2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
278 #include <net/xfrm.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count
;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
289 long sysctl_tcp_mem
[3] __read_mostly
;
290 EXPORT_SYMBOL(sysctl_tcp_mem
);
292 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated
);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc
);
297 EXPORT_SYMBOL(tcp_have_smc
);
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated
;
304 EXPORT_SYMBOL(tcp_sockets_allocated
);
309 struct tcp_splice_state
{
310 struct pipe_inode_info
*pipe
;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly
;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
324 void tcp_enter_memory_pressure(struct sock
*sk
)
328 if (tcp_memory_pressure
)
334 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure
);
339 void tcp_leave_memory_pressure(struct sock
*sk
)
343 if (!tcp_memory_pressure
)
345 val
= xchg(&tcp_memory_pressure
, 0);
347 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
348 jiffies_to_msecs(jiffies
- val
));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure
);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
358 int period
= timeout
;
361 while (seconds
> period
&& res
< 255) {
364 if (timeout
> rto_max
)
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
381 if (timeout
> rto_max
)
389 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
391 u32 rate
= READ_ONCE(tp
->rate_delivered
);
392 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
396 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
397 do_div(rate64
, intv
);
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock
*sk
)
409 struct inet_connection_sock
*icsk
= inet_csk(sk
);
410 struct tcp_sock
*tp
= tcp_sk(sk
);
412 tp
->out_of_order_queue
= RB_ROOT
;
413 sk
->tcp_rtx_queue
= RB_ROOT
;
414 tcp_init_xmit_timers(sk
);
415 INIT_LIST_HEAD(&tp
->tsq_node
);
416 INIT_LIST_HEAD(&tp
->tsorted_sent_queue
);
418 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
419 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
420 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp
->snd_cwnd
= TCP_INIT_CWND
;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp
->app_limited
= ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
436 tp
->snd_cwnd_clamp
= ~0;
437 tp
->mss_cache
= TCP_MSS_DEFAULT
;
439 tp
->reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
440 tcp_assign_congestion_control(sk
);
443 tp
->rack
.reo_wnd_steps
= 1;
445 sk
->sk_state
= TCP_CLOSE
;
447 sk
->sk_write_space
= sk_stream_write_space
;
448 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
450 icsk
->icsk_sync_mss
= tcp_sync_mss
;
452 sk
->sk_sndbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[1];
453 sk
->sk_rcvbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[1];
455 sk_sockets_allocated_inc(sk
);
457 EXPORT_SYMBOL(tcp_init_sock
);
459 void tcp_init_transfer(struct sock
*sk
, int bpf_op
)
461 struct inet_connection_sock
*icsk
= inet_csk(sk
);
464 icsk
->icsk_af_ops
->rebuild_header(sk
);
465 tcp_init_metrics(sk
);
466 tcp_call_bpf(sk
, bpf_op
, 0, NULL
);
467 tcp_init_congestion_control(sk
);
468 tcp_init_buffer_space(sk
);
471 static void tcp_tx_timestamp(struct sock
*sk
, u16 tsflags
)
473 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
475 if (tsflags
&& skb
) {
476 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
477 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
479 sock_tx_timestamp(sk
, tsflags
, &shinfo
->tx_flags
);
480 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
481 tcb
->txstamp_ack
= 1;
482 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
483 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
488 * Wait for a TCP event.
490 * Note that we don't need to lock the socket, as the upper poll layers
491 * take care of normal races (between the test and the event) and we don't
492 * go look at any of the socket buffers directly.
494 __poll_t
tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
497 struct sock
*sk
= sock
->sk
;
498 const struct tcp_sock
*tp
= tcp_sk(sk
);
501 sock_poll_wait(file
, sk_sleep(sk
), wait
);
503 state
= inet_sk_state_load(sk
);
504 if (state
== TCP_LISTEN
)
505 return inet_csk_listen_poll(sk
);
507 /* Socket is not locked. We are protected from async events
508 * by poll logic and correct handling of state changes
509 * made by other threads is impossible in any case.
515 * EPOLLHUP is certainly not done right. But poll() doesn't
516 * have a notion of HUP in just one direction, and for a
517 * socket the read side is more interesting.
519 * Some poll() documentation says that EPOLLHUP is incompatible
520 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 * all. But careful, it tends to be safer to return too many
522 * bits than too few, and you can easily break real applications
523 * if you don't tell them that something has hung up!
527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 * our fs/select.c). It means that after we received EOF,
529 * poll always returns immediately, making impossible poll() on write()
530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 * if and only if shutdown has been made in both directions.
532 * Actually, it is interesting to look how Solaris and DUX
533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 * then we could set it on SND_SHUTDOWN. BTW examples given
535 * in Stevens' books assume exactly this behaviour, it explains
536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 * blocking on fresh not-connected or disconnected socket. --ANK
541 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
543 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
544 mask
|= EPOLLIN
| EPOLLRDNORM
| EPOLLRDHUP
;
546 /* Connected or passive Fast Open socket? */
547 if (state
!= TCP_SYN_SENT
&&
548 (state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
)) {
549 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
551 if (tp
->urg_seq
== tp
->copied_seq
&&
552 !sock_flag(sk
, SOCK_URGINLINE
) &&
556 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
557 mask
|= EPOLLIN
| EPOLLRDNORM
;
559 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
560 if (sk_stream_is_writeable(sk
)) {
561 mask
|= EPOLLOUT
| EPOLLWRNORM
;
562 } else { /* send SIGIO later */
563 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
564 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
566 /* Race breaker. If space is freed after
567 * wspace test but before the flags are set,
568 * IO signal will be lost. Memory barrier
569 * pairs with the input side.
571 smp_mb__after_atomic();
572 if (sk_stream_is_writeable(sk
))
573 mask
|= EPOLLOUT
| EPOLLWRNORM
;
576 mask
|= EPOLLOUT
| EPOLLWRNORM
;
578 if (tp
->urg_data
& TCP_URG_VALID
)
580 } else if (state
== TCP_SYN_SENT
&& inet_sk(sk
)->defer_connect
) {
581 /* Active TCP fastopen socket with defer_connect
582 * Return EPOLLOUT so application can call write()
583 * in order for kernel to generate SYN+data
585 mask
|= EPOLLOUT
| EPOLLWRNORM
;
587 /* This barrier is coupled with smp_wmb() in tcp_reset() */
589 if (sk
->sk_err
|| !skb_queue_empty(&sk
->sk_error_queue
))
594 EXPORT_SYMBOL(tcp_poll
);
596 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
598 struct tcp_sock
*tp
= tcp_sk(sk
);
604 if (sk
->sk_state
== TCP_LISTEN
)
607 slow
= lock_sock_fast(sk
);
609 unlock_sock_fast(sk
, slow
);
612 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
615 if (sk
->sk_state
== TCP_LISTEN
)
618 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
621 answ
= tp
->write_seq
- tp
->snd_una
;
624 if (sk
->sk_state
== TCP_LISTEN
)
627 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
630 answ
= tp
->write_seq
- tp
->snd_nxt
;
636 return put_user(answ
, (int __user
*)arg
);
638 EXPORT_SYMBOL(tcp_ioctl
);
640 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
642 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
643 tp
->pushed_seq
= tp
->write_seq
;
646 static inline bool forced_push(const struct tcp_sock
*tp
)
648 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
651 static void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
653 struct tcp_sock
*tp
= tcp_sk(sk
);
654 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
657 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
658 tcb
->tcp_flags
= TCPHDR_ACK
;
660 __skb_header_release(skb
);
661 tcp_add_write_queue_tail(sk
, skb
);
662 sk
->sk_wmem_queued
+= skb
->truesize
;
663 sk_mem_charge(sk
, skb
->truesize
);
664 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
665 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
667 tcp_slow_start_after_idle_check(sk
);
670 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
673 tp
->snd_up
= tp
->write_seq
;
676 /* If a not yet filled skb is pushed, do not send it if
677 * we have data packets in Qdisc or NIC queues :
678 * Because TX completion will happen shortly, it gives a chance
679 * to coalesce future sendmsg() payload into this skb, without
680 * need for a timer, and with no latency trade off.
681 * As packets containing data payload have a bigger truesize
682 * than pure acks (dataless) packets, the last checks prevent
683 * autocorking if we only have an ACK in Qdisc/NIC queues,
684 * or if TX completion was delayed after we processed ACK packet.
686 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
689 return skb
->len
< size_goal
&&
690 sock_net(sk
)->ipv4
.sysctl_tcp_autocorking
&&
691 skb
!= tcp_write_queue_head(sk
) &&
692 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
695 static void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
696 int nonagle
, int size_goal
)
698 struct tcp_sock
*tp
= tcp_sk(sk
);
701 skb
= tcp_write_queue_tail(sk
);
704 if (!(flags
& MSG_MORE
) || forced_push(tp
))
705 tcp_mark_push(tp
, skb
);
707 tcp_mark_urg(tp
, flags
);
709 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
711 /* avoid atomic op if TSQ_THROTTLED bit is already set */
712 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
713 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
714 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
716 /* It is possible TX completion already happened
717 * before we set TSQ_THROTTLED.
