2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
46 #include <trace/events/tcp.h>
48 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
49 int push_one
, gfp_t gfp
);
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
54 struct inet_connection_sock
*icsk
= inet_csk(sk
);
55 struct tcp_sock
*tp
= tcp_sk(sk
);
56 unsigned int prior_packets
= tp
->packets_out
;
58 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
60 __skb_unlink(skb
, &sk
->sk_write_queue
);
61 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, skb
);
63 tp
->packets_out
+= tcp_skb_pcount(skb
);
64 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
67 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72 * window scaling factor due to loss of precision.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
78 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
80 const struct tcp_sock
*tp
= tcp_sk(sk
);
82 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
83 (tp
->rx_opt
.wscale_ok
&&
84 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
87 return tcp_wnd_end(tp
);
90 /* Calculate mss to advertise in SYN segment.
91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
93 * 1. It is independent of path mtu.
94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96 * attached devices, because some buggy hosts are confused by
98 * 4. We do not make 3, we advertise MSS, calculated from first
99 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
100 * This may be overridden via information stored in routing table.
101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102 * probably even Jumbo".
104 static __u16
tcp_advertise_mss(struct sock
*sk
)
106 struct tcp_sock
*tp
= tcp_sk(sk
);
107 const struct dst_entry
*dst
= __sk_dst_get(sk
);
108 int mss
= tp
->advmss
;
111 unsigned int metric
= dst_metric_advmss(dst
);
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123 * This is the first part of cwnd validation mechanism.
125 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
127 struct tcp_sock
*tp
= tcp_sk(sk
);
128 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
129 u32 cwnd
= tp
->snd_cwnd
;
131 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
133 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
134 restart_cwnd
= min(restart_cwnd
, cwnd
);
136 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
138 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
139 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
140 tp
->snd_cwnd_used
= 0;
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock
*tp
,
147 struct inet_connection_sock
*icsk
= inet_csk(sk
);
148 const u32 now
= tcp_jiffies32
;
150 if (tcp_packets_in_flight(tp
) == 0)
151 tcp_ca_event(sk
, CA_EVENT_TX_START
);
155 /* If it is a reply for ato after last received
156 * packet, enter pingpong mode.
158 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
159 icsk
->icsk_ack
.pingpong
= 1;
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
165 tcp_dec_quickack_mode(sk
, pkts
);
166 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
170 u32
tcp_default_init_rwnd(u32 mss
)
172 /* Initial receive window should be twice of TCP_INIT_CWND to
173 * enable proper sending of new unsent data during fast recovery
174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
175 * limit when mss is larger than 1460.
177 u32 init_rwnd
= TCP_INIT_CWND
* 2;
180 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
191 void tcp_select_initial_window(const struct sock
*sk
, int __space
, __u32 mss
,
192 __u32
*rcv_wnd
, __u32
*window_clamp
,
193 int wscale_ok
, __u8
*rcv_wscale
,
196 unsigned int space
= (__space
< 0 ? 0 : __space
);
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp
== 0)
200 (*window_clamp
) = (U16_MAX
<< TCP_MAX_WSCALE
);
201 space
= min(*window_clamp
, space
);
203 /* Quantize space offering to a multiple of mss if possible. */
205 space
= rounddown(space
, mss
);
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
215 if (sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
216 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
222 /* Set window scaling on max possible window */
223 space
= max_t(u32
, space
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
224 space
= max_t(u32
, space
, sysctl_rmem_max
);
225 space
= min_t(u32
, space
, *window_clamp
);
226 while (space
> U16_MAX
&& (*rcv_wscale
) < TCP_MAX_WSCALE
) {
232 if (mss
> (1 << *rcv_wscale
)) {
233 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
234 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
235 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
238 /* Set the clamp no higher than max representable value */
239 (*window_clamp
) = min_t(__u32
, U16_MAX
<< (*rcv_wscale
), *window_clamp
);
241 EXPORT_SYMBOL(tcp_select_initial_window
);
243 /* Chose a new window to advertise, update state in tcp_sock for the
244 * socket, and return result with RFC1323 scaling applied. The return
245 * value can be stuffed directly into th->window for an outgoing
248 static u16
tcp_select_window(struct sock
*sk
)
250 struct tcp_sock
*tp
= tcp_sk(sk
);
251 u32 old_win
= tp
->rcv_wnd
;
252 u32 cur_win
= tcp_receive_window(tp
);
253 u32 new_win
= __tcp_select_window(sk
);
255 /* Never shrink the offered window */
256 if (new_win
< cur_win
) {
257 /* Danger Will Robinson!
258 * Don't update rcv_wup/rcv_wnd here or else
259 * we will not be able to advertise a zero
260 * window in time. --DaveM
262 * Relax Will Robinson.
265 NET_INC_STATS(sock_net(sk
),
266 LINUX_MIB_TCPWANTZEROWINDOWADV
);
267 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
269 tp
->rcv_wnd
= new_win
;
270 tp
->rcv_wup
= tp
->rcv_nxt
;
272 /* Make sure we do not exceed the maximum possible
275 if (!tp
->rx_opt
.rcv_wscale
&&
276 sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
277 new_win
= min(new_win
, MAX_TCP_WINDOW
);
279 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
281 /* RFC1323 scaling applied */
282 new_win
>>= tp
->rx_opt
.rcv_wscale
;
284 /* If we advertise zero window, disable fast path. */
288 NET_INC_STATS(sock_net(sk
),
289 LINUX_MIB_TCPTOZEROWINDOWADV
);
290 } else if (old_win
== 0) {
291 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
297 /* Packet ECN state for a SYN-ACK */
298 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
300 const struct tcp_sock
*tp
= tcp_sk(sk
);
302 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
303 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
304 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
305 else if (tcp_ca_needs_ecn(sk
) ||
306 tcp_bpf_ca_needs_ecn(sk
))
310 /* Packet ECN state for a SYN. */
311 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
313 struct tcp_sock
*tp
= tcp_sk(sk
);
314 bool bpf_needs_ecn
= tcp_bpf_ca_needs_ecn(sk
);
315 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
316 tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
;
319 const struct dst_entry
*dst
= __sk_dst_get(sk
);
321 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
328 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
329 tp
->ecn_flags
= TCP_ECN_OK
;
330 if (tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
)
335 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
337 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
338 /* tp->ecn_flags are cleared at a later point in time when
339 * SYN ACK is ultimatively being received.
341 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
345 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
347 if (inet_rsk(req
)->ecn_ok
)
351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
354 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
355 struct tcphdr
*th
, int tcp_header_len
)
357 struct tcp_sock
*tp
= tcp_sk(sk
);
359 if (tp
->ecn_flags
& TCP_ECN_OK
) {
360 /* Not-retransmitted data segment: set ECT and inject CWR. */
361 if (skb
->len
!= tcp_header_len
&&
362 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
364 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
365 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
367 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
369 } else if (!tcp_ca_needs_ecn(sk
)) {
370 /* ACK or retransmitted segment: clear ECT|CE */
371 INET_ECN_dontxmit(sk
);
373 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
378 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
379 * auto increment end seqno.
381 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
383 skb
->ip_summed
= CHECKSUM_PARTIAL
;
385 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
386 TCP_SKB_CB(skb
)->sacked
= 0;
388 tcp_skb_pcount_set(skb
, 1);
390 TCP_SKB_CB(skb
)->seq
= seq
;
391 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
393 TCP_SKB_CB(skb
)->end_seq
= seq
;
396 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
398 return tp
->snd_una
!= tp
->snd_up
;
401 #define OPTION_SACK_ADVERTISE (1 << 0)
402 #define OPTION_TS (1 << 1)
403 #define OPTION_MD5 (1 << 2)
404 #define OPTION_WSCALE (1 << 3)
405 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
406 #define OPTION_SMC (1 << 9)
408 static void smc_options_write(__be32
*ptr
, u16
*options
)
410 #if IS_ENABLED(CONFIG_SMC)
411 if (static_branch_unlikely(&tcp_have_smc
)) {
412 if (unlikely(OPTION_SMC
& *options
)) {
413 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
416 (TCPOLEN_EXP_SMC_BASE
));
417 *ptr
++ = htonl(TCPOPT_SMC_MAGIC
);
423 struct tcp_out_options
{
424 u16 options
; /* bit field of OPTION_* */
425 u16 mss
; /* 0 to disable */
426 u8 ws
; /* window scale, 0 to disable */
427 u8 num_sack_blocks
; /* number of SACK blocks to include */
428 u8 hash_size
; /* bytes in hash_location */
429 __u8
*hash_location
; /* temporary pointer, overloaded */
430 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
431 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
434 /* Write previously computed TCP options to the packet.
436 * Beware: Something in the Internet is very sensitive to the ordering of
437 * TCP options, we learned this through the hard way, so be careful here.
438 * Luckily we can at least blame others for their non-compliance but from
439 * inter-operability perspective it seems that we're somewhat stuck with
440 * the ordering which we have been using if we want to keep working with
441 * those broken things (not that it currently hurts anybody as there isn't
442 * particular reason why the ordering would need to be changed).
444 * At least SACK_PERM as the first option is known to lead to a disaster
445 * (but it may well be that other scenarios fail similarly).
447 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
448 struct tcp_out_options
*opts
)
450 u16 options
= opts
->options
; /* mungable copy */
452 if (unlikely(OPTION_MD5
& options
)) {
453 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
454 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
455 /* overload cookie hash location */
456 opts
->hash_location
= (__u8
*)ptr
;
460 if (unlikely(opts
->mss
)) {
461 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
462 (TCPOLEN_MSS
<< 16) |
466 if (likely(OPTION_TS
& options
)) {
467 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
468 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
469 (TCPOLEN_SACK_PERM
<< 16) |
470 (TCPOPT_TIMESTAMP
<< 8) |
472 options
&= ~OPTION_SACK_ADVERTISE
;
474 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
476 (TCPOPT_TIMESTAMP
<< 8) |
479 *ptr
++ = htonl(opts
->tsval
);
480 *ptr
++ = htonl(opts
->tsecr
);
483 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
484 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
486 (TCPOPT_SACK_PERM
<< 8) |
490 if (unlikely(OPTION_WSCALE
& options
)) {
491 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
492 (TCPOPT_WINDOW
<< 16) |
493 (TCPOLEN_WINDOW
<< 8) |
497 if (unlikely(opts
->num_sack_blocks
)) {
498 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
499 tp
->duplicate_sack
: tp
->selective_acks
;
502 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
505 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
506 TCPOLEN_SACK_PERBLOCK
)));
508 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
510 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
511 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
514 tp
->rx_opt
.dsack
= 0;
517 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
518 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
520 u32 len
; /* Fast Open option length */
523 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
524 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
525 TCPOPT_FASTOPEN_MAGIC
);
526 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
528 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
529 *p
++ = TCPOPT_FASTOPEN
;
533 memcpy(p
, foc
->val
, foc
->len
);
534 if ((len
& 3) == 2) {
535 p
[foc
->len
] = TCPOPT_NOP
;
536 p
[foc
->len
+ 1] = TCPOPT_NOP
;
538 ptr
+= (len
+ 3) >> 2;
541 smc_options_write(ptr
, &options
);
544 static void smc_set_option(const struct tcp_sock
*tp
,
545 struct tcp_out_options
*opts
,
546 unsigned int *remaining
)
548 #if IS_ENABLED(CONFIG_SMC)
549 if (static_branch_unlikely(&tcp_have_smc
)) {
551 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
552 opts
->options
|= OPTION_SMC
;
553 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
560 static void smc_set_option_cond(const struct tcp_sock
*tp
,
561 const struct inet_request_sock
*ireq
,
562 struct tcp_out_options
*opts
,
563 unsigned int *remaining
)
565 #if IS_ENABLED(CONFIG_SMC)
566 if (static_branch_unlikely(&tcp_have_smc
)) {
567 if (tp
->syn_smc
&& ireq
->smc_ok
) {
568 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
569 opts
->options
|= OPTION_SMC
;
570 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
577 /* Compute TCP options for SYN packets. This is not the final
578 * network wire format yet.
