Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / ipv4 / tcp_output.c
blob6818042cd8a9a1778f54637861647091afd9a769
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
46 #include <trace/events/tcp.h>
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
63 tp->packets_out += tcp_skb_pcount(skb);
64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 tcp_rearm_rto(sk);
67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 tcp_skb_pcount(skb));
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72 * window scaling factor due to loss of precision.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
80 const struct tcp_sock *tp = tcp_sk(sk);
82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 (tp->rx_opt.wscale_ok &&
84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 return tp->snd_nxt;
86 else
87 return tcp_wnd_end(tp);
90 /* Calculate mss to advertise in SYN segment.
91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
93 * 1. It is independent of path mtu.
94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96 * attached devices, because some buggy hosts are confused by
97 * large MSS.
98 * 4. We do not make 3, we advertise MSS, calculated from first
99 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
100 * This may be overridden via information stored in routing table.
101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102 * probably even Jumbo".
104 static __u16 tcp_advertise_mss(struct sock *sk)
106 struct tcp_sock *tp = tcp_sk(sk);
107 const struct dst_entry *dst = __sk_dst_get(sk);
108 int mss = tp->advmss;
110 if (dst) {
111 unsigned int metric = dst_metric_advmss(dst);
113 if (metric < mss) {
114 mss = metric;
115 tp->advmss = mss;
119 return (__u16)mss;
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123 * This is the first part of cwnd validation mechanism.
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
127 struct tcp_sock *tp = tcp_sk(sk);
128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 u32 cwnd = tp->snd_cwnd;
131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
133 tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 restart_cwnd = min(restart_cwnd, cwnd);
136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 cwnd >>= 1;
138 tp->snd_cwnd = max(cwnd, restart_cwnd);
139 tp->snd_cwnd_stamp = tcp_jiffies32;
140 tp->snd_cwnd_used = 0;
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 struct sock *sk)
147 struct inet_connection_sock *icsk = inet_csk(sk);
148 const u32 now = tcp_jiffies32;
150 if (tcp_packets_in_flight(tp) == 0)
151 tcp_ca_event(sk, CA_EVENT_TX_START);
153 tp->lsndtime = now;
155 /* If it is a reply for ato after last received
156 * packet, enter pingpong mode.
158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 icsk->icsk_ack.pingpong = 1;
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
165 tcp_dec_quickack_mode(sk, pkts);
166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
170 u32 tcp_default_init_rwnd(u32 mss)
172 /* Initial receive window should be twice of TCP_INIT_CWND to
173 * enable proper sending of new unsent data during fast recovery
174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
175 * limit when mss is larger than 1460.
177 u32 init_rwnd = TCP_INIT_CWND * 2;
179 if (mss > 1460)
180 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
181 return init_rwnd;
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
196 unsigned int space = (__space < 0 ? 0 : __space);
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
201 space = min(*window_clamp, space);
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = rounddown(space, mss);
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window */
223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
224 space = max_t(u32, space, sysctl_rmem_max);
225 space = min_t(u32, space, *window_clamp);
226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
227 space >>= 1;
228 (*rcv_wscale)++;
232 if (mss > (1 << *rcv_wscale)) {
233 if (!init_rcv_wnd) /* Use default unless specified otherwise */
234 init_rcv_wnd = tcp_default_init_rwnd(mss);
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 /* Set the clamp no higher than max representable value */
239 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
241 EXPORT_SYMBOL(tcp_select_initial_window);
243 /* Chose a new window to advertise, update state in tcp_sock for the
244 * socket, and return result with RFC1323 scaling applied. The return
245 * value can be stuffed directly into th->window for an outgoing
246 * frame.
248 static u16 tcp_select_window(struct sock *sk)
250 struct tcp_sock *tp = tcp_sk(sk);
251 u32 old_win = tp->rcv_wnd;
252 u32 cur_win = tcp_receive_window(tp);
253 u32 new_win = __tcp_select_window(sk);
255 /* Never shrink the offered window */
256 if (new_win < cur_win) {
257 /* Danger Will Robinson!
258 * Don't update rcv_wup/rcv_wnd here or else
259 * we will not be able to advertise a zero
260 * window in time. --DaveM
262 * Relax Will Robinson.
264 if (new_win == 0)
265 NET_INC_STATS(sock_net(sk),
266 LINUX_MIB_TCPWANTZEROWINDOWADV);
267 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
269 tp->rcv_wnd = new_win;
270 tp->rcv_wup = tp->rcv_nxt;
272 /* Make sure we do not exceed the maximum possible
273 * scaled window.
275 if (!tp->rx_opt.rcv_wscale &&
276 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
277 new_win = min(new_win, MAX_TCP_WINDOW);
278 else
279 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
281 /* RFC1323 scaling applied */
282 new_win >>= tp->rx_opt.rcv_wscale;
284 /* If we advertise zero window, disable fast path. */
285 if (new_win == 0) {
286 tp->pred_flags = 0;
287 if (old_win)
288 NET_INC_STATS(sock_net(sk),
289 LINUX_MIB_TCPTOZEROWINDOWADV);
290 } else if (old_win == 0) {
291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
294 return new_win;
297 /* Packet ECN state for a SYN-ACK */
298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
300 const struct tcp_sock *tp = tcp_sk(sk);
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 if (!(tp->ecn_flags & TCP_ECN_OK))
304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 else if (tcp_ca_needs_ecn(sk) ||
306 tcp_bpf_ca_needs_ecn(sk))
307 INET_ECN_xmit(sk);
310 /* Packet ECN state for a SYN. */
311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
313 struct tcp_sock *tp = tcp_sk(sk);
314 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
315 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
316 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
318 if (!use_ecn) {
319 const struct dst_entry *dst = __sk_dst_get(sk);
321 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
322 use_ecn = true;
325 tp->ecn_flags = 0;
327 if (use_ecn) {
328 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
329 tp->ecn_flags = TCP_ECN_OK;
330 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
331 INET_ECN_xmit(sk);
335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
337 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
338 /* tp->ecn_flags are cleared at a later point in time when
339 * SYN ACK is ultimatively being received.
341 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
344 static void
345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
347 if (inet_rsk(req)->ecn_ok)
348 th->ece = 1;
351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
352 * be sent.
354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
355 struct tcphdr *th, int tcp_header_len)
357 struct tcp_sock *tp = tcp_sk(sk);
359 if (tp->ecn_flags & TCP_ECN_OK) {
360 /* Not-retransmitted data segment: set ECT and inject CWR. */
361 if (skb->len != tcp_header_len &&
362 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
363 INET_ECN_xmit(sk);
364 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
365 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
366 th->cwr = 1;
367 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
369 } else if (!tcp_ca_needs_ecn(sk)) {
370 /* ACK or retransmitted segment: clear ECT|CE */
371 INET_ECN_dontxmit(sk);
373 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
374 th->ece = 1;
378 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
379 * auto increment end seqno.
381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
383 skb->ip_summed = CHECKSUM_PARTIAL;
385 TCP_SKB_CB(skb)->tcp_flags = flags;
386 TCP_SKB_CB(skb)->sacked = 0;
388 tcp_skb_pcount_set(skb, 1);
390 TCP_SKB_CB(skb)->seq = seq;
391 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
392 seq++;
393 TCP_SKB_CB(skb)->end_seq = seq;
396 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 return tp->snd_una != tp->snd_up;
401 #define OPTION_SACK_ADVERTISE (1 << 0)
402 #define OPTION_TS (1 << 1)
403 #define OPTION_MD5 (1 << 2)
404 #define OPTION_WSCALE (1 << 3)
405 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
406 #define OPTION_SMC (1 << 9)
408 static void smc_options_write(__be32 *ptr, u16 *options)
410 #if IS_ENABLED(CONFIG_SMC)
411 if (static_branch_unlikely(&tcp_have_smc)) {
412 if (unlikely(OPTION_SMC & *options)) {
413 *ptr++ = htonl((TCPOPT_NOP << 24) |
414 (TCPOPT_NOP << 16) |
415 (TCPOPT_EXP << 8) |
416 (TCPOLEN_EXP_SMC_BASE));
417 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
420 #endif
423 struct tcp_out_options {
424 u16 options; /* bit field of OPTION_* */
425 u16 mss; /* 0 to disable */
426 u8 ws; /* window scale, 0 to disable */
427 u8 num_sack_blocks; /* number of SACK blocks to include */
428 u8 hash_size; /* bytes in hash_location */
429 __u8 *hash_location; /* temporary pointer, overloaded */
430 __u32 tsval, tsecr; /* need to include OPTION_TS */
431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
434 /* Write previously computed TCP options to the packet.
436 * Beware: Something in the Internet is very sensitive to the ordering of
437 * TCP options, we learned this through the hard way, so be careful here.
438 * Luckily we can at least blame others for their non-compliance but from
439 * inter-operability perspective it seems that we're somewhat stuck with
440 * the ordering which we have been using if we want to keep working with
441 * those broken things (not that it currently hurts anybody as there isn't
442 * particular reason why the ordering would need to be changed).
444 * At least SACK_PERM as the first option is known to lead to a disaster
445 * (but it may well be that other scenarios fail similarly).
447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
448 struct tcp_out_options *opts)
450 u16 options = opts->options; /* mungable copy */
452 if (unlikely(OPTION_MD5 & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
455 /* overload cookie hash location */
456 opts->hash_location = (__u8 *)ptr;
457 ptr += 4;
460 if (unlikely(opts->mss)) {
461 *ptr++ = htonl((TCPOPT_MSS << 24) |
462 (TCPOLEN_MSS << 16) |
463 opts->mss);
466 if (likely(OPTION_TS & options)) {
467 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
469 (TCPOLEN_SACK_PERM << 16) |
470 (TCPOPT_TIMESTAMP << 8) |
471 TCPOLEN_TIMESTAMP);
472 options &= ~OPTION_SACK_ADVERTISE;
473 } else {
474 *ptr++ = htonl((TCPOPT_NOP << 24) |
475 (TCPOPT_NOP << 16) |
476 (TCPOPT_TIMESTAMP << 8) |
477 TCPOLEN_TIMESTAMP);
479 *ptr++ = htonl(opts->tsval);
480 *ptr++ = htonl(opts->tsecr);
483 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
484 *ptr++ = htonl((TCPOPT_NOP << 24) |
485 (TCPOPT_NOP << 16) |
486 (TCPOPT_SACK_PERM << 8) |
487 TCPOLEN_SACK_PERM);
490 if (unlikely(OPTION_WSCALE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
492 (TCPOPT_WINDOW << 16) |
493 (TCPOLEN_WINDOW << 8) |
494 opts->ws);
497 if (unlikely(opts->num_sack_blocks)) {
498 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
499 tp->duplicate_sack : tp->selective_acks;
500 int this_sack;
502 *ptr++ = htonl((TCPOPT_NOP << 24) |
503 (TCPOPT_NOP << 16) |
504 (TCPOPT_SACK << 8) |
505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
506 TCPOLEN_SACK_PERBLOCK)));
508 for (this_sack = 0; this_sack < opts->num_sack_blocks;
509 ++this_sack) {
510 *ptr++ = htonl(sp[this_sack].start_seq);
511 *ptr++ = htonl(sp[this_sack].end_seq);
514 tp->rx_opt.dsack = 0;
517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
519 u8 *p = (u8 *)ptr;
520 u32 len; /* Fast Open option length */
522 if (foc->exp) {
523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
525 TCPOPT_FASTOPEN_MAGIC);
526 p += TCPOLEN_EXP_FASTOPEN_BASE;
527 } else {
528 len = TCPOLEN_FASTOPEN_BASE + foc->len;
529 *p++ = TCPOPT_FASTOPEN;
530 *p++ = len;
533 memcpy(p, foc->val, foc->len);
534 if ((len & 3) == 2) {
535 p[foc->len] = TCPOPT_NOP;
536 p[foc->len + 1] = TCPOPT_NOP;
538 ptr += (len + 3) >> 2;
541 smc_options_write(ptr, &options);
544 static void smc_set_option(const struct tcp_sock *tp,
545 struct tcp_out_options *opts,
546 unsigned int *remaining)
548 #if IS_ENABLED(CONFIG_SMC)
549 if (static_branch_unlikely(&tcp_have_smc)) {
550 if (tp->syn_smc) {
551 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
552 opts->options |= OPTION_SMC;
553 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
557 #endif
560 static void smc_set_option_cond(const struct tcp_sock *tp,
561 const struct inet_request_sock *ireq,
562 struct tcp_out_options *opts,
563 unsigned int *remaining)
565 #if IS_ENABLED(CONFIG_SMC)
566 if (static_branch_unlikely(&tcp_have_smc)) {
567 if (tp->syn_smc && ireq->smc_ok) {
568 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
569 opts->options |= OPTION_SMC;
570 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
574 #endif
577 /* Compute TCP options for SYN packets. This is not the final
578 * network wire format yet.