719 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
723 if (flags
& MSG_MORE
)
724 nonagle
= TCP_NAGLE_CORK
;
726 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
729 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
730 unsigned int offset
, size_t len
)
732 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
735 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
736 min(rd_desc
->count
, len
), tss
->flags
);
738 rd_desc
->count
-= ret
;
742 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
744 /* Store TCP splice context information in read_descriptor_t. */
745 read_descriptor_t rd_desc
= {
750 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
754 * tcp_splice_read - splice data from TCP socket to a pipe
755 * @sock: socket to splice from
756 * @ppos: position (not valid)
757 * @pipe: pipe to splice to
758 * @len: number of bytes to splice
759 * @flags: splice modifier flags
762 * Will read pages from given socket and fill them into a pipe.
765 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
766 struct pipe_inode_info
*pipe
, size_t len
,
769 struct sock
*sk
= sock
->sk
;
770 struct tcp_splice_state tss
= {
779 sock_rps_record_flow(sk
);
781 * We can't seek on a socket input
790 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
792 ret
= __tcp_splice_read(sk
, &tss
);
798 if (sock_flag(sk
, SOCK_DONE
))
801 ret
= sock_error(sk
);
804 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
806 if (sk
->sk_state
== TCP_CLOSE
) {
808 * This occurs when user tries to read
809 * from never connected socket.
811 if (!sock_flag(sk
, SOCK_DONE
))
819 /* if __tcp_splice_read() got nothing while we have
820 * an skb in receive queue, we do not want to loop.
821 * This might happen with URG data.
823 if (!skb_queue_empty(&sk
->sk_receive_queue
))
825 sk_wait_data(sk
, &timeo
, NULL
);
826 if (signal_pending(current
)) {
827 ret
= sock_intr_errno(timeo
);
840 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
841 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
842 signal_pending(current
))
853 EXPORT_SYMBOL(tcp_splice_read
);
855 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
,
860 /* The TCP header must be at least 32-bit aligned. */
861 size
= ALIGN(size
, 4);
863 if (unlikely(tcp_under_memory_pressure(sk
)))
864 sk_mem_reclaim_partial(sk
);
866 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
870 if (force_schedule
) {
871 mem_scheduled
= true;
872 sk_forced_mem_schedule(sk
, skb
->truesize
);
874 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
876 if (likely(mem_scheduled
)) {
877 skb_reserve(skb
, sk
->sk_prot
->max_header
);
879 * Make sure that we have exactly size bytes
880 * available to the caller, no more, no less.
882 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
883 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
888 sk
->sk_prot
->enter_memory_pressure(sk
);
889 sk_stream_moderate_sndbuf(sk
);
894 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
897 struct tcp_sock
*tp
= tcp_sk(sk
);
898 u32 new_size_goal
, size_goal
;
900 if (!large_allowed
|| !sk_can_gso(sk
))
903 /* Note : tcp_tso_autosize() will eventually split this later */
904 new_size_goal
= sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
;
905 new_size_goal
= tcp_bound_to_half_wnd(tp
, new_size_goal
);
907 /* We try hard to avoid divides here */
908 size_goal
= tp
->gso_segs
* mss_now
;
909 if (unlikely(new_size_goal
< size_goal
||
910 new_size_goal
>= size_goal
+ mss_now
)) {
911 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
912 sk
->sk_gso_max_segs
);
913 size_goal
= tp
->gso_segs
* mss_now
;
916 return max(size_goal
, mss_now
);
919 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
923 mss_now
= tcp_current_mss(sk
);
924 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
929 ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
930 size_t size
, int flags
)
932 struct tcp_sock
*tp
= tcp_sk(sk
);
933 int mss_now
, size_goal
;
936 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
938 /* Wait for a connection to finish. One exception is TCP Fast Open
939 * (passive side) where data is allowed to be sent before a connection
940 * is fully established.
942 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
943 !tcp_passive_fastopen(sk
)) {
944 err
= sk_stream_wait_connect(sk
, &timeo
);
949 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
951 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
955 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
959 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
963 if (!skb
|| (copy
= size_goal
- skb
->len
) <= 0 ||
964 !tcp_skb_can_collapse_to(skb
)) {
966 if (!sk_stream_memory_free(sk
))
967 goto wait_for_sndbuf
;
969 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
970 tcp_rtx_and_write_queues_empty(sk
));
972 goto wait_for_memory
;
981 i
= skb_shinfo(skb
)->nr_frags
;
982 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
983 if (!can_coalesce
&& i
>= sysctl_max_skb_frags
) {
984 tcp_mark_push(tp
, skb
);
987 if (!sk_wmem_schedule(sk
, copy
))
988 goto wait_for_memory
;
991 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
994 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
996 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
999 skb
->data_len
+= copy
;
1000 skb
->truesize
+= copy
;
1001 sk
->sk_wmem_queued
+= copy
;
1002 sk_mem_charge(sk
, copy
);
1003 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1004 tp
->write_seq
+= copy
;
1005 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1006 tcp_skb_pcount_set(skb
, 0);
1009 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1017 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
1020 if (forced_push(tp
)) {
1021 tcp_mark_push(tp
, skb
);
1022 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1023 } else if (skb
== tcp_send_head(sk
))
1024 tcp_push_one(sk
, mss_now
);
1028 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1030 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1031 TCP_NAGLE_PUSH
, size_goal
);
1033 err
= sk_stream_wait_memory(sk
, &timeo
);
1037 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1042 tcp_tx_timestamp(sk
, sk
->sk_tsflags
);
1043 if (!(flags
& MSG_SENDPAGE_NOTLAST
))
1044 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1052 /* make sure we wake any epoll edge trigger waiter */
1053 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1055 sk
->sk_write_space(sk
);
1056 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1058 return sk_stream_error(sk
, flags
, err
);
1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages
);
1062 int tcp_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
1063 size_t size
, int flags
)
1065 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
1066 !sk_check_csum_caps(sk
))
1067 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
1069 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1071 return do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1073 EXPORT_SYMBOL_GPL(tcp_sendpage_locked
);
1075 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1076 size_t size
, int flags
)
1081 ret
= tcp_sendpage_locked(sk
, page
, offset
, size
, flags
);
1086 EXPORT_SYMBOL(tcp_sendpage
);
1088 /* Do not bother using a page frag for very small frames.
1089 * But use this heuristic only for the first skb in write queue.
1091 * Having no payload in skb->head allows better SACK shifting
1092 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1093 * write queue has less skbs.
1094 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1095 * This also speeds up tso_fragment(), since it wont fallback
1096 * to tcp_fragment().
1098 static int linear_payload_sz(bool first_skb
)
1101 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
1105 static int select_size(const struct sock
*sk
, bool sg
, bool first_skb
, bool zc
)
1107 const struct tcp_sock
*tp
= tcp_sk(sk
);
1108 int tmp
= tp
->mss_cache
;
1114 if (sk_can_gso(sk
)) {
1115 tmp
= linear_payload_sz(first_skb
);
1117 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
1119 if (tmp
>= pgbreak
&&
1120 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
1128 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1130 if (tp
->fastopen_req
) {
1131 kfree(tp
->fastopen_req
);
1132 tp
->fastopen_req
= NULL
;
1136 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
,
1137 int *copied
, size_t size
)
1139 struct tcp_sock
*tp
= tcp_sk(sk
);
1140 struct inet_sock
*inet
= inet_sk(sk
);
1141 struct sockaddr
*uaddr
= msg
->msg_name
;
1144 if (!(sock_net(sk
)->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) ||
1145 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1146 uaddr
->sa_family
== AF_UNSPEC
))
1148 if (tp
->fastopen_req
)
1149 return -EALREADY
; /* Another Fast Open is in progress */
1151 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1153 if (unlikely(!tp
->fastopen_req
))
1155 tp
->fastopen_req
->data
= msg
;
1156 tp
->fastopen_req
->size
= size
;
1158 if (inet
->defer_connect
) {
1159 err
= tcp_connect(sk
);
1160 /* Same failure procedure as in tcp_v4/6_connect */
1162 tcp_set_state(sk
, TCP_CLOSE
);
1163 inet
->inet_dport
= 0;
1164 sk
->sk_route_caps
= 0;
1167 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1168 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1169 msg
->msg_namelen
, flags
, 1);
1170 /* fastopen_req could already be freed in __inet_stream_connect
1171 * if the connection times out or gets rst
1173 if (tp
->fastopen_req
) {
1174 *copied
= tp
->fastopen_req
->copied
;
1175 tcp_free_fastopen_req(tp
);
1176 inet
->defer_connect
= 0;
1181 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1183 struct tcp_sock
*tp
= tcp_sk(sk
);
1184 struct ubuf_info
*uarg
= NULL
;
1185 struct sk_buff
*skb
;
1186 struct sockcm_cookie sockc
;
1187 int flags
, err
, copied
= 0;
1188 int mss_now
= 0, size_goal
, copied_syn
= 0;
1189 bool process_backlog
= false;
1190 bool sg
, zc
= false;
1193 flags
= msg
->msg_flags
;
1195 if (flags
& MSG_ZEROCOPY
&& size
) {
1196 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
1201 skb
= tcp_write_queue_tail(sk
);
1202 uarg
= sock_zerocopy_realloc(sk
, size
, skb_zcopy(skb
));
1208 zc
= sk_check_csum_caps(sk
) && sk
->sk_route_caps
& NETIF_F_SG
;
1213 if (unlikely(flags
& MSG_FASTOPEN
|| inet_sk(sk
)->defer_connect
)) {
1214 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
);
1215 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1221 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1223 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1225 /* Wait for a connection to finish. One exception is TCP Fast Open
1226 * (passive side) where data is allowed to be sent before a connection
1227 * is fully established.