580 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
581 struct tcp_out_options
*opts
,
582 struct tcp_md5sig_key
**md5
)
584 struct tcp_sock
*tp
= tcp_sk(sk
);
585 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
586 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
588 #ifdef CONFIG_TCP_MD5SIG
589 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
591 opts
->options
|= OPTION_MD5
;
592 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
598 /* We always get an MSS option. The option bytes which will be seen in
599 * normal data packets should timestamps be used, must be in the MSS
600 * advertised. But we subtract them from tp->mss_cache so that
601 * calculations in tcp_sendmsg are simpler etc. So account for this
602 * fact here if necessary. If we don't do this correctly, as a
603 * receiver we won't recognize data packets as being full sized when we
604 * should, and thus we won't abide by the delayed ACK rules correctly.
605 * SACKs don't matter, we never delay an ACK when we have any of those
607 opts
->mss
= tcp_advertise_mss(sk
);
608 remaining
-= TCPOLEN_MSS_ALIGNED
;
610 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
&& !*md5
)) {
611 opts
->options
|= OPTION_TS
;
612 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
613 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
614 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
616 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
)) {
617 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
618 opts
->options
|= OPTION_WSCALE
;
619 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
621 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_sack
)) {
622 opts
->options
|= OPTION_SACK_ADVERTISE
;
623 if (unlikely(!(OPTION_TS
& opts
->options
)))
624 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
627 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
628 u32 need
= fastopen
->cookie
.len
;
630 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
631 TCPOLEN_FASTOPEN_BASE
;
632 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
633 if (remaining
>= need
) {
634 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
635 opts
->fastopen_cookie
= &fastopen
->cookie
;
637 tp
->syn_fastopen
= 1;
638 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
642 smc_set_option(tp
, opts
, &remaining
);
644 return MAX_TCP_OPTION_SPACE
- remaining
;
647 /* Set up TCP options for SYN-ACKs. */
648 static unsigned int tcp_synack_options(const struct sock
*sk
,
649 struct request_sock
*req
,
650 unsigned int mss
, struct sk_buff
*skb
,
651 struct tcp_out_options
*opts
,
652 const struct tcp_md5sig_key
*md5
,
653 struct tcp_fastopen_cookie
*foc
)
655 struct inet_request_sock
*ireq
= inet_rsk(req
);
656 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
658 #ifdef CONFIG_TCP_MD5SIG
660 opts
->options
|= OPTION_MD5
;
661 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
663 /* We can't fit any SACK blocks in a packet with MD5 + TS
664 * options. There was discussion about disabling SACK
665 * rather than TS in order to fit in better with old,
666 * buggy kernels, but that was deemed to be unnecessary.
668 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
672 /* We always send an MSS option. */
674 remaining
-= TCPOLEN_MSS_ALIGNED
;
676 if (likely(ireq
->wscale_ok
)) {
677 opts
->ws
= ireq
->rcv_wscale
;
678 opts
->options
|= OPTION_WSCALE
;
679 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
681 if (likely(ireq
->tstamp_ok
)) {
682 opts
->options
|= OPTION_TS
;
683 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
684 opts
->tsecr
= req
->ts_recent
;
685 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
687 if (likely(ireq
->sack_ok
)) {
688 opts
->options
|= OPTION_SACK_ADVERTISE
;
689 if (unlikely(!ireq
->tstamp_ok
))
690 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
692 if (foc
!= NULL
&& foc
->len
>= 0) {
695 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
696 TCPOLEN_FASTOPEN_BASE
;
697 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
698 if (remaining
>= need
) {
699 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
700 opts
->fastopen_cookie
= foc
;
705 smc_set_option_cond(tcp_sk(sk
), ireq
, opts
, &remaining
);
707 return MAX_TCP_OPTION_SPACE
- remaining
;
710 /* Compute TCP options for ESTABLISHED sockets. This is not the
711 * final wire format yet.
713 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
714 struct tcp_out_options
*opts
,
715 struct tcp_md5sig_key
**md5
)
717 struct tcp_sock
*tp
= tcp_sk(sk
);
718 unsigned int size
= 0;
719 unsigned int eff_sacks
;
723 #ifdef CONFIG_TCP_MD5SIG
724 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
725 if (unlikely(*md5
)) {
726 opts
->options
|= OPTION_MD5
;
727 size
+= TCPOLEN_MD5SIG_ALIGNED
;
733 if (likely(tp
->rx_opt
.tstamp_ok
)) {
734 opts
->options
|= OPTION_TS
;
735 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
736 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
737 size
+= TCPOLEN_TSTAMP_ALIGNED
;
740 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
741 if (unlikely(eff_sacks
)) {
742 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
743 opts
->num_sack_blocks
=
744 min_t(unsigned int, eff_sacks
,
745 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
746 TCPOLEN_SACK_PERBLOCK
);
747 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
748 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
755 /* TCP SMALL QUEUES (TSQ)
757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
758 * to reduce RTT and bufferbloat.
759 * We do this using a special skb destructor (tcp_wfree).
761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
762 * needs to be reallocated in a driver.
763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
765 * Since transmit from skb destructor is forbidden, we use a tasklet
766 * to process all sockets that eventually need to send more skbs.
767 * We use one tasklet per cpu, with its own queue of sockets.
770 struct tasklet_struct tasklet
;
771 struct list_head head
; /* queue of tcp sockets */
773 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
775 static void tcp_tsq_handler(struct sock
*sk
)
777 if ((1 << sk
->sk_state
) &
778 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
779 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
780 struct tcp_sock
*tp
= tcp_sk(sk
);
782 if (tp
->lost_out
> tp
->retrans_out
&&
783 tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) {
784 tcp_mstamp_refresh(tp
);
785 tcp_xmit_retransmit_queue(sk
);
788 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
793 * One tasklet per cpu tries to send more skbs.
794 * We run in tasklet context but need to disable irqs when
795 * transferring tsq->head because tcp_wfree() might
796 * interrupt us (non NAPI drivers)
798 static void tcp_tasklet_func(unsigned long data
)
800 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
803 struct list_head
*q
, *n
;
807 local_irq_save(flags
);
808 list_splice_init(&tsq
->head
, &list
);
809 local_irq_restore(flags
);
811 list_for_each_safe(q
, n
, &list
) {
812 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
813 list_del(&tp
->tsq_node
);
815 sk
= (struct sock
*)tp
;
816 smp_mb__before_atomic();
817 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
819 if (!sk
->sk_lock
.owned
&&
820 test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
)) {
822 if (!sock_owned_by_user(sk
)) {
823 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
833 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
834 TCPF_WRITE_TIMER_DEFERRED | \
835 TCPF_DELACK_TIMER_DEFERRED | \
836 TCPF_MTU_REDUCED_DEFERRED)
838 * tcp_release_cb - tcp release_sock() callback
841 * called from release_sock() to perform protocol dependent
842 * actions before socket release.
844 void tcp_release_cb(struct sock
*sk
)
846 unsigned long flags
, nflags
;
848 /* perform an atomic operation only if at least one flag is set */
850 flags
= sk
->sk_tsq_flags
;
851 if (!(flags
& TCP_DEFERRED_ALL
))
853 nflags
= flags
& ~TCP_DEFERRED_ALL
;
854 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
856 if (flags
& TCPF_TSQ_DEFERRED
)
859 /* Here begins the tricky part :
860 * We are called from release_sock() with :
862 * 2) sk_lock.slock spinlock held
863 * 3) socket owned by us (sk->sk_lock.owned == 1)
865 * But following code is meant to be called from BH handlers,
866 * so we should keep BH disabled, but early release socket ownership
868 sock_release_ownership(sk
);
870 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
871 tcp_write_timer_handler(sk
);
874 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
875 tcp_delack_timer_handler(sk
);
878 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
879 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
883 EXPORT_SYMBOL(tcp_release_cb
);
885 void __init
tcp_tasklet_init(void)
889 for_each_possible_cpu(i
) {
890 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
892 INIT_LIST_HEAD(&tsq
->head
);
893 tasklet_init(&tsq
->tasklet
,
900 * Write buffer destructor automatically called from kfree_skb.
901 * We can't xmit new skbs from this context, as we might already
904 void tcp_wfree(struct sk_buff
*skb
)
906 struct sock
*sk
= skb
->sk
;
907 struct tcp_sock
*tp
= tcp_sk(sk
);
908 unsigned long flags
, nval
, oval
;
910 /* Keep one reference on sk_wmem_alloc.
911 * Will be released by sk_free() from here or tcp_tasklet_func()
913 WARN_ON(refcount_sub_and_test(skb
->truesize
- 1, &sk
->sk_wmem_alloc
));
915 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
916 * Wait until our queues (qdisc + devices) are drained.
918 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
919 * - chance for incoming ACK (processed by another cpu maybe)
920 * to migrate this flow (skb->ooo_okay will be eventually set)
922 if (refcount_read(&sk
->sk_wmem_alloc
) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
925 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
926 struct tsq_tasklet
*tsq
;
929 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
932 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
| TCPF_TSQ_DEFERRED
;
933 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
937 /* queue this socket to tasklet queue */
938 local_irq_save(flags
);
939 tsq
= this_cpu_ptr(&tsq_tasklet
);
940 empty
= list_empty(&tsq
->head
);
941 list_add(&tp
->tsq_node
, &tsq
->head
);
943 tasklet_schedule(&tsq
->tasklet
);
944 local_irq_restore(flags
);
951 /* Note: Called under hard irq.
952 * We can not call TCP stack right away.
954 enum hrtimer_restart
tcp_pace_kick(struct hrtimer
*timer
)
956 struct tcp_sock
*tp
= container_of(timer
, struct tcp_sock
, pacing_timer
);
957 struct sock
*sk
= (struct sock
*)tp
;
958 unsigned long nval
, oval
;
960 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
961 struct tsq_tasklet
*tsq
;
964 if (oval
& TSQF_QUEUED
)
967 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
| TCPF_TSQ_DEFERRED
;
968 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
972 if (!refcount_inc_not_zero(&sk
->sk_wmem_alloc
))
974 /* queue this socket to tasklet queue */
975 tsq
= this_cpu_ptr(&tsq_tasklet
);
976 empty
= list_empty(&tsq
->head
);
977 list_add(&tp
->tsq_node
, &tsq
->head
);
979 tasklet_schedule(&tsq
->tasklet
);
982 return HRTIMER_NORESTART
;
985 /* BBR congestion control needs pacing.
986 * Same remark for SO_MAX_PACING_RATE.
987 * sch_fq packet scheduler is efficiently handling pacing,
988 * but is not always installed/used.
989 * Return true if TCP stack should pace packets itself.
991 static bool tcp_needs_internal_pacing(const struct sock
*sk
)
993 return smp_load_acquire(&sk
->sk_pacing_status
) == SK_PACING_NEEDED
;
996 static void tcp_internal_pacing(struct sock
*sk
, const struct sk_buff
*skb
)
1001 if (!tcp_needs_internal_pacing(sk
))
1003 rate
= sk
->sk_pacing_rate
;
1004 if (!rate
|| rate
== ~0U)
1007 /* Should account for header sizes as sch_fq does,
1008 * but lets make things simple.
