Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / sound / x86 / intel_hdmi_audio.c
blob4ed9d0c41843888d6e9c4aa7f79b980c3e0ac74b
1 /*
2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
45 #define for_each_pipe(card_ctx, pipe) \
46 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 static bool single_port;
55 module_param_named(index, hdmi_card_index, int, 0444);
56 MODULE_PARM_DESC(index,
57 "Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id, hdmi_card_id, charp, 0444);
59 MODULE_PARM_DESC(id,
60 "ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port, bool, 0444);
62 MODULE_PARM_DESC(single_port,
63 "Single-port mode (for compatibility)");
66 * ELD SA bits in the CEA Speaker Allocation data block
68 static const int eld_speaker_allocation_bits[] = {
69 [0] = FL | FR,
70 [1] = LFE,
71 [2] = FC,
72 [3] = RL | RR,
73 [4] = RC,
74 [5] = FLC | FRC,
75 [6] = RLC | RRC,
76 /* the following are not defined in ELD yet */
77 [7] = 0,
81 * This is an ordered list!
83 * The preceding ones have better chances to be selected by
84 * hdmi_channel_allocation().
86 static struct cea_channel_speaker_allocation channel_allocations[] = {
87 /* channel: 7 6 5 4 3 2 1 0 */
88 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
89 /* 2.1 */
90 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
91 /* Dolby Surround */
92 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
93 /* surround40 */
94 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
95 /* surround41 */
96 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
97 /* surround50 */
98 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
99 /* surround51 */
100 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
101 /* 6.1 */
102 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
103 /* surround71 */
104 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
106 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
107 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
108 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
109 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
110 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
111 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
112 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
113 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
114 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
115 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
116 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
117 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
118 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
119 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
120 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
121 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
122 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
123 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
124 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
125 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
126 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
127 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
128 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
131 static const struct channel_map_table map_tables[] = {
132 { SNDRV_CHMAP_FL, 0x00, FL },
133 { SNDRV_CHMAP_FR, 0x01, FR },
134 { SNDRV_CHMAP_RL, 0x04, RL },
135 { SNDRV_CHMAP_RR, 0x05, RR },
136 { SNDRV_CHMAP_LFE, 0x02, LFE },
137 { SNDRV_CHMAP_FC, 0x03, FC },
138 { SNDRV_CHMAP_RLC, 0x06, RLC },
139 { SNDRV_CHMAP_RRC, 0x07, RRC },
140 {} /* terminator */
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware = {
145 .info = (SNDRV_PCM_INFO_INTERLEAVED |
146 SNDRV_PCM_INFO_MMAP |
147 SNDRV_PCM_INFO_MMAP_VALID |
148 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
149 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
150 SNDRV_PCM_FMTBIT_S24_LE |
151 SNDRV_PCM_FMTBIT_S32_LE),
152 .rates = SNDRV_PCM_RATE_32000 |
153 SNDRV_PCM_RATE_44100 |
154 SNDRV_PCM_RATE_48000 |
155 SNDRV_PCM_RATE_88200 |
156 SNDRV_PCM_RATE_96000 |
157 SNDRV_PCM_RATE_176400 |
158 SNDRV_PCM_RATE_192000,
159 .rate_min = HAD_MIN_RATE,
160 .rate_max = HAD_MAX_RATE,
161 .channels_min = HAD_MIN_CHANNEL,
162 .channels_max = HAD_MAX_CHANNEL,
163 .buffer_bytes_max = HAD_MAX_BUFFER,
164 .period_bytes_min = HAD_MIN_PERIOD_BYTES,
165 .period_bytes_max = HAD_MAX_PERIOD_BYTES,
166 .periods_min = HAD_MIN_PERIODS,
167 .periods_max = HAD_MAX_PERIODS,
168 .fifo_size = HAD_FIFO_SIZE,
171 /* Get the active PCM substream;
172 * Call had_substream_put() for unreferecing.
173 * Don't call this inside had_spinlock, as it takes by itself
175 static struct snd_pcm_substream *
176 had_substream_get(struct snd_intelhad *intelhaddata)
178 struct snd_pcm_substream *substream;
179 unsigned long flags;
181 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
182 substream = intelhaddata->stream_info.substream;
183 if (substream)
184 intelhaddata->stream_info.substream_refcount++;
185 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
186 return substream;
189 /* Unref the active PCM substream;
190 * Don't call this inside had_spinlock, as it takes by itself
192 static void had_substream_put(struct snd_intelhad *intelhaddata)
194 unsigned long flags;
196 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
197 intelhaddata->stream_info.substream_refcount--;
198 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
201 static u32 had_config_offset(int pipe)
203 switch (pipe) {
204 default:
205 case 0:
206 return AUDIO_HDMI_CONFIG_A;
207 case 1:
208 return AUDIO_HDMI_CONFIG_B;
209 case 2:
210 return AUDIO_HDMI_CONFIG_C;
214 /* Register access functions */
215 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
216 int pipe, u32 reg)
218 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
221 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
222 int pipe, u32 reg, u32 val)
224 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
227 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
229 if (!ctx->connected)
230 *val = 0;
231 else
232 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
235 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
237 if (ctx->connected)
238 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
242 * enable / disable audio configuration
244 * The normal read/modify should not directly be used on VLV2 for
245 * updating AUD_CONFIG register.
246 * This is because:
247 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250 * register. This field should be 1xy binary for configuration with 6 or
251 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252 * causes the "channels" field to be updated as 0xy binary resulting in
253 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254 * appropriate value when doing read-modify of AUD_CONFIG register.