580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
581 struct tcp_out_options *opts,
582 struct tcp_md5sig_key **md5)
584 struct tcp_sock *tp = tcp_sk(sk);
585 unsigned int remaining = MAX_TCP_OPTION_SPACE;
586 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
588 #ifdef CONFIG_TCP_MD5SIG
589 *md5 = tp->af_specific->md5_lookup(sk, sk);
590 if (*md5) {
591 opts->options |= OPTION_MD5;
592 remaining -= TCPOLEN_MD5SIG_ALIGNED;
594 #else
595 *md5 = NULL;
596 #endif
598 /* We always get an MSS option. The option bytes which will be seen in
599 * normal data packets should timestamps be used, must be in the MSS
600 * advertised. But we subtract them from tp->mss_cache so that
601 * calculations in tcp_sendmsg are simpler etc. So account for this
602 * fact here if necessary. If we don't do this correctly, as a
603 * receiver we won't recognize data packets as being full sized when we
604 * should, and thus we won't abide by the delayed ACK rules correctly.
605 * SACKs don't matter, we never delay an ACK when we have any of those
606 * going out. */
607 opts->mss = tcp_advertise_mss(sk);
608 remaining -= TCPOLEN_MSS_ALIGNED;
610 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
611 opts->options |= OPTION_TS;
612 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
613 opts->tsecr = tp->rx_opt.ts_recent;
614 remaining -= TCPOLEN_TSTAMP_ALIGNED;
616 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
617 opts->ws = tp->rx_opt.rcv_wscale;
618 opts->options |= OPTION_WSCALE;
619 remaining -= TCPOLEN_WSCALE_ALIGNED;
621 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
622 opts->options |= OPTION_SACK_ADVERTISE;
623 if (unlikely(!(OPTION_TS & opts->options)))
624 remaining -= TCPOLEN_SACKPERM_ALIGNED;
627 if (fastopen && fastopen->cookie.len >= 0) {
628 u32 need = fastopen->cookie.len;
630 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
631 TCPOLEN_FASTOPEN_BASE;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = &fastopen->cookie;
636 remaining -= need;
637 tp->syn_fastopen = 1;
638 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
642 smc_set_option(tp, opts, &remaining);
644 return MAX_TCP_OPTION_SPACE - remaining;
647 /* Set up TCP options for SYN-ACKs. */
648 static unsigned int tcp_synack_options(const struct sock *sk,
649 struct request_sock *req,
650 unsigned int mss, struct sk_buff *skb,
651 struct tcp_out_options *opts,
652 const struct tcp_md5sig_key *md5,
653 struct tcp_fastopen_cookie *foc)
655 struct inet_request_sock *ireq = inet_rsk(req);
656 unsigned int remaining = MAX_TCP_OPTION_SPACE;
658 #ifdef CONFIG_TCP_MD5SIG
659 if (md5) {
660 opts->options |= OPTION_MD5;
661 remaining -= TCPOLEN_MD5SIG_ALIGNED;
663 /* We can't fit any SACK blocks in a packet with MD5 + TS
664 * options. There was discussion about disabling SACK
665 * rather than TS in order to fit in better with old,
666 * buggy kernels, but that was deemed to be unnecessary.
668 ireq->tstamp_ok &= !ireq->sack_ok;
670 #endif
672 /* We always send an MSS option. */
673 opts->mss = mss;
674 remaining -= TCPOLEN_MSS_ALIGNED;
676 if (likely(ireq->wscale_ok)) {
677 opts->ws = ireq->rcv_wscale;
678 opts->options |= OPTION_WSCALE;
679 remaining -= TCPOLEN_WSCALE_ALIGNED;
681 if (likely(ireq->tstamp_ok)) {
682 opts->options |= OPTION_TS;
683 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
684 opts->tsecr = req->ts_recent;
685 remaining -= TCPOLEN_TSTAMP_ALIGNED;
687 if (likely(ireq->sack_ok)) {
688 opts->options |= OPTION_SACK_ADVERTISE;
689 if (unlikely(!ireq->tstamp_ok))
690 remaining -= TCPOLEN_SACKPERM_ALIGNED;
692 if (foc != NULL && foc->len >= 0) {
693 u32 need = foc->len;
695 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
696 TCPOLEN_FASTOPEN_BASE;
697 need = (need + 3) & ~3U; /* Align to 32 bits */
698 if (remaining >= need) {
699 opts->options |= OPTION_FAST_OPEN_COOKIE;
700 opts->fastopen_cookie = foc;
701 remaining -= need;
705 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
707 return MAX_TCP_OPTION_SPACE - remaining;
710 /* Compute TCP options for ESTABLISHED sockets. This is not the
711 * final wire format yet.
713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
714 struct tcp_out_options *opts,
715 struct tcp_md5sig_key **md5)
717 struct tcp_sock *tp = tcp_sk(sk);
718 unsigned int size = 0;
719 unsigned int eff_sacks;
721 opts->options = 0;
723 #ifdef CONFIG_TCP_MD5SIG
724 *md5 = tp->af_specific->md5_lookup(sk, sk);
725 if (unlikely(*md5)) {
726 opts->options |= OPTION_MD5;
727 size += TCPOLEN_MD5SIG_ALIGNED;
729 #else
730 *md5 = NULL;
731 #endif
733 if (likely(tp->rx_opt.tstamp_ok)) {
734 opts->options |= OPTION_TS;
735 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
736 opts->tsecr = tp->rx_opt.ts_recent;
737 size += TCPOLEN_TSTAMP_ALIGNED;
740 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
741 if (unlikely(eff_sacks)) {
742 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
743 opts->num_sack_blocks =
744 min_t(unsigned int, eff_sacks,
745 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
746 TCPOLEN_SACK_PERBLOCK);
747 size += TCPOLEN_SACK_BASE_ALIGNED +
748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
751 return size;
755 /* TCP SMALL QUEUES (TSQ)
757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
758 * to reduce RTT and bufferbloat.
759 * We do this using a special skb destructor (tcp_wfree).
761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
762 * needs to be reallocated in a driver.
763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
765 * Since transmit from skb destructor is forbidden, we use a tasklet
766 * to process all sockets that eventually need to send more skbs.
767 * We use one tasklet per cpu, with its own queue of sockets.
769 struct tsq_tasklet {
770 struct tasklet_struct tasklet;
771 struct list_head head; /* queue of tcp sockets */
773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
775 static void tcp_tsq_handler(struct sock *sk)
777 if ((1 << sk->sk_state) &
778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
780 struct tcp_sock *tp = tcp_sk(sk);
782 if (tp->lost_out > tp->retrans_out &&
783 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
784 tcp_mstamp_refresh(tp);
785 tcp_xmit_retransmit_queue(sk);
788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
789 0, GFP_ATOMIC);
793 * One tasklet per cpu tries to send more skbs.
794 * We run in tasklet context but need to disable irqs when
795 * transferring tsq->head because tcp_wfree() might
796 * interrupt us (non NAPI drivers)
798 static void tcp_tasklet_func(unsigned long data)
800 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
801 LIST_HEAD(list);
802 unsigned long flags;
803 struct list_head *q, *n;
804 struct tcp_sock *tp;
805 struct sock *sk;
807 local_irq_save(flags);
808 list_splice_init(&tsq->head, &list);
809 local_irq_restore(flags);
811 list_for_each_safe(q, n, &list) {
812 tp = list_entry(q, struct tcp_sock, tsq_node);
813 list_del(&tp->tsq_node);
815 sk = (struct sock *)tp;
816 smp_mb__before_atomic();
817 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
819 if (!sk->sk_lock.owned &&
820 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
821 bh_lock_sock(sk);
822 if (!sock_owned_by_user(sk)) {
823 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
824 tcp_tsq_handler(sk);
826 bh_unlock_sock(sk);
829 sk_free(sk);
833 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
834 TCPF_WRITE_TIMER_DEFERRED | \
835 TCPF_DELACK_TIMER_DEFERRED | \
836 TCPF_MTU_REDUCED_DEFERRED)
838 * tcp_release_cb - tcp release_sock() callback
839 * @sk: socket
841 * called from release_sock() to perform protocol dependent
842 * actions before socket release.
844 void tcp_release_cb(struct sock *sk)
846 unsigned long flags, nflags;
848 /* perform an atomic operation only if at least one flag is set */
849 do {
850 flags = sk->sk_tsq_flags;
851 if (!(flags & TCP_DEFERRED_ALL))
852 return;
853 nflags = flags & ~TCP_DEFERRED_ALL;
854 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
856 if (flags & TCPF_TSQ_DEFERRED)
857 tcp_tsq_handler(sk);
859 /* Here begins the tricky part :
860 * We are called from release_sock() with :
861 * 1) BH disabled
862 * 2) sk_lock.slock spinlock held
863 * 3) socket owned by us (sk->sk_lock.owned == 1)
865 * But following code is meant to be called from BH handlers,
866 * so we should keep BH disabled, but early release socket ownership
868 sock_release_ownership(sk);
870 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
871 tcp_write_timer_handler(sk);
872 __sock_put(sk);
874 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
875 tcp_delack_timer_handler(sk);
876 __sock_put(sk);
878 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
879 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
880 __sock_put(sk);
883 EXPORT_SYMBOL(tcp_release_cb);
885 void __init tcp_tasklet_init(void)
887 int i;
889 for_each_possible_cpu(i) {
890 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
892 INIT_LIST_HEAD(&tsq->head);
893 tasklet_init(&tsq->tasklet,
894 tcp_tasklet_func,
895 (unsigned long)tsq);
900 * Write buffer destructor automatically called from kfree_skb.
901 * We can't xmit new skbs from this context, as we might already
902 * hold qdisc lock.
904 void tcp_wfree(struct sk_buff *skb)
906 struct sock *sk = skb->sk;
907 struct tcp_sock *tp = tcp_sk(sk);
908 unsigned long flags, nval, oval;
910 /* Keep one reference on sk_wmem_alloc.
911 * Will be released by sk_free() from here or tcp_tasklet_func()
913 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
915 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
916 * Wait until our queues (qdisc + devices) are drained.
917 * This gives :
918 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
919 * - chance for incoming ACK (processed by another cpu maybe)
920 * to migrate this flow (skb->ooo_okay will be eventually set)
922 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
923 goto out;
925 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
926 struct tsq_tasklet *tsq;
927 bool empty;
929 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
930 goto out;
932 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
933 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
934 if (nval != oval)
935 continue;
937 /* queue this socket to tasklet queue */
938 local_irq_save(flags);
939 tsq = this_cpu_ptr(&tsq_tasklet);
940 empty = list_empty(&tsq->head);
941 list_add(&tp->tsq_node, &tsq->head);
942 if (empty)
943 tasklet_schedule(&tsq->tasklet);
944 local_irq_restore(flags);
945 return;
947 out:
948 sk_free(sk);
951 /* Note: Called under hard irq.
952 * We can not call TCP stack right away.
954 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
956 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
957 struct sock *sk = (struct sock *)tp;
958 unsigned long nval, oval;
960 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
961 struct tsq_tasklet *tsq;
962 bool empty;
964 if (oval & TSQF_QUEUED)
965 break;
967 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
968 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
969 if (nval != oval)
970 continue;
972 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
973 break;
974 /* queue this socket to tasklet queue */
975 tsq = this_cpu_ptr(&tsq_tasklet);
976 empty = list_empty(&tsq->head);
977 list_add(&tp->tsq_node, &tsq->head);
978 if (empty)
979 tasklet_schedule(&tsq->tasklet);
980 break;
982 return HRTIMER_NORESTART;
985 /* BBR congestion control needs pacing.
986 * Same remark for SO_MAX_PACING_RATE.
987 * sch_fq packet scheduler is efficiently handling pacing,
988 * but is not always installed/used.
989 * Return true if TCP stack should pace packets itself.
991 static bool tcp_needs_internal_pacing(const struct sock *sk)
993 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
996 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
998 u64 len_ns;
999 u32 rate;
1001 if (!tcp_needs_internal_pacing(sk))
1002 return;
1003 rate = sk->sk_pacing_rate;
1004 if (!rate || rate == ~0U)
1005 return;
1007 /* Should account for header sizes as sch_fq does,
1008 * but lets make things simple.
1010 len_ns = (u64)skb->len * NSEC_PER_SEC;
1011 do_div(len_ns, rate);
1012 hrtimer_start(&tcp_sk(sk)->pacing_timer,
1013 ktime_add_ns(ktime_get(), len_ns),
1014 HRTIMER_MODE_ABS_PINNED);
1017 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1019 skb->skb_mstamp = tp->tcp_mstamp;
1020 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1023 /* This routine actually transmits TCP packets queued in by
1024 * tcp_do_sendmsg(). This is used by both the initial
1025 * transmission and possible later retransmissions.
1026 * All SKB's seen here are completely headerless. It is our
1027 * job to build the TCP header, and pass the packet down to
1028 * IP so it can do the same plus pass the packet off to the
1029 * device.
1031 * We are working here with either a clone of the original
1032 * SKB, or a fresh unique copy made by the retransmit engine.