1010 len_ns
= (u64
)skb
->len
* NSEC_PER_SEC
;
1011 do_div(len_ns
, rate
);
1012 hrtimer_start(&tcp_sk(sk
)->pacing_timer
,
1013 ktime_add_ns(ktime_get(), len_ns
),
1014 HRTIMER_MODE_ABS_PINNED
);
1017 static void tcp_update_skb_after_send(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1019 skb
->skb_mstamp
= tp
->tcp_mstamp
;
1020 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
1023 /* This routine actually transmits TCP packets queued in by
1024 * tcp_do_sendmsg(). This is used by both the initial
1025 * transmission and possible later retransmissions.
1026 * All SKB's seen here are completely headerless. It is our
1027 * job to build the TCP header, and pass the packet down to
1028 * IP so it can do the same plus pass the packet off to the
1031 * We are working here with either a clone of the original
1032 * SKB, or a fresh unique copy made by the retransmit engine.
1034 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1037 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1038 struct inet_sock
*inet
;
1039 struct tcp_sock
*tp
;
1040 struct tcp_skb_cb
*tcb
;
1041 struct tcp_out_options opts
;
1042 unsigned int tcp_options_size
, tcp_header_size
;
1043 struct sk_buff
*oskb
= NULL
;
1044 struct tcp_md5sig_key
*md5
;
1048 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
1052 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
1056 tcp_skb_tsorted_save(oskb
) {
1057 if (unlikely(skb_cloned(oskb
)))
1058 skb
= pskb_copy(oskb
, gfp_mask
);
1060 skb
= skb_clone(oskb
, gfp_mask
);
1061 } tcp_skb_tsorted_restore(oskb
);
1066 skb
->skb_mstamp
= tp
->tcp_mstamp
;
1069 tcb
= TCP_SKB_CB(skb
);
1070 memset(&opts
, 0, sizeof(opts
));
1072 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
1073 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
1075 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
1077 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
1079 /* if no packet is in qdisc/device queue, then allow XPS to select
1080 * another queue. We can be called from tcp_tsq_handler()
1081 * which holds one reference to sk_wmem_alloc.
1083 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1084 * One way to get this would be to set skb->truesize = 2 on them.
1086 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
1088 /* If we had to use memory reserve to allocate this skb,
1089 * this might cause drops if packet is looped back :
1090 * Other socket might not have SOCK_MEMALLOC.
1091 * Packets not looped back do not care about pfmemalloc.
1093 skb
->pfmemalloc
= 0;
1095 skb_push(skb
, tcp_header_size
);
1096 skb_reset_transport_header(skb
);
1100 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
1101 skb_set_hash_from_sk(skb
, sk
);
1102 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1104 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
1106 /* Build TCP header and checksum it. */
1107 th
= (struct tcphdr
*)skb
->data
;
1108 th
->source
= inet
->inet_sport
;
1109 th
->dest
= inet
->inet_dport
;
1110 th
->seq
= htonl(tcb
->seq
);
1111 th
->ack_seq
= htonl(tp
->rcv_nxt
);
1112 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1118 /* The urg_mode check is necessary during a below snd_una win probe */
1119 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1120 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1121 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1123 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1124 th
->urg_ptr
= htons(0xFFFF);
1129 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1130 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1131 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1132 th
->window
= htons(tcp_select_window(sk
));
1133 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1135 /* RFC1323: The window in SYN & SYN/ACK segments
1138 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1140 #ifdef CONFIG_TCP_MD5SIG
1141 /* Calculate the MD5 hash, as we have all we need now */
1143 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1144 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1149 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1151 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1152 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1154 if (skb
->len
!= tcp_header_size
) {
1155 tcp_event_data_sent(tp
, sk
);
1156 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1157 tcp_internal_pacing(sk
, skb
);
1160 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1161 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1162 tcp_skb_pcount(skb
));
1164 tp
->segs_out
+= tcp_skb_pcount(skb
);
1165 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1166 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1167 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1169 /* Our usage of tstamp should remain private */
1172 /* Cleanup our debris for IP stacks */
1173 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1174 sizeof(struct inet6_skb_parm
)));
1176 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1178 if (unlikely(err
> 0)) {
1180 err
= net_xmit_eval(err
);
1183 tcp_update_skb_after_send(tp
, oskb
);
1184 tcp_rate_skb_sent(sk
, oskb
);
1189 /* This routine just queues the buffer for sending.
1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1192 * otherwise socket can stall.
1194 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1196 struct tcp_sock
*tp
= tcp_sk(sk
);
1198 /* Advance write_seq and place onto the write_queue. */
1199 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1200 __skb_header_release(skb
);
1201 tcp_add_write_queue_tail(sk
, skb
);
1202 sk
->sk_wmem_queued
+= skb
->truesize
;
1203 sk_mem_charge(sk
, skb
->truesize
);
1206 /* Initialize TSO segments for a packet. */
1207 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1209 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1210 /* Avoid the costly divide in the normal
1213 tcp_skb_pcount_set(skb
, 1);
1214 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1216 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1217 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1221 /* Pcount in the middle of the write queue got changed, we need to do various
1222 * tweaks to fix counters
1224 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1226 struct tcp_sock
*tp
= tcp_sk(sk
);
1228 tp
->packets_out
-= decr
;
1230 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1231 tp
->sacked_out
-= decr
;
1232 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1233 tp
->retrans_out
-= decr
;
1234 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1235 tp
->lost_out
-= decr
;
1237 /* Reno case is special. Sigh... */
1238 if (tcp_is_reno(tp
) && decr
> 0)
1239 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1241 if (tp
->lost_skb_hint
&&
1242 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1243 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1244 tp
->lost_cnt_hint
-= decr
;
1246 tcp_verify_left_out(tp
);
1249 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1251 return TCP_SKB_CB(skb
)->txstamp_ack
||
1252 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1255 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1257 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1259 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1260 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1261 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1262 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1264 shinfo
->tx_flags
&= ~tsflags
;
1265 shinfo2
->tx_flags
|= tsflags
;
1266 swap(shinfo
->tskey
, shinfo2
->tskey
);
1267 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1268 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1272 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1274 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1275 TCP_SKB_CB(skb
)->eor
= 0;
1278 /* Insert buff after skb on the write or rtx queue of sk. */
1279 static void tcp_insert_write_queue_after(struct sk_buff
*skb
,
1280 struct sk_buff
*buff
,
1282 enum tcp_queue tcp_queue
)
1284 if (tcp_queue
== TCP_FRAG_IN_WRITE_QUEUE
)
1285 __skb_queue_after(&sk
->sk_write_queue
, skb
, buff
);
1287 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
1290 /* Function to create two new TCP segments. Shrinks the given segment
1291 * to the specified size and appends a new segment with the rest of the
1292 * packet to the list. This won't be called frequently, I hope.
1293 * Remember, these are still headerless SKBs at this point.
1295 int tcp_fragment(struct sock
*sk
, enum tcp_queue tcp_queue
,
1296 struct sk_buff
*skb
, u32 len
,
1297 unsigned int mss_now
, gfp_t gfp
)
1299 struct tcp_sock
*tp
= tcp_sk(sk
);
1300 struct sk_buff
*buff
;
1301 int nsize
, old_factor
;
1305 if (WARN_ON(len
> skb
->len
))
1308 nsize
= skb_headlen(skb
) - len
;
1312 if (skb_unclone(skb
, gfp
))
1315 /* Get a new skb... force flag on. */
1316 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1318 return -ENOMEM
; /* We'll just try again later. */
1320 sk
->sk_wmem_queued
+= buff
->truesize
;
1321 sk_mem_charge(sk
, buff
->truesize
);
1322 nlen
= skb
->len
- len
- nsize
;
1323 buff
->truesize
+= nlen
;
1324 skb
->truesize
-= nlen
;
1326 /* Correct the sequence numbers. */
1327 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1328 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1329 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1331 /* PSH and FIN should only be set in the second packet. */
1332 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1333 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1334 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1335 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1336 tcp_skb_fragment_eor(skb
, buff
);
1338 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1339 /* Copy and checksum data tail into the new buffer. */
1340 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1341 skb_put(buff
, nsize
),
1346 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1348 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1349 skb_split(skb
, buff
, len
);
1352 buff
->ip_summed
= skb
->ip_summed
;
1354 buff
->tstamp
= skb
->tstamp
;
1355 tcp_fragment_tstamp(skb
, buff
);
1357 old_factor
= tcp_skb_pcount(skb
);
1359 /* Fix up tso_factor for both original and new SKB. */
1360 tcp_set_skb_tso_segs(skb
, mss_now
);
1361 tcp_set_skb_tso_segs(buff
, mss_now
);
1363 /* Update delivered info for the new segment */
1364 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1366 /* If this packet has been sent out already, we must
1367 * adjust the various packet counters.
1369 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1370 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1371 tcp_skb_pcount(buff
);
1374 tcp_adjust_pcount(sk
, skb
, diff
);
1377 /* Link BUFF into the send queue. */
1378 __skb_header_release(buff
);
1379 tcp_insert_write_queue_after(skb
, buff
, sk
, tcp_queue
);
1380 if (tcp_queue
== TCP_FRAG_IN_RTX_QUEUE
)
1381 list_add(&buff
->tcp_tsorted_anchor
, &skb
->tcp_tsorted_anchor
);
1386 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1387 * data is not copied, but immediately discarded.
1389 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1391 struct skb_shared_info
*shinfo
;
1394 eat
= min_t(int, len
, skb_headlen(skb
));
1396 __skb_pull(skb
, eat
);
1403 shinfo
= skb_shinfo(skb
);
1404 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1405 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1408 skb_frag_unref(skb
, i
);
1411 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1413 shinfo
->frags
[k
].page_offset
+= eat
;
1414 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1420 shinfo
->nr_frags
= k
;
1422 skb
->data_len
-= len
;
1423 skb
->len
= skb
->data_len
;
1427 /* Remove acked data from a packet in the transmit queue. */
1428 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1432 if (skb_unclone(skb
, GFP_ATOMIC
))
1435 delta_truesize
= __pskb_trim_head(skb
, len
);
1437 TCP_SKB_CB(skb
)->seq
+= len
;
1438 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1440 if (delta_truesize
) {
1441 skb
->truesize
-= delta_truesize
;
1442 sk
->sk_wmem_queued
-= delta_truesize
;
1443 sk_mem_uncharge(sk
, delta_truesize
);
1444 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1447 /* Any change of skb->len requires recalculation of tso factor. */
1448 if (tcp_skb_pcount(skb
) > 1)
1449 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1454 /* Calculate MSS not accounting any TCP options. */
1455 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1457 const struct tcp_sock
*tp
= tcp_sk(sk
);
1458 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1461 /* Calculate base mss without TCP options:
1462 It is MMS_S - sizeof(tcphdr) of rfc1122
1464 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1466 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1467 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1468 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1470 if (dst
&& dst_allfrag(dst
))
1471 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1474 /* Clamp it (mss_clamp does not include tcp options) */
1475 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1476 mss_now
= tp
->rx_opt
.mss_clamp
;
1478 /* Now subtract optional transport overhead */
1479 mss_now
-= icsk
->icsk_ext_hdr_len
;
1481 /* Then reserve room for full set of TCP options and 8 bytes of data */
1487 /* Calculate MSS. Not accounting for SACKs here. */
1488 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1490 /* Subtract TCP options size, not including SACKs */
1491 return __tcp_mtu_to_mss(sk
, pmtu
) -
1492 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1495 /* Inverse of above */
1496 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1498 const struct tcp_sock
*tp
= tcp_sk(sk
);
1499 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1503 tp
->tcp_header_len
+
1504 icsk
->icsk_ext_hdr_len
+
1505 icsk
->icsk_af_ops
->net_header_len
;
1507 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1508 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1509 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1511 if (dst
&& dst_allfrag(dst
))
1512 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1516 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1518 /* MTU probing init per socket */
1519 void tcp_mtup_init(struct sock
*sk
)
1521 struct tcp_sock
*tp
= tcp_sk(sk
);
1522 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1523 struct net
*net
= sock_net(sk
);
1525 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1526 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1527 icsk
->icsk_af_ops
->net_header_len
;
1528 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1529 icsk
->icsk_mtup
.probe_size
= 0;
1530 if (icsk
->icsk_mtup
.enabled
)
1531 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
1533 EXPORT_SYMBOL(tcp_mtup_init
);
1535 /* This function synchronize snd mss to current pmtu/exthdr set.
