Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / tls / tls_main.c
blobd824d548447ef71a88ca0f738c7baee7e8b18b51
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/module.h>
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
42 #include <net/tls.h>
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
48 enum {
49 TLSV4,
50 TLSV6,
51 TLS_NUM_PROTS,
54 enum {
55 TLS_BASE_TX,
56 TLS_SW_TX,
57 TLS_NUM_CONFIG,
60 static struct proto *saved_tcpv6_prot;
61 static DEFINE_MUTEX(tcpv6_prot_mutex);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
64 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
66 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
68 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf];
71 int wait_on_pending_writer(struct sock *sk, long *timeo)
73 int rc = 0;
74 DEFINE_WAIT_FUNC(wait, woken_wake_function);
76 add_wait_queue(sk_sleep(sk), &wait);
77 while (1) {
78 if (!*timeo) {
79 rc = -EAGAIN;
80 break;
83 if (signal_pending(current)) {
84 rc = sock_intr_errno(*timeo);
85 break;
88 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
89 break;
91 remove_wait_queue(sk_sleep(sk), &wait);
92 return rc;
95 int tls_push_sg(struct sock *sk,
96 struct tls_context *ctx,
97 struct scatterlist *sg,
98 u16 first_offset,
99 int flags)
101 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
102 int ret = 0;
103 struct page *p;
104 size_t size;
105 int offset = first_offset;
107 size = sg->length - offset;
108 offset += sg->offset;
110 while (1) {
111 if (sg_is_last(sg))
112 sendpage_flags = flags;
114 /* is sending application-limited? */
115 tcp_rate_check_app_limited(sk);
116 p = sg_page(sg);
117 retry:
118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
120 if (ret != size) {
121 if (ret > 0) {
122 offset += ret;
123 size -= ret;
124 goto retry;
127 offset -= sg->offset;
128 ctx->partially_sent_offset = offset;
129 ctx->partially_sent_record = (void *)sg;
130 return ret;
133 put_page(p);
134 sk_mem_uncharge(sk, sg->length);
135 sg = sg_next(sg);
136 if (!sg)
137 break;
139 offset = sg->offset;
140 size = sg->length;
143 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 return 0;
148 static int tls_handle_open_record(struct sock *sk, int flags)
150 struct tls_context *ctx = tls_get_ctx(sk);
152 if (tls_is_pending_open_record(ctx))
153 return ctx->push_pending_record(sk, flags);
155 return 0;
158 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
159 unsigned char *record_type)
161 struct cmsghdr *cmsg;
162 int rc = -EINVAL;
164 for_each_cmsghdr(cmsg, msg) {
165 if (!CMSG_OK(msg, cmsg))
166 return -EINVAL;
167 if (cmsg->cmsg_level != SOL_TLS)
168 continue;
170 switch (cmsg->cmsg_type) {
171 case TLS_SET_RECORD_TYPE:
172 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
173 return -EINVAL;
175 if (msg->msg_flags & MSG_MORE)
176 return -EINVAL;
178 rc = tls_handle_open_record(sk, msg->msg_flags);
179 if (rc)
180 return rc;
182 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
183 rc = 0;
184 break;
185 default:
186 return -EINVAL;
190 return rc;
193 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
194 int flags, long *timeo)
196 struct scatterlist *sg;
197 u16 offset;
199 if (!tls_is_partially_sent_record(ctx))
200 return ctx->push_pending_record(sk, flags);
202 sg = ctx->partially_sent_record;
203 offset = ctx->partially_sent_offset;
205 ctx->partially_sent_record = NULL;
206 return tls_push_sg(sk, ctx, sg, offset, flags);
209 static void tls_write_space(struct sock *sk)
211 struct tls_context *ctx = tls_get_ctx(sk);
213 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
214 gfp_t sk_allocation = sk->sk_allocation;
215 int rc;
216 long timeo = 0;
218 sk->sk_allocation = GFP_ATOMIC;
