2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
8 * This software is available to you under a choice of one of two
9 * licenses. You may choose to be licensed under the terms of the GNU
10 * General Public License (GPL) Version 2, available from the file
11 * COPYING in the main directory of this source tree, or the
12 * OpenIB.org BSD license below:
14 * Redistribution and use in source and binary forms, with or
15 * without modification, are permitted provided that the following
18 * - Redistributions of source code must retain the above
19 * copyright notice, this list of conditions and the following
22 * - Redistributions in binary form must reproduce the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer in the documentation and/or other materials
25 * provided with the distribution.
27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 #include <linux/module.h>
38 #include <crypto/aead.h>
42 static void trim_sg(struct sock
*sk
, struct scatterlist
*sg
,
43 int *sg_num_elem
, unsigned int *sg_size
, int target_size
)
45 int i
= *sg_num_elem
- 1;
46 int trim
= *sg_size
- target_size
;
53 *sg_size
= target_size
;
54 while (trim
>= sg
[i
].length
) {
56 sk_mem_uncharge(sk
, sg
[i
].length
);
57 put_page(sg_page(&sg
[i
]));
65 sk_mem_uncharge(sk
, trim
);
71 static void trim_both_sgl(struct sock
*sk
, int target_size
)
73 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
74 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
76 trim_sg(sk
, ctx
->sg_plaintext_data
,
77 &ctx
->sg_plaintext_num_elem
,
78 &ctx
->sg_plaintext_size
,
82 target_size
+= tls_ctx
->overhead_size
;
84 trim_sg(sk
, ctx
->sg_encrypted_data
,
85 &ctx
->sg_encrypted_num_elem
,
86 &ctx
->sg_encrypted_size
,
90 static int alloc_sg(struct sock
*sk
, int len
, struct scatterlist
*sg
,
91 int *sg_num_elem
, unsigned int *sg_size
,
94 struct page_frag
*pfrag
;
95 unsigned int size
= *sg_size
;
96 int num_elem
= *sg_num_elem
, use
= 0, rc
= 0;
97 struct scatterlist
*sge
;
98 unsigned int orig_offset
;
101 pfrag
= sk_page_frag(sk
);
104 if (!sk_page_frag_refill(sk
, pfrag
)) {
109 use
= min_t(int, len
, pfrag
->size
- pfrag
->offset
);
111 if (!sk_wmem_schedule(sk
, use
)) {
116 sk_mem_charge(sk
, use
);
118 orig_offset
= pfrag
->offset
;
119 pfrag
->offset
+= use
;
121 sge
= sg
+ num_elem
- 1;
122 if (num_elem
> first_coalesce
&& sg_page(sg
) == pfrag
->page
&&
123 sg
->offset
+ sg
->length
== orig_offset
) {
128 sg_set_page(sge
, pfrag
->page
, use
, orig_offset
);
129 get_page(pfrag
->page
);
131 if (num_elem
== MAX_SKB_FRAGS
) {
143 *sg_num_elem
= num_elem
;
147 static int alloc_encrypted_sg(struct sock
*sk
, int len
)
149 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
150 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
153 rc
= alloc_sg(sk
, len
, ctx
->sg_encrypted_data
,
154 &ctx
->sg_encrypted_num_elem
, &ctx
->sg_encrypted_size
, 0);
159 static int alloc_plaintext_sg(struct sock
*sk
, int len
)
161 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
162 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
165 rc
= alloc_sg(sk
, len
, ctx
->sg_plaintext_data
,
166 &ctx
->sg_plaintext_num_elem
, &ctx
->sg_plaintext_size
,
167 tls_ctx
->pending_open_record_frags
);
172 static void free_sg(struct sock
*sk
, struct scatterlist
*sg
,
173 int *sg_num_elem
, unsigned int *sg_size
)
175 int i
, n
= *sg_num_elem
;
177 for (i
= 0; i
< n
; ++i
) {
178 sk_mem_uncharge(sk
, sg
[i
].length
);
179 put_page(sg_page(&sg
[i
]));
185 static void tls_free_both_sg(struct sock
*sk
)
187 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
188 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
190 free_sg(sk
, ctx
->sg_encrypted_data
, &ctx
->sg_encrypted_num_elem
,
191 &ctx
->sg_encrypted_size
);
193 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
194 &ctx
->sg_plaintext_size
);
197 static int tls_do_encryption(struct tls_context
*tls_ctx
,
198 struct tls_sw_context
*ctx
, size_t data_len
,
201 unsigned int req_size