1537 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1538 for TCP options, but includes only bare TCP header.
1540 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1541 It is minimum of user_mss and mss received with SYN.
1542 It also does not include TCP options.
1544 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1546 tp->mss_cache is current effective sending mss, including
1547 all tcp options except for SACKs. It is evaluated,
1548 taking into account current pmtu, but never exceeds
1549 tp->rx_opt.mss_clamp.
1551 NOTE1. rfc1122 clearly states that advertised MSS
1552 DOES NOT include either tcp or ip options.
1554 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1555 are READ ONLY outside this function. --ANK (980731)
1557 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1559 struct tcp_sock
*tp
= tcp_sk(sk
);
1560 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1563 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1564 icsk
->icsk_mtup
.search_high
= pmtu
;
1566 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1567 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1569 /* And store cached results */
1570 icsk
->icsk_pmtu_cookie
= pmtu
;
1571 if (icsk
->icsk_mtup
.enabled
)
1572 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1573 tp
->mss_cache
= mss_now
;
1577 EXPORT_SYMBOL(tcp_sync_mss
);
1579 /* Compute the current effective MSS, taking SACKs and IP options,
1580 * and even PMTU discovery events into account.
1582 unsigned int tcp_current_mss(struct sock
*sk
)
1584 const struct tcp_sock
*tp
= tcp_sk(sk
);
1585 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1587 unsigned int header_len
;
1588 struct tcp_out_options opts
;
1589 struct tcp_md5sig_key
*md5
;
1591 mss_now
= tp
->mss_cache
;
1594 u32 mtu
= dst_mtu(dst
);
1595 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1596 mss_now
= tcp_sync_mss(sk
, mtu
);
1599 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1600 sizeof(struct tcphdr
);
1601 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1602 * some common options. If this is an odd packet (because we have SACK
1603 * blocks etc) then our calculated header_len will be different, and
1604 * we have to adjust mss_now correspondingly */
1605 if (header_len
!= tp
->tcp_header_len
) {
1606 int delta
= (int) header_len
- tp
->tcp_header_len
;
1613 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1614 * As additional protections, we do not touch cwnd in retransmission phases,
1615 * and if application hit its sndbuf limit recently.
1617 static void tcp_cwnd_application_limited(struct sock
*sk
)
1619 struct tcp_sock
*tp
= tcp_sk(sk
);
1621 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1622 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1623 /* Limited by application or receiver window. */
1624 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1625 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1626 if (win_used
< tp
->snd_cwnd
) {
1627 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1628 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1630 tp
->snd_cwnd_used
= 0;
1632 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1635 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1637 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1638 struct tcp_sock
*tp
= tcp_sk(sk
);
1640 /* Track the maximum number of outstanding packets in each
1641 * window, and remember whether we were cwnd-limited then.
1643 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1644 tp
->packets_out
> tp
->max_packets_out
) {
1645 tp
->max_packets_out
= tp
->packets_out
;
1646 tp
->max_packets_seq
= tp
->snd_nxt
;
1647 tp
->is_cwnd_limited
= is_cwnd_limited
;
1650 if (tcp_is_cwnd_limited(sk
)) {
1651 /* Network is feed fully. */
1652 tp
->snd_cwnd_used
= 0;
1653 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1655 /* Network starves. */
1656 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1657 tp
->snd_cwnd_used
= tp
->packets_out
;
1659 if (sock_net(sk
)->ipv4
.sysctl_tcp_slow_start_after_idle
&&
1660 (s32
)(tcp_jiffies32
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
&&
1661 !ca_ops
->cong_control
)
1662 tcp_cwnd_application_limited(sk
);
1664 /* The following conditions together indicate the starvation
1665 * is caused by insufficient sender buffer:
1666 * 1) just sent some data (see tcp_write_xmit)
1667 * 2) not cwnd limited (this else condition)
1668 * 3) no more data to send (tcp_write_queue_empty())
1669 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1671 if (tcp_write_queue_empty(sk
) && sk
->sk_socket
&&
1672 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1673 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1674 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1678 /* Minshall's variant of the Nagle send check. */
1679 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1681 return after(tp
->snd_sml
, tp
->snd_una
) &&
1682 !after(tp
->snd_sml
, tp
->snd_nxt
);
1685 /* Update snd_sml if this skb is under mss
1686 * Note that a TSO packet might end with a sub-mss segment
1687 * The test is really :
1688 * if ((skb->len % mss) != 0)
1689 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1690 * But we can avoid doing the divide again given we already have
1691 * skb_pcount = skb->len / mss_now
1693 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1694 const struct sk_buff
*skb
)
1696 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1697 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1700 /* Return false, if packet can be sent now without violation Nagle's rules:
1701 * 1. It is full sized. (provided by caller in %partial bool)
1702 * 2. Or it contains FIN. (already checked by caller)
1703 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1704 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1705 * With Minshall's modification: all sent small packets are ACKed.
1707 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1711 ((nonagle
& TCP_NAGLE_CORK
) ||
1712 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1715 /* Return how many segs we'd like on a TSO packet,
1716 * to send one TSO packet per ms
1718 u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1723 bytes
= min(sk
->sk_pacing_rate
>> sk
->sk_pacing_shift
,
1724 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1726 /* Goal is to send at least one packet per ms,
1727 * not one big TSO packet every 100 ms.
1728 * This preserves ACK clocking and is consistent
1729 * with tcp_tso_should_defer() heuristic.
1731 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1735 EXPORT_SYMBOL(tcp_tso_autosize
);
1737 /* Return the number of segments we want in the skb we are transmitting.
1738 * See if congestion control module wants to decide; otherwise, autosize.
1740 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1742 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1743 u32 tso_segs
= ca_ops
->tso_segs_goal
? ca_ops
->tso_segs_goal(sk
) : 0;
1746 tso_segs
= tcp_tso_autosize(sk
, mss_now
,
1747 sock_net(sk
)->ipv4
.sysctl_tcp_min_tso_segs
);
1748 return min_t(u32
, tso_segs
, sk
->sk_gso_max_segs
);
1751 /* Returns the portion of skb which can be sent right away */
1752 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1753 const struct sk_buff
*skb
,
1754 unsigned int mss_now
,
1755 unsigned int max_segs
,
1758 const struct tcp_sock
*tp
= tcp_sk(sk
);
1759 u32 partial
, needed
, window
, max_len
;
1761 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1762 max_len
= mss_now
* max_segs
;
1764 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1767 needed
= min(skb
->len
, window
);
1769 if (max_len
<= needed
)
1772 partial
= needed
% mss_now
;
1773 /* If last segment is not a full MSS, check if Nagle rules allow us
1774 * to include this last segment in this skb.
1775 * Otherwise, we'll split the skb at last MSS boundary
1777 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1778 return needed
- partial
;
1783 /* Can at least one segment of SKB be sent right now, according to the
1784 * congestion window rules? If so, return how many segments are allowed.
1786 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1787 const struct sk_buff
*skb
)
1789 u32 in_flight
, cwnd
, halfcwnd
;
1791 /* Don't be strict about the congestion window for the final FIN. */
1792 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1793 tcp_skb_pcount(skb
) == 1)
1796 in_flight
= tcp_packets_in_flight(tp
);
1797 cwnd
= tp
->snd_cwnd
;
1798 if (in_flight
>= cwnd
)
1801 /* For better scheduling, ensure we have at least
1802 * 2 GSO packets in flight.
1804 halfcwnd
= max(cwnd
>> 1, 1U);
1805 return min(halfcwnd
, cwnd
- in_flight
);
1808 /* Initialize TSO state of a skb.
1809 * This must be invoked the first time we consider transmitting
1810 * SKB onto the wire.
1812 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1814 int tso_segs
= tcp_skb_pcount(skb
);
1816 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1817 tcp_set_skb_tso_segs(skb
, mss_now
);
1818 tso_segs
= tcp_skb_pcount(skb
);
1824 /* Return true if the Nagle test allows this packet to be
1827 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1828 unsigned int cur_mss
, int nonagle
)
1830 /* Nagle rule does not apply to frames, which sit in the middle of the
1831 * write_queue (they have no chances to get new data).
1833 * This is implemented in the callers, where they modify the 'nonagle'
1834 * argument based upon the location of SKB in the send queue.
1836 if (nonagle
& TCP_NAGLE_PUSH
)
1839 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1840 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1843 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1849 /* Does at least the first segment of SKB fit into the send window? */
1850 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1851 const struct sk_buff
*skb
,
1852 unsigned int cur_mss
)
1854 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1856 if (skb
->len
> cur_mss
)
1857 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1859 return !after(end_seq
, tcp_wnd_end(tp
));
1862 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1863 * which is put after SKB on the list. It is very much like
1864 * tcp_fragment() except that it may make several kinds of assumptions
1865 * in order to speed up the splitting operation. In particular, we
1866 * know that all the data is in scatter-gather pages, and that the
1867 * packet has never been sent out before (and thus is not cloned).
1869 static int tso_fragment(struct sock
*sk
, enum tcp_queue tcp_queue
,
1870 struct sk_buff
*skb
, unsigned int len
,
1871 unsigned int mss_now
, gfp_t gfp
)
1873 struct sk_buff
*buff
;
1874 int nlen
= skb
->len
- len
;
1877 /* All of a TSO frame must be composed of paged data. */
1878 if (skb
->len
!= skb
->data_len
)
1879 return tcp_fragment(sk
, tcp_queue
, skb
, len
, mss_now
, gfp
);
1881 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1882 if (unlikely(!buff
))
1885 sk
->sk_wmem_queued
+= buff
->truesize
;
1886 sk_mem_charge(sk
, buff
->truesize
);
1887 buff
->truesize
+= nlen
;
1888 skb
->truesize
-= nlen
;
1890 /* Correct the sequence numbers. */
1891 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1892 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1893 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1895 /* PSH and FIN should only be set in the second packet. */
1896 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1897 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1898 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1900 /* This packet was never sent out yet, so no SACK bits. */
1901 TCP_SKB_CB(buff
)->sacked
= 0;
1903 tcp_skb_fragment_eor(skb
, buff
);
1905 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1906 skb_split(skb
, buff
, len
);
1907 tcp_fragment_tstamp(skb
, buff
);
1909 /* Fix up tso_factor for both original and new SKB. */
1910 tcp_set_skb_tso_segs(skb
, mss_now
);
1911 tcp_set_skb_tso_segs(buff
, mss_now
);
1913 /* Link BUFF into the send queue. */
1914 __skb_header_release(buff
);
1915 tcp_insert_write_queue_after(skb
, buff
, sk
, tcp_queue
);
1920 /* Try to defer sending, if possible, in order to minimize the amount
1921 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1923 * This algorithm is from John Heffner.
1925 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1926 bool *is_cwnd_limited
, u32 max_segs
)
1928 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1929 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1930 struct tcp_sock
*tp
= tcp_sk(sk
);
1931 struct sk_buff
*head
;
1934 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1937 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1940 /* Avoid bursty behavior by allowing defer
1941 * only if the last write was recent.