219 rc = tls_push_pending_closed_record(sk, ctx,
220 MSG_DONTWAIT |
221 MSG_NOSIGNAL,
222 &timeo);
223 sk->sk_allocation = sk_allocation;
225 if (rc < 0)
226 return;
229 ctx->sk_write_space(sk);
232 static void tls_sk_proto_close(struct sock *sk, long timeout)
234 struct tls_context *ctx = tls_get_ctx(sk);
235 long timeo = sock_sndtimeo(sk, 0);
236 void (*sk_proto_close)(struct sock *sk, long timeout);
238 lock_sock(sk);
239 sk_proto_close = ctx->sk_proto_close;
241 if (ctx->tx_conf == TLS_BASE_TX) {
242 kfree(ctx);
243 goto skip_tx_cleanup;
246 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
247 tls_handle_open_record(sk, 0);
249 if (ctx->partially_sent_record) {
250 struct scatterlist *sg = ctx->partially_sent_record;
252 while (1) {
253 put_page(sg_page(sg));
254 sk_mem_uncharge(sk, sg->length);
256 if (sg_is_last(sg))
257 break;
258 sg++;
262 kfree(ctx->rec_seq);
263 kfree(ctx->iv);
265 if (ctx->tx_conf == TLS_SW_TX)
266 tls_sw_free_tx_resources(sk);
268 skip_tx_cleanup:
269 release_sock(sk);
270 sk_proto_close(sk, timeout);
273 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
274 int __user *optlen)
276 int rc = 0;
277 struct tls_context *ctx = tls_get_ctx(sk);
278 struct tls_crypto_info *crypto_info;
279 int len;
281 if (get_user(len, optlen))
282 return -EFAULT;
284 if (!optval || (len < sizeof(*crypto_info))) {
285 rc = -EINVAL;
286 goto out;
289 if (!ctx) {
290 rc = -EBUSY;
291 goto out;
294 /* get user crypto info */
295 crypto_info = &ctx->crypto_send;
297 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
298 rc = -EBUSY;
299 goto out;
302 if (len == sizeof(*crypto_info)) {
303 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
304 rc = -EFAULT;
305 goto out;
308 switch (crypto_info->cipher_type) {
309 case TLS_CIPHER_AES_GCM_128: {
310 struct tls12_crypto_info_aes_gcm_128 *
311 crypto_info_aes_gcm_128 =
312 container_of(crypto_info,
313 struct tls12_crypto_info_aes_gcm_128,
314 info);
316 if (len != sizeof(*crypto_info_aes_gcm_128)) {
317 rc = -EINVAL;
318 goto out;
320 lock_sock(sk);
321 memcpy(crypto_info_aes_gcm_128->iv,
322 ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
323 TLS_CIPHER_AES_GCM_128_IV_SIZE);
324 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->rec_seq,
325 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
326 release_sock(sk);
327 if (copy_to_user(optval,
328 crypto_info_aes_gcm_128,
329 sizeof(*crypto_info_aes_gcm_128)))
330 rc = -EFAULT;
331 break;
333 default:
334 rc = -EINVAL;
337 out:
338 return rc;
341 static int do_tls_getsockopt(struct sock *sk, int optname,
342 char __user *optval, int __user *optlen)
344 int rc = 0;
346 switch (optname) {
347 case TLS_TX:
348 rc = do_tls_getsockopt_tx(sk, optval, optlen);
349 break;
350 default:
351 rc = -ENOPROTOOPT;
352 break;
354 return rc;
357 static int tls_getsockopt(struct sock *sk, int level, int optname,
358 char __user *optval, int __user *optlen)
360 struct tls_context *ctx = tls_get_ctx(sk);
362 if (level != SOL_TLS)
363 return ctx->getsockopt(sk, level, optname, optval, optlen);
365 return do_tls_getsockopt(sk, optname, optval, optlen);
368 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
369 unsigned int optlen)
371 struct tls_crypto_info *crypto_info;
372 struct tls_context *ctx = tls_get_ctx(sk);
373 int rc = 0;
374 int tx_conf;
376 if (!optval || (optlen < sizeof(*crypto_info))) {
377 rc = -EINVAL;
378 goto out;
381 crypto_info = &ctx->crypto_send;
382 /* Currently we don't support set crypto info more than one time */
383 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
384 rc = -EBUSY;
385 goto out;
388 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
389 if (rc) {
390 rc = -EFAULT;
391 goto err_crypto_info;
394 /* check version */