1229 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1230 !tcp_passive_fastopen(sk
)) {
1231 err
= sk_stream_wait_connect(sk
, &timeo
);
1236 if (unlikely(tp
->repair
)) {
1237 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1238 copied
= tcp_send_rcvq(sk
, msg
, size
);
1243 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1246 /* 'common' sending to sendq */
1249 sockc
.tsflags
= sk
->sk_tsflags
;
1250 if (msg
->msg_controllen
) {
1251 err
= sock_cmsg_send(sk
, msg
, &sockc
);
1252 if (unlikely(err
)) {
1258 /* This should be in poll */
1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1261 /* Ok commence sending. */
1265 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1268 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1271 sg
= !!(sk
->sk_route_caps
& NETIF_F_SG
);
1273 while (msg_data_left(msg
)) {
1275 int max
= size_goal
;
1277 skb
= tcp_write_queue_tail(sk
);
1279 if (skb
->ip_summed
== CHECKSUM_NONE
)
1281 copy
= max
- skb
->len
;
1284 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1289 /* Allocate new segment. If the interface is SG,
1290 * allocate skb fitting to single page.
1292 if (!sk_stream_memory_free(sk
))
1293 goto wait_for_sndbuf
;
1295 if (process_backlog
&& sk_flush_backlog(sk
)) {
1296 process_backlog
= false;
1299 first_skb
= tcp_rtx_and_write_queues_empty(sk
);
1300 linear
= select_size(sk
, sg
, first_skb
, zc
);
1301 skb
= sk_stream_alloc_skb(sk
, linear
, sk
->sk_allocation
,
1304 goto wait_for_memory
;
1306 process_backlog
= true;
1308 * Check whether we can use HW checksum.
1310 if (sk_check_csum_caps(sk
))
1311 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1313 skb_entail(sk
, skb
);
1317 /* All packets are restored as if they have
1318 * already been sent. skb_mstamp isn't set to
1319 * avoid wrong rtt estimation.
1322 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1325 /* Try to append data to the end of skb. */
1326 if (copy
> msg_data_left(msg
))
1327 copy
= msg_data_left(msg
);
1329 /* Where to copy to? */
1330 if (skb_availroom(skb
) > 0 && !zc
) {
1331 /* We have some space in skb head. Superb! */
1332 copy
= min_t(int, copy
, skb_availroom(skb
));
1333 err
= skb_add_data_nocache(sk
, skb
, &msg
->msg_iter
, copy
);
1338 int i
= skb_shinfo(skb
)->nr_frags
;
1339 struct page_frag
*pfrag
= sk_page_frag(sk
);
1341 if (!sk_page_frag_refill(sk
, pfrag
))
1342 goto wait_for_memory
;
1344 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1346 if (i
>= sysctl_max_skb_frags
|| !sg
) {
1347 tcp_mark_push(tp
, skb
);
1353 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1355 if (!sk_wmem_schedule(sk
, copy
))
1356 goto wait_for_memory
;
1358 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1365 /* Update the skb. */
1367 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1369 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1370 pfrag
->offset
, copy
);
1371 page_ref_inc(pfrag
->page
);
1373 pfrag
->offset
+= copy
;
1375 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
);
1376 if (err
== -EMSGSIZE
|| err
== -EEXIST
) {
1377 tcp_mark_push(tp
, skb
);
1386 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1388 tp
->write_seq
+= copy
;
1389 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1390 tcp_skb_pcount_set(skb
, 0);
1393 if (!msg_data_left(msg
)) {
1394 if (unlikely(flags
& MSG_EOR
))
1395 TCP_SKB_CB(skb
)->eor
= 1;
1399 if (skb
->len
< max
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1402 if (forced_push(tp
)) {
1403 tcp_mark_push(tp
, skb
);
1404 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1405 } else if (skb
== tcp_send_head(sk
))
1406 tcp_push_one(sk
, mss_now
);
1410 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1413 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1414 TCP_NAGLE_PUSH
, size_goal
);
1416 err
= sk_stream_wait_memory(sk
, &timeo
);
1420 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1425 tcp_tx_timestamp(sk
, sockc
.tsflags
);
1426 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1429 sock_zerocopy_put(uarg
);
1430 return copied
+ copied_syn
;
1434 tcp_unlink_write_queue(skb
, sk
);
1435 /* It is the one place in all of TCP, except connection
1436 * reset, where we can be unlinking the send_head.
1438 tcp_check_send_head(sk
, skb
);
1439 sk_wmem_free_skb(sk
, skb
);
1443 if (copied
+ copied_syn
)
1446 sock_zerocopy_put_abort(uarg
);
1447 err
= sk_stream_error(sk
, flags
, err
);
1448 /* make sure we wake any epoll edge trigger waiter */
1449 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1451 sk
->sk_write_space(sk
);
1452 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1456 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1458 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1463 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1468 EXPORT_SYMBOL(tcp_sendmsg
);
1471 * Handle reading urgent data. BSD has very simple semantics for
1472 * this, no blocking and very strange errors 8)
1475 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1477 struct tcp_sock
*tp
= tcp_sk(sk
);
1479 /* No URG data to read. */
1480 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1481 tp
->urg_data
== TCP_URG_READ
)
1482 return -EINVAL
; /* Yes this is right ! */
1484 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1487 if (tp
->urg_data
& TCP_URG_VALID
) {
1489 char c
= tp
->urg_data
;
1491 if (!(flags
& MSG_PEEK
))
1492 tp
->urg_data
= TCP_URG_READ
;
1494 /* Read urgent data. */
1495 msg
->msg_flags
|= MSG_OOB
;
1498 if (!(flags
& MSG_TRUNC
))
1499 err
= memcpy_to_msg(msg
, &c
, 1);
1502 msg
->msg_flags
|= MSG_TRUNC
;
1504 return err
? -EFAULT
: len
;
1507 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1510 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1511 * the available implementations agree in this case:
1512 * this call should never block, independent of the
1513 * blocking state of the socket.
1514 * Mike <pall@rz.uni-karlsruhe.de>
1519 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1521 struct sk_buff
*skb
;
1522 int copied
= 0, err
= 0;
1524 /* XXX -- need to support SO_PEEK_OFF */
1526 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
1527 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1533 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1534 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1541 return err
?: copied
;
1544 /* Clean up the receive buffer for full frames taken by the user,
1545 * then send an ACK if necessary. COPIED is the number of bytes
1546 * tcp_recvmsg has given to the user so far, it speeds up the
1547 * calculation of whether or not we must ACK for the sake of
1550 static void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1552 struct tcp_sock
*tp
= tcp_sk(sk
);
1553 bool time_to_ack
= false;
1555 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1557 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1558 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1559 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1561 if (inet_csk_ack_scheduled(sk
)) {
1562 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1563 /* Delayed ACKs frequently hit locked sockets during bulk
1565 if (icsk
->icsk_ack
.blocked
||
1566 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1567 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1569 * If this read emptied read buffer, we send ACK, if
1570 * connection is not bidirectional, user drained
1571 * receive buffer and there was a small segment
1575 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1576 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1577 !icsk
->icsk_ack
.pingpong
)) &&
1578 !atomic_read(&sk
->sk_rmem_alloc
)))
1582 /* We send an ACK if we can now advertise a non-zero window
1583 * which has been raised "significantly".
1585 * Even if window raised up to infinity, do not send window open ACK
1586 * in states, where we will not receive more. It is useless.
1588 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1589 __u32 rcv_window_now
= tcp_receive_window(tp
);
1591 /* Optimize, __tcp_select_window() is not cheap. */
1592 if (2*rcv_window_now
<= tp
->window_clamp
) {
1593 __u32 new_window
= __tcp_select_window(sk
);
1595 /* Send ACK now, if this read freed lots of space
1596 * in our buffer. Certainly, new_window is new window.
1597 * We can advertise it now, if it is not less than current one.
1598 * "Lots" means "at least twice" here.
1600 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1608 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1610 struct sk_buff
*skb
;
1613 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1614 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1615 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1616 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1619 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1623 /* This looks weird, but this can happen if TCP collapsing
1624 * splitted a fat GRO packet, while we released socket lock
1625 * in skb_splice_bits()
1627 sk_eat_skb(sk
, skb
);
1633 * This routine provides an alternative to tcp_recvmsg() for routines
1634 * that would like to handle copying from skbuffs directly in 'sendfile'
1637 * - It is assumed that the socket was locked by the caller.
1638 * - The routine does not block.
1639 * - At present, there is no support for reading OOB data
1640 * or for 'peeking' the socket using this routine
1641 * (although both would be easy to implement).