1943 if ((s32
)(tcp_jiffies32
- tp
->lsndtime
) > 0)
1946 in_flight
= tcp_packets_in_flight(tp
);
1948 BUG_ON(tcp_skb_pcount(skb
) <= 1);
1949 BUG_ON(tp
->snd_cwnd
<= in_flight
);
1951 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1953 /* From in_flight test above, we know that cwnd > in_flight. */
1954 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1956 limit
= min(send_win
, cong_win
);
1958 /* If a full-sized TSO skb can be sent, do it. */
1959 if (limit
>= max_segs
* tp
->mss_cache
)
1962 /* Middle in queue won't get any more data, full sendable already? */
1963 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1966 win_divisor
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_tso_win_divisor
);
1968 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1970 /* If at least some fraction of a window is available,
1973 chunk
/= win_divisor
;
1977 /* Different approach, try not to defer past a single
1978 * ACK. Receiver should ACK every other full sized
1979 * frame, so if we have space for more than 3 frames
1982 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1986 /* TODO : use tsorted_sent_queue ? */
1987 head
= tcp_rtx_queue_head(sk
);
1990 age
= tcp_stamp_us_delta(tp
->tcp_mstamp
, head
->skb_mstamp
);
1991 /* If next ACK is likely to come too late (half srtt), do not defer */
1992 if (age
< (tp
->srtt_us
>> 4))
1995 /* Ok, it looks like it is advisable to defer. */
1997 if (cong_win
< send_win
&& cong_win
<= skb
->len
)
1998 *is_cwnd_limited
= true;
2006 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
2008 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2009 struct tcp_sock
*tp
= tcp_sk(sk
);
2010 struct net
*net
= sock_net(sk
);
2014 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
2015 delta
= tcp_jiffies32
- icsk
->icsk_mtup
.probe_timestamp
;
2016 if (unlikely(delta
>= interval
* HZ
)) {
2017 int mss
= tcp_current_mss(sk
);
2019 /* Update current search range */
2020 icsk
->icsk_mtup
.probe_size
= 0;
2021 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
2022 sizeof(struct tcphdr
) +
2023 icsk
->icsk_af_ops
->net_header_len
;
2024 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
2026 /* Update probe time stamp */
2027 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
2031 static bool tcp_can_coalesce_send_queue_head(struct sock
*sk
, int len
)
2033 struct sk_buff
*skb
, *next
;
2035 skb
= tcp_send_head(sk
);
2036 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2037 if (len
<= skb
->len
)
2040 if (unlikely(TCP_SKB_CB(skb
)->eor
))
2049 /* Create a new MTU probe if we are ready.
2050 * MTU probe is regularly attempting to increase the path MTU by
2051 * deliberately sending larger packets. This discovers routing
2052 * changes resulting in larger path MTUs.
2054 * Returns 0 if we should wait to probe (no cwnd available),
2055 * 1 if a probe was sent,
2058 static int tcp_mtu_probe(struct sock
*sk
)
2060 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2061 struct tcp_sock
*tp
= tcp_sk(sk
);
2062 struct sk_buff
*skb
, *nskb
, *next
;
2063 struct net
*net
= sock_net(sk
);
2070 /* Not currently probing/verifying,
2072 * have enough cwnd, and
2073 * not SACKing (the variable headers throw things off)
2075 if (likely(!icsk
->icsk_mtup
.enabled
||
2076 icsk
->icsk_mtup
.probe_size
||
2077 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
2078 tp
->snd_cwnd
< 11 ||
2079 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
2082 /* Use binary search for probe_size between tcp_mss_base,
2083 * and current mss_clamp. if (search_high - search_low)
2084 * smaller than a threshold, backoff from probing.
2086 mss_now
= tcp_current_mss(sk
);
2087 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
2088 icsk
->icsk_mtup
.search_low
) >> 1);
2089 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
2090 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
2091 /* When misfortune happens, we are reprobing actively,
2092 * and then reprobe timer has expired. We stick with current
2093 * probing process by not resetting search range to its orignal.
2095 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
2096 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
2097 /* Check whether enough time has elaplased for
2098 * another round of probing.
2100 tcp_mtu_check_reprobe(sk
);
2104 /* Have enough data in the send queue to probe? */
2105 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
2108 if (tp
->snd_wnd
< size_needed
)
2110 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
2113 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2114 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2115 if (!tcp_packets_in_flight(tp
))
2121 if (!tcp_can_coalesce_send_queue_head(sk
, probe_size
))
2124 /* We're allowed to probe. Build it now. */
2125 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2128 sk
->sk_wmem_queued
+= nskb
->truesize
;
2129 sk_mem_charge(sk
, nskb
->truesize
);
2131 skb
= tcp_send_head(sk
);
2133 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2134 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2135 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2136 TCP_SKB_CB(nskb
)->sacked
= 0;
2138 nskb
->ip_summed
= skb
->ip_summed
;
2140 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2141 tcp_highest_sack_replace(sk
, skb
, nskb
);
2144 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2145 copy
= min_t(int, skb
->len
, probe_size
- len
);
2146 if (nskb
->ip_summed
) {
2147 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2149 __wsum csum
= skb_copy_and_csum_bits(skb
, 0,
2150 skb_put(nskb
, copy
),
2152 nskb
->csum
= csum_block_add(nskb
->csum
, csum
, len
);
2155 if (skb
->len
<= copy
) {
2156 /* We've eaten all the data from this skb.
2158 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2159 /* If this is the last SKB we copy and eor is set
2160 * we need to propagate it to the new skb.
2162 TCP_SKB_CB(nskb
)->eor
= TCP_SKB_CB(skb
)->eor
;
2163 tcp_unlink_write_queue(skb
, sk
);
2164 sk_wmem_free_skb(sk
, skb
);
2166 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2167 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2168 if (!skb_shinfo(skb
)->nr_frags
) {
2169 skb_pull(skb
, copy
);
2170 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2171 skb
->csum
= csum_partial(skb
->data
,
2174 __pskb_trim_head(skb
, copy
);
2175 tcp_set_skb_tso_segs(skb
, mss_now
);
2177 TCP_SKB_CB(skb
)->seq
+= copy
;
2182 if (len
>= probe_size
)
2185 tcp_init_tso_segs(nskb
, nskb
->len
);
2187 /* We're ready to send. If this fails, the probe will
2188 * be resegmented into mss-sized pieces by tcp_write_xmit().
2190 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2191 /* Decrement cwnd here because we are sending
2192 * effectively two packets. */
2194 tcp_event_new_data_sent(sk
, nskb
);
2196 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2197 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2198 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2206 static bool tcp_pacing_check(const struct sock
*sk
)
2208 return tcp_needs_internal_pacing(sk
) &&
2209 hrtimer_active(&tcp_sk(sk
)->pacing_timer
);
2212 /* TCP Small Queues :
2213 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214 * (These limits are doubled for retransmits)
2216 * - better RTT estimation and ACK scheduling
2219 * Alas, some drivers / subsystems require a fair amount
2220 * of queued bytes to ensure line rate.
2221 * One example is wifi aggregation (802.11 AMPDU)
2223 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2224 unsigned int factor
)
2228 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> sk
->sk_pacing_shift
);
2229 limit
= min_t(u32
, limit
,
2230 sock_net(sk
)->ipv4
.sysctl_tcp_limit_output_bytes
);
2233 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
) {
2234 /* Always send skb if rtx queue is empty.
2235 * No need to wait for TX completion to call us back,
2236 * after softirq/tasklet schedule.
2237 * This helps when TX completions are delayed too much.
2239 if (tcp_rtx_queue_empty(sk
))
2242 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2243 /* It is possible TX completion already happened
2244 * before we set TSQ_THROTTLED, so we must
2245 * test again the condition.
2247 smp_mb__after_atomic();
2248 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
)
2254 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2256 const u32 now
= tcp_jiffies32
;
2257 enum tcp_chrono old
= tp
->chrono_type
;
2259 if (old
> TCP_CHRONO_UNSPEC
)
2260 tp
->chrono_stat
[old
- 1] += now
- tp
->chrono_start
;
2261 tp
->chrono_start
= now
;
2262 tp
->chrono_type
= new;
2265 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2267 struct tcp_sock
*tp
= tcp_sk(sk
);
2269 /* If there are multiple conditions worthy of tracking in a
2270 * chronograph then the highest priority enum takes precedence
2271 * over the other conditions. So that if something "more interesting"
2272 * starts happening, stop the previous chrono and start a new one.
2274 if (type
> tp
->chrono_type
)
2275 tcp_chrono_set(tp
, type
);
2278 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2280 struct tcp_sock
*tp
= tcp_sk(sk
);
2283 /* There are multiple conditions worthy of tracking in a
2284 * chronograph, so that the highest priority enum takes
2285 * precedence over the other conditions (see tcp_chrono_start).
2286 * If a condition stops, we only stop chrono tracking if
2287 * it's the "most interesting" or current chrono we are
2288 * tracking and starts busy chrono if we have pending data.
2290 if (tcp_rtx_and_write_queues_empty(sk
))
2291 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2292 else if (type
== tp
->chrono_type
)
2293 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2296 /* This routine writes packets to the network. It advances the
2297 * send_head. This happens as incoming acks open up the remote
2300 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2301 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2302 * account rare use of URG, this is not a big flaw.
2304 * Send at most one packet when push_one > 0. Temporarily ignore
2305 * cwnd limit to force at most one packet out when push_one == 2.
2307 * Returns true, if no segments are in flight and we have queued segments,
2308 * but cannot send anything now because of SWS or another problem.
2310 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2311 int push_one
, gfp_t gfp
)
2313 struct tcp_sock
*tp
= tcp_sk(sk
);
2314 struct sk_buff
*skb
;
2315 unsigned int tso_segs
, sent_pkts
;
2318 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2323 tcp_mstamp_refresh(tp
);
2325 /* Do MTU probing. */
2326 result
= tcp_mtu_probe(sk
);
2329 } else if (result
> 0) {
2334 max_segs
= tcp_tso_segs(sk
, mss_now
);
2335 while ((skb
= tcp_send_head(sk
))) {
2338 if (tcp_pacing_check(sk
))
2341 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2344 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2345 /* "skb_mstamp" is used as a start point for the retransmit timer */
2346 tcp_update_skb_after_send(tp
, skb
);
2347 goto repair
; /* Skip network transmission */
2350 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2353 /* Force out a loss probe pkt. */
2359 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2360 is_rwnd_limited
= true;
2364 if (tso_segs
== 1) {
2365 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2366 (tcp_skb_is_last(sk
, skb
) ?
2367 nonagle
: TCP_NAGLE_PUSH
))))
2371 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2377 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2378 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2384 if (skb
->len
> limit
&&
2385 unlikely(tso_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
2386 skb
, limit
, mss_now
, gfp
)))
2389 if (test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
2390 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
2391 if (tcp_small_queue_check(sk
, skb
, 0))
2394 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2398 /* Advance the send_head. This one is sent out.
2399 * This call will increment packets_out.
2401 tcp_event_new_data_sent(sk
, skb
);
2403 tcp_minshall_update(tp
, mss_now
, skb
);
2404 sent_pkts
+= tcp_skb_pcount(skb
);
2410 if (is_rwnd_limited
)
2411 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2413 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2415 if (likely(sent_pkts
)) {
2416 if (tcp_in_cwnd_reduction(sk
))
2417 tp
->prr_out
+= sent_pkts
;
2419 /* Send one loss probe per tail loss episode. */
2421 tcp_schedule_loss_probe(sk
, false);
2422 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2423 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2426 return !tp
->packets_out
&& !tcp_write_queue_empty(sk
);
2429 bool tcp_schedule_loss_probe(struct sock
*sk
, bool advancing_rto
)
2431 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2432 struct tcp_sock
*tp
= tcp_sk(sk
);
2433 u32 timeout
, rto_delta_us
;
2436 /* Don't do any loss probe on a Fast Open connection before 3WHS
2439 if (tp
->fastopen_rsk
)
2442 early_retrans
= sock_net(sk
)->ipv4
.sysctl_tcp_early_retrans
;
2443 /* Schedule a loss probe in 2*RTT for SACK capable connections
2444 * not in loss recovery, that are either limited by cwnd or application.
