order,
5202 int *errcode,
5203 gfp_t gfp_mask)
5205 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5206 unsigned long chunk;
5207 struct sk_buff *skb;
5208 struct page *page;
5209 gfp_t gfp_head;
5210 int i;
5212 *errcode = -EMSGSIZE;
5213 /* Note this test could be relaxed, if we succeed to allocate
5214 * high order pages...
5216 if (npages > MAX_SKB_FRAGS)
5217 return NULL;
5219 gfp_head = gfp_mask;
5220 if (gfp_head & __GFP_DIRECT_RECLAIM)
5221 gfp_head |= __GFP_RETRY_MAYFAIL;
5223 *errcode = -ENOBUFS;
5224 skb = alloc_skb(header_len, gfp_head);
5225 if (!skb)
5226 return NULL;
5228 skb->truesize += npages << PAGE_SHIFT;
5230 for (i = 0; npages > 0; i++) {
5231 int order = max_page_order;
5233 while (order) {
5234 if (npages >= 1 << order) {
5235 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5236 __GFP_COMP |
5237 __GFP_NOWARN |
5238 __GFP_NORETRY,
5239 order);
5240 if (page)
5241 goto fill_page;
5242 /* Do not retry other high order allocations */
5243 order = 1;
5244 max_page_order = 0;
5246 order--;
5248 page = alloc_page(gfp_mask);
5249 if (!page)
5250 goto failure;
5251 fill_page:
5252 chunk = min_t(unsigned long, data_len,
5253 PAGE_SIZE << order);
5254 skb_fill_page_desc(skb, i, page, 0, chunk);
5255 data_len -= chunk;
5256 npages -= 1 << order;
5258 return skb;
5260 failure:
5261 kfree_skb(skb);
5262 return NULL;
5264 EXPORT_SYMBOL(alloc_skb_with_frags);
5266 /* carve out the first off bytes from skb when off < headlen */
5267 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5268 const int headlen, gfp_t gfp_mask)
5270 int i;
5271 int size = skb_end_offset(skb);
5272 int new_hlen = headlen - off;
5273 u8 *data;
5275 size = SKB_DATA_ALIGN(size);
5277 if (skb_pfmemalloc(skb))
5278 gfp_mask |= __GFP_MEMALLOC;
5279 data = kmalloc_reserve(size +
5280 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5281 gfp_mask, NUMA_NO_NODE, NULL);
5282 if (!data)
5283 return -ENOMEM;
5285 size = SKB_WITH_OVERHEAD(ksize(data));
5287 /* Copy real data, and all frags */
5288 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5289 skb->len -= off;
5291 memcpy((struct skb_shared_info *)(data + size),
5292 skb_shinfo(skb),
5293 offsetof(struct skb_shared_info,
5294 frags[skb_shinfo(skb)->nr_frags]));
5295 if (skb_cloned(skb)) {
5296 /* drop the old head gracefully */
5297 if (skb_orphan_frags(skb, gfp_mask)) {
5298 kfree(data);
5299 return -ENOMEM;
5301 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5302 skb_frag_ref(skb, i);
5303 if (skb_has_frag_list(skb))
5304 skb_clone_fraglist(skb);
5305 skb_release_data(skb);
5306 } else {
5307 /* we can reuse existing recount- all we did was
5308 * relocate values
5310 skb_free_head(skb);
5313 skb->head = data;
5314 skb->data = data;
5315 skb->head_frag = 0;
5316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5317 skb->end = size;
5318 #else
5319 skb->end = skb->head + size;
5320 #endif
5321 skb_set_tail_pointer(skb, skb_headlen(skb));
5322 skb_headers_offset_update(skb, 0);
5323 skb->cloned = 0;
5324 skb->hdr_len = 0;
5325 skb->nohdr = 0;
5326 atomic_set(&skb_shinfo(skb)->dataref, 1);
5328 return 0;
5331 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5333 /* carve out the first eat bytes from skb's frag_list. May recurse into
5334 * pskb_carve()
5336 static int pskb_carve_frag_list(struct sk_buff *skb,
5337 struct skb_shared_info *shinfo, int eat,
5338 gfp_t gfp_mask)
5340 struct sk_buff *list = shinfo->frag_list;
5341 struct sk_buff *clone = NULL;
5342 struct sk_buff *insp = NULL;
5344 do {
5345 if (!list) {
5346 pr_err("Not enough bytes to eat. Want %d\n", eat);
5347 return -EFAULT;
5349 if (list->len <= eat) {
5350 /* Eaten as whole. */
5351 eat -= list->len;
5352 list = list->next;
5353 insp = list;
5354 } else {
5355 /* Eaten partially. */
5356 if (skb_shared(list)) {
5357 clone = skb_clone(list, gfp_mask);
5358 if (!clone)
5359 return -ENOMEM;
5360 insp = list->next;
5361 list = clone;
5362 } else {
5363 /* This may be pulled without problems. */
5364 insp = list;
5366 if (pskb_carve(list, eat, gfp_mask) < 0) {
5367 kfree_skb(clone);
5368 return -ENOMEM;
5370 break;
5372 } while (eat);
5374 /* Free pulled out fragments. */
5375 while ((list = shinfo->frag_list) != insp) {
5376 shinfo->frag_list = list->next;