395 if (crypto_info->version != TLS_1_2_VERSION) {
396 rc = -ENOTSUPP;
397 goto err_crypto_info;
400 switch (crypto_info->cipher_type) {
401 case TLS_CIPHER_AES_GCM_128: {
402 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
403 rc = -EINVAL;
404 goto err_crypto_info;
406 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
407 optlen - sizeof(*crypto_info));
408 if (rc) {
409 rc = -EFAULT;
410 goto err_crypto_info;
412 break;
414 default:
415 rc = -EINVAL;
416 goto err_crypto_info;
419 /* currently SW is default, we will have ethtool in future */
420 rc = tls_set_sw_offload(sk, ctx);
421 tx_conf = TLS_SW_TX;
422 if (rc)
423 goto err_crypto_info;
425 ctx->tx_conf = tx_conf;
426 update_sk_prot(sk, ctx);
427 ctx->sk_write_space = sk->sk_write_space;
428 sk->sk_write_space = tls_write_space;
429 goto out;
431 err_crypto_info:
432 memset(crypto_info, 0, sizeof(*crypto_info));
433 out:
434 return rc;
437 static int do_tls_setsockopt(struct sock *sk, int optname,
438 char __user *optval, unsigned int optlen)
440 int rc = 0;
442 switch (optname) {
443 case TLS_TX:
444 lock_sock(sk);
445 rc = do_tls_setsockopt_tx(sk, optval, optlen);
446 release_sock(sk);
447 break;
448 default:
449 rc = -ENOPROTOOPT;
450 break;
452 return rc;
455 static int tls_setsockopt(struct sock *sk, int level, int optname,
456 char __user *optval, unsigned int optlen)
458 struct tls_context *ctx = tls_get_ctx(sk);
460 if (level != SOL_TLS)
461 return ctx->setsockopt(sk, level, optname, optval, optlen);
463 return do_tls_setsockopt(sk, optname, optval, optlen);
466 static void build_protos(struct proto *prot, struct proto *base)
468 prot[TLS_BASE_TX] = *base;
469 prot[TLS_BASE_TX].setsockopt = tls_setsockopt;
470 prot[TLS_BASE_TX].getsockopt = tls_getsockopt;
471 prot[TLS_BASE_TX].close = tls_sk_proto_close;
473 prot[TLS_SW_TX] = prot[TLS_BASE_TX];
474 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
475 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
478 static int tls_init(struct sock *sk)
480 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
481 struct inet_connection_sock *icsk = inet_csk(sk);
482 struct tls_context *ctx;
483 int rc = 0;
485 /* The TLS ulp is currently supported only for TCP sockets
486 * in ESTABLISHED state.
487 * Supporting sockets in LISTEN state will require us
488 * to modify the accept implementation to clone rather then
489 * share the ulp context.
491 if (sk->sk_state != TCP_ESTABLISHED)
492 return -ENOTSUPP;
494 /* allocate tls context */
495 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
496 if (!ctx) {
497 rc = -ENOMEM;
498 goto out;
500 icsk->icsk_ulp_data = ctx;
501 ctx->setsockopt = sk->sk_prot->setsockopt;
502 ctx->getsockopt = sk->sk_prot->getsockopt;
503 ctx->sk_proto_close = sk->sk_prot->close;
505 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
506 if (ip_ver == TLSV6 &&
507 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
508 mutex_lock(&tcpv6_prot_mutex);
509 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
510 build_protos(tls_prots[TLSV6], sk->sk_prot);
511 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
513 mutex_unlock(&tcpv6_prot_mutex);
516 ctx->tx_conf = TLS_BASE_TX;
517 update_sk_prot(sk, ctx);
518 out:
519 return rc;
522 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
523 .name = "tls",
524 .uid = TCP_ULP_TLS,
525 .user_visible = true,
526 .owner = THIS_MODULE,
527 .init = tls_init,
530 static int __init tls_register(void)
532 build_protos(tls_prots[TLSV4], &tcp_prot);
534 tcp_register_ulp(&tcp_tls_ulp_ops);
536 return 0;
539 static void __exit tls_unregister(void)
541 tcp_unregister_ulp(&tcp_tls_ulp_ops);
544 module_init(tls_register);
545 module_exit(tls_unregister);