1643 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1644 sk_read_actor_t recv_actor
)
1646 struct sk_buff
*skb
;
1647 struct tcp_sock
*tp
= tcp_sk(sk
);
1648 u32 seq
= tp
->copied_seq
;
1652 if (sk
->sk_state
== TCP_LISTEN
)
1654 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1655 if (offset
< skb
->len
) {
1659 len
= skb
->len
- offset
;
1660 /* Stop reading if we hit a patch of urgent data */
1662 u32 urg_offset
= tp
->urg_seq
- seq
;
1663 if (urg_offset
< len
)
1668 used
= recv_actor(desc
, skb
, offset
, len
);
1673 } else if (used
<= len
) {
1678 /* If recv_actor drops the lock (e.g. TCP splice
1679 * receive) the skb pointer might be invalid when
1680 * getting here: tcp_collapse might have deleted it
1681 * while aggregating skbs from the socket queue.
1683 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1686 /* TCP coalescing might have appended data to the skb.
1687 * Try to splice more frags
1689 if (offset
+ 1 != skb
->len
)
1692 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1693 sk_eat_skb(sk
, skb
);
1697 sk_eat_skb(sk
, skb
);
1700 tp
->copied_seq
= seq
;
1702 tp
->copied_seq
= seq
;
1704 tcp_rcv_space_adjust(sk
);
1706 /* Clean up data we have read: This will do ACK frames. */
1708 tcp_recv_skb(sk
, seq
, &offset
);
1709 tcp_cleanup_rbuf(sk
, copied
);
1713 EXPORT_SYMBOL(tcp_read_sock
);
1715 int tcp_peek_len(struct socket
*sock
)
1717 return tcp_inq(sock
->sk
);
1719 EXPORT_SYMBOL(tcp_peek_len
);
1721 static void tcp_update_recv_tstamps(struct sk_buff
*skb
,
1722 struct scm_timestamping
*tss
)
1725 tss
->ts
[0] = ktime_to_timespec(skb
->tstamp
);
1727 tss
->ts
[0] = (struct timespec
) {0};
1729 if (skb_hwtstamps(skb
)->hwtstamp
)
1730 tss
->ts
[2] = ktime_to_timespec(skb_hwtstamps(skb
)->hwtstamp
);
1732 tss
->ts
[2] = (struct timespec
) {0};
1735 /* Similar to __sock_recv_timestamp, but does not require an skb */
1736 static void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
1737 struct scm_timestamping
*tss
)
1740 bool has_timestamping
= false;
1742 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
1743 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
1744 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
1745 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
1746 sizeof(tss
->ts
[0]), &tss
->ts
[0]);
1748 tv
.tv_sec
= tss
->ts
[0].tv_sec
;
1749 tv
.tv_usec
= tss
->ts
[0].tv_nsec
/ 1000;
1751 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
1756 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
)
1757 has_timestamping
= true;
1759 tss
->ts
[0] = (struct timespec
) {0};
1762 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
1763 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)
1764 has_timestamping
= true;
1766 tss
->ts
[2] = (struct timespec
) {0};
1769 if (has_timestamping
) {
1770 tss
->ts
[1] = (struct timespec
) {0};
1771 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING
,
1777 * This routine copies from a sock struct into the user buffer.
1779 * Technical note: in 2.3 we work on _locked_ socket, so that
1780 * tricks with *seq access order and skb->users are not required.
1781 * Probably, code can be easily improved even more.
1784 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int nonblock
,
1785 int flags
, int *addr_len
)
1787 struct tcp_sock
*tp
= tcp_sk(sk
);
1793 int target
; /* Read at least this many bytes */
1795 struct sk_buff
*skb
, *last
;
1797 struct scm_timestamping tss
;
1798 bool has_tss
= false;
1800 if (unlikely(flags
& MSG_ERRQUEUE
))
1801 return inet_recv_error(sk
, msg
, len
, addr_len
);
1803 if (sk_can_busy_loop(sk
) && skb_queue_empty(&sk
->sk_receive_queue
) &&
1804 (sk
->sk_state
== TCP_ESTABLISHED
))
1805 sk_busy_loop(sk
, nonblock
);
1810 if (sk
->sk_state
== TCP_LISTEN
)
1813 timeo
= sock_rcvtimeo(sk
, nonblock
);
1815 /* Urgent data needs to be handled specially. */
1816 if (flags
& MSG_OOB
)
1819 if (unlikely(tp
->repair
)) {
1821 if (!(flags
& MSG_PEEK
))
1824 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1828 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1831 /* 'common' recv queue MSG_PEEK-ing */
1834 seq
= &tp
->copied_seq
;
1835 if (flags
& MSG_PEEK
) {
1836 peek_seq
= tp
->copied_seq
;
1840 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1845 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1846 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1849 if (signal_pending(current
)) {
1850 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1855 /* Next get a buffer. */
1857 last
= skb_peek_tail(&sk
->sk_receive_queue
);
1858 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1860 /* Now that we have two receive queues this
1863 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1864 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1865 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1869 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1870 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1871 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1874 if (offset
< skb
->len
)
1876 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1878 WARN(!(flags
& MSG_PEEK
),
1879 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1880 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
1883 /* Well, if we have backlog, try to process it now yet. */
1885 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1890 sk
->sk_state
== TCP_CLOSE
||
1891 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1893 signal_pending(current
))
1896 if (sock_flag(sk
, SOCK_DONE
))
1900 copied
= sock_error(sk
);
1904 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1907 if (sk
->sk_state
== TCP_CLOSE
) {
1908 if (!sock_flag(sk
, SOCK_DONE
)) {
1909 /* This occurs when user tries to read
1910 * from never connected socket.
1923 if (signal_pending(current
)) {
1924 copied
= sock_intr_errno(timeo
);
1929 tcp_cleanup_rbuf(sk
, copied
);
1931 if (copied
>= target
) {
1932 /* Do not sleep, just process backlog. */
1936 sk_wait_data(sk
, &timeo
, last
);
1939 if ((flags
& MSG_PEEK
) &&
1940 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1941 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1943 task_pid_nr(current
));
1944 peek_seq
= tp
->copied_seq
;
1949 /* Ok so how much can we use? */
1950 used
= skb
->len
- offset
;
1954 /* Do we have urgent data here? */
1956 u32 urg_offset
= tp
->urg_seq
- *seq
;
1957 if (urg_offset
< used
) {
1959 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1972 if (!(flags
& MSG_TRUNC
)) {
1973 err
= skb_copy_datagram_msg(skb
, offset
, msg
, used
);
1975 /* Exception. Bailout! */
1986 tcp_rcv_space_adjust(sk
);
1989 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1991 tcp_fast_path_check(sk
);
1993 if (used
+ offset
< skb
->len
)
1996 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
1997 tcp_update_recv_tstamps(skb
, &tss
);
2000 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2002 if (!(flags
& MSG_PEEK
))
2003 sk_eat_skb(sk
, skb
);
2007 /* Process the FIN. */
2009 if (!(flags
& MSG_PEEK
))
2010 sk_eat_skb(sk
, skb
);
2014 /* According to UNIX98, msg_name/msg_namelen are ignored
2015 * on connected socket. I was just happy when found this 8) --ANK
2019 tcp_recv_timestamp(msg
, sk
, &tss
);
2021 /* Clean up data we have read: This will do ACK frames. */
2022 tcp_cleanup_rbuf(sk
, copied
);
2032 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2036 err
= tcp_peek_sndq(sk
, msg
, len
);
2039 EXPORT_SYMBOL(tcp_recvmsg
);
2041 void tcp_set_state(struct sock
*sk
, int state
)
2043 int oldstate
= sk
->sk_state
;
2045 /* We defined a new enum for TCP states that are exported in BPF
2046 * so as not force the internal TCP states to be frozen. The
2047 * following checks will detect if an internal state value ever
2048 * differs from the BPF value. If this ever happens, then we will
2049 * need to remap the internal value to the BPF value before calling
2050 * tcp_call_bpf_2arg.
2052 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED
!= (int)TCP_ESTABLISHED
);
2053 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT
!= (int)TCP_SYN_SENT
);
2054 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV
!= (int)TCP_SYN_RECV
);
2055 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1
!= (int)TCP_FIN_WAIT1
);
2056 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2
!= (int)TCP_FIN_WAIT2
);
2057 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT
!= (int)TCP_TIME_WAIT
);
2058 BUILD_BUG_ON((int)BPF_TCP_CLOSE
!= (int)TCP_CLOSE
);
2059 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT
!= (int)TCP_CLOSE_WAIT
);
2060 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK
!= (int)TCP_LAST_ACK
);
2061 BUILD_BUG_ON((int)BPF_TCP_LISTEN
!= (int)TCP_LISTEN
);
2062 BUILD_BUG_ON((int)BPF_TCP_CLOSING
!= (int)TCP_CLOSING
);
2063 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV
!= (int)TCP_NEW_SYN_RECV
);
2064 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES
!= (int)TCP_MAX_STATES
);
2066 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
), BPF_SOCK_OPS_STATE_CB_FLAG
))
2067 tcp_call_bpf_2arg(sk
, BPF_SOCK_OPS_STATE_CB
, oldstate
, state
);
2070 case TCP_ESTABLISHED
:
2071 if (oldstate
!= TCP_ESTABLISHED
)
2072 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2076 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2077 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2079 sk
->sk_prot
->unhash(sk
);
2080 if (inet_csk(sk
)->icsk_bind_hash
&&
2081 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2085 if (oldstate
== TCP_ESTABLISHED
)
2086 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2089 /* Change state AFTER socket is unhashed to avoid closed
2090 * socket sitting in hash tables.