= sizeof(struct aead_request
) +
202 crypto_aead_reqsize(ctx
->aead_send
);
203 struct aead_request
*aead_req
;
206 aead_req
= kzalloc(req_size
, flags
);
210 ctx
->sg_encrypted_data
[0].offset
+= tls_ctx
->prepend_size
;
211 ctx
->sg_encrypted_data
[0].length
-= tls_ctx
->prepend_size
;
213 aead_request_set_tfm(aead_req
, ctx
->aead_send
);
214 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
215 aead_request_set_crypt(aead_req
, ctx
->sg_aead_in
, ctx
->sg_aead_out
,
216 data_len
, tls_ctx
->iv
);
218 aead_request_set_callback(aead_req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
219 crypto_req_done
, &ctx
->async_wait
);
221 rc
= crypto_wait_req(crypto_aead_encrypt(aead_req
), &ctx
->async_wait
);
223 ctx
->sg_encrypted_data
[0].offset
-= tls_ctx
->prepend_size
;
224 ctx
->sg_encrypted_data
[0].length
+= tls_ctx
->prepend_size
;
230 static int tls_push_record(struct sock
*sk
, int flags
,
231 unsigned char record_type
)
233 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
234 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
237 sg_mark_end(ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
- 1);
238 sg_mark_end(ctx
->sg_encrypted_data
+ ctx
->sg_encrypted_num_elem
- 1);
240 tls_make_aad(ctx
->aad_space
, ctx
->sg_plaintext_size
,
241 tls_ctx
->rec_seq
, tls_ctx
->rec_seq_size
,
244 tls_fill_prepend(tls_ctx
,
245 page_address(sg_page(&ctx
->sg_encrypted_data
[0])) +
246 ctx
->sg_encrypted_data
[0].offset
,
247 ctx
->sg_plaintext_size
, record_type
);
249 tls_ctx
->pending_open_record_frags
= 0;
250 set_bit(TLS_PENDING_CLOSED_RECORD
, &tls_ctx
->flags
);
252 rc
= tls_do_encryption(tls_ctx
, ctx
, ctx
->sg_plaintext_size
,
255 /* If we are called from write_space and
256 * we fail, we need to set this SOCK_NOSPACE
257 * to trigger another write_space in the future.
259 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
263 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
264 &ctx
->sg_plaintext_size
);
266 ctx
->sg_encrypted_num_elem
= 0;
267 ctx
->sg_encrypted_size
= 0;
269 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
270 rc
= tls_push_sg(sk
, tls_ctx
, ctx
->sg_encrypted_data
, 0, flags
);
271 if (rc
< 0 && rc
!= -EAGAIN
)
274 tls_advance_record_sn(sk
, tls_ctx
);
278 static int tls_sw_push_pending_record(struct sock
*sk
, int flags
)
280 return tls_push_record(sk
, flags
, TLS_RECORD_TYPE_DATA
);
283 static int zerocopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
286 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
287 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
288 struct page
*pages
[MAX_SKB_FRAGS
];
293 unsigned int size
= ctx
->sg_plaintext_size
;
294 int num_elem
= ctx
->sg_plaintext_num_elem
;
300 maxpages
= ARRAY_SIZE(ctx
->sg_plaintext_data
) - num_elem
;
305 copied
= iov_iter_get_pages(from
, pages
,
313 iov_iter_advance(from
, copied
);
318 use
= min_t(int, copied
, PAGE_SIZE
- offset
);
320 sg_set_page(&ctx
->sg_plaintext_data
[num_elem
],
321 pages
[i
], use
, offset
);
322 sg_unmark_end(&ctx
->sg_plaintext_data
[num_elem
]);
323 sk_mem_charge(sk
, use
);
334 ctx
->sg_plaintext_size
= size
;
335 ctx
->sg_plaintext_num_elem
= num_elem
;
339 static int memcopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
342 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
343 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
344 struct scatterlist
*sg
= ctx
->sg_plaintext_data
;
347 for (i
= tls_ctx
->pending_open_record_frags
;
348 i
< ctx
->sg_plaintext_num_elem
; ++i
) {
351 page_address(sg_page(&sg
[i
])) + sg
[i
].offset
,
352 copy
, from
) != copy
) {
358 ++tls_ctx
->pending_open_record_frags
;
368 int tls_sw_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
370 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
371 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
374 long timeo
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
375 bool eor
= !(msg
->msg_flags
& MSG_MORE
);
376 size_t try_to_copy