1034 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1035 gfp_t gfp_mask)
1037 const struct inet_connection_sock *icsk = inet_csk(sk);
1038 struct inet_sock *inet;
1039 struct tcp_sock *tp;
1040 struct tcp_skb_cb *tcb;
1041 struct tcp_out_options opts;
1042 unsigned int tcp_options_size, tcp_header_size;
1043 struct sk_buff *oskb = NULL;
1044 struct tcp_md5sig_key *md5;
1045 struct tcphdr *th;
1046 int err;
1048 BUG_ON(!skb || !tcp_skb_pcount(skb));
1049 tp = tcp_sk(sk);
1051 if (clone_it) {
1052 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1053 - tp->snd_una;
1054 oskb = skb;
1056 tcp_skb_tsorted_save(oskb) {
1057 if (unlikely(skb_cloned(oskb)))
1058 skb = pskb_copy(oskb, gfp_mask);
1059 else
1060 skb = skb_clone(oskb, gfp_mask);
1061 } tcp_skb_tsorted_restore(oskb);
1063 if (unlikely(!skb))
1064 return -ENOBUFS;
1066 skb->skb_mstamp = tp->tcp_mstamp;
1068 inet = inet_sk(sk);
1069 tcb = TCP_SKB_CB(skb);
1070 memset(&opts, 0, sizeof(opts));
1072 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1073 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1074 else
1075 tcp_options_size = tcp_established_options(sk, skb, &opts,
1076 &md5);
1077 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1079 /* if no packet is in qdisc/device queue, then allow XPS to select
1080 * another queue. We can be called from tcp_tsq_handler()
1081 * which holds one reference to sk_wmem_alloc.
1083 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1084 * One way to get this would be to set skb->truesize = 2 on them.
1086 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1088 /* If we had to use memory reserve to allocate this skb,
1089 * this might cause drops if packet is looped back :
1090 * Other socket might not have SOCK_MEMALLOC.
1091 * Packets not looped back do not care about pfmemalloc.
1093 skb->pfmemalloc = 0;
1095 skb_push(skb, tcp_header_size);
1096 skb_reset_transport_header(skb);
1098 skb_orphan(skb);
1099 skb->sk = sk;
1100 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1101 skb_set_hash_from_sk(skb, sk);
1102 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1104 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1106 /* Build TCP header and checksum it. */
1107 th = (struct tcphdr *)skb->data;
1108 th->source = inet->inet_sport;
1109 th->dest = inet->inet_dport;
1110 th->seq = htonl(tcb->seq);
1111 th->ack_seq = htonl(tp->rcv_nxt);
1112 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1113 tcb->tcp_flags);
1115 th->check = 0;
1116 th->urg_ptr = 0;
1118 /* The urg_mode check is necessary during a below snd_una win probe */
1119 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1120 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1121 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1122 th->urg = 1;
1123 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1124 th->urg_ptr = htons(0xFFFF);
1125 th->urg = 1;
1129 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1130 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1131 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1132 th->window = htons(tcp_select_window(sk));
1133 tcp_ecn_send(sk, skb, th, tcp_header_size);
1134 } else {
1135 /* RFC1323: The window in SYN & SYN/ACK segments
1136 * is never scaled.
1138 th->window = htons(min(tp->rcv_wnd, 65535U));
1140 #ifdef CONFIG_TCP_MD5SIG
1141 /* Calculate the MD5 hash, as we have all we need now */
1142 if (md5) {
1143 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1144 tp->af_specific->calc_md5_hash(opts.hash_location,
1145 md5, sk, skb);
1147 #endif
1149 icsk->icsk_af_ops->send_check(sk, skb);
1151 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1152 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1154 if (skb->len != tcp_header_size) {
1155 tcp_event_data_sent(tp, sk);
1156 tp->data_segs_out += tcp_skb_pcount(skb);
1157 tcp_internal_pacing(sk, skb);
1160 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1161 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1162 tcp_skb_pcount(skb));
1164 tp->segs_out += tcp_skb_pcount(skb);
1165 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1166 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1167 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1169 /* Our usage of tstamp should remain private */
1170 skb->tstamp = 0;
1172 /* Cleanup our debris for IP stacks */
1173 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1174 sizeof(struct inet6_skb_parm)));
1176 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1178 if (unlikely(err > 0)) {
1179 tcp_enter_cwr(sk);
1180 err = net_xmit_eval(err);
1182 if (!err && oskb) {
1183 tcp_update_skb_after_send(tp, oskb);
1184 tcp_rate_skb_sent(sk, oskb);
1186 return err;
1189 /* This routine just queues the buffer for sending.
1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1192 * otherwise socket can stall.
1194 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1196 struct tcp_sock *tp = tcp_sk(sk);
1198 /* Advance write_seq and place onto the write_queue. */
1199 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1200 __skb_header_release(skb);
1201 tcp_add_write_queue_tail(sk, skb);
1202 sk->sk_wmem_queued += skb->truesize;
1203 sk_mem_charge(sk, skb->truesize);
1206 /* Initialize TSO segments for a packet. */
1207 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1209 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1210 /* Avoid the costly divide in the normal
1211 * non-TSO case.
1213 tcp_skb_pcount_set(skb, 1);
1214 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1215 } else {
1216 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1217 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1221 /* Pcount in the middle of the write queue got changed, we need to do various
1222 * tweaks to fix counters
1224 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1226 struct tcp_sock *tp = tcp_sk(sk);
1228 tp->packets_out -= decr;
1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1231 tp->sacked_out -= decr;
1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1233 tp->retrans_out -= decr;
1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1235 tp->lost_out -= decr;
1237 /* Reno case is special. Sigh... */
1238 if (tcp_is_reno(tp) && decr > 0)
1239 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1241 if (tp->lost_skb_hint &&
1242 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1244 tp->lost_cnt_hint -= decr;
1246 tcp_verify_left_out(tp);
1249 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1251 return TCP_SKB_CB(skb)->txstamp_ack ||
1252 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1255 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1257 struct skb_shared_info *shinfo = skb_shinfo(skb);
1259 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1260 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1261 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1262 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1264 shinfo->tx_flags &= ~tsflags;
1265 shinfo2->tx_flags |= tsflags;
1266 swap(shinfo->tskey, shinfo2->tskey);
1267 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1268 TCP_SKB_CB(skb)->txstamp_ack = 0;
1272 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1274 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1275 TCP_SKB_CB(skb)->eor = 0;
1278 /* Insert buff after skb on the write or rtx queue of sk. */
1279 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1280 struct sk_buff *buff,
1281 struct sock *sk,
1282 enum tcp_queue tcp_queue)
1284 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1285 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1286 else
1287 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1290 /* Function to create two new TCP segments. Shrinks the given segment
1291 * to the specified size and appends a new segment with the rest of the
1292 * packet to the list. This won't be called frequently, I hope.
1293 * Remember, these are still headerless SKBs at this point.
1295 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1296 struct sk_buff *skb, u32 len,
1297 unsigned int mss_now, gfp_t gfp)
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 struct sk_buff *buff;
1301 int nsize, old_factor;
1302 int nlen;
1303 u8 flags;
1305 if (WARN_ON(len > skb->len))
1306 return -EINVAL;
1308 nsize = skb_headlen(skb) - len;
1309 if (nsize < 0)
1310 nsize = 0;
1312 if (skb_unclone(skb, gfp))
1313 return -ENOMEM;
1315 /* Get a new skb... force flag on. */
1316 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1317 if (!buff)
1318 return -ENOMEM; /* We'll just try again later. */
1320 sk->sk_wmem_queued += buff->truesize;
1321 sk_mem_charge(sk, buff->truesize);
1322 nlen = skb->len - len - nsize;
1323 buff->truesize += nlen;
1324 skb->truesize -= nlen;
1326 /* Correct the sequence numbers. */
1327 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1328 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1329 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1331 /* PSH and FIN should only be set in the second packet. */
1332 flags = TCP_SKB_CB(skb)->tcp_flags;
1333 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1334 TCP_SKB_CB(buff)->tcp_flags = flags;
1335 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1336 tcp_skb_fragment_eor(skb, buff);
1338 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1339 /* Copy and checksum data tail into the new buffer. */
1340 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1341 skb_put(buff, nsize),
1342 nsize, 0);
1344 skb_trim(skb, len);
1346 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1347 } else {
1348 skb->ip_summed = CHECKSUM_PARTIAL;
1349 skb_split(skb, buff, len);
1352 buff->ip_summed = skb->ip_summed;
1354 buff->tstamp = skb->tstamp;
1355 tcp_fragment_tstamp(skb, buff);
1357 old_factor = tcp_skb_pcount(skb);
1359 /* Fix up tso_factor for both original and new SKB. */
1360 tcp_set_skb_tso_segs(skb, mss_now);
1361 tcp_set_skb_tso_segs(buff, mss_now);
1363 /* Update delivered info for the new segment */
1364 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1366 /* If this packet has been sent out already, we must
1367 * adjust the various packet counters.
1369 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1370 int diff = old_factor - tcp_skb_pcount(skb) -
1371 tcp_skb_pcount(buff);
1373 if (diff)
1374 tcp_adjust_pcount(sk, skb, diff);
1377 /* Link BUFF into the send queue. */
1378 __skb_header_release(buff);
1379 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1380 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1381 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1383 return 0;
1386 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1387 * data is not copied, but immediately discarded.
1389 static int __pskb_trim_head(struct sk_buff *skb, int len)
1391 struct skb_shared_info *shinfo;
1392 int i, k, eat;
1394 eat = min_t(int, len, skb_headlen(skb));
1395 if (eat) {
1396 __skb_pull(skb, eat);
1397 len -= eat;
1398 if (!len)
1399 return 0;
1401 eat = len;
1402 k = 0;
1403 shinfo = skb_shinfo(skb);
1404 for (i = 0; i < shinfo->nr_frags; i++) {
1405 int size = skb_frag_size(&shinfo->frags[i]);
1407 if (size <= eat) {
1408 skb_frag_unref(skb, i);
1409 eat -= size;
1410 } else {
1411 shinfo->frags[k] = shinfo->frags[i];
1412 if (eat) {
1413 shinfo->frags[k].page_offset += eat;
1414 skb_frag_size_sub(&shinfo->frags[k], eat);
1415 eat = 0;
1417 k++;
1420 shinfo->nr_frags = k;
1422 skb->data_len -= len;
1423 skb->len = skb->data_len;
1424 return len;
1427 /* Remove acked data from a packet in the transmit queue. */
1428 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1430 u32 delta_truesize;
1432 if (skb_unclone(skb, GFP_ATOMIC))
1433 return -ENOMEM;
1435 delta_truesize = __pskb_trim_head(skb, len);
1437 TCP_SKB_CB(skb)->seq += len;
1438 skb->ip_summed = CHECKSUM_PARTIAL;
1440 if (delta_truesize) {
1441 skb->truesize -= delta_truesize;
1442 sk->sk_wmem_queued -= delta_truesize;
1443 sk_mem_uncharge(sk, delta_truesize);
1444 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1447 /* Any change of skb->len requires recalculation of tso factor. */
1448 if (tcp_skb_pcount(skb) > 1)
1449 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1451 return 0;
1454 /* Calculate MSS not accounting any TCP options. */
1455 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1457 const struct tcp_sock *tp = tcp_sk(sk);
1458 const struct inet_connection_sock *icsk = inet_csk(sk);
1459 int mss_now;
1461 /* Calculate base mss without TCP options:
1462 It is MMS_S - sizeof(tcphdr) of rfc1122
1464 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1466 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1467 if (icsk->icsk_af_ops->net_frag_header_len) {
1468 const struct dst_entry *dst = __sk_dst_get(sk);
1470 if (dst && dst_allfrag(dst))
1471 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1474 /* Clamp it (mss_clamp does not include tcp options) */
1475 if (mss_now > tp->rx_opt.mss_clamp)
1476 mss_now = tp->rx_opt.mss_clamp;
1478 /* Now subtract optional transport overhead */
1479 mss_now -= icsk->icsk_ext_hdr_len;
1481 /* Then reserve room for full set of TCP options and 8 bytes of data */
1482 if (mss_now < 48)
1483 mss_now = 48;
1484 return mss_now;
1487 /* Calculate MSS. Not accounting for SACKs here. */
1488 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1490 /* Subtract TCP options size, not including SACKs */
1491 return __tcp_mtu_to_mss(sk, pmtu) -
1492 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1495 /* Inverse of above */
1496 int tcp_mss_to_mtu(struct sock *sk, int mss)
1498 const struct tcp_sock *tp = tcp_sk(sk);
1499 const struct inet_connection_sock *icsk = inet_csk(sk);
1500 int mtu;
1502 mtu = mss +
1503 tp->tcp_header_len +
1504 icsk->icsk_ext_hdr_len +
1505 icsk->icsk_af_ops->net_header_len;
1507 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1508 if (icsk->icsk_af_ops->net_frag_header_len) {
1509 const struct dst_entry *dst = __sk_dst_get(sk);
1511 if (dst && dst_allfrag(dst))
1512 mtu += icsk->icsk_af_ops->net_frag_header_len;
1514 return mtu;
1516 EXPORT_SYMBOL(tcp_mss_to_mtu);
1518 /* MTU probing init per socket */
1519 void tcp_mtup_init(struct sock *sk)
1521 struct tcp_sock *tp = tcp_sk(sk);
1522 struct inet_connection_sock *icsk = inet_csk(sk);
1523 struct net *net = sock_net(sk);
1525 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1526 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1527 icsk->icsk_af_ops->net_header_len;
1528 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1529 icsk->icsk_mtup.probe_size = 0;
1530 if (icsk->icsk_mtup.enabled)
1531 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1533 EXPORT_SYMBOL(tcp_mtup_init);
1535 /* This function synchronize snd mss to current pmtu/exthdr set.