2092 inet_sk_state_store(sk
, state
);
2095 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
2098 EXPORT_SYMBOL_GPL(tcp_set_state
);
2101 * State processing on a close. This implements the state shift for
2102 * sending our FIN frame. Note that we only send a FIN for some
2103 * states. A shutdown() may have already sent the FIN, or we may be
2107 static const unsigned char new_state
[16] = {
2108 /* current state: new state: action: */
2109 [0 /* (Invalid) */] = TCP_CLOSE
,
2110 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2111 [TCP_SYN_SENT
] = TCP_CLOSE
,
2112 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2113 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
2114 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
2115 [TCP_TIME_WAIT
] = TCP_CLOSE
,
2116 [TCP_CLOSE
] = TCP_CLOSE
,
2117 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
2118 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
2119 [TCP_LISTEN
] = TCP_CLOSE
,
2120 [TCP_CLOSING
] = TCP_CLOSING
,
2121 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
2124 static int tcp_close_state(struct sock
*sk
)
2126 int next
= (int)new_state
[sk
->sk_state
];
2127 int ns
= next
& TCP_STATE_MASK
;
2129 tcp_set_state(sk
, ns
);
2131 return next
& TCP_ACTION_FIN
;
2135 * Shutdown the sending side of a connection. Much like close except
2136 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2139 void tcp_shutdown(struct sock
*sk
, int how
)
2141 /* We need to grab some memory, and put together a FIN,
2142 * and then put it into the queue to be sent.
2143 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2145 if (!(how
& SEND_SHUTDOWN
))
2148 /* If we've already sent a FIN, or it's a closed state, skip this. */
2149 if ((1 << sk
->sk_state
) &
2150 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2151 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2152 /* Clear out any half completed packets. FIN if needed. */
2153 if (tcp_close_state(sk
))
2157 EXPORT_SYMBOL(tcp_shutdown
);
2159 bool tcp_check_oom(struct sock
*sk
, int shift
)
2161 bool too_many_orphans
, out_of_socket_memory
;
2163 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2164 out_of_socket_memory
= tcp_out_of_memory(sk
);
2166 if (too_many_orphans
)
2167 net_info_ratelimited("too many orphaned sockets\n");
2168 if (out_of_socket_memory
)
2169 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2170 return too_many_orphans
|| out_of_socket_memory
;
2173 void tcp_close(struct sock
*sk
, long timeout
)
2175 struct sk_buff
*skb
;
2176 int data_was_unread
= 0;
2180 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2182 if (sk
->sk_state
== TCP_LISTEN
) {
2183 tcp_set_state(sk
, TCP_CLOSE
);
2186 inet_csk_listen_stop(sk
);
2188 goto adjudge_to_death
;
2191 /* We need to flush the recv. buffs. We do this only on the
2192 * descriptor close, not protocol-sourced closes, because the
2193 * reader process may not have drained the data yet!
2195 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2196 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
2198 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2200 data_was_unread
+= len
;
2206 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2207 if (sk
->sk_state
== TCP_CLOSE
)
2208 goto adjudge_to_death
;
2210 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2211 * data was lost. To witness the awful effects of the old behavior of
2212 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2213 * GET in an FTP client, suspend the process, wait for the client to
2214 * advertise a zero window, then kill -9 the FTP client, wheee...
2215 * Note: timeout is always zero in such a case.
2217 if (unlikely(tcp_sk(sk
)->repair
)) {
2218 sk
->sk_prot
->disconnect(sk
, 0);
2219 } else if (data_was_unread
) {
2220 /* Unread data was tossed, zap the connection. */
2221 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2222 tcp_set_state(sk
, TCP_CLOSE
);
2223 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2224 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2225 /* Check zero linger _after_ checking for unread data. */
2226 sk
->sk_prot
->disconnect(sk
, 0);
2227 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2228 } else if (tcp_close_state(sk
)) {
2229 /* We FIN if the application ate all the data before
2230 * zapping the connection.
2233 /* RED-PEN. Formally speaking, we have broken TCP state
2234 * machine. State transitions:
2236 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2237 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2238 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2240 * are legal only when FIN has been sent (i.e. in window),
2241 * rather than queued out of window. Purists blame.
2243 * F.e. "RFC state" is ESTABLISHED,
2244 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2246 * The visible declinations are that sometimes
2247 * we enter time-wait state, when it is not required really
2248 * (harmless), do not send active resets, when they are
2249 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2250 * they look as CLOSING or LAST_ACK for Linux)
2251 * Probably, I missed some more holelets.
2253 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2254 * in a single packet! (May consider it later but will
2255 * probably need API support or TCP_CORK SYN-ACK until
2256 * data is written and socket is closed.)
2261 sk_stream_wait_close(sk
, timeout
);
2264 state
= sk
->sk_state
;
2268 /* It is the last release_sock in its life. It will remove backlog. */
2272 /* Now socket is owned by kernel and we acquire BH lock
2273 * to finish close. No need to check for user refs.
2277 WARN_ON(sock_owned_by_user(sk
));
2279 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2281 /* Have we already been destroyed by a softirq or backlog? */
2282 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2285 /* This is a (useful) BSD violating of the RFC. There is a
2286 * problem with TCP as specified in that the other end could
2287 * keep a socket open forever with no application left this end.
2288 * We use a 1 minute timeout (about the same as BSD) then kill
2289 * our end. If they send after that then tough - BUT: long enough
2290 * that we won't make the old 4*rto = almost no time - whoops
2293 * Nope, it was not mistake. It is really desired behaviour
2294 * f.e. on http servers, when such sockets are useless, but
2295 * consume significant resources. Let's do it with special
2296 * linger2 option. --ANK
2299 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2300 struct tcp_sock
*tp
= tcp_sk(sk
);
2301 if (tp
->linger2
< 0) {
2302 tcp_set_state(sk
, TCP_CLOSE
);
2303 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2304 __NET_INC_STATS(sock_net(sk
),
2305 LINUX_MIB_TCPABORTONLINGER
);
2307 const int tmo
= tcp_fin_time(sk
);
2309 if (tmo
> TCP_TIMEWAIT_LEN
) {
2310 inet_csk_reset_keepalive_timer(sk
,
2311 tmo
- TCP_TIMEWAIT_LEN
);
2313 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2318 if (sk
->sk_state
!= TCP_CLOSE
) {
2320 if (tcp_check_oom(sk
, 0)) {
2321 tcp_set_state(sk
, TCP_CLOSE
);
2322 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2323 __NET_INC_STATS(sock_net(sk
),
2324 LINUX_MIB_TCPABORTONMEMORY
);
2325 } else if (!check_net(sock_net(sk
))) {
2326 /* Not possible to send reset; just close */
2327 tcp_set_state(sk
, TCP_CLOSE
);
2331 if (sk
->sk_state
== TCP_CLOSE
) {
2332 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2333 /* We could get here with a non-NULL req if the socket is
2334 * aborted (e.g., closed with unread data) before 3WHS
2338 reqsk_fastopen_remove(sk
, req
, false);
2339 inet_csk_destroy_sock(sk
);
2341 /* Otherwise, socket is reprieved until protocol close. */
2348 EXPORT_SYMBOL(tcp_close
);
2350 /* These states need RST on ABORT according to RFC793 */
2352 static inline bool tcp_need_reset(int state
)
2354 return (1 << state
) &
2355 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2356 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2359 static void tcp_rtx_queue_purge(struct sock
*sk
)
2361 struct rb_node
*p
= rb_first(&sk
->tcp_rtx_queue
);
2364 struct sk_buff
*skb
= rb_to_skb(p
);
2367 /* Since we are deleting whole queue, no need to
2368 * list_del(&skb->tcp_tsorted_anchor)
2370 tcp_rtx_queue_unlink(skb
, sk
);
2371 sk_wmem_free_skb(sk
, skb
);
2375 void tcp_write_queue_purge(struct sock
*sk
)
2377 struct sk_buff
*skb
;
2379 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
2380 while ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
2381 tcp_skb_tsorted_anchor_cleanup(skb
);
2382 sk_wmem_free_skb(sk
, skb
);
2384 tcp_rtx_queue_purge(sk
);
2385 INIT_LIST_HEAD(&tcp_sk(sk
)->tsorted_sent_queue
);
2387 tcp_clear_all_retrans_hints(tcp_sk(sk
));
2390 int tcp_disconnect(struct sock
*sk
, int flags
)
2392 struct inet_sock
*inet
= inet_sk(sk
);
2393 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2394 struct tcp_sock
*tp
= tcp_sk(sk
);