2446 if ((early_retrans
!= 3 && early_retrans
!= 4) ||
2447 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2448 (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2449 icsk
->icsk_ca_state
!= TCP_CA_CWR
))
2452 /* Probe timeout is 2*rtt. Add minimum RTO to account
2453 * for delayed ack when there's one outstanding packet. If no RTT
2454 * sample is available then probe after TCP_TIMEOUT_INIT.
2457 timeout
= usecs_to_jiffies(tp
->srtt_us
>> 2);
2458 if (tp
->packets_out
== 1)
2459 timeout
+= TCP_RTO_MIN
;
2461 timeout
+= TCP_TIMEOUT_MIN
;
2463 timeout
= TCP_TIMEOUT_INIT
;
2466 /* If the RTO formula yields an earlier time, then use that time. */
2467 rto_delta_us
= advancing_rto
?
2468 jiffies_to_usecs(inet_csk(sk
)->icsk_rto
) :
2469 tcp_rto_delta_us(sk
); /* How far in future is RTO? */
2470 if (rto_delta_us
> 0)
2471 timeout
= min_t(u32
, timeout
, usecs_to_jiffies(rto_delta_us
));
2473 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2478 /* Thanks to skb fast clones, we can detect if a prior transmit of
2479 * a packet is still in a qdisc or driver queue.
2480 * In this case, there is very little point doing a retransmit !
2482 static bool skb_still_in_host_queue(const struct sock
*sk
,
2483 const struct sk_buff
*skb
)
2485 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2486 NET_INC_STATS(sock_net(sk
),
2487 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2493 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2494 * retransmit the last segment.
2496 void tcp_send_loss_probe(struct sock
*sk
)
2498 struct tcp_sock
*tp
= tcp_sk(sk
);
2499 struct sk_buff
*skb
;
2501 int mss
= tcp_current_mss(sk
);
2503 skb
= tcp_send_head(sk
);
2504 if (skb
&& tcp_snd_wnd_test(tp
, skb
, mss
)) {
2505 pcount
= tp
->packets_out
;
2506 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2507 if (tp
->packets_out
> pcount
)
2511 skb
= skb_rb_last(&sk
->tcp_rtx_queue
);
2513 /* At most one outstanding TLP retransmission. */
2514 if (tp
->tlp_high_seq
)
2517 /* Retransmit last segment. */
2521 if (skb_still_in_host_queue(sk
, skb
))
2524 pcount
= tcp_skb_pcount(skb
);
2525 if (WARN_ON(!pcount
))
2528 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2529 if (unlikely(tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2530 (pcount
- 1) * mss
, mss
,
2533 skb
= skb_rb_next(skb
);
2536 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2539 if (__tcp_retransmit_skb(sk
, skb
, 1))
2542 /* Record snd_nxt for loss detection. */
2543 tp
->tlp_high_seq
= tp
->snd_nxt
;
2546 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2547 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2548 inet_csk(sk
)->icsk_pending
= 0;
2553 /* Push out any pending frames which were held back due to
2554 * TCP_CORK or attempt at coalescing tiny packets.
2555 * The socket must be locked by the caller.
2557 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2560 /* If we are closed, the bytes will have to remain here.
2561 * In time closedown will finish, we empty the write queue and
2562 * all will be happy.
2564 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2567 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2568 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2569 tcp_check_probe_timer(sk
);
2572 /* Send _single_ skb sitting at the send head. This function requires
2573 * true push pending frames to setup probe timer etc.
2575 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2577 struct sk_buff
*skb
= tcp_send_head(sk
);
2579 BUG_ON(!skb
|| skb
->len
< mss_now
);
2581 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2584 /* This function returns the amount that we can raise the
2585 * usable window based on the following constraints
2587 * 1. The window can never be shrunk once it is offered (RFC 793)
2588 * 2. We limit memory per socket
2591 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2592 * RECV.NEXT + RCV.WIN fixed until:
2593 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2595 * i.e. don't raise the right edge of the window until you can raise
2596 * it at least MSS bytes.
2598 * Unfortunately, the recommended algorithm breaks header prediction,
2599 * since header prediction assumes th->window stays fixed.
2601 * Strictly speaking, keeping th->window fixed violates the receiver
2602 * side SWS prevention criteria. The problem is that under this rule
2603 * a stream of single byte packets will cause the right side of the
2604 * window to always advance by a single byte.
2606 * Of course, if the sender implements sender side SWS prevention
2607 * then this will not be a problem.
2609 * BSD seems to make the following compromise:
2611 * If the free space is less than the 1/4 of the maximum
2612 * space available and the free space is less than 1/2 mss,
2613 * then set the window to 0.
2614 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2615 * Otherwise, just prevent the window from shrinking
2616 * and from being larger than the largest representable value.
2618 * This prevents incremental opening of the window in the regime
2619 * where TCP is limited by the speed of the reader side taking
2620 * data out of the TCP receive queue. It does nothing about
2621 * those cases where the window is constrained on the sender side
2622 * because the pipeline is full.
2624 * BSD also seems to "accidentally" limit itself to windows that are a
2625 * multiple of MSS, at least until the free space gets quite small.
2626 * This would appear to be a side effect of the mbuf implementation.
2627 * Combining these two algorithms results in the observed behavior
2628 * of having a fixed window size at almost all times.
2630 * Below we obtain similar behavior by forcing the offered window to
2631 * a multiple of the mss when it is feasible to do so.
2633 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2634 * Regular options like TIMESTAMP are taken into account.
2636 u32
__tcp_select_window(struct sock
*sk
)
2638 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2639 struct tcp_sock
*tp
= tcp_sk(sk
);
2640 /* MSS for the peer's data. Previous versions used mss_clamp
2641 * here. I don't know if the value based on our guesses
2642 * of peer's MSS is better for the performance. It's more correct
2643 * but may be worse for the performance because of rcv_mss
2644 * fluctuations. --SAW 1998/11/1
2646 int mss
= icsk
->icsk_ack
.rcv_mss
;
2647 int free_space
= tcp_space(sk
);
2648 int allowed_space
= tcp_full_space(sk
);
2649 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2652 if (unlikely(mss
> full_space
)) {
2657 if (free_space
< (full_space
>> 1)) {
2658 icsk
->icsk_ack
.quick
= 0;
2660 if (tcp_under_memory_pressure(sk
))
2661 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2664 /* free_space might become our new window, make sure we don't
2665 * increase it due to wscale.
2667 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2669 /* if free space is less than mss estimate, or is below 1/16th
2670 * of the maximum allowed, try to move to zero-window, else
2671 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2672 * new incoming data is dropped due to memory limits.
2673 * With large window, mss test triggers way too late in order
2674 * to announce zero window in time before rmem limit kicks in.
2676 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2680 if (free_space
> tp
->rcv_ssthresh
)
2681 free_space
= tp
->rcv_ssthresh
;
2683 /* Don't do rounding if we are using window scaling, since the
2684 * scaled window will not line up with the MSS boundary anyway.
2686 if (tp
->rx_opt
.rcv_wscale
) {
2687 window
= free_space
;
2689 /* Advertise enough space so that it won't get scaled away.
2690 * Import case: prevent zero window announcement if
2691 * 1<<rcv_wscale > mss.
2693 window
= ALIGN(window
, (1 << tp
->rx_opt
.rcv_wscale
));
2695 window
= tp
->rcv_wnd
;
2696 /* Get the largest window that is a nice multiple of mss.
2697 * Window clamp already applied above.
2698 * If our current window offering is within 1 mss of the
2699 * free space we just keep it. This prevents the divide
2700 * and multiply from happening most of the time.
2701 * We also don't do any window rounding when the free space
2704 if (window
<= free_space
- mss
|| window
> free_space
)
2705 window
= rounddown(free_space
, mss
);
2706 else if (mss
== full_space
&&
2707 free_space
> window
+ (full_space
>> 1))
2708 window
= free_space
;
2714 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2715 const struct sk_buff
*next_skb
)
2717 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2718 const struct skb_shared_info
*next_shinfo
=
2719 skb_shinfo(next_skb
);
2720 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2722 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2723 shinfo
->tskey
= next_shinfo
->tskey
;
2724 TCP_SKB_CB(skb
)->txstamp_ack
|=
2725 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2729 /* Collapses two adjacent SKB's during retransmission. */
2730 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2732 struct tcp_sock
*tp
= tcp_sk(sk
);
2733 struct sk_buff
*next_skb
= skb_rb_next(skb
);
2734 int skb_size
, next_skb_size
;
2736 skb_size
= skb
->len
;
2737 next_skb_size
= next_skb
->len
;
2739 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2741 if (next_skb_size
) {
2742 if (next_skb_size
<= skb_availroom(skb
))
2743 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2745 else if (!skb_shift(skb
, next_skb
, next_skb_size
))
2748 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2750 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2751 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2753 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2754 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2756 /* Update sequence range on original skb. */
2757 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2759 /* Merge over control information. This moves PSH/FIN etc. over */
2760 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2762 /* All done, get rid of second SKB and account for it so
2763 * packet counting does not break.
2765 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2766 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2768 /* changed transmit queue under us so clear hints */
2769 tcp_clear_retrans_hints_partial(tp
);
2770 if (next_skb
== tp
->retransmit_skb_hint
)
2771 tp
->retransmit_skb_hint
= skb
;
2773 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2775 tcp_skb_collapse_tstamp(skb
, next_skb
);
2777 tcp_rtx_queue_unlink_and_free(next_skb
, sk
);
2781 /* Check if coalescing SKBs is legal. */
2782 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2784 if (tcp_skb_pcount(skb
) > 1)
2786 if (skb_cloned(skb
))
2788 /* Some heuristics for collapsing over SACK'd could be invented */
2789 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2795 /* Collapse packets in the retransmit queue to make to create
2796 * less packets on the wire. This is only done on retransmission.
2798 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2801 struct tcp_sock
*tp
= tcp_sk(sk
);
2802 struct sk_buff
*skb
= to
, *tmp
;
2805 if (!sock_net(sk
)->ipv4
.sysctl_tcp_retrans_collapse
)
2807 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2810 skb_rbtree_walk_from_safe(skb
, tmp
) {
2811 if (!tcp_can_collapse(sk
, skb
))
2814 if (!tcp_skb_can_collapse_to(to
))
2827 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2830 if (!tcp_collapse_retrans(sk
, to
))
2835 /* This retransmits one SKB. Policy decisions and retransmit queue
2836 * state updates are done by the caller. Returns non-zero if an
2837 * error occurred which prevented the send.
2839 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2841 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2842 struct tcp_sock
*tp
= tcp_sk(sk
);
2843 unsigned int cur_mss
;
2847 /* Inconclusive MTU probe */
2848 if (icsk
->icsk_mtup
.probe_size
)
2849 icsk
->icsk_mtup
.probe_size
= 0;
2851 /* Do not sent more than we queued. 1/4 is reserved for possible
2852 * copying overhead: fragmentation, tunneling, mangling etc.
2854 if (refcount_read(&sk
->sk_wmem_alloc
) >
2855 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2859 if (skb_still_in_host_queue(sk
, skb
))
2862 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2863 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2865 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2869 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2870 return -EHOSTUNREACH
; /* Routing failure or similar. */
2872 cur_mss
= tcp_current_mss(sk
);
2874 /* If receiver has shrunk his window, and skb is out of
2875 * new window, do not retransmit it. The exception is the
2876 * case, when window is shrunk to zero. In this case
2877 * our retransmit serves as a zero window probe.