1537 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1538 for TCP options, but includes only bare TCP header.
1540 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1541 It is minimum of user_mss and mss received with SYN.
1542 It also does not include TCP options.
1544 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1546 tp->mss_cache is current effective sending mss, including
1547 all tcp options except for SACKs. It is evaluated,
1548 taking into account current pmtu, but never exceeds
1549 tp->rx_opt.mss_clamp.
1551 NOTE1. rfc1122 clearly states that advertised MSS
1552 DOES NOT include either tcp or ip options.
1554 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1555 are READ ONLY outside this function. --ANK (980731)
1557 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1559 struct tcp_sock *tp = tcp_sk(sk);
1560 struct inet_connection_sock *icsk = inet_csk(sk);
1561 int mss_now;
1563 if (icsk->icsk_mtup.search_high > pmtu)
1564 icsk->icsk_mtup.search_high = pmtu;
1566 mss_now = tcp_mtu_to_mss(sk, pmtu);
1567 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1569 /* And store cached results */
1570 icsk->icsk_pmtu_cookie = pmtu;
1571 if (icsk->icsk_mtup.enabled)
1572 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1573 tp->mss_cache = mss_now;
1575 return mss_now;
1577 EXPORT_SYMBOL(tcp_sync_mss);
1579 /* Compute the current effective MSS, taking SACKs and IP options,
1580 * and even PMTU discovery events into account.
1582 unsigned int tcp_current_mss(struct sock *sk)
1584 const struct tcp_sock *tp = tcp_sk(sk);
1585 const struct dst_entry *dst = __sk_dst_get(sk);
1586 u32 mss_now;
1587 unsigned int header_len;
1588 struct tcp_out_options opts;
1589 struct tcp_md5sig_key *md5;
1591 mss_now = tp->mss_cache;
1593 if (dst) {
1594 u32 mtu = dst_mtu(dst);
1595 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1596 mss_now = tcp_sync_mss(sk, mtu);
1599 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1600 sizeof(struct tcphdr);
1601 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1602 * some common options. If this is an odd packet (because we have SACK
1603 * blocks etc) then our calculated header_len will be different, and
1604 * we have to adjust mss_now correspondingly */
1605 if (header_len != tp->tcp_header_len) {
1606 int delta = (int) header_len - tp->tcp_header_len;
1607 mss_now -= delta;
1610 return mss_now;
1613 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1614 * As additional protections, we do not touch cwnd in retransmission phases,
1615 * and if application hit its sndbuf limit recently.
1617 static void tcp_cwnd_application_limited(struct sock *sk)
1619 struct tcp_sock *tp = tcp_sk(sk);
1621 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1622 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1623 /* Limited by application or receiver window. */
1624 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1625 u32 win_used = max(tp->snd_cwnd_used, init_win);
1626 if (win_used < tp->snd_cwnd) {
1627 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1628 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1630 tp->snd_cwnd_used = 0;
1632 tp->snd_cwnd_stamp = tcp_jiffies32;
1635 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1637 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1638 struct tcp_sock *tp = tcp_sk(sk);
1640 /* Track the maximum number of outstanding packets in each
1641 * window, and remember whether we were cwnd-limited then.
1643 if (!before(tp->snd_una, tp->max_packets_seq) ||
1644 tp->packets_out > tp->max_packets_out) {
1645 tp->max_packets_out = tp->packets_out;
1646 tp->max_packets_seq = tp->snd_nxt;
1647 tp->is_cwnd_limited = is_cwnd_limited;
1650 if (tcp_is_cwnd_limited(sk)) {
1651 /* Network is feed fully. */
1652 tp->snd_cwnd_used = 0;
1653 tp->snd_cwnd_stamp = tcp_jiffies32;
1654 } else {
1655 /* Network starves. */
1656 if (tp->packets_out > tp->snd_cwnd_used)
1657 tp->snd_cwnd_used = tp->packets_out;
1659 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1660 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1661 !ca_ops->cong_control)
1662 tcp_cwnd_application_limited(sk);
1664 /* The following conditions together indicate the starvation
1665 * is caused by insufficient sender buffer:
1666 * 1) just sent some data (see tcp_write_xmit)
1667 * 2) not cwnd limited (this else condition)
1668 * 3) no more data to send (tcp_write_queue_empty())
1669 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1671 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1672 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1673 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1674 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1678 /* Minshall's variant of the Nagle send check. */
1679 static bool tcp_minshall_check(const struct tcp_sock *tp)
1681 return after(tp->snd_sml, tp->snd_una) &&
1682 !after(tp->snd_sml, tp->snd_nxt);
1685 /* Update snd_sml if this skb is under mss
1686 * Note that a TSO packet might end with a sub-mss segment
1687 * The test is really :
1688 * if ((skb->len % mss) != 0)
1689 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1690 * But we can avoid doing the divide again given we already have
1691 * skb_pcount = skb->len / mss_now
1693 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1694 const struct sk_buff *skb)
1696 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1697 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1700 /* Return false, if packet can be sent now without violation Nagle's rules:
1701 * 1. It is full sized. (provided by caller in %partial bool)
1702 * 2. Or it contains FIN. (already checked by caller)
1703 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1704 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1705 * With Minshall's modification: all sent small packets are ACKed.
1707 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1708 int nonagle)
1710 return partial &&
1711 ((nonagle & TCP_NAGLE_CORK) ||
1712 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1715 /* Return how many segs we'd like on a TSO packet,
1716 * to send one TSO packet per ms
1718 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1719 int min_tso_segs)
1721 u32 bytes, segs;
1723 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1724 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1726 /* Goal is to send at least one packet per ms,
1727 * not one big TSO packet every 100 ms.
1728 * This preserves ACK clocking and is consistent
1729 * with tcp_tso_should_defer() heuristic.
1731 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1733 return segs;
1735 EXPORT_SYMBOL(tcp_tso_autosize);
1737 /* Return the number of segments we want in the skb we are transmitting.
1738 * See if congestion control module wants to decide; otherwise, autosize.
1740 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1742 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1743 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1745 if (!tso_segs)
1746 tso_segs = tcp_tso_autosize(sk, mss_now,
1747 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1748 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1751 /* Returns the portion of skb which can be sent right away */
1752 static unsigned int tcp_mss_split_point(const struct sock *sk,
1753 const struct sk_buff *skb,
1754 unsigned int mss_now,
1755 unsigned int max_segs,
1756 int nonagle)
1758 const struct tcp_sock *tp = tcp_sk(sk);
1759 u32 partial, needed, window, max_len;
1761 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1762 max_len = mss_now * max_segs;
1764 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1765 return max_len;
1767 needed = min(skb->len, window);
1769 if (max_len <= needed)
1770 return max_len;
1772 partial = needed % mss_now;
1773 /* If last segment is not a full MSS, check if Nagle rules allow us
1774 * to include this last segment in this skb.
1775 * Otherwise, we'll split the skb at last MSS boundary
1777 if (tcp_nagle_check(partial != 0, tp, nonagle))
1778 return needed - partial;
1780 return needed;
1783 /* Can at least one segment of SKB be sent right now, according to the
1784 * congestion window rules? If so, return how many segments are allowed.
1786 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1787 const struct sk_buff *skb)
1789 u32 in_flight, cwnd, halfcwnd;
1791 /* Don't be strict about the congestion window for the final FIN. */
1792 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1793 tcp_skb_pcount(skb) == 1)
1794 return 1;
1796 in_flight = tcp_packets_in_flight(tp);
1797 cwnd = tp->snd_cwnd;
1798 if (in_flight >= cwnd)
1799 return 0;
1801 /* For better scheduling, ensure we have at least
1802 * 2 GSO packets in flight.
1804 halfcwnd = max(cwnd >> 1, 1U);
1805 return min(halfcwnd, cwnd - in_flight);
1808 /* Initialize TSO state of a skb.
1809 * This must be invoked the first time we consider transmitting
1810 * SKB onto the wire.
1812 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1814 int tso_segs = tcp_skb_pcount(skb);
1816 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1817 tcp_set_skb_tso_segs(skb, mss_now);
1818 tso_segs = tcp_skb_pcount(skb);
1820 return tso_segs;
1824 /* Return true if the Nagle test allows this packet to be
1825 * sent now.
1827 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1828 unsigned int cur_mss, int nonagle)
1830 /* Nagle rule does not apply to frames, which sit in the middle of the
1831 * write_queue (they have no chances to get new data).
1833 * This is implemented in the callers, where they modify the 'nonagle'
1834 * argument based upon the location of SKB in the send queue.
1836 if (nonagle & TCP_NAGLE_PUSH)
1837 return true;
1839 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1840 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1841 return true;
1843 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1844 return true;
1846 return false;
1849 /* Does at least the first segment of SKB fit into the send window? */
1850 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1851 const struct sk_buff *skb,
1852 unsigned int cur_mss)
1854 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1856 if (skb->len > cur_mss)
1857 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1859 return !after(end_seq, tcp_wnd_end(tp));
1862 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1863 * which is put after SKB on the list. It is very much like
1864 * tcp_fragment() except that it may make several kinds of assumptions
1865 * in order to speed up the splitting operation. In particular, we
1866 * know that all the data is in scatter-gather pages, and that the
1867 * packet has never been sent out before (and thus is not cloned).
1869 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1870 struct sk_buff *skb, unsigned int len,
1871 unsigned int mss_now, gfp_t gfp)
1873 struct sk_buff *buff;
1874 int nlen = skb->len - len;
1875 u8 flags;
1877 /* All of a TSO frame must be composed of paged data. */
1878 if (skb->len != skb->data_len)
1879 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1881 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1882 if (unlikely(!buff))
1883 return -ENOMEM;
1885 sk->sk_wmem_queued += buff->truesize;
1886 sk_mem_charge(sk, buff->truesize);
1887 buff->truesize += nlen;
1888 skb->truesize -= nlen;
1890 /* Correct the sequence numbers. */
1891 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1892 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1893 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1895 /* PSH and FIN should only be set in the second packet. */
1896 flags = TCP_SKB_CB(skb)->tcp_flags;
1897 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1898 TCP_SKB_CB(buff)->tcp_flags = flags;
1900 /* This packet was never sent out yet, so no SACK bits. */
1901 TCP_SKB_CB(buff)->sacked = 0;
1903 tcp_skb_fragment_eor(skb, buff);
1905 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1906 skb_split(skb, buff, len);
1907 tcp_fragment_tstamp(skb, buff);
1909 /* Fix up tso_factor for both original and new SKB. */
1910 tcp_set_skb_tso_segs(skb, mss_now);
1911 tcp_set_skb_tso_segs(buff, mss_now);
1913 /* Link BUFF into the send queue. */
1914 __skb_header_release(buff);
1915 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1917 return 0;
1920 /* Try to defer sending, if possible, in order to minimize the amount
1921 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1923 * This algorithm is from John Heffner.
1925 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1926 bool *is_cwnd_limited, u32 max_segs)
1928 const struct inet_connection_sock *icsk = inet_csk(sk);
1929 u32 age, send_win, cong_win, limit, in_flight;
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct sk_buff *head;
1932 int win_divisor;
1934 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1935 goto send_now;
1937 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1938 goto send_now;
1940 /* Avoid bursty behavior by allowing defer
1941 * only if the last write was recent.
1943 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1944 goto send_now;
1946 in_flight = tcp_packets_in_flight(tp);
1948 BUG_ON(tcp_skb_pcount(skb) <= 1);
1949 BUG_ON(tp->snd_cwnd <= in_flight);
1951 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1953 /* From in_flight test above, we know that cwnd > in_flight. */
1954 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1956 limit = min(send_win, cong_win);
1958 /* If a full-sized TSO skb can be sent, do it. */
1959 if (limit >= max_segs * tp->mss_cache)
1960 goto send_now;
1962 /* Middle in queue won't get any more data, full sendable already? */
1963 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1964 goto send_now;
1966 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1967 if (win_divisor) {
1968 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1970 /* If at least some fraction of a window is available,
1971 * just use it.
1973 chunk /= win_divisor;
1974 if (limit >= chunk)
1975 goto send_now;
1976 } else {
1977 /* Different approach, try not to defer past a single
1978 * ACK. Receiver should ACK every other full sized
1979 * frame, so if we have space for more than 3 frames
1980 * then send now.