2396 int old_state
= sk
->sk_state
;
2398 if (old_state
!= TCP_CLOSE
)
2399 tcp_set_state(sk
, TCP_CLOSE
);
2401 /* ABORT function of RFC793 */
2402 if (old_state
== TCP_LISTEN
) {
2403 inet_csk_listen_stop(sk
);
2404 } else if (unlikely(tp
->repair
)) {
2405 sk
->sk_err
= ECONNABORTED
;
2406 } else if (tcp_need_reset(old_state
) ||
2407 (tp
->snd_nxt
!= tp
->write_seq
&&
2408 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2409 /* The last check adjusts for discrepancy of Linux wrt. RFC
2412 tcp_send_active_reset(sk
, gfp_any());
2413 sk
->sk_err
= ECONNRESET
;
2414 } else if (old_state
== TCP_SYN_SENT
)
2415 sk
->sk_err
= ECONNRESET
;
2417 tcp_clear_xmit_timers(sk
);
2418 __skb_queue_purge(&sk
->sk_receive_queue
);
2419 tcp_write_queue_purge(sk
);
2420 tcp_fastopen_active_disable_ofo_check(sk
);
2421 skb_rbtree_purge(&tp
->out_of_order_queue
);
2423 inet
->inet_dport
= 0;
2425 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2426 inet_reset_saddr(sk
);
2428 sk
->sk_shutdown
= 0;
2429 sock_reset_flag(sk
, SOCK_DONE
);
2431 tp
->write_seq
+= tp
->max_window
+ 2;
2432 if (tp
->write_seq
== 0)
2434 icsk
->icsk_backoff
= 0;
2436 icsk
->icsk_probes_out
= 0;
2437 tp
->packets_out
= 0;
2438 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2439 tp
->snd_cwnd_cnt
= 0;
2440 tp
->window_clamp
= 0;
2441 tcp_set_ca_state(sk
, TCP_CA_Open
);
2442 tp
->is_sack_reneg
= 0;
2443 tcp_clear_retrans(tp
);
2444 inet_csk_delack_init(sk
);
2445 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2446 * issue in __tcp_select_window()
2448 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
2449 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2451 dst_release(sk
->sk_rx_dst
);
2452 sk
->sk_rx_dst
= NULL
;
2453 tcp_saved_syn_free(tp
);
2455 /* Clean up fastopen related fields */
2456 tcp_free_fastopen_req(tp
);
2457 inet
->defer_connect
= 0;
2459 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2461 if (sk
->sk_frag
.page
) {
2462 put_page(sk
->sk_frag
.page
);
2463 sk
->sk_frag
.page
= NULL
;
2464 sk
->sk_frag
.offset
= 0;
2467 sk
->sk_error_report(sk
);
2470 EXPORT_SYMBOL(tcp_disconnect
);
2472 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2474 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2475 (sk
->sk_state
!= TCP_LISTEN
);
2478 static int tcp_repair_set_window(struct tcp_sock
*tp
, char __user
*optbuf
, int len
)
2480 struct tcp_repair_window opt
;
2485 if (len
!= sizeof(opt
))
2488 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2491 if (opt
.max_window
< opt
.snd_wnd
)
2494 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
2497 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
2500 tp
->snd_wl1
= opt
.snd_wl1
;
2501 tp
->snd_wnd
= opt
.snd_wnd
;
2502 tp
->max_window
= opt
.max_window
;
2504 tp
->rcv_wnd
= opt
.rcv_wnd
;
2505 tp
->rcv_wup
= opt
.rcv_wup
;
2510 static int tcp_repair_options_est(struct sock
*sk
,
2511 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2513 struct tcp_sock
*tp
= tcp_sk(sk
);
2514 struct tcp_repair_opt opt
;
2516 while (len
>= sizeof(opt
)) {
2517 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2523 switch (opt
.opt_code
) {
2525 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2530 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2531 u16 rcv_wscale
= opt
.opt_val
>> 16;
2533 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
2536 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2537 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2538 tp
->rx_opt
.wscale_ok
= 1;
2541 case TCPOPT_SACK_PERM
:
2542 if (opt
.opt_val
!= 0)
2545 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2547 case TCPOPT_TIMESTAMP
:
2548 if (opt
.opt_val
!= 0)
2551 tp
->rx_opt
.tstamp_ok
= 1;
2560 * Socket option code for TCP.
2562 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2563 int optname
, char __user
*optval
, unsigned int optlen
)
2565 struct tcp_sock
*tp
= tcp_sk(sk
);
2566 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2567 struct net
*net
= sock_net(sk
);
2571 /* These are data/string values, all the others are ints */
2573 case TCP_CONGESTION
: {
2574 char name
[TCP_CA_NAME_MAX
];
2579 val
= strncpy_from_user(name
, optval
,
2580 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2586 err
= tcp_set_congestion_control(sk
, name
, true, true);
2591 char name
[TCP_ULP_NAME_MAX
];
2596 val
= strncpy_from_user(name
, optval
,
2597 min_t(long, TCP_ULP_NAME_MAX
- 1,
2604 err
= tcp_set_ulp(sk
, name
);
2608 case TCP_FASTOPEN_KEY
: {
2609 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
2611 if (optlen
!= sizeof(key
))
2614 if (copy_from_user(key
, optval
, optlen
))
2617 return tcp_fastopen_reset_cipher(net
, sk
, key
, sizeof(key
));
2624 if (optlen
< sizeof(int))
2627 if (get_user(val
, (int __user
*)optval
))
2634 /* Values greater than interface MTU won't take effect. However
2635 * at the point when this call is done we typically don't yet
2636 * know which interface is going to be used
2638 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
2642 tp
->rx_opt
.user_mss
= val
;
2647 /* TCP_NODELAY is weaker than TCP_CORK, so that
2648 * this option on corked socket is remembered, but
2649 * it is not activated until cork is cleared.
2651 * However, when TCP_NODELAY is set we make
2652 * an explicit push, which overrides even TCP_CORK
2653 * for currently queued segments.
2655 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2656 tcp_push_pending_frames(sk
);
2658 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2662 case TCP_THIN_LINEAR_TIMEOUTS
:
2663 if (val
< 0 || val
> 1)
2669 case TCP_THIN_DUPACK
:
2670 if (val
< 0 || val
> 1)
2675 if (!tcp_can_repair_sock(sk
))
2677 else if (val
== 1) {
2679 sk
->sk_reuse
= SK_FORCE_REUSE
;
2680 tp
->repair_queue
= TCP_NO_QUEUE
;
2681 } else if (val
== 0) {
2683 sk
->sk_reuse
= SK_NO_REUSE
;
2684 tcp_send_window_probe(sk
);
2690 case TCP_REPAIR_QUEUE
:
2693 else if (val
< TCP_QUEUES_NR
)
2694 tp
->repair_queue
= val
;
2700 if (sk
->sk_state
!= TCP_CLOSE
)
2702 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2703 tp
->write_seq
= val
;
2704 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2710 case TCP_REPAIR_OPTIONS
:
2713 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2714 err
= tcp_repair_options_est(sk
,
2715 (struct tcp_repair_opt __user
*)optval
,
2722 /* When set indicates to always queue non-full frames.
2723 * Later the user clears this option and we transmit
2724 * any pending partial frames in the queue. This is
2725 * meant to be used alongside sendfile() to get properly
2726 * filled frames when the user (for example) must write
2727 * out headers with a write() call first and then use
2728 * sendfile to send out the data parts.
2730 * TCP_CORK can be set together with TCP_NODELAY and it is
2731 * stronger than TCP_NODELAY.
2734 tp
->nonagle
|= TCP_NAGLE_CORK
;
2736 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2737 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2738 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2739 tcp_push_pending_frames(sk
);
2744 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2747 tp
->keepalive_time
= val
* HZ
;
2748 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2749 !((1 << sk
->sk_state
) &
2750 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2751 u32 elapsed
= keepalive_time_elapsed(tp
);
2752 if (tp
->keepalive_time
> elapsed
)
2753 elapsed
= tp
->keepalive_time
- elapsed
;
2756 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2761 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2764 tp
->keepalive_intvl
= val
* HZ
;
2767 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2770 tp
->keepalive_probes
= val
;
2773 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2776 icsk
->icsk_syn_retries
= val
;
2780 if (val
< 0 || val
> 1)
2789 else if (val
> net
->ipv4
.sysctl_tcp_fin_timeout
/ HZ
)
2792 tp
->linger2
= val
* HZ
;
2795 case TCP_DEFER_ACCEPT
:
2796 /* Translate value in seconds to number of retransmits */
2797 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2798 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2802 case TCP_WINDOW_CLAMP
:
2804 if (sk
->sk_state
!= TCP_CLOSE
) {
2808 tp
->window_clamp
= 0;
2810 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2811 SOCK_MIN_RCVBUF
/ 2 : val
;
2816 icsk
->icsk_ack
.pingpong
= 1;
2818 icsk
->icsk_ack
.pingpong
= 0;
2819 if ((1 << sk
->sk_state
) &
2820 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2821 inet_csk_ack_scheduled(sk
)) {
2822 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2823 tcp_cleanup_rbuf(sk
, 1);
2825 icsk
->icsk_ack
.pingpong
= 1;
2830 #ifdef CONFIG_TCP_MD5SIG
2832 case TCP_MD5SIG_EXT
:
2833 /* Read the IP->Key mappings from userspace */
2834 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
2837 case TCP_USER_TIMEOUT
:
2838 /* Cap the max time in ms TCP will retry or probe the window
2839 * before giving up and aborting (ETIMEDOUT) a connection.