5377 kfree_skb(list);
5379 /* And insert new clone at head. */
5380 if (clone) {
5381 clone->next = list;
5382 shinfo->frag_list = clone;
5384 return 0;
5387 /* carve off first len bytes from skb. Split line (off) is in the
5388 * non-linear part of skb
5390 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5391 int pos, gfp_t gfp_mask)
5393 int i, k = 0;
5394 int size = skb_end_offset(skb);
5395 u8 *data;
5396 const int nfrags = skb_shinfo(skb)->nr_frags;
5397 struct skb_shared_info *shinfo;
5399 size = SKB_DATA_ALIGN(size);
5401 if (skb_pfmemalloc(skb))
5402 gfp_mask |= __GFP_MEMALLOC;
5403 data = kmalloc_reserve(size +
5404 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5405 gfp_mask, NUMA_NO_NODE, NULL);
5406 if (!data)
5407 return -ENOMEM;
5409 size = SKB_WITH_OVERHEAD(ksize(data));
5411 memcpy((struct skb_shared_info *)(data + size),
5412 skb_shinfo(skb), offsetof(struct skb_shared_info,
5413 frags[skb_shinfo(skb)->nr_frags]));
5414 if (skb_orphan_frags(skb, gfp_mask)) {
5415 kfree(data);
5416 return -ENOMEM;
5418 shinfo = (struct skb_shared_info *)(data + size);
5419 for (i = 0; i < nfrags; i++) {
5420 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5422 if (pos + fsize > off) {
5423 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5425 if (pos < off) {
5426 /* Split frag.
5427 * We have two variants in this case:
5428 * 1. Move all the frag to the second
5429 * part, if it is possible. F.e.
5430 * this approach is mandatory for TUX,
5431 * where splitting is expensive.
5432 * 2. Split is accurately. We make this.
5434 shinfo->frags[0].page_offset += off - pos;
5435 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5437 skb_frag_ref(skb, i);
5438 k++;
5440 pos += fsize;
5442 shinfo->nr_frags = k;
5443 if (skb_has_frag_list(skb))
5444 skb_clone_fraglist(skb);
5446 if (k == 0) {
5447 /* split line is in frag list */
5448 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5450 skb_release_data(skb);
5452 skb->head = data;
5453 skb->head_frag = 0;
5454 skb->data = data;
5455 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5456 skb->end = size;
5457 #else
5458 skb->end = skb->head + size;
5459 #endif
5460 skb_reset_tail_pointer(skb);
5461 skb_headers_offset_update(skb, 0);
5462 skb->cloned = 0;
5463 skb->hdr_len = 0;
5464 skb->nohdr = 0;
5465 skb->len -= off;
5466 skb->data_len = skb->len;
5467 atomic_set(&skb_shinfo(skb)->dataref, 1);
5468 return 0;
5471 /* remove len bytes from the beginning of the skb */
5472 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5474 int headlen = skb_headlen(skb);
5476 if (len < headlen)
5477 return pskb_carve_inside_header(skb, len, headlen, gfp);
5478 else
5479 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5482 /* Extract to_copy bytes starting at off from skb, and return this in
5483 * a new skb
5485 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5486 int to_copy, gfp_t gfp)
5488 struct sk_buff *clone = skb_clone(skb, gfp);
5490 if (!clone)
5491 return NULL;
5493 if (pskb_carve(clone, off, gfp) < 0 ||
5494 pskb_trim(clone, to_copy)) {
5495 kfree_skb(clone);
5496 return NULL;
5498 return clone;
5500 EXPORT_SYMBOL(pskb_extract);
5503 * skb_condense - try to get rid of fragments/frag_list if possible
5504 * @skb: buffer
5506 * Can be used to save memory before skb is added to a busy queue.
5507 * If packet has bytes in frags and enough tail room in skb->head,
5508 * pull all of them, so that we can free the frags right now and adjust
5509 * truesize.
5510 * Notes:
5511 * We do not reallocate skb->head thus can not fail.
5512 * Caller must re-evaluate skb->truesize if needed.
5514 void skb_condense(struct sk_buff *skb)
5516 if (skb->data_len) {
5517 if (skb->data_len > skb->end - skb->tail ||
5518 skb_cloned(skb))
5519 return;
5521 /* Nice, we can free page frag(s) right now */
5522 __pskb_pull_tail(skb, skb->data_len);
5524 /* At this point, skb->truesize might be over estimated,
5525 * because skb had a fragment, and fragments do not tell
5526 * their truesize.
5527 * When we pulled its content into skb->head, fragment
5528 * was freed, but __pskb_pull_tail() could not possibly
5529 * adjust skb->truesize, not knowing the frag truesize.
5531 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));