1982 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1983 goto send_now;
1986 /* TODO : use tsorted_sent_queue ? */
1987 head = tcp_rtx_queue_head(sk);
1988 if (!head)
1989 goto send_now;
1990 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1991 /* If next ACK is likely to come too late (half srtt), do not defer */
1992 if (age < (tp->srtt_us >> 4))
1993 goto send_now;
1995 /* Ok, it looks like it is advisable to defer. */
1997 if (cong_win < send_win && cong_win <= skb->len)
1998 *is_cwnd_limited = true;
2000 return true;
2002 send_now:
2003 return false;
2006 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2008 struct inet_connection_sock *icsk = inet_csk(sk);
2009 struct tcp_sock *tp = tcp_sk(sk);
2010 struct net *net = sock_net(sk);
2011 u32 interval;
2012 s32 delta;
2014 interval = net->ipv4.sysctl_tcp_probe_interval;
2015 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2016 if (unlikely(delta >= interval * HZ)) {
2017 int mss = tcp_current_mss(sk);
2019 /* Update current search range */
2020 icsk->icsk_mtup.probe_size = 0;
2021 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2022 sizeof(struct tcphdr) +
2023 icsk->icsk_af_ops->net_header_len;
2024 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2026 /* Update probe time stamp */
2027 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2031 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2033 struct sk_buff *skb, *next;
2035 skb = tcp_send_head(sk);
2036 tcp_for_write_queue_from_safe(skb, next, sk) {
2037 if (len <= skb->len)
2038 break;
2040 if (unlikely(TCP_SKB_CB(skb)->eor))
2041 return false;
2043 len -= skb->len;
2046 return true;
2049 /* Create a new MTU probe if we are ready.
2050 * MTU probe is regularly attempting to increase the path MTU by
2051 * deliberately sending larger packets. This discovers routing
2052 * changes resulting in larger path MTUs.
2054 * Returns 0 if we should wait to probe (no cwnd available),
2055 * 1 if a probe was sent,
2056 * -1 otherwise
2058 static int tcp_mtu_probe(struct sock *sk)
2060 struct inet_connection_sock *icsk = inet_csk(sk);
2061 struct tcp_sock *tp = tcp_sk(sk);
2062 struct sk_buff *skb, *nskb, *next;
2063 struct net *net = sock_net(sk);
2064 int probe_size;
2065 int size_needed;
2066 int copy, len;
2067 int mss_now;
2068 int interval;
2070 /* Not currently probing/verifying,
2071 * not in recovery,
2072 * have enough cwnd, and
2073 * not SACKing (the variable headers throw things off)
2075 if (likely(!icsk->icsk_mtup.enabled ||
2076 icsk->icsk_mtup.probe_size ||
2077 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2078 tp->snd_cwnd < 11 ||
2079 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2080 return -1;
2082 /* Use binary search for probe_size between tcp_mss_base,
2083 * and current mss_clamp. if (search_high - search_low)
2084 * smaller than a threshold, backoff from probing.
2086 mss_now = tcp_current_mss(sk);
2087 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2088 icsk->icsk_mtup.search_low) >> 1);
2089 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2090 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2091 /* When misfortune happens, we are reprobing actively,
2092 * and then reprobe timer has expired. We stick with current
2093 * probing process by not resetting search range to its orignal.
2095 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2096 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2097 /* Check whether enough time has elaplased for
2098 * another round of probing.
2100 tcp_mtu_check_reprobe(sk);
2101 return -1;
2104 /* Have enough data in the send queue to probe? */
2105 if (tp->write_seq - tp->snd_nxt < size_needed)
2106 return -1;
2108 if (tp->snd_wnd < size_needed)
2109 return -1;
2110 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2111 return 0;
2113 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2114 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2115 if (!tcp_packets_in_flight(tp))
2116 return -1;
2117 else
2118 return 0;
2121 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2122 return -1;
2124 /* We're allowed to probe. Build it now. */
2125 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2126 if (!nskb)
2127 return -1;
2128 sk->sk_wmem_queued += nskb->truesize;
2129 sk_mem_charge(sk, nskb->truesize);
2131 skb = tcp_send_head(sk);
2133 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2134 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2135 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2136 TCP_SKB_CB(nskb)->sacked = 0;
2137 nskb->csum = 0;
2138 nskb->ip_summed = skb->ip_summed;
2140 tcp_insert_write_queue_before(nskb, skb, sk);
2141 tcp_highest_sack_replace(sk, skb, nskb);
2143 len = 0;
2144 tcp_for_write_queue_from_safe(skb, next, sk) {
2145 copy = min_t(int, skb->len, probe_size - len);
2146 if (nskb->ip_summed) {
2147 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2148 } else {
2149 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2150 skb_put(nskb, copy),
2151 copy, 0);
2152 nskb->csum = csum_block_add(nskb->csum, csum, len);
2155 if (skb->len <= copy) {
2156 /* We've eaten all the data from this skb.
2157 * Throw it away. */
2158 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2159 /* If this is the last SKB we copy and eor is set
2160 * we need to propagate it to the new skb.
2162 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2163 tcp_unlink_write_queue(skb, sk);
2164 sk_wmem_free_skb(sk, skb);
2165 } else {
2166 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2167 ~(TCPHDR_FIN|TCPHDR_PSH);
2168 if (!skb_shinfo(skb)->nr_frags) {
2169 skb_pull(skb, copy);
2170 if (skb->ip_summed != CHECKSUM_PARTIAL)
2171 skb->csum = csum_partial(skb->data,
2172 skb->len, 0);
2173 } else {
2174 __pskb_trim_head(skb, copy);
2175 tcp_set_skb_tso_segs(skb, mss_now);
2177 TCP_SKB_CB(skb)->seq += copy;
2180 len += copy;
2182 if (len >= probe_size)
2183 break;
2185 tcp_init_tso_segs(nskb, nskb->len);
2187 /* We're ready to send. If this fails, the probe will
2188 * be resegmented into mss-sized pieces by tcp_write_xmit().
2190 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2191 /* Decrement cwnd here because we are sending
2192 * effectively two packets. */
2193 tp->snd_cwnd--;
2194 tcp_event_new_data_sent(sk, nskb);
2196 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2197 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2198 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2200 return 1;
2203 return -1;
2206 static bool tcp_pacing_check(const struct sock *sk)
2208 return tcp_needs_internal_pacing(sk) &&
2209 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2212 /* TCP Small Queues :
2213 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214 * (These limits are doubled for retransmits)
2215 * This allows for :
2216 * - better RTT estimation and ACK scheduling
2217 * - faster recovery
2218 * - high rates
2219 * Alas, some drivers / subsystems require a fair amount
2220 * of queued bytes to ensure line rate.
2221 * One example is wifi aggregation (802.11 AMPDU)
2223 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2224 unsigned int factor)
2226 unsigned int limit;
2228 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2229 limit = min_t(u32, limit,
2230 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2231 limit <<= factor;
2233 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2234 /* Always send skb if rtx queue is empty.
2235 * No need to wait for TX completion to call us back,
2236 * after softirq/tasklet schedule.
2237 * This helps when TX completions are delayed too much.
2239 if (tcp_rtx_queue_empty(sk))
2240 return false;
2242 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2243 /* It is possible TX completion already happened
2244 * before we set TSQ_THROTTLED, so we must
2245 * test again the condition.
2247 smp_mb__after_atomic();
2248 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2249 return true;
2251 return false;
2254 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2256 const u32 now = tcp_jiffies32;
2257 enum tcp_chrono old = tp->chrono_type;
2259 if (old > TCP_CHRONO_UNSPEC)
2260 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2261 tp->chrono_start = now;
2262 tp->chrono_type = new;
2265 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2267 struct tcp_sock *tp = tcp_sk(sk);
2269 /* If there are multiple conditions worthy of tracking in a
2270 * chronograph then the highest priority enum takes precedence
2271 * over the other conditions. So that if something "more interesting"
2272 * starts happening, stop the previous chrono and start a new one.
2274 if (type > tp->chrono_type)
2275 tcp_chrono_set(tp, type);
2278 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2280 struct tcp_sock *tp = tcp_sk(sk);
2283 /* There are multiple conditions worthy of tracking in a
2284 * chronograph, so that the highest priority enum takes
2285 * precedence over the other conditions (see tcp_chrono_start).
2286 * If a condition stops, we only stop chrono tracking if
2287 * it's the "most interesting" or current chrono we are
2288 * tracking and starts busy chrono if we have pending data.
2290 if (tcp_rtx_and_write_queues_empty(sk))
2291 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2292 else if (type == tp->chrono_type)
2293 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2296 /* This routine writes packets to the network. It advances the
2297 * send_head. This happens as incoming acks open up the remote
2298 * window for us.
2300 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2301 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2302 * account rare use of URG, this is not a big flaw.
2304 * Send at most one packet when push_one > 0. Temporarily ignore
2305 * cwnd limit to force at most one packet out when push_one == 2.
2307 * Returns true, if no segments are in flight and we have queued segments,
2308 * but cannot send anything now because of SWS or another problem.
2310 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2311 int push_one, gfp_t gfp)
2313 struct tcp_sock *tp = tcp_sk(sk);
2314 struct sk_buff *skb;
2315 unsigned int tso_segs, sent_pkts;
2316 int cwnd_quota;
2317 int result;
2318 bool is_cwnd_limited = false, is_rwnd_limited = false;
2319 u32 max_segs;
2321 sent_pkts = 0;
2323 tcp_mstamp_refresh(tp);
2324 if (!push_one) {
2325 /* Do MTU probing. */
2326 result = tcp_mtu_probe(sk);
2327 if (!result) {
2328 return false;
2329 } else if (result > 0) {
2330 sent_pkts = 1;
2334 max_segs = tcp_tso_segs(sk, mss_now);
2335 while ((skb = tcp_send_head(sk))) {
2336 unsigned int limit;
2338 if (tcp_pacing_check(sk))
2339 break;
2341 tso_segs = tcp_init_tso_segs(skb, mss_now);
2342 BUG_ON(!tso_segs);
2344 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2345 /* "skb_mstamp" is used as a start point for the retransmit timer */
2346 tcp_update_skb_after_send(tp, skb);
2347 goto repair; /* Skip network transmission */
2350 cwnd_quota = tcp_cwnd_test(tp, skb);
2351 if (!cwnd_quota) {
2352 if (push_one == 2)
2353 /* Force out a loss probe pkt. */
2354 cwnd_quota = 1;
2355 else
2356 break;
2359 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2360 is_rwnd_limited = true;
2361 break;
2364 if (tso_segs == 1) {
2365 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2366 (tcp_skb_is_last(sk, skb) ?
2367 nonagle : TCP_NAGLE_PUSH))))
2368 break;
2369 } else {
2370 if (!push_one &&
2371 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2372 max_segs))
2373 break;
2376 limit = mss_now;
2377 if (tso_segs > 1 && !tcp_urg_mode(tp))
2378 limit = tcp_mss_split_point(sk, skb, mss_now,
2379 min_t(unsigned int,
2380 cwnd_quota,
2381 max_segs),
2382 nonagle);
2384 if (skb->len > limit &&
2385 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2386 skb, limit, mss_now, gfp)))
2387 break;
2389 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2390 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2391 if (tcp_small_queue_check(sk, skb, 0))
2392 break;
2394 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2395 break;
2397 repair:
2398 /* Advance the send_head. This one is sent out.
2399 * This call will increment packets_out.
2401 tcp_event_new_data_sent(sk, skb);
2403 tcp_minshall_update(tp, mss_now, skb);
2404 sent_pkts += tcp_skb_pcount(skb);
2406 if (push_one)
2407 break;
2410 if (is_rwnd_limited)
2411 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2412 else
2413 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2415 if (likely(sent_pkts)) {
2416 if (tcp_in_cwnd_reduction(sk))
2417 tp->prr_out += sent_pkts;
2419 /* Send one loss probe per tail loss episode. */
2420 if (push_one != 2)
2421 tcp_schedule_loss_probe(sk, false);
2422 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2423 tcp_cwnd_validate(sk, is_cwnd_limited);
2424 return false;
2426 return !tp->packets_out && !tcp_write_queue_empty(sk);
2429 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2431 struct inet_connection_sock *icsk = inet_csk(sk);
2432 struct tcp_sock *tp = tcp_sk(sk);
2433 u32 timeout, rto_delta_us;
2434 int early_retrans;
2436 /* Don't do any loss probe on a Fast Open connection before 3WHS
2437 * finishes.
2439 if (tp->fastopen_rsk)
2440 return false;
2442 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2443 /* Schedule a loss probe in 2*RTT for SACK capable connections
2444 * not in loss recovery, that are either limited by cwnd or application.