, copied
= 0;
377 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
382 if (msg
->msg_flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
))
387 if (tls_complete_pending_work(sk
, tls_ctx
, msg
->msg_flags
, &timeo
))
390 if (unlikely(msg
->msg_controllen
)) {
391 ret
= tls_proccess_cmsg(sk
, msg
, &record_type
);
396 while (msg_data_left(msg
)) {
402 orig_size
= ctx
->sg_plaintext_size
;
404 try_to_copy
= msg_data_left(msg
);
405 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
406 if (try_to_copy
>= record_room
) {
407 try_to_copy
= record_room
;
411 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
+
412 tls_ctx
->overhead_size
;
414 if (!sk_stream_memory_free(sk
))
415 goto wait_for_sndbuf
;
417 ret
= alloc_encrypted_sg(sk
, required_size
);
420 goto wait_for_memory
;
422 /* Adjust try_to_copy according to the amount that was
423 * actually allocated. The difference is due
424 * to max sg elements limit
426 try_to_copy
-= required_size
- ctx
->sg_encrypted_size
;
430 if (full_record
|| eor
) {
431 ret
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
434 goto fallback_to_reg_send
;
436 copied
+= try_to_copy
;
437 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
443 copied
-= try_to_copy
;
444 fallback_to_reg_send
:
445 iov_iter_revert(&msg
->msg_iter
,
446 ctx
->sg_plaintext_size
- orig_size
);
447 trim_sg(sk
, ctx
->sg_plaintext_data
,
448 &ctx
->sg_plaintext_num_elem
,
449 &ctx
->sg_plaintext_size
,
453 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
;
455 ret
= alloc_plaintext_sg(sk
, required_size
);
458 goto wait_for_memory
;
460 /* Adjust try_to_copy according to the amount that was
461 * actually allocated. The difference is due
462 * to max sg elements limit
464 try_to_copy
-= required_size
- ctx
->sg_plaintext_size
;
467 trim_sg(sk
, ctx
->sg_encrypted_data
,
468 &ctx
->sg_encrypted_num_elem
,
469 &ctx
->sg_encrypted_size
,
470 ctx
->sg_plaintext_size
+
471 tls_ctx
->overhead_size
);
474 ret
= memcopy_from_iter(sk
, &msg
->msg_iter
, try_to_copy
);
478 copied
+= try_to_copy
;
479 if (full_record
|| eor
) {
481 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
484 goto wait_for_memory
;
493 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
495 ret
= sk_stream_wait_memory(sk
, &timeo
);
498 trim_both_sgl(sk
, orig_size
);
502 if (tls_is_pending_closed_record(tls_ctx
))
505 if (ctx
->sg_encrypted_size
< required_size
)
506 goto alloc_encrypted
;
508 goto alloc_plaintext
;
512 ret
= sk_stream_error(sk
, msg
->msg_flags
, ret
);
515 return copied
? copied
: ret
;
518 int tls_sw_sendpage(struct sock
*sk
, struct page
*page
,
519 int offset
, size_t size
, int flags
)
521 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
522 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
524 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
526 size_t orig_size
= size
;
527 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
528 struct scatterlist
*sg
;
532 if (flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
|
533 MSG_SENDPAGE_NOTLAST
))
536 /* No MSG_EOR from splice, only look at MSG_MORE */
537 eor
= !(flags
& (MSG_MORE
| MSG_SENDPAGE_NOTLAST
));
541 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
543 if (tls_complete_pending_work(sk
, tls_ctx
, flags
, &timeo
))
546 /* Call the sk_stream functions to manage the sndbuf mem. */
548 size_t copy
, required_size
;
556 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
558 if (copy
>= record_room
) {
562 required_size
= ctx
->sg_plaintext_size
+ copy
+
563 tls_ctx
->overhead_size
;
565 if (!sk_stream_memory_free(sk
))
566 goto wait_for_sndbuf
;
568 ret
= alloc_encrypted_sg(sk
, required_size
);
571 goto wait_for_memory
;
573 /* Adjust copy according to the amount that was
574 * actually allocated. The difference is due
575 * to max sg elements limit
577 copy
-= required_size
- ctx
->sg_plaintext_size
;
582 sg
= ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
;
583 sg_set_page(sg