2879 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2880 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2883 len
= cur_mss
* segs
;
2884 if (skb
->len
> len
) {
2885 if (tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
, len
,
2886 cur_mss
, GFP_ATOMIC
))
2887 return -ENOMEM
; /* We'll try again later. */
2889 if (skb_unclone(skb
, GFP_ATOMIC
))
2892 diff
= tcp_skb_pcount(skb
);
2893 tcp_set_skb_tso_segs(skb
, cur_mss
);
2894 diff
-= tcp_skb_pcount(skb
);
2896 tcp_adjust_pcount(sk
, skb
, diff
);
2897 if (skb
->len
< cur_mss
)
2898 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2901 /* RFC3168, section 6.1.1.1. ECN fallback */
2902 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2903 tcp_ecn_clear_syn(sk
, skb
);
2905 /* Update global and local TCP statistics. */
2906 segs
= tcp_skb_pcount(skb
);
2907 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
2908 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2909 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2910 tp
->total_retrans
+= segs
;
2912 /* make sure skb->data is aligned on arches that require it
2913 * and check if ack-trimming & collapsing extended the headroom
2914 * beyond what csum_start can cover.
2916 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2917 skb_headroom(skb
) >= 0xFFFF)) {
2918 struct sk_buff
*nskb
;
2920 tcp_skb_tsorted_save(skb
) {
2921 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2922 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2924 } tcp_skb_tsorted_restore(skb
);
2927 tcp_update_skb_after_send(tp
, skb
);
2928 tcp_rate_skb_sent(sk
, skb
);
2931 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2934 if (BPF_SOCK_OPS_TEST_FLAG(tp
, BPF_SOCK_OPS_RETRANS_CB_FLAG
))
2935 tcp_call_bpf_3arg(sk
, BPF_SOCK_OPS_RETRANS_CB
,
2936 TCP_SKB_CB(skb
)->seq
, segs
, err
);
2939 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2940 trace_tcp_retransmit_skb(sk
, skb
);
2941 } else if (err
!= -EBUSY
) {
2942 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2947 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2949 struct tcp_sock
*tp
= tcp_sk(sk
);
2950 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
2953 #if FASTRETRANS_DEBUG > 0
2954 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2955 net_dbg_ratelimited("retrans_out leaked\n");
2958 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2959 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2961 /* Save stamp of the first retransmit. */
2962 if (!tp
->retrans_stamp
)
2963 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2967 if (tp
->undo_retrans
< 0)
2968 tp
->undo_retrans
= 0;
2969 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2973 /* This gets called after a retransmit timeout, and the initially
2974 * retransmitted data is acknowledged. It tries to continue
2975 * resending the rest of the retransmit queue, until either
2976 * we've sent it all or the congestion window limit is reached.
2978 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2980 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2981 struct sk_buff
*skb
, *rtx_head
, *hole
= NULL
;
2982 struct tcp_sock
*tp
= tcp_sk(sk
);
2986 if (!tp
->packets_out
)
2989 rtx_head
= tcp_rtx_queue_head(sk
);
2990 skb
= tp
->retransmit_skb_hint
?: rtx_head
;
2991 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
2992 skb_rbtree_walk_from(skb
) {
2996 if (tcp_pacing_check(sk
))
2999 /* we could do better than to assign each time */
3001 tp
->retransmit_skb_hint
= skb
;
3003 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
3006 sacked
= TCP_SKB_CB(skb
)->sacked
;
3007 /* In case tcp_shift_skb_data() have aggregated large skbs,
3008 * we need to make sure not sending too bigs TSO packets
3010 segs
= min_t(int, segs
, max_segs
);
3012 if (tp
->retrans_out
>= tp
->lost_out
) {
3014 } else if (!(sacked
& TCPCB_LOST
)) {
3015 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
3020 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3021 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
3023 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
3026 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
3029 if (tcp_small_queue_check(sk
, skb
, 1))
3032 if (tcp_retransmit_skb(sk
, skb
, segs
))
3035 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
3037 if (tcp_in_cwnd_reduction(sk
))
3038 tp
->prr_out
+= tcp_skb_pcount(skb
);
3040 if (skb
== rtx_head
&&
3041 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
3042 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3043 inet_csk(sk
)->icsk_rto
,
3048 /* We allow to exceed memory limits for FIN packets to expedite
3049 * connection tear down and (memory) recovery.
3050 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3051 * or even be forced to close flow without any FIN.
3052 * In general, we want to allow one skb per socket to avoid hangs
3053 * with edge trigger epoll()
3055 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
3059 if (size
<= sk
->sk_forward_alloc
)
3061 amt
= sk_mem_pages(size
);
3062 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
3063 sk_memory_allocated_add(sk
, amt
);
3065 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
3066 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
3069 /* Send a FIN. The caller locks the socket for us.
3070 * We should try to send a FIN packet really hard, but eventually give up.
3072 void tcp_send_fin(struct sock
*sk
)
3074 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
3075 struct tcp_sock
*tp
= tcp_sk(sk
);
3077 /* Optimization, tack on the FIN if we have one skb in write queue and
3078 * this skb was not yet sent, or we are under memory pressure.
3079 * Note: in the latter case, FIN packet will be sent after a timeout,
3080 * as TCP stack thinks it has already been transmitted.
3082 if (!tskb
&& tcp_under_memory_pressure(sk
))
3083 tskb
= skb_rb_last(&sk
->tcp_rtx_queue
);
3087 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
3088 TCP_SKB_CB(tskb
)->end_seq
++;
3090 if (tcp_write_queue_empty(sk
)) {
3091 /* This means tskb was already sent.
3092 * Pretend we included the FIN on previous transmit.
3093 * We need to set tp->snd_nxt to the value it would have
3094 * if FIN had been sent. This is because retransmit path
3095 * does not change tp->snd_nxt.
3101 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
3102 if (unlikely(!skb
)) {
3107 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
3108 skb_reserve(skb
, MAX_TCP_HEADER
);
3109 sk_forced_mem_schedule(sk
, skb
->truesize
);
3110 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3111 tcp_init_nondata_skb(skb
, tp
->write_seq
,
3112 TCPHDR_ACK
| TCPHDR_FIN
);
3113 tcp_queue_skb(sk
, skb
);
3115 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
3118 /* We get here when a process closes a file descriptor (either due to
3119 * an explicit close() or as a byproduct of exit()'ing) and there
3120 * was unread data in the receive queue. This behavior is recommended
3121 * by RFC 2525, section 2.17. -DaveM
3123 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3125 struct sk_buff
*skb
;
3127 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3129 /* NOTE: No TCP options attached and we never retransmit this. */
3130 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3132 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3136 /* Reserve space for headers and prepare control bits. */
3137 skb_reserve(skb
, MAX_TCP_HEADER
);
3138 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3139 TCPHDR_ACK
| TCPHDR_RST
);
3140 tcp_mstamp_refresh(tcp_sk(sk
));
3142 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3143 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3145 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3146 * skb here is different to the troublesome skb, so use NULL
3148 trace_tcp_send_reset(sk
, NULL
);
3151 /* Send a crossed SYN-ACK during socket establishment.
3152 * WARNING: This routine must only be called when we have already sent
3153 * a SYN packet that crossed the incoming SYN that caused this routine
3154 * to get called. If this assumption fails then the initial rcv_wnd
3155 * and rcv_wscale values will not be correct.
3157 int tcp_send_synack(struct sock
*sk
)
3159 struct sk_buff
*skb
;
3161 skb
= tcp_rtx_queue_head(sk
);
3162 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3163 pr_err("%s: wrong queue state\n", __func__
);
3166 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3167 if (skb_cloned(skb
)) {
3168 struct sk_buff
*nskb
;
3170 tcp_skb_tsorted_save(skb
) {
3171 nskb
= skb_copy(skb
, GFP_ATOMIC
);
3172 } tcp_skb_tsorted_restore(skb
);
3175 INIT_LIST_HEAD(&nskb
->tcp_tsorted_anchor
);
3176 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3177 __skb_header_release(nskb
);
3178 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, nskb
);
3179 sk
->sk_wmem_queued
+= nskb
->truesize
;
3180 sk_mem_charge(sk
, nskb
->truesize
);
3184 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3185 tcp_ecn_send_synack(sk
, skb
);
3187 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3191 * tcp_make_synack - Prepare a SYN-ACK.
3192 * sk: listener socket
3193 * dst: dst entry attached to the SYNACK
3194 * req: request_sock pointer
3196 * Allocate one skb and build a SYNACK packet.
3197 * @dst is consumed : Caller should not use it again.
3199 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3200 struct request_sock
*req
,
3201 struct tcp_fastopen_cookie
*foc
,
3202 enum tcp_synack_type synack_type
)
3204 struct inet_request_sock
*ireq
= inet_rsk(req
);
3205 const struct tcp_sock
*tp
= tcp_sk(sk
);
3206 struct tcp_md5sig_key
*md5
= NULL
;
3207 struct tcp_out_options opts
;
3208 struct sk_buff
*skb
;
3209 int tcp_header_size
;
3213 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3214 if (unlikely(!skb
)) {
3218 /* Reserve space for headers. */
3219 skb_reserve(skb
, MAX_TCP_HEADER
);
3221 switch (synack_type
) {
3222 case TCP_SYNACK_NORMAL
:
3223 skb_set_owner_w(skb
, req_to_sk(req
));
3225 case TCP_SYNACK_COOKIE
:
3226 /* Under synflood, we do not attach skb to a socket,
3227 * to avoid false sharing.
3230 case TCP_SYNACK_FASTOPEN
:
3231 /* sk is a const pointer, because we want to express multiple
3232 * cpu might call us concurrently.
3233 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3235 skb_set_owner_w(skb
, (struct sock
*)sk
);
3238 skb_dst_set(skb
, dst
);
3240 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3242 memset(&opts
, 0, sizeof(opts
));
3243 #ifdef CONFIG_SYN_COOKIES
3244 if (unlikely(req
->cookie_ts
))
3245 skb
->skb_mstamp
= cookie_init_timestamp(req
);
3248 skb
->skb_mstamp
= tcp_clock_us();
3250 #ifdef CONFIG_TCP_MD5SIG
3252 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3254 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3255 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, md5
,
3258 skb_push(skb
, tcp_header_size
);
3259 skb_reset_transport_header(skb
);
3261 th
= (struct tcphdr
*)skb
->data
;
3262 memset(th
, 0, sizeof(struct tcphdr
));
3265 tcp_ecn_make_synack(req
, th
);
3266 th
->source
= htons(ireq
->ir_num
);
3267 th
->dest
= ireq
->ir_rmt_port
;
3268 skb
->mark
= ireq
->ir_mark
;
3269 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3270 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3271 /* XXX data is queued and acked as is. No buffer/window check */
3272 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3274 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3275 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3276 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3277 th
->doff
= (tcp_header_size
>> 2);
3278 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3280 #ifdef CONFIG_TCP_MD5SIG
3281 /* Okay, we have all we need - do the md5 hash if needed */
3283 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3284 md5
, req_to_sk(req
), skb
);
3288 /* Do not fool tcpdump (if any), clean our debris */
3292 EXPORT_SYMBOL(tcp_make_synack
);
3294 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3296 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3297 const struct tcp_congestion_ops
*ca
;
3298 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3300 if (ca_key
== TCP_CA_UNSPEC
)
3304 ca
= tcp_ca_find_key(ca_key
);
3305 if (likely(ca
&& try_module_get(ca
->owner
))) {
3306 module_put(icsk
->icsk_ca_ops
->owner
);
3307 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3308 icsk
->icsk_ca_ops
= ca
;
3313 /* Do all connect socket setups that can be done AF independent. */
3314 static void tcp_connect_init(struct sock
*sk
)
3316 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3317 struct tcp_sock
*tp
= tcp_sk(sk
);
3321 /* We'll fix this up when we get a response from the other end.