2446 if ((early_retrans != 3 && early_retrans != 4) ||
2447 !tp->packets_out || !tcp_is_sack(tp) ||
2448 (icsk->icsk_ca_state != TCP_CA_Open &&
2449 icsk->icsk_ca_state != TCP_CA_CWR))
2450 return false;
2452 /* Probe timeout is 2*rtt. Add minimum RTO to account
2453 * for delayed ack when there's one outstanding packet. If no RTT
2454 * sample is available then probe after TCP_TIMEOUT_INIT.
2456 if (tp->srtt_us) {
2457 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2458 if (tp->packets_out == 1)
2459 timeout += TCP_RTO_MIN;
2460 else
2461 timeout += TCP_TIMEOUT_MIN;
2462 } else {
2463 timeout = TCP_TIMEOUT_INIT;
2466 /* If the RTO formula yields an earlier time, then use that time. */
2467 rto_delta_us = advancing_rto ?
2468 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2469 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2470 if (rto_delta_us > 0)
2471 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2474 TCP_RTO_MAX);
2475 return true;
2478 /* Thanks to skb fast clones, we can detect if a prior transmit of
2479 * a packet is still in a qdisc or driver queue.
2480 * In this case, there is very little point doing a retransmit !
2482 static bool skb_still_in_host_queue(const struct sock *sk,
2483 const struct sk_buff *skb)
2485 if (unlikely(skb_fclone_busy(sk, skb))) {
2486 NET_INC_STATS(sock_net(sk),
2487 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2488 return true;
2490 return false;
2493 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2494 * retransmit the last segment.
2496 void tcp_send_loss_probe(struct sock *sk)
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 struct sk_buff *skb;
2500 int pcount;
2501 int mss = tcp_current_mss(sk);
2503 skb = tcp_send_head(sk);
2504 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2505 pcount = tp->packets_out;
2506 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2507 if (tp->packets_out > pcount)
2508 goto probe_sent;
2509 goto rearm_timer;
2511 skb = skb_rb_last(&sk->tcp_rtx_queue);
2513 /* At most one outstanding TLP retransmission. */
2514 if (tp->tlp_high_seq)
2515 goto rearm_timer;
2517 /* Retransmit last segment. */
2518 if (WARN_ON(!skb))
2519 goto rearm_timer;
2521 if (skb_still_in_host_queue(sk, skb))
2522 goto rearm_timer;
2524 pcount = tcp_skb_pcount(skb);
2525 if (WARN_ON(!pcount))
2526 goto rearm_timer;
2528 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2529 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2530 (pcount - 1) * mss, mss,
2531 GFP_ATOMIC)))
2532 goto rearm_timer;
2533 skb = skb_rb_next(skb);
2536 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2537 goto rearm_timer;
2539 if (__tcp_retransmit_skb(sk, skb, 1))
2540 goto rearm_timer;
2542 /* Record snd_nxt for loss detection. */
2543 tp->tlp_high_seq = tp->snd_nxt;
2545 probe_sent:
2546 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2547 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2548 inet_csk(sk)->icsk_pending = 0;
2549 rearm_timer:
2550 tcp_rearm_rto(sk);
2553 /* Push out any pending frames which were held back due to
2554 * TCP_CORK or attempt at coalescing tiny packets.
2555 * The socket must be locked by the caller.
2557 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2558 int nonagle)
2560 /* If we are closed, the bytes will have to remain here.
2561 * In time closedown will finish, we empty the write queue and
2562 * all will be happy.
2564 if (unlikely(sk->sk_state == TCP_CLOSE))
2565 return;
2567 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2568 sk_gfp_mask(sk, GFP_ATOMIC)))
2569 tcp_check_probe_timer(sk);
2572 /* Send _single_ skb sitting at the send head. This function requires
2573 * true push pending frames to setup probe timer etc.
2575 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2577 struct sk_buff *skb = tcp_send_head(sk);
2579 BUG_ON(!skb || skb->len < mss_now);
2581 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2584 /* This function returns the amount that we can raise the
2585 * usable window based on the following constraints
2587 * 1. The window can never be shrunk once it is offered (RFC 793)
2588 * 2. We limit memory per socket
2590 * RFC 1122:
2591 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2592 * RECV.NEXT + RCV.WIN fixed until:
2593 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2595 * i.e. don't raise the right edge of the window until you can raise
2596 * it at least MSS bytes.
2598 * Unfortunately, the recommended algorithm breaks header prediction,
2599 * since header prediction assumes th->window stays fixed.
2601 * Strictly speaking, keeping th->window fixed violates the receiver
2602 * side SWS prevention criteria. The problem is that under this rule
2603 * a stream of single byte packets will cause the right side of the
2604 * window to always advance by a single byte.
2606 * Of course, if the sender implements sender side SWS prevention
2607 * then this will not be a problem.
2609 * BSD seems to make the following compromise:
2611 * If the free space is less than the 1/4 of the maximum
2612 * space available and the free space is less than 1/2 mss,
2613 * then set the window to 0.
2614 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2615 * Otherwise, just prevent the window from shrinking
2616 * and from being larger than the largest representable value.
2618 * This prevents incremental opening of the window in the regime
2619 * where TCP is limited by the speed of the reader side taking
2620 * data out of the TCP receive queue. It does nothing about
2621 * those cases where the window is constrained on the sender side
2622 * because the pipeline is full.
2624 * BSD also seems to "accidentally" limit itself to windows that are a
2625 * multiple of MSS, at least until the free space gets quite small.
2626 * This would appear to be a side effect of the mbuf implementation.
2627 * Combining these two algorithms results in the observed behavior
2628 * of having a fixed window size at almost all times.
2630 * Below we obtain similar behavior by forcing the offered window to
2631 * a multiple of the mss when it is feasible to do so.
2633 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2634 * Regular options like TIMESTAMP are taken into account.
2636 u32 __tcp_select_window(struct sock *sk)
2638 struct inet_connection_sock *icsk = inet_csk(sk);
2639 struct tcp_sock *tp = tcp_sk(sk);
2640 /* MSS for the peer's data. Previous versions used mss_clamp
2641 * here. I don't know if the value based on our guesses
2642 * of peer's MSS is better for the performance. It's more correct
2643 * but may be worse for the performance because of rcv_mss
2644 * fluctuations. --SAW 1998/11/1
2646 int mss = icsk->icsk_ack.rcv_mss;
2647 int free_space = tcp_space(sk);
2648 int allowed_space = tcp_full_space(sk);
2649 int full_space = min_t(int, tp->window_clamp, allowed_space);
2650 int window;
2652 if (unlikely(mss > full_space)) {
2653 mss = full_space;
2654 if (mss <= 0)
2655 return 0;
2657 if (free_space < (full_space >> 1)) {
2658 icsk->icsk_ack.quick = 0;
2660 if (tcp_under_memory_pressure(sk))
2661 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2662 4U * tp->advmss);
2664 /* free_space might become our new window, make sure we don't
2665 * increase it due to wscale.
2667 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2669 /* if free space is less than mss estimate, or is below 1/16th
2670 * of the maximum allowed, try to move to zero-window, else
2671 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2672 * new incoming data is dropped due to memory limits.
2673 * With large window, mss test triggers way too late in order
2674 * to announce zero window in time before rmem limit kicks in.
2676 if (free_space < (allowed_space >> 4) || free_space < mss)
2677 return 0;
2680 if (free_space > tp->rcv_ssthresh)
2681 free_space = tp->rcv_ssthresh;
2683 /* Don't do rounding if we are using window scaling, since the
2684 * scaled window will not line up with the MSS boundary anyway.
2686 if (tp->rx_opt.rcv_wscale) {
2687 window = free_space;
2689 /* Advertise enough space so that it won't get scaled away.
2690 * Import case: prevent zero window announcement if
2691 * 1<<rcv_wscale > mss.
2693 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2694 } else {
2695 window = tp->rcv_wnd;
2696 /* Get the largest window that is a nice multiple of mss.
2697 * Window clamp already applied above.
2698 * If our current window offering is within 1 mss of the
2699 * free space we just keep it. This prevents the divide
2700 * and multiply from happening most of the time.
2701 * We also don't do any window rounding when the free space
2702 * is too small.
2704 if (window <= free_space - mss || window > free_space)
2705 window = rounddown(free_space, mss);
2706 else if (mss == full_space &&
2707 free_space > window + (full_space >> 1))
2708 window = free_space;
2711 return window;
2714 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2715 const struct sk_buff *next_skb)
2717 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2718 const struct skb_shared_info *next_shinfo =
2719 skb_shinfo(next_skb);
2720 struct skb_shared_info *shinfo = skb_shinfo(skb);
2722 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2723 shinfo->tskey = next_shinfo->tskey;
2724 TCP_SKB_CB(skb)->txstamp_ack |=
2725 TCP_SKB_CB(next_skb)->txstamp_ack;
2729 /* Collapses two adjacent SKB's during retransmission. */
2730 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2732 struct tcp_sock *tp = tcp_sk(sk);
2733 struct sk_buff *next_skb = skb_rb_next(skb);
2734 int skb_size, next_skb_size;
2736 skb_size = skb->len;
2737 next_skb_size = next_skb->len;
2739 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2741 if (next_skb_size) {
2742 if (next_skb_size <= skb_availroom(skb))
2743 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2744 next_skb_size);
2745 else if (!skb_shift(skb, next_skb, next_skb_size))
2746 return false;
2748 tcp_highest_sack_replace(sk, next_skb, skb);
2750 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2751 skb->ip_summed = CHECKSUM_PARTIAL;
2753 if (skb->ip_summed != CHECKSUM_PARTIAL)
2754 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2756 /* Update sequence range on original skb. */
2757 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2759 /* Merge over control information. This moves PSH/FIN etc. over */
2760 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2762 /* All done, get rid of second SKB and account for it so
2763 * packet counting does not break.
2765 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2766 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2768 /* changed transmit queue under us so clear hints */
2769 tcp_clear_retrans_hints_partial(tp);
2770 if (next_skb == tp->retransmit_skb_hint)
2771 tp->retransmit_skb_hint = skb;
2773 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2775 tcp_skb_collapse_tstamp(skb, next_skb);
2777 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2778 return true;
2781 /* Check if coalescing SKBs is legal. */
2782 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2784 if (tcp_skb_pcount(skb) > 1)
2785 return false;
2786 if (skb_cloned(skb))
2787 return false;
2788 /* Some heuristics for collapsing over SACK'd could be invented */
2789 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2790 return false;
2792 return true;
2795 /* Collapse packets in the retransmit queue to make to create
2796 * less packets on the wire. This is only done on retransmission.
2798 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2799 int space)
2801 struct tcp_sock *tp = tcp_sk(sk);
2802 struct sk_buff *skb = to, *tmp;
2803 bool first = true;
2805 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2806 return;
2807 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2808 return;
2810 skb_rbtree_walk_from_safe(skb, tmp) {
2811 if (!tcp_can_collapse(sk, skb))
2812 break;
2814 if (!tcp_skb_can_collapse_to(to))
2815 break;
2817 space -= skb->len;
2819 if (first) {
2820 first = false;
2821 continue;
2824 if (space < 0)
2825 break;
2827 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2828 break;
2830 if (!tcp_collapse_retrans(sk, to))
2831 break;
2835 /* This retransmits one SKB. Policy decisions and retransmit queue
2836 * state updates are done by the caller. Returns non-zero if an
2837 * error occurred which prevented the send.
2839 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2841 struct inet_connection_sock *icsk = inet_csk(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2843 unsigned int cur_mss;
2844 int diff, len, err;
2847 /* Inconclusive MTU probe */
2848 if (icsk->icsk_mtup.probe_size)
2849 icsk->icsk_mtup.probe_size = 0;
2851 /* Do not sent more than we queued. 1/4 is reserved for possible
2852 * copying overhead: fragmentation, tunneling, mangling etc.
2854 if (refcount_read(&sk->sk_wmem_alloc) >
2855 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2856 sk->sk_sndbuf))
2857 return -EAGAIN;
2859 if (skb_still_in_host_queue(sk, skb))
2860 return -EBUSY;
2862 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2863 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2864 BUG();
2865 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2866 return -ENOMEM;
2869 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2870 return -EHOSTUNREACH; /* Routing failure or similar. */
2872 cur_mss = tcp_current_mss(sk);
2874 /* If receiver has shrunk his window, and skb is out of
2875 * new window, do not retransmit it. The exception is the
2876 * case, when window is shrunk to zero. In this case
2877 * our retransmit serves as a zero window probe.
2879 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2880 TCP_SKB_CB(skb)->seq != tp->snd_una)
2881 return -EAGAIN;
2883 len = cur_mss * segs;
2884 if (skb->len > len) {
2885 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2886 cur_mss, GFP_ATOMIC))
2887 return -ENOMEM; /* We'll try again later. */
2888 } else {
2889 if (skb_unclone(skb, GFP_ATOMIC))
2890 return -ENOMEM;
2892 diff = tcp_skb_pcount(skb);
2893 tcp_set_skb_tso_segs(skb, cur_mss);
2894 diff -= tcp_skb_pcount(skb);
2895 if (diff)
2896 tcp_adjust_pcount(sk, skb, diff);
2897 if (skb->len < cur_mss)
2898 tcp_retrans_try_collapse(sk, skb, cur_mss);
2901 /* RFC3168, section 6.1.1.1. ECN fallback */
2902 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2903 tcp_ecn_clear_syn(sk, skb);
2905 /* Update global and local TCP statistics. */
2906 segs = tcp_skb_pcount(skb);
2907 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2908 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2909 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2910 tp->total_retrans += segs;
2912 /* make sure skb->data is aligned on arches that require it
2913 * and check if ack-trimming & collapsing extended the headroom
2914 * beyond what csum_start can cover.