2844 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
2848 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
2850 tcp_fastopen_init_key_once(net
);
2852 fastopen_queue_tune(sk
, val
);
2857 case TCP_FASTOPEN_CONNECT
:
2858 if (val
> 1 || val
< 0) {
2860 } else if (net
->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) {
2861 if (sk
->sk_state
== TCP_CLOSE
)
2862 tp
->fastopen_connect
= val
;
2869 case TCP_FASTOPEN_NO_COOKIE
:
2870 if (val
> 1 || val
< 0)
2872 else if (!((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
2875 tp
->fastopen_no_cookie
= val
;
2881 tp
->tsoffset
= val
- tcp_time_stamp_raw();
2883 case TCP_REPAIR_WINDOW
:
2884 err
= tcp_repair_set_window(tp
, optval
, optlen
);
2886 case TCP_NOTSENT_LOWAT
:
2887 tp
->notsent_lowat
= val
;
2888 sk
->sk_write_space(sk
);
2899 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2900 unsigned int optlen
)
2902 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2904 if (level
!= SOL_TCP
)
2905 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2907 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2909 EXPORT_SYMBOL(tcp_setsockopt
);
2911 #ifdef CONFIG_COMPAT
2912 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2913 char __user
*optval
, unsigned int optlen
)
2915 if (level
!= SOL_TCP
)
2916 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2918 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2920 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2923 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
2924 struct tcp_info
*info
)
2926 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
2929 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
2930 stats
[i
] = tp
->chrono_stat
[i
- 1];
2931 if (i
== tp
->chrono_type
)
2932 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
2933 stats
[i
] *= USEC_PER_SEC
/ HZ
;
2937 info
->tcpi_busy_time
= total
;
2938 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
2939 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
2942 /* Return information about state of tcp endpoint in API format. */
2943 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
2945 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
2946 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2952 memset(info
, 0, sizeof(*info
));
2953 if (sk
->sk_type
!= SOCK_STREAM
)
2956 info
->tcpi_state
= inet_sk_state_load(sk
);
2958 /* Report meaningful fields for all TCP states, including listeners */
2959 rate
= READ_ONCE(sk
->sk_pacing_rate
);
2960 rate64
= rate
!= ~0U ? rate
: ~0ULL;
2961 info
->tcpi_pacing_rate
= rate64
;
2963 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
2964 rate64
= rate
!= ~0U ? rate
: ~0ULL;
2965 info
->tcpi_max_pacing_rate
= rate64
;
2967 info
->tcpi_reordering
= tp
->reordering
;
2968 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2970 if (info
->tcpi_state
== TCP_LISTEN
) {
2971 /* listeners aliased fields :
2972 * tcpi_unacked -> Number of children ready for accept()
2973 * tcpi_sacked -> max backlog
2975 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2976 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2980 slow
= lock_sock_fast(sk
);
2982 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2983 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2984 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2985 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2987 if (tp
->rx_opt
.tstamp_ok
)
2988 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2989 if (tcp_is_sack(tp
))
2990 info
->tcpi_options
|= TCPI_OPT_SACK
;
2991 if (tp
->rx_opt
.wscale_ok
) {
2992 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2993 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2994 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2997 if (tp
->ecn_flags
& TCP_ECN_OK
)
2998 info
->tcpi_options
|= TCPI_OPT_ECN
;
2999 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
3000 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
3001 if (tp
->syn_data_acked
)
3002 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
3004 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
3005 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
3006 info
->tcpi_snd_mss
= tp
->mss_cache
;
3007 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
3009 info
->tcpi_unacked
= tp
->packets_out
;
3010 info
->tcpi_sacked
= tp
->sacked_out
;
3012 info
->tcpi_lost
= tp
->lost_out
;
3013 info
->tcpi_retrans
= tp
->retrans_out
;
3015 now
= tcp_jiffies32
;
3016 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
3017 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
3018 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
3020 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
3021 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
3022 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
3023 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
3024 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
3025 info
->tcpi_advmss
= tp
->advmss
;
3027 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
3028 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
3030 info
->tcpi_total_retrans
= tp
->total_retrans
;
3032 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
3033 info
->tcpi_bytes_received
= tp
->bytes_received
;
3034 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
3035 tcp_get_info_chrono_stats(tp
, info
);
3037 info
->tcpi_segs_out
= tp
->segs_out
;
3038 info
->tcpi_segs_in
= tp
->segs_in
;
3040 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
3041 info
->tcpi_data_segs_in
= tp
->data_segs_in
;
3042 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
3044 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
3045 rate64
= tcp_compute_delivery_rate(tp
);
3047 info
->tcpi_delivery_rate
= rate64
;
3048 unlock_sock_fast(sk
, slow
);
3050 EXPORT_SYMBOL_GPL(tcp_get_info
);
3052 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
)
3054 const struct tcp_sock
*tp
= tcp_sk(sk
);
3055 struct sk_buff
*stats
;
3056 struct tcp_info info
;
3060 stats
= alloc_skb(7 * nla_total_size_64bit(sizeof(u64
)) +
3061 3 * nla_total_size(sizeof(u32
)) +
3062 2 * nla_total_size(sizeof(u8
)), GFP_ATOMIC
);
3066 tcp_get_info_chrono_stats(tp
, &info
);
3067 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
3068 info
.tcpi_busy_time
, TCP_NLA_PAD
);
3069 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
3070 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
3071 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
3072 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
3073 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
3074 tp
->data_segs_out
, TCP_NLA_PAD
);
3075 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
3076 tp
->total_retrans
, TCP_NLA_PAD
);
3078 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3079 rate64
= rate
!= ~0U ? rate
: ~0ULL;
3080 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
3082 rate64
= tcp_compute_delivery_rate(tp
);
3083 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
3085 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tp
->snd_cwnd
);
3086 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
3087 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
3089 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
3090 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
3094 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
3095 int optname
, char __user
*optval
, int __user
*optlen
)
3097 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3098 struct tcp_sock
*tp
= tcp_sk(sk
);
3099 struct net
*net
= sock_net(sk
);
3102 if (get_user(len
, optlen
))
3105 len
= min_t(unsigned int, len
, sizeof(int));
3112 val
= tp
->mss_cache
;
3113 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3114 val
= tp
->rx_opt
.user_mss
;
3116 val
= tp
->rx_opt
.mss_clamp
;
3119 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
3122 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
3125 val
= keepalive_time_when(tp
) / HZ
;
3128 val
= keepalive_intvl_when(tp
) / HZ
;
3131 val
= keepalive_probes(tp
);
3134 val
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_syn_retries
;
3139 val
= (val
? : net
->ipv4
.sysctl_tcp_fin_timeout
) / HZ
;
3141 case TCP_DEFER_ACCEPT
:
3142 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3143 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
3145 case TCP_WINDOW_CLAMP
:
3146 val
= tp
->window_clamp
;
3149 struct tcp_info info
;
3151 if (get_user(len
, optlen
))
3154 tcp_get_info(sk
, &info
);
3156 len
= min_t(unsigned int, len
, sizeof(info
));
3157 if (put_user(len
, optlen
))
3159 if (copy_to_user(optval
, &info
, len
))
3164 const struct tcp_congestion_ops
*ca_ops
;
3165 union tcp_cc_info info
;
3169 if (get_user(len
, optlen
))
3172 ca_ops
= icsk
->icsk_ca_ops
;
3173 if (ca_ops
&& ca_ops
->get_info
)
3174 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
3176 len
= min_t(unsigned int, len
, sz
);
3177 if (put_user(len
, optlen
))
3179 if (copy_to_user(optval
, &info
, len
))
3184 val
= !icsk
->icsk_ack
.pingpong
;
3187 case TCP_CONGESTION
:
3188 if (get_user(len
, optlen
))
3190 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
3191 if (put_user(len
, optlen
))
3193 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
3198 if (get_user(len
, optlen
))
3200 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
3201 if (!icsk
->icsk_ulp_ops
) {
3202 if (put_user(0, optlen
))
3206 if (put_user(len
, optlen
))
3208 if (copy_to_user(optval
, icsk
->icsk_ulp_ops
->name
, len
))
3212 case TCP_FASTOPEN_KEY
: {
3213 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
3214 struct tcp_fastopen_context
*ctx
;
3216 if (get_user(len
, optlen
))
3220 ctx
= rcu_dereference(icsk
->icsk_accept_queue
.fastopenq
.ctx
);
3222 memcpy(key
, ctx
->key
, sizeof(key
));
3227 len
= min_t(unsigned int, len
, sizeof(key
));
3228 if (put_user(len