3322 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3324 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3325 if (sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
)
3326 tp
->tcp_header_len
+= TCPOLEN_TSTAMP_ALIGNED
;
3328 #ifdef CONFIG_TCP_MD5SIG
3329 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3330 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3333 /* If user gave his TCP_MAXSEG, record it to clamp */
3334 if (tp
->rx_opt
.user_mss
)
3335 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3338 tcp_sync_mss(sk
, dst_mtu(dst
));
3340 tcp_ca_dst_init(sk
, dst
);
3342 if (!tp
->window_clamp
)
3343 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3344 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3346 tcp_initialize_rcv_mss(sk
);
3348 /* limit the window selection if the user enforce a smaller rx buffer */
3349 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3350 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3351 tp
->window_clamp
= tcp_full_space(sk
);
3353 rcv_wnd
= tcp_rwnd_init_bpf(sk
);
3355 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
3357 tcp_select_initial_window(sk
, tcp_full_space(sk
),
3358 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3361 sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
,
3365 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3366 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3369 sock_reset_flag(sk
, SOCK_DONE
);
3372 tp
->snd_una
= tp
->write_seq
;
3373 tp
->snd_sml
= tp
->write_seq
;
3374 tp
->snd_up
= tp
->write_seq
;
3375 tp
->snd_nxt
= tp
->write_seq
;
3377 if (likely(!tp
->repair
))
3380 tp
->rcv_tstamp
= tcp_jiffies32
;
3381 tp
->rcv_wup
= tp
->rcv_nxt
;
3382 tp
->copied_seq
= tp
->rcv_nxt
;
3384 inet_csk(sk
)->icsk_rto
= tcp_timeout_init(sk
);
3385 inet_csk(sk
)->icsk_retransmits
= 0;
3386 tcp_clear_retrans(tp
);
3389 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3391 struct tcp_sock
*tp
= tcp_sk(sk
);
3392 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3394 tcb
->end_seq
+= skb
->len
;
3395 __skb_header_release(skb
);
3396 sk
->sk_wmem_queued
+= skb
->truesize
;
3397 sk_mem_charge(sk
, skb
->truesize
);
3398 tp
->write_seq
= tcb
->end_seq
;
3399 tp
->packets_out
+= tcp_skb_pcount(skb
);
3402 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3403 * queue a data-only packet after the regular SYN, such that regular SYNs
3404 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3405 * only the SYN sequence, the data are retransmitted in the first ACK.
3406 * If cookie is not cached or other error occurs, falls back to send a
3407 * regular SYN with Fast Open cookie request option.
3409 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3411 struct tcp_sock
*tp
= tcp_sk(sk
);
3412 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3414 struct sk_buff
*syn_data
;
3416 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3417 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3420 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3421 * user-MSS. Reserve maximum option space for middleboxes that add
3422 * private TCP options. The cost is reduced data space in SYN :(
3424 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3426 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3427 MAX_TCP_OPTION_SPACE
;
3429 space
= min_t(size_t, space
, fo
->size
);
3431 /* limit to order-0 allocations */
3432 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3434 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3437 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3438 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3440 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3441 &fo
->data
->msg_iter
);
3442 if (unlikely(!copied
)) {
3443 tcp_skb_tsorted_anchor_cleanup(syn_data
);
3444 kfree_skb(syn_data
);
3447 if (copied
!= space
) {
3448 skb_trim(syn_data
, copied
);
3452 /* No more data pending in inet_wait_for_connect() */
3453 if (space
== fo
->size
)
3457 tcp_connect_queue_skb(sk
, syn_data
);
3459 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3461 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3463 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3465 /* Now full SYN+DATA was cloned and sent (or not),
3466 * remove the SYN from the original skb (syn_data)
3467 * we keep in write queue in case of a retransmit, as we
3468 * also have the SYN packet (with no data) in the same queue.
3470 TCP_SKB_CB(syn_data
)->seq
++;
3471 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3473 tp
->syn_data
= (fo
->copied
> 0);
3474 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, syn_data
);
3475 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3479 /* data was not sent, put it in write_queue */
3480 __skb_queue_tail(&sk
->sk_write_queue
, syn_data
);
3481 tp
->packets_out
-= tcp_skb_pcount(syn_data
);
3484 /* Send a regular SYN with Fast Open cookie request option */
3485 if (fo
->cookie
.len
> 0)
3487 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3489 tp
->syn_fastopen
= 0;
3491 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3495 /* Build a SYN and send it off. */
3496 int tcp_connect(struct sock
*sk
)
3498 struct tcp_sock
*tp
= tcp_sk(sk
);
3499 struct sk_buff
*buff
;
3502 tcp_call_bpf(sk
, BPF_SOCK_OPS_TCP_CONNECT_CB
, 0, NULL
);
3504 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3505 return -EHOSTUNREACH
; /* Routing failure or similar. */
3507 tcp_connect_init(sk
);
3509 if (unlikely(tp
->repair
)) {
3510 tcp_finish_connect(sk
, NULL
);
3514 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3515 if (unlikely(!buff
))
3518 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3519 tcp_mstamp_refresh(tp
);
3520 tp
->retrans_stamp
= tcp_time_stamp(tp
);
3521 tcp_connect_queue_skb(sk
, buff
);
3522 tcp_ecn_send_syn(sk
, buff
);
3523 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
3525 /* Send off SYN; include data in Fast Open. */
3526 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3527 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3528 if (err
== -ECONNREFUSED
)
3531 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3532 * in order to make this packet get counted in tcpOutSegs.
3534 tp
->snd_nxt
= tp
->write_seq
;
3535 tp
->pushed_seq
= tp
->write_seq
;
3536 buff
= tcp_send_head(sk
);
3537 if (unlikely(buff
)) {
3538 tp
->snd_nxt
= TCP_SKB_CB(buff
)->seq
;
3539 tp
->pushed_seq
= TCP_SKB_CB(buff
)->seq
;
3541 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3543 /* Timer for repeating the SYN until an answer. */
3544 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3545 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3548 EXPORT_SYMBOL(tcp_connect
);
3550 /* Send out a delayed ack, the caller does the policy checking
3551 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3554 void tcp_send_delayed_ack(struct sock
*sk
)
3556 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3557 int ato
= icsk
->icsk_ack
.ato
;
3558 unsigned long timeout
;
3560 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3562 if (ato
> TCP_DELACK_MIN
) {
3563 const struct tcp_sock
*tp
= tcp_sk(sk
);
3564 int max_ato
= HZ
/ 2;
3566 if (icsk
->icsk_ack
.pingpong
||
3567 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3568 max_ato
= TCP_DELACK_MAX
;
3570 /* Slow path, intersegment interval is "high". */
3572 /* If some rtt estimate is known, use it to bound delayed ack.
3573 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3577 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3584 ato
= min(ato
, max_ato
);
3587 /* Stay within the limit we were given */
3588 timeout
= jiffies
+ ato
;
3590 /* Use new timeout only if there wasn't a older one earlier. */
3591 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3592 /* If delack timer was blocked or is about to expire,
3595 if (icsk
->icsk_ack
.blocked
||
3596 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3601 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3602 timeout
= icsk
->icsk_ack
.timeout
;
3604 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3605 icsk
->icsk_ack
.timeout
= timeout
;
3606 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3609 /* This routine sends an ack and also updates the window. */
3610 void tcp_send_ack(struct sock
*sk
)
3612 struct sk_buff
*buff
;
3614 /* If we have been reset, we may not send again. */
3615 if (sk
->sk_state
== TCP_CLOSE
)
3618 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3620 /* We are not putting this on the write queue, so
3621 * tcp_transmit_skb() will set the ownership to this
3624 buff
= alloc_skb(MAX_TCP_HEADER
,
3625 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3626 if (unlikely(!buff
)) {
3627 inet_csk_schedule_ack(sk
);
3628 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3629 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3630 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3634 /* Reserve space for headers and prepare control bits. */
3635 skb_reserve(buff
, MAX_TCP_HEADER
);
3636 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3638 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3640 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3642 skb_set_tcp_pure_ack(buff
);
3644 /* Send it off, this clears delayed acks for us. */
3645 tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0);
3647 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3649 /* This routine sends a packet with an out of date sequence
3650 * number. It assumes the other end will try to ack it.
3652 * Question: what should we make while urgent mode?
3653 * 4.4BSD forces sending single byte of data. We cannot send
3654 * out of window data, because we have SND.NXT==SND.MAX...
3656 * Current solution: to send TWO zero-length segments in urgent mode:
3657 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3658 * out-of-date with SND.UNA-1 to probe window.
3660 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3662 struct tcp_sock
*tp
= tcp_sk(sk
);
3663 struct sk_buff
*skb
;
3665 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3666 skb
= alloc_skb(MAX_TCP_HEADER
,
3667 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3671 /* Reserve space for headers and set control bits. */
3672 skb_reserve(skb
, MAX_TCP_HEADER
);
3673 /* Use a previous sequence. This should cause the other
3674 * end to send an ack. Don't queue or clone SKB, just
3677 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3678 NET_INC_STATS(sock_net(sk
), mib
);
3679 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3682 /* Called from setsockopt( ... TCP_REPAIR ) */
3683 void tcp_send_window_probe(struct sock
*sk
)
3685 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3686 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3687 tcp_mstamp_refresh(tcp_sk(sk
));
3688 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3692 /* Initiate keepalive or window probe from timer. */
3693 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3695 struct tcp_sock
*tp
= tcp_sk(sk
);
3696 struct sk_buff
*skb
;
3698 if (sk
->sk_state
== TCP_CLOSE
)
3701 skb
= tcp_send_head(sk
);
3702 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3704 unsigned int mss
= tcp_current_mss(sk
);
3705 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3707 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3708 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3710 /* We are probing the opening of a window
3711 * but the window size is != 0
3712 * must have been a result SWS avoidance ( sender )
3714 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3716 seg_size
= min(seg_size
, mss
);
3717 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3718 if (tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
3719 skb
, seg_size
, mss
, GFP_ATOMIC
))
3721 } else if (!tcp_skb_pcount(skb
))
3722 tcp_set_skb_tso_segs(skb
, mss
);
3724 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3725 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3727 tcp_event_new_data_sent(sk
, skb
);
3730 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3731 tcp_xmit_probe_skb(sk
, 1, mib
);
3732 return tcp_xmit_probe_skb(sk
, 0, mib
);
3736 /* A window probe timeout has occurred. If window is not closed send
3737 * a partial packet else a zero probe.
3739 void tcp_send_probe0(struct sock
*sk
)
3741 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3742 struct tcp_sock
*tp
= tcp_sk(sk
);
3743 struct net
*net
= sock_net(sk
);
3744 unsigned long probe_max
;
3747 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3749 if (tp
->packets_out
|| tcp_write_queue_empty(sk
)) {
3750 /* Cancel probe timer, if it is not required. */
3751 icsk
->icsk_probes_out
= 0;
3752 icsk
->icsk_backoff
= 0;
3757 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3758 icsk
->icsk_backoff
++;
3759 icsk
->icsk_probes_out
++;
3760 probe_max
= TCP_RTO_MAX
;
3762 /* If packet was not sent due to local congestion,
3763 * do not backoff and do not remember icsk_probes_out.
3764 * Let local senders to fight for local resources.
3766 * Use accumulated backoff yet.
3768 if (!icsk
->icsk_probes_out
)
3769 icsk
->icsk_probes_out
= 1;
3770 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3772 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3773 tcp_probe0_when(sk
, probe_max
),
3777 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3779 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3783 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3784 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3786 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3787 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3788 if (unlikely(tcp_passive_fastopen(sk
)))
3789 tcp_sk(sk
)->total_retrans
++;
3790 trace_tcp_retransmit_synack(sk
, req
);
3794 EXPORT_SYMBOL(tcp_rtx_synack
);