2916 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2917 skb_headroom(skb) >= 0xFFFF)) {
2918 struct sk_buff *nskb;
2920 tcp_skb_tsorted_save(skb) {
2921 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2922 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2923 -ENOBUFS;
2924 } tcp_skb_tsorted_restore(skb);
2926 if (!err) {
2927 tcp_update_skb_after_send(tp, skb);
2928 tcp_rate_skb_sent(sk, skb);
2930 } else {
2931 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2934 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2935 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2936 TCP_SKB_CB(skb)->seq, segs, err);
2938 if (likely(!err)) {
2939 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2940 trace_tcp_retransmit_skb(sk, skb);
2941 } else if (err != -EBUSY) {
2942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2944 return err;
2947 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2949 struct tcp_sock *tp = tcp_sk(sk);
2950 int err = __tcp_retransmit_skb(sk, skb, segs);
2952 if (err == 0) {
2953 #if FASTRETRANS_DEBUG > 0
2954 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2955 net_dbg_ratelimited("retrans_out leaked\n");
2957 #endif
2958 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2959 tp->retrans_out += tcp_skb_pcount(skb);
2961 /* Save stamp of the first retransmit. */
2962 if (!tp->retrans_stamp)
2963 tp->retrans_stamp = tcp_skb_timestamp(skb);
2967 if (tp->undo_retrans < 0)
2968 tp->undo_retrans = 0;
2969 tp->undo_retrans += tcp_skb_pcount(skb);
2970 return err;
2973 /* This gets called after a retransmit timeout, and the initially
2974 * retransmitted data is acknowledged. It tries to continue
2975 * resending the rest of the retransmit queue, until either
2976 * we've sent it all or the congestion window limit is reached.
2978 void tcp_xmit_retransmit_queue(struct sock *sk)
2980 const struct inet_connection_sock *icsk = inet_csk(sk);
2981 struct sk_buff *skb, *rtx_head, *hole = NULL;
2982 struct tcp_sock *tp = tcp_sk(sk);
2983 u32 max_segs;
2984 int mib_idx;
2986 if (!tp->packets_out)
2987 return;
2989 rtx_head = tcp_rtx_queue_head(sk);
2990 skb = tp->retransmit_skb_hint ?: rtx_head;
2991 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2992 skb_rbtree_walk_from(skb) {
2993 __u8 sacked;
2994 int segs;
2996 if (tcp_pacing_check(sk))
2997 break;
2999 /* we could do better than to assign each time */
3000 if (!hole)
3001 tp->retransmit_skb_hint = skb;
3003 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3004 if (segs <= 0)
3005 return;
3006 sacked = TCP_SKB_CB(skb)->sacked;
3007 /* In case tcp_shift_skb_data() have aggregated large skbs,
3008 * we need to make sure not sending too bigs TSO packets
3010 segs = min_t(int, segs, max_segs);
3012 if (tp->retrans_out >= tp->lost_out) {
3013 break;
3014 } else if (!(sacked & TCPCB_LOST)) {
3015 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3016 hole = skb;
3017 continue;
3019 } else {
3020 if (icsk->icsk_ca_state != TCP_CA_Loss)
3021 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3022 else
3023 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3026 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3027 continue;
3029 if (tcp_small_queue_check(sk, skb, 1))
3030 return;
3032 if (tcp_retransmit_skb(sk, skb, segs))
3033 return;
3035 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3037 if (tcp_in_cwnd_reduction(sk))
3038 tp->prr_out += tcp_skb_pcount(skb);
3040 if (skb == rtx_head &&
3041 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3042 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3043 inet_csk(sk)->icsk_rto,
3044 TCP_RTO_MAX);
3048 /* We allow to exceed memory limits for FIN packets to expedite
3049 * connection tear down and (memory) recovery.
3050 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3051 * or even be forced to close flow without any FIN.
3052 * In general, we want to allow one skb per socket to avoid hangs
3053 * with edge trigger epoll()
3055 void sk_forced_mem_schedule(struct sock *sk, int size)
3057 int amt;
3059 if (size <= sk->sk_forward_alloc)
3060 return;
3061 amt = sk_mem_pages(size);
3062 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3063 sk_memory_allocated_add(sk, amt);
3065 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3066 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3069 /* Send a FIN. The caller locks the socket for us.
3070 * We should try to send a FIN packet really hard, but eventually give up.
3072 void tcp_send_fin(struct sock *sk)
3074 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3075 struct tcp_sock *tp = tcp_sk(sk);
3077 /* Optimization, tack on the FIN if we have one skb in write queue and
3078 * this skb was not yet sent, or we are under memory pressure.
3079 * Note: in the latter case, FIN packet will be sent after a timeout,
3080 * as TCP stack thinks it has already been transmitted.
3082 if (!tskb && tcp_under_memory_pressure(sk))
3083 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3085 if (tskb) {
3086 coalesce:
3087 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3088 TCP_SKB_CB(tskb)->end_seq++;
3089 tp->write_seq++;
3090 if (tcp_write_queue_empty(sk)) {
3091 /* This means tskb was already sent.
3092 * Pretend we included the FIN on previous transmit.
3093 * We need to set tp->snd_nxt to the value it would have
3094 * if FIN had been sent. This is because retransmit path
3095 * does not change tp->snd_nxt.
3097 tp->snd_nxt++;
3098 return;
3100 } else {
3101 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3102 if (unlikely(!skb)) {
3103 if (tskb)
3104 goto coalesce;
3105 return;
3107 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3108 skb_reserve(skb, MAX_TCP_HEADER);
3109 sk_forced_mem_schedule(sk, skb->truesize);
3110 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3111 tcp_init_nondata_skb(skb, tp->write_seq,
3112 TCPHDR_ACK | TCPHDR_FIN);
3113 tcp_queue_skb(sk, skb);
3115 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3118 /* We get here when a process closes a file descriptor (either due to
3119 * an explicit close() or as a byproduct of exit()'ing) and there
3120 * was unread data in the receive queue. This behavior is recommended
3121 * by RFC 2525, section 2.17. -DaveM
3123 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3125 struct sk_buff *skb;
3127 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3129 /* NOTE: No TCP options attached and we never retransmit this. */
3130 skb = alloc_skb(MAX_TCP_HEADER, priority);
3131 if (!skb) {
3132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3133 return;
3136 /* Reserve space for headers and prepare control bits. */
3137 skb_reserve(skb, MAX_TCP_HEADER);
3138 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3139 TCPHDR_ACK | TCPHDR_RST);
3140 tcp_mstamp_refresh(tcp_sk(sk));
3141 /* Send it off. */
3142 if (tcp_transmit_skb(sk, skb, 0, priority))
3143 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3145 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3146 * skb here is different to the troublesome skb, so use NULL
3148 trace_tcp_send_reset(sk, NULL);
3151 /* Send a crossed SYN-ACK during socket establishment.
3152 * WARNING: This routine must only be called when we have already sent
3153 * a SYN packet that crossed the incoming SYN that caused this routine
3154 * to get called. If this assumption fails then the initial rcv_wnd
3155 * and rcv_wscale values will not be correct.
3157 int tcp_send_synack(struct sock *sk)
3159 struct sk_buff *skb;
3161 skb = tcp_rtx_queue_head(sk);
3162 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3163 pr_err("%s: wrong queue state\n", __func__);
3164 return -EFAULT;
3166 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3167 if (skb_cloned(skb)) {
3168 struct sk_buff *nskb;
3170 tcp_skb_tsorted_save(skb) {
3171 nskb = skb_copy(skb, GFP_ATOMIC);
3172 } tcp_skb_tsorted_restore(skb);
3173 if (!nskb)
3174 return -ENOMEM;
3175 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3176 tcp_rtx_queue_unlink_and_free(skb, sk);
3177 __skb_header_release(nskb);
3178 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3179 sk->sk_wmem_queued += nskb->truesize;
3180 sk_mem_charge(sk, nskb->truesize);
3181 skb = nskb;
3184 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3185 tcp_ecn_send_synack(sk, skb);
3187 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3191 * tcp_make_synack - Prepare a SYN-ACK.
3192 * sk: listener socket
3193 * dst: dst entry attached to the SYNACK
3194 * req: request_sock pointer
3196 * Allocate one skb and build a SYNACK packet.
3197 * @dst is consumed : Caller should not use it again.
3199 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3200 struct request_sock *req,
3201 struct tcp_fastopen_cookie *foc,
3202 enum tcp_synack_type synack_type)
3204 struct inet_request_sock *ireq = inet_rsk(req);
3205 const struct tcp_sock *tp = tcp_sk(sk);
3206 struct tcp_md5sig_key *md5 = NULL;
3207 struct tcp_out_options opts;
3208 struct sk_buff *skb;
3209 int tcp_header_size;
3210 struct tcphdr *th;
3211 int mss;
3213 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3214 if (unlikely(!skb)) {
3215 dst_release(dst);
3216 return NULL;
3218 /* Reserve space for headers. */
3219 skb_reserve(skb, MAX_TCP_HEADER);
3221 switch (synack_type) {
3222 case TCP_SYNACK_NORMAL:
3223 skb_set_owner_w(skb, req_to_sk(req));
3224 break;
3225 case TCP_SYNACK_COOKIE:
3226 /* Under synflood, we do not attach skb to a socket,
3227 * to avoid false sharing.
3229 break;
3230 case TCP_SYNACK_FASTOPEN:
3231 /* sk is a const pointer, because we want to express multiple
3232 * cpu might call us concurrently.
3233 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3235 skb_set_owner_w(skb, (struct sock *)sk);
3236 break;
3238 skb_dst_set(skb, dst);
3240 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3242 memset(&opts, 0, sizeof(opts));
3243 #ifdef CONFIG_SYN_COOKIES
3244 if (unlikely(req->cookie_ts))
3245 skb->skb_mstamp = cookie_init_timestamp(req);
3246 else
3247 #endif
3248 skb->skb_mstamp = tcp_clock_us();
3250 #ifdef CONFIG_TCP_MD5SIG
3251 rcu_read_lock();
3252 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3253 #endif
3254 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3255 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3256 foc) + sizeof(*th);
3258 skb_push(skb, tcp_header_size);
3259 skb_reset_transport_header(skb);
3261 th = (struct tcphdr *)skb->data;
3262 memset(th, 0, sizeof(struct tcphdr));
3263 th->syn = 1;
3264 th->ack = 1;
3265 tcp_ecn_make_synack(req, th);
3266 th->source = htons(ireq->ir_num);
3267 th->dest = ireq->ir_rmt_port;
3268 skb->mark = ireq->ir_mark;
3269 skb->ip_summed = CHECKSUM_PARTIAL;
3270 th->seq = htonl(tcp_rsk(req)->snt_isn);
3271 /* XXX data is queued and acked as is. No buffer/window check */
3272 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3274 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3275 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3276 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3277 th->doff = (tcp_header_size >> 2);
3278 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3280 #ifdef CONFIG_TCP_MD5SIG
3281 /* Okay, we have all we need - do the md5 hash if needed */
3282 if (md5)
3283 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3284 md5, req_to_sk(req), skb);
3285 rcu_read_unlock();
3286 #endif
3288 /* Do not fool tcpdump (if any), clean our debris */
3289 skb->tstamp = 0;
3290 return skb;
3292 EXPORT_SYMBOL(tcp_make_synack);
3294 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3296 struct inet_connection_sock *icsk = inet_csk(sk);
3297 const struct tcp_congestion_ops *ca;
3298 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3300 if (ca_key == TCP_CA_UNSPEC)
3301 return;
3303 rcu_read_lock();
3304 ca = tcp_ca_find_key(ca_key);
3305 if (likely(ca && try_module_get(ca->owner))) {
3306 module_put(icsk->icsk_ca_ops->owner);
3307 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3308 icsk->icsk_ca_ops = ca;
3310 rcu_read_unlock();
3313 /* Do all connect socket setups that can be done AF independent. */
3314 static void tcp_connect_init(struct sock *sk)
3316 const struct dst_entry *dst = __sk_dst_get(sk);
3317 struct tcp_sock *tp = tcp_sk(sk);
3318 __u8 rcv_wscale;
3319 u32 rcv_wnd;
3321 /* We'll fix this up when we get a response from the other end.