, page
, copy
, offset
);
586 ctx
->sg_plaintext_num_elem
++;
588 sk_mem_charge(sk
, copy
);
591 ctx
->sg_plaintext_size
+= copy
;
592 tls_ctx
->pending_open_record_frags
= ctx
->sg_plaintext_num_elem
;
594 if (full_record
|| eor
||
595 ctx
->sg_plaintext_num_elem
==
596 ARRAY_SIZE(ctx
->sg_plaintext_data
)) {
598 ret
= tls_push_record(sk
, flags
, record_type
);
601 goto wait_for_memory
;
608 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
610 ret
= sk_stream_wait_memory(sk
, &timeo
);
612 trim_both_sgl(sk
, ctx
->sg_plaintext_size
);
616 if (tls_is_pending_closed_record(tls_ctx
))
623 if (orig_size
> size
)
624 ret
= orig_size
- size
;
626 ret
= sk_stream_error(sk
, flags
, ret
);
632 void tls_sw_free_tx_resources(struct sock
*sk
)
634 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
635 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
638 crypto_free_aead(ctx
->aead_send
);
640 tls_free_both_sg(sk
);
646 int tls_set_sw_offload(struct sock
*sk
, struct tls_context
*ctx
)
648 char keyval
[TLS_CIPHER_AES_GCM_128_KEY_SIZE
];
649 struct tls_crypto_info
*crypto_info
;
650 struct tls12_crypto_info_aes_gcm_128
*gcm_128_info
;
651 struct tls_sw_context
*sw_ctx
;
652 u16 nonce_size
, tag_size
, iv_size
, rec_seq_size
;
666 sw_ctx
= kzalloc(sizeof(*sw_ctx
), GFP_KERNEL
);
672 crypto_init_wait(&sw_ctx
->async_wait
);
674 ctx
->priv_ctx
= (struct tls_offload_context
*)sw_ctx
;
676 crypto_info
= &ctx
->crypto_send
;
677 switch (crypto_info
->cipher_type
) {
678 case TLS_CIPHER_AES_GCM_128
: {
679 nonce_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
680 tag_size
= TLS_CIPHER_AES_GCM_128_TAG_SIZE
;
681 iv_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
682 iv
= ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->iv
;
683 rec_seq_size
= TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE
;
685 ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->rec_seq
;
687 (struct tls12_crypto_info_aes_gcm_128
*)crypto_info
;
695 ctx
->prepend_size
= TLS_HEADER_SIZE
+ nonce_size
;
696 ctx
->tag_size
= tag_size
;
697 ctx
->overhead_size
= ctx
->prepend_size
+ ctx
->tag_size
;
698 ctx
->iv_size
= iv_size
;
699 ctx
->iv
= kmalloc(iv_size
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
, GFP_KERNEL
);
704 memcpy(ctx
->iv
, gcm_128_info
->salt
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
705 memcpy(ctx
->iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
, iv
, iv_size
);
706 ctx
->rec_seq_size
= rec_seq_size
;
707 ctx
->rec_seq
= kmalloc(rec_seq_size
, GFP_KERNEL
);
712 memcpy(ctx
->rec_seq
, rec_seq
, rec_seq_size
);
714 sg_init_table(sw_ctx
->sg_encrypted_data
,
715 ARRAY_SIZE(sw_ctx
->sg_encrypted_data
));
716 sg_init_table(sw_ctx
->sg_plaintext_data
,
717 ARRAY_SIZE(sw_ctx
->sg_plaintext_data
));
719 sg_init_table(sw_ctx
->sg_aead_in
, 2);
720 sg_set_buf(&sw_ctx
->sg_aead_in
[0], sw_ctx
->aad_space
,
721 sizeof(sw_ctx
->aad_space
));
722 sg_unmark_end(&sw_ctx
->sg_aead_in
[1]);
723 sg_chain(sw_ctx
->sg_aead_in
, 2, sw_ctx
->sg_plaintext_data
);
724 sg_init_table(sw_ctx
->sg_aead_out
, 2);
725 sg_set_buf(&sw_ctx
->sg_aead_out
[0], sw_ctx
->aad_space
,
726 sizeof(sw_ctx
->aad_space
));
727 sg_unmark_end(&sw_ctx
->sg_aead_out
[1]);
728 sg_chain(sw_ctx
->sg_aead_out
, 2, sw_ctx
->sg_encrypted_data
);
730 if (!sw_ctx
->aead_send
) {
731 sw_ctx
->aead_send
= crypto_alloc_aead("gcm(aes)", 0, 0);
732 if (IS_ERR(sw_ctx
->aead_send
)) {
733 rc
= PTR_ERR(sw_ctx
->aead_send
);
734 sw_ctx
->aead_send
= NULL
;
739 ctx
->push_pending_record
= tls_sw_push_pending_record
;
741 memcpy(keyval
, gcm_128_info
->key
, TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
743 rc
= crypto_aead_setkey(sw_ctx
->aead_send
, keyval
,
744 TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
748 rc
= crypto_aead_setauthsize(sw_ctx
->aead_send
, ctx
->tag_size
);
753 crypto_free_aead(sw_ctx
->aead_send
);
754 sw_ctx
->aead_send
= NULL
;
762 kfree(ctx
->priv_ctx
);
763 ctx
->priv_ctx
= NULL
;