, optlen
))
3230 if (copy_to_user(optval
, key
, len
))
3234 case TCP_THIN_LINEAR_TIMEOUTS
:
3238 case TCP_THIN_DUPACK
:
3246 case TCP_REPAIR_QUEUE
:
3248 val
= tp
->repair_queue
;
3253 case TCP_REPAIR_WINDOW
: {
3254 struct tcp_repair_window opt
;
3256 if (get_user(len
, optlen
))
3259 if (len
!= sizeof(opt
))
3265 opt
.snd_wl1
= tp
->snd_wl1
;
3266 opt
.snd_wnd
= tp
->snd_wnd
;
3267 opt
.max_window
= tp
->max_window
;
3268 opt
.rcv_wnd
= tp
->rcv_wnd
;
3269 opt
.rcv_wup
= tp
->rcv_wup
;
3271 if (copy_to_user(optval
, &opt
, len
))
3276 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
3277 val
= tp
->write_seq
;
3278 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
3284 case TCP_USER_TIMEOUT
:
3285 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
3289 val
= icsk
->icsk_accept_queue
.fastopenq
.max_qlen
;
3292 case TCP_FASTOPEN_CONNECT
:
3293 val
= tp
->fastopen_connect
;
3296 case TCP_FASTOPEN_NO_COOKIE
:
3297 val
= tp
->fastopen_no_cookie
;
3301 val
= tcp_time_stamp_raw() + tp
->tsoffset
;
3303 case TCP_NOTSENT_LOWAT
:
3304 val
= tp
->notsent_lowat
;
3309 case TCP_SAVED_SYN
: {
3310 if (get_user(len
, optlen
))
3314 if (tp
->saved_syn
) {
3315 if (len
< tp
->saved_syn
[0]) {
3316 if (put_user(tp
->saved_syn
[0], optlen
)) {
3323 len
= tp
->saved_syn
[0];
3324 if (put_user(len
, optlen
)) {
3328 if (copy_to_user(optval
, tp
->saved_syn
+ 1, len
)) {
3332 tcp_saved_syn_free(tp
);
3337 if (put_user(len
, optlen
))
3343 return -ENOPROTOOPT
;
3346 if (put_user(len
, optlen
))
3348 if (copy_to_user(optval
, &val
, len
))
3353 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3356 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3358 if (level
!= SOL_TCP
)
3359 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
3361 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3363 EXPORT_SYMBOL(tcp_getsockopt
);
3365 #ifdef CONFIG_COMPAT
3366 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
3367 char __user
*optval
, int __user
*optlen
)
3369 if (level
!= SOL_TCP
)
3370 return inet_csk_compat_getsockopt(sk
, level
, optname
,
3372 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3374 EXPORT_SYMBOL(compat_tcp_getsockopt
);
3377 #ifdef CONFIG_TCP_MD5SIG
3378 static DEFINE_PER_CPU(struct tcp_md5sig_pool
, tcp_md5sig_pool
);
3379 static DEFINE_MUTEX(tcp_md5sig_mutex
);
3380 static bool tcp_md5sig_pool_populated
= false;
3382 static void __tcp_alloc_md5sig_pool(void)
3384 struct crypto_ahash
*hash
;
3387 hash
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
3391 for_each_possible_cpu(cpu
) {
3392 void *scratch
= per_cpu(tcp_md5sig_pool
, cpu
).scratch
;
3393 struct ahash_request
*req
;
3396 scratch
= kmalloc_node(sizeof(union tcp_md5sum_block
) +
3397 sizeof(struct tcphdr
),
3402 per_cpu(tcp_md5sig_pool
, cpu
).scratch
= scratch
;
3404 if (per_cpu(tcp_md5sig_pool
, cpu
).md5_req
)
3407 req
= ahash_request_alloc(hash
, GFP_KERNEL
);
3411 ahash_request_set_callback(req
, 0, NULL
, NULL
);
3413 per_cpu(tcp_md5sig_pool
, cpu
).md5_req
= req
;
3415 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3416 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3419 tcp_md5sig_pool_populated
= true;
3422 bool tcp_alloc_md5sig_pool(void)
3424 if (unlikely(!tcp_md5sig_pool_populated
)) {
3425 mutex_lock(&tcp_md5sig_mutex
);
3427 if (!tcp_md5sig_pool_populated
)
3428 __tcp_alloc_md5sig_pool();
3430 mutex_unlock(&tcp_md5sig_mutex
);
3432 return tcp_md5sig_pool_populated
;
3434 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3438 * tcp_get_md5sig_pool - get md5sig_pool for this user
3440 * We use percpu structure, so if we succeed, we exit with preemption
3441 * and BH disabled, to make sure another thread or softirq handling
3442 * wont try to get same context.
3444 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3448 if (tcp_md5sig_pool_populated
) {
3449 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3451 return this_cpu_ptr(&tcp_md5sig_pool
);
3456 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3458 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3459 const struct sk_buff
*skb
, unsigned int header_len
)
3461 struct scatterlist sg
;
3462 const struct tcphdr
*tp
= tcp_hdr(skb
);
3463 struct ahash_request
*req
= hp
->md5_req
;
3465 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3466 skb_headlen(skb
) - header_len
: 0;
3467 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3468 struct sk_buff
*frag_iter
;
3470 sg_init_table(&sg
, 1);
3472 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3473 ahash_request_set_crypt(req
, &sg
, NULL
, head_data_len
);
3474 if (crypto_ahash_update(req
))
3477 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3478 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3479 unsigned int offset
= f
->page_offset
;
3480 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
3482 sg_set_page(&sg
, page
, skb_frag_size(f
),
3483 offset_in_page(offset
));
3484 ahash_request_set_crypt(req
, &sg
, NULL
, skb_frag_size(f
));
3485 if (crypto_ahash_update(req
))
3489 skb_walk_frags(skb
, frag_iter
)
3490 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3495 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3497 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3499 struct scatterlist sg
;
3501 sg_init_one(&sg
, key
->key
, key
->keylen
);
3502 ahash_request_set_crypt(hp
->md5_req
, &sg
, NULL
, key
->keylen
);
3503 return crypto_ahash_update(hp
->md5_req
);
3505 EXPORT_SYMBOL(tcp_md5_hash_key
);
3509 void tcp_done(struct sock
*sk
)
3511 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3513 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3514 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3516 tcp_set_state(sk
, TCP_CLOSE
);
3517 tcp_clear_xmit_timers(sk
);
3519 reqsk_fastopen_remove(sk
, req
, false);
3521 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3523 if (!sock_flag(sk
, SOCK_DEAD
))
3524 sk
->sk_state_change(sk
);
3526 inet_csk_destroy_sock(sk
);
3528 EXPORT_SYMBOL_GPL(tcp_done
);
3530 int tcp_abort(struct sock
*sk
, int err
)
3532 if (!sk_fullsock(sk
)) {
3533 if (sk
->sk_state
== TCP_NEW_SYN_RECV
) {
3534 struct request_sock
*req
= inet_reqsk(sk
);
3537 inet_csk_reqsk_queue_drop_and_put(req
->rsk_listener
,
3545 /* Don't race with userspace socket closes such as tcp_close. */
3548 if (sk
->sk_state
== TCP_LISTEN
) {
3549 tcp_set_state(sk
, TCP_CLOSE
);
3550 inet_csk_listen_stop(sk
);
3553 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3557 if (!sock_flag(sk
, SOCK_DEAD
)) {
3559 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3561 sk
->sk_error_report(sk
);
3562 if (tcp_need_reset(sk
->sk_state
))
3563 tcp_send_active_reset(sk
, GFP_ATOMIC
);
3572 EXPORT_SYMBOL_GPL(tcp_abort
);
3574 extern struct tcp_congestion_ops tcp_reno
;
3576 static __initdata
unsigned long thash_entries
;
3577 static int __init
set_thash_entries(char *str
)
3584 ret
= kstrtoul(str
, 0, &thash_entries
);
3590 __setup("thash_entries=", set_thash_entries
);
3592 static void __init
tcp_init_mem(void)
3594 unsigned long limit
= nr_free_buffer_pages() / 16;
3596 limit
= max(limit
, 128UL);
3597 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
3598 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
3599 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
3602 void __init
tcp_init(void)
3604 int max_rshare
, max_wshare
, cnt
;
3605 unsigned long limit
;
3608 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
3609 FIELD_SIZEOF(struct sk_buff
, cb
));
3611 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
3612 percpu_counter_init(&tcp_orphan_count
, 0, GFP_KERNEL
);
3613 inet_hashinfo_init(&tcp_hashinfo
);
3614 inet_hashinfo2_init(&tcp_hashinfo
, "tcp_listen_portaddr_hash",
3615 thash_entries
, 21, /* one slot per 2 MB*/
3617 tcp_hashinfo
.bind_bucket_cachep
=
3618 kmem_cache_create("tcp_bind_bucket",
3619 sizeof(struct inet_bind_bucket
), 0,
3620 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3622 /* Size and allocate the main established and bind bucket
3625 * The methodology is similar to that of the buffer cache.
3627 tcp_hashinfo
.ehash
=
3628 alloc_large_system_hash("TCP established",
3629 sizeof(struct inet_ehash_bucket
),
3631 17, /* one slot per 128 KB of memory */
3634 &tcp_hashinfo
.ehash_mask
,
3636 thash_entries
? 0 : 512 * 1024);
3637 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
3638 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3640 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3641 panic("TCP: failed to alloc ehash_locks");
3642 tcp_hashinfo
.bhash
=
3643 alloc_large_system_hash("TCP bind",
3644 sizeof(struct inet_bind_hashbucket
),
3645 tcp_hashinfo
.ehash_mask
+ 1,
3646 17, /* one slot per 128 KB of memory */
3648 &tcp_hashinfo
.bhash_size
,
3652 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3653 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3654 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3655 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3659 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3660 sysctl_tcp_max_orphans
= cnt
/ 2;
3663 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3664 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3665 max_wshare
= min(4UL*1024*1024, limit
);
3666 max_rshare
= min(6UL*1024*1024, limit
);
3668 init_net
.ipv4
.sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3669 init_net
.ipv4
.sysctl_tcp_wmem
[1] = 16*1024;
3670 init_net
.ipv4
.sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3672 init_net
.ipv4
.sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3673 init_net
.ipv4
.sysctl_tcp_rmem
[1] = 87380;
3674 init_net
.ipv4
.sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3676 pr_info("Hash tables configured (established %u bind %u)\n",
3677 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3681 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);