3322 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3324 tp->tcp_header_len = sizeof(struct tcphdr);
3325 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3326 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3328 #ifdef CONFIG_TCP_MD5SIG
3329 if (tp->af_specific->md5_lookup(sk, sk))
3330 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3331 #endif
3333 /* If user gave his TCP_MAXSEG, record it to clamp */
3334 if (tp->rx_opt.user_mss)
3335 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3336 tp->max_window = 0;
3337 tcp_mtup_init(sk);
3338 tcp_sync_mss(sk, dst_mtu(dst));
3340 tcp_ca_dst_init(sk, dst);
3342 if (!tp->window_clamp)
3343 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3344 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3346 tcp_initialize_rcv_mss(sk);
3348 /* limit the window selection if the user enforce a smaller rx buffer */
3349 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3350 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3351 tp->window_clamp = tcp_full_space(sk);
3353 rcv_wnd = tcp_rwnd_init_bpf(sk);
3354 if (rcv_wnd == 0)
3355 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3357 tcp_select_initial_window(sk, tcp_full_space(sk),
3358 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3359 &tp->rcv_wnd,
3360 &tp->window_clamp,
3361 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3362 &rcv_wscale,
3363 rcv_wnd);
3365 tp->rx_opt.rcv_wscale = rcv_wscale;
3366 tp->rcv_ssthresh = tp->rcv_wnd;
3368 sk->sk_err = 0;
3369 sock_reset_flag(sk, SOCK_DONE);
3370 tp->snd_wnd = 0;
3371 tcp_init_wl(tp, 0);
3372 tp->snd_una = tp->write_seq;
3373 tp->snd_sml = tp->write_seq;
3374 tp->snd_up = tp->write_seq;
3375 tp->snd_nxt = tp->write_seq;
3377 if (likely(!tp->repair))
3378 tp->rcv_nxt = 0;
3379 else
3380 tp->rcv_tstamp = tcp_jiffies32;
3381 tp->rcv_wup = tp->rcv_nxt;
3382 tp->copied_seq = tp->rcv_nxt;
3384 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3385 inet_csk(sk)->icsk_retransmits = 0;
3386 tcp_clear_retrans(tp);
3389 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3391 struct tcp_sock *tp = tcp_sk(sk);
3392 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3394 tcb->end_seq += skb->len;
3395 __skb_header_release(skb);
3396 sk->sk_wmem_queued += skb->truesize;
3397 sk_mem_charge(sk, skb->truesize);
3398 tp->write_seq = tcb->end_seq;
3399 tp->packets_out += tcp_skb_pcount(skb);
3402 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3403 * queue a data-only packet after the regular SYN, such that regular SYNs
3404 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3405 * only the SYN sequence, the data are retransmitted in the first ACK.
3406 * If cookie is not cached or other error occurs, falls back to send a
3407 * regular SYN with Fast Open cookie request option.
3409 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3411 struct tcp_sock *tp = tcp_sk(sk);
3412 struct tcp_fastopen_request *fo = tp->fastopen_req;
3413 int space, err = 0;
3414 struct sk_buff *syn_data;
3416 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3417 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3418 goto fallback;
3420 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3421 * user-MSS. Reserve maximum option space for middleboxes that add
3422 * private TCP options. The cost is reduced data space in SYN :(
3424 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3426 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3427 MAX_TCP_OPTION_SPACE;
3429 space = min_t(size_t, space, fo->size);
3431 /* limit to order-0 allocations */
3432 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3434 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3435 if (!syn_data)
3436 goto fallback;
3437 syn_data->ip_summed = CHECKSUM_PARTIAL;
3438 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3439 if (space) {
3440 int copied = copy_from_iter(skb_put(syn_data, space), space,
3441 &fo->data->msg_iter);
3442 if (unlikely(!copied)) {
3443 tcp_skb_tsorted_anchor_cleanup(syn_data);
3444 kfree_skb(syn_data);
3445 goto fallback;
3447 if (copied != space) {
3448 skb_trim(syn_data, copied);
3449 space = copied;
3452 /* No more data pending in inet_wait_for_connect() */
3453 if (space == fo->size)
3454 fo->data = NULL;
3455 fo->copied = space;
3457 tcp_connect_queue_skb(sk, syn_data);
3458 if (syn_data->len)
3459 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3461 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3463 syn->skb_mstamp = syn_data->skb_mstamp;
3465 /* Now full SYN+DATA was cloned and sent (or not),
3466 * remove the SYN from the original skb (syn_data)
3467 * we keep in write queue in case of a retransmit, as we
3468 * also have the SYN packet (with no data) in the same queue.
3470 TCP_SKB_CB(syn_data)->seq++;
3471 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3472 if (!err) {
3473 tp->syn_data = (fo->copied > 0);
3474 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3475 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3476 goto done;
3479 /* data was not sent, put it in write_queue */
3480 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3481 tp->packets_out -= tcp_skb_pcount(syn_data);
3483 fallback:
3484 /* Send a regular SYN with Fast Open cookie request option */
3485 if (fo->cookie.len > 0)
3486 fo->cookie.len = 0;
3487 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3488 if (err)
3489 tp->syn_fastopen = 0;
3490 done:
3491 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3492 return err;
3495 /* Build a SYN and send it off. */
3496 int tcp_connect(struct sock *sk)
3498 struct tcp_sock *tp = tcp_sk(sk);
3499 struct sk_buff *buff;
3500 int err;
3502 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3504 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3505 return -EHOSTUNREACH; /* Routing failure or similar. */
3507 tcp_connect_init(sk);
3509 if (unlikely(tp->repair)) {
3510 tcp_finish_connect(sk, NULL);
3511 return 0;
3514 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3515 if (unlikely(!buff))
3516 return -ENOBUFS;
3518 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3519 tcp_mstamp_refresh(tp);
3520 tp->retrans_stamp = tcp_time_stamp(tp);
3521 tcp_connect_queue_skb(sk, buff);
3522 tcp_ecn_send_syn(sk, buff);
3523 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3525 /* Send off SYN; include data in Fast Open. */
3526 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3527 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3528 if (err == -ECONNREFUSED)
3529 return err;
3531 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3532 * in order to make this packet get counted in tcpOutSegs.
3534 tp->snd_nxt = tp->write_seq;
3535 tp->pushed_seq = tp->write_seq;
3536 buff = tcp_send_head(sk);
3537 if (unlikely(buff)) {
3538 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3539 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3541 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3543 /* Timer for repeating the SYN until an answer. */
3544 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3545 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3546 return 0;
3548 EXPORT_SYMBOL(tcp_connect);
3550 /* Send out a delayed ack, the caller does the policy checking
3551 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3552 * for details.
3554 void tcp_send_delayed_ack(struct sock *sk)
3556 struct inet_connection_sock *icsk = inet_csk(sk);
3557 int ato = icsk->icsk_ack.ato;
3558 unsigned long timeout;
3560 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3562 if (ato > TCP_DELACK_MIN) {
3563 const struct tcp_sock *tp = tcp_sk(sk);
3564 int max_ato = HZ / 2;
3566 if (icsk->icsk_ack.pingpong ||
3567 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3568 max_ato = TCP_DELACK_MAX;
3570 /* Slow path, intersegment interval is "high". */
3572 /* If some rtt estimate is known, use it to bound delayed ack.
3573 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3574 * directly.
3576 if (tp->srtt_us) {
3577 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3578 TCP_DELACK_MIN);
3580 if (rtt < max_ato)
3581 max_ato = rtt;
3584 ato = min(ato, max_ato);
3587 /* Stay within the limit we were given */
3588 timeout = jiffies + ato;
3590 /* Use new timeout only if there wasn't a older one earlier. */
3591 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3592 /* If delack timer was blocked or is about to expire,
3593 * send ACK now.
3595 if (icsk->icsk_ack.blocked ||
3596 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3597 tcp_send_ack(sk);
3598 return;
3601 if (!time_before(timeout, icsk->icsk_ack.timeout))
3602 timeout = icsk->icsk_ack.timeout;
3604 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3605 icsk->icsk_ack.timeout = timeout;
3606 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3609 /* This routine sends an ack and also updates the window. */
3610 void tcp_send_ack(struct sock *sk)
3612 struct sk_buff *buff;
3614 /* If we have been reset, we may not send again. */
3615 if (sk->sk_state == TCP_CLOSE)
3616 return;
3618 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3620 /* We are not putting this on the write queue, so
3621 * tcp_transmit_skb() will set the ownership to this
3622 * sock.
3624 buff = alloc_skb(MAX_TCP_HEADER,
3625 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3626 if (unlikely(!buff)) {
3627 inet_csk_schedule_ack(sk);
3628 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3629 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3630 TCP_DELACK_MAX, TCP_RTO_MAX);
3631 return;
3634 /* Reserve space for headers and prepare control bits. */
3635 skb_reserve(buff, MAX_TCP_HEADER);
3636 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3638 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3639 * too much.
3640 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3642 skb_set_tcp_pure_ack(buff);
3644 /* Send it off, this clears delayed acks for us. */
3645 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3647 EXPORT_SYMBOL_GPL(tcp_send_ack);
3649 /* This routine sends a packet with an out of date sequence
3650 * number. It assumes the other end will try to ack it.
3652 * Question: what should we make while urgent mode?
3653 * 4.4BSD forces sending single byte of data. We cannot send
3654 * out of window data, because we have SND.NXT==SND.MAX...
3656 * Current solution: to send TWO zero-length segments in urgent mode:
3657 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3658 * out-of-date with SND.UNA-1 to probe window.
3660 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3662 struct tcp_sock *tp = tcp_sk(sk);
3663 struct sk_buff *skb;
3665 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3666 skb = alloc_skb(MAX_TCP_HEADER,
3667 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3668 if (!skb)
3669 return -1;
3671 /* Reserve space for headers and set control bits. */
3672 skb_reserve(skb, MAX_TCP_HEADER);
3673 /* Use a previous sequence. This should cause the other
3674 * end to send an ack. Don't queue or clone SKB, just
3675 * send it.
3677 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3678 NET_INC_STATS(sock_net(sk), mib);
3679 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3682 /* Called from setsockopt( ... TCP_REPAIR ) */
3683 void tcp_send_window_probe(struct sock *sk)
3685 if (sk->sk_state == TCP_ESTABLISHED) {
3686 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3687 tcp_mstamp_refresh(tcp_sk(sk));
3688 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3692 /* Initiate keepalive or window probe from timer. */
3693 int tcp_write_wakeup(struct sock *sk, int mib)
3695 struct tcp_sock *tp = tcp_sk(sk);
3696 struct sk_buff *skb;
3698 if (sk->sk_state == TCP_CLOSE)
3699 return -1;
3701 skb = tcp_send_head(sk);
3702 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3703 int err;
3704 unsigned int mss = tcp_current_mss(sk);
3705 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3707 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3708 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3710 /* We are probing the opening of a window
3711 * but the window size is != 0
3712 * must have been a result SWS avoidance ( sender )
3714 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3715 skb->len > mss) {
3716 seg_size = min(seg_size, mss);
3717 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3718 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3719 skb, seg_size, mss, GFP_ATOMIC))
3720 return -1;
3721 } else if (!tcp_skb_pcount(skb))
3722 tcp_set_skb_tso_segs(skb, mss);
3724 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3725 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3726 if (!err)
3727 tcp_event_new_data_sent(sk, skb);
3728 return err;
3729 } else {
3730 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3731 tcp_xmit_probe_skb(sk, 1, mib);
3732 return tcp_xmit_probe_skb(sk, 0, mib);
3736 /* A window probe timeout has occurred. If window is not closed send
3737 * a partial packet else a zero probe.
3739 void tcp_send_probe0(struct sock *sk)
3741 struct inet_connection_sock *icsk = inet_csk(sk);
3742 struct tcp_sock *tp = tcp_sk(sk);
3743 struct net *net = sock_net(sk);
3744 unsigned long probe_max;
3745 int err;
3747 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3749 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3750 /* Cancel probe timer, if it is not required. */
3751 icsk->icsk_probes_out = 0;
3752 icsk->icsk_backoff = 0;
3753 return;
3756 if (err <= 0) {
3757 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3758 icsk->icsk_backoff++;
3759 icsk->icsk_probes_out++;
3760 probe_max = TCP_RTO_MAX;
3761 } else {
3762 /* If packet was not sent due to local congestion,
3763 * do not backoff and do not remember icsk_probes_out.
3764 * Let local senders to fight for local resources.
3766 * Use accumulated backoff yet.
3768 if (!icsk->icsk_probes_out)
3769 icsk->icsk_probes_out = 1;
3770 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3772 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3773 tcp_probe0_when(sk, probe_max),
3774 TCP_RTO_MAX);
3777 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3779 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3780 struct flowi fl;
3781 int res;
3783 tcp_rsk(req)->txhash = net_tx_rndhash();
3784 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3785 if (!res) {
3786 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3787 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3788 if (unlikely(tcp_passive_fastopen(sk)))
3789 tcp_sk(sk)->total_retrans++;
3790 trace_tcp_retransmit_synack(sk, req);
3792 return res;
3794 EXPORT_SYMBOL(tcp_rtx_synack);