256 static void had_enable_audio(struct snd_intelhad *intelhaddata,
257 bool enable)
259 /* update the cached value */
260 intelhaddata->aud_config.regx.aud_en = enable;
261 had_write_register(intelhaddata, AUD_CONFIG,
262 intelhaddata->aud_config.regval);
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad *ctx)
268 u32 status_reg;
270 if (!ctx->connected)
271 return;
272 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
273 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
274 had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
275 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad *intelhaddata)
281 had_write_register(intelhaddata, AUD_HDMI_STATUS,
282 AUD_HDMI_STATUSG_MASK_FUNCRST);
283 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
287 * initialize audio channel status registers
288 * This function is called in the prepare callback
290 static int had_prog_status_reg(struct snd_pcm_substream *substream,
291 struct snd_intelhad *intelhaddata)
293 union aud_cfg cfg_val = {.regval = 0};
294 union aud_ch_status_0 ch_stat0 = {.regval = 0};
295 union aud_ch_status_1 ch_stat1 = {.regval = 0};
297 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
298 IEC958_AES0_NONAUDIO) >> 1;
299 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
300 IEC958_AES3_CON_CLOCK) >> 4;
301 cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
303 switch (substream->runtime->rate) {
304 case AUD_SAMPLE_RATE_32:
305 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
306 break;
308 case AUD_SAMPLE_RATE_44_1:
309 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
310 break;
311 case AUD_SAMPLE_RATE_48:
312 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
313 break;
314 case AUD_SAMPLE_RATE_88_2:
315 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
316 break;
317 case AUD_SAMPLE_RATE_96:
318 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
319 break;
320 case AUD_SAMPLE_RATE_176_4:
321 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
322 break;
323 case AUD_SAMPLE_RATE_192:
324 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
325 break;
327 default:
328 /* control should never come here */
329 return -EINVAL;
332 had_write_register(intelhaddata,
333 AUD_CH_STATUS_0, ch_stat0.regval);
335 switch (substream->runtime->format) {
336 case SNDRV_PCM_FORMAT_S16_LE:
337 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
338 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
339 break;
340 case SNDRV_PCM_FORMAT_S24_LE:
341 case SNDRV_PCM_FORMAT_S32_LE:
342 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
343 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
344 break;
345 default:
346 return -EINVAL;
349 had_write_register(intelhaddata,
350 AUD_CH_STATUS_1, ch_stat1.regval);
351 return 0;
355 * function to initialize audio
356 * registers and buffer confgiuration registers
357 * This function is called in the prepare callback
359 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
360 struct snd_intelhad *intelhaddata)
362 union aud_cfg cfg_val = {.regval = 0};
363 union aud_buf_config buf_cfg = {.regval = 0};
364 u8 channels;
366 had_prog_status_reg(substream, intelhaddata);
368 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
369 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
370 buf_cfg.regx.aud_delay = 0;
371 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
373 channels = substream->runtime->channels;
374 cfg_val.regx.num_ch = channels - 2;
375 if (channels <= 2)
376 cfg_val.regx.layout = LAYOUT0;
377 else
378 cfg_val.regx.layout = LAYOUT1;
380 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
381 cfg_val.regx.packet_mode = 1;
383 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
384 cfg_val.regx.left_align = 1;
386 cfg_val.regx.val_bit = 1;
388 /* fix up the DP bits */
389 if (intelhaddata->dp_output) {
390 cfg_val.regx.dp_modei = 1;
391 cfg_val.regx.set = 1;
394 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
395 intelhaddata->aud_config = cfg_val;
396 return 0;
400 * Compute derived values in channel_allocations[].
402 static void init_channel_allocations(void)
404 int i, j;
405 struct cea_channel_speaker_allocation *p;
407 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
408 p = channel_allocations + i;
409 p->channels = 0;
410 p->spk_mask = 0;
411 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
412 if (p->speakers[j]) {
413 p->channels++;
414 p->spk_mask |= p->speakers[j];
420 * The transformation takes two steps:
422 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
423 * spk_mask => (channel_allocations[]) => ai->CA
425 * TODO: it could select the wrong CA from multiple candidates.
427 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
428 int channels)
430 int i;
431 int ca = 0;
432 int spk_mask = 0;
435 * CA defaults to 0 for basic stereo audio
437 if (channels <= 2)
438 return 0;
441 * expand ELD's speaker allocation mask
443 * ELD tells the speaker mask in a compact(paired) form,
444 * expand ELD's notions to match the ones used by Audio InfoFrame.
447 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
448 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
449 spk_mask |= eld_speaker_allocation_bits[i];
452 /* search for the first working match in the CA table */
453 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
454 if (channels == channel_allocations[i].channels &&
455 (spk_mask & channel_allocations[i].spk_mask) ==
456 channel_allocations[i].spk_mask) {
457 ca = channel_allocations[i].ca_index;
458 break;
462 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
464 return ca;
467 /* from speaker bit mask to ALSA API channel position */
468 static int spk_to_chmap(int spk)
470 const struct channel_map_table *t = map_tables;
472 for (; t->map; t++) {
473 if (t->spk_mask == spk)
474 return t->map;
476 return 0;
479 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
481 int i, c;
482 int spk_mask = 0;
483 struct snd_pcm_chmap_elem *chmap;
484 u8 eld_high, eld_high_mask = 0xF0;
485 u8 high_msb;
487 kfree(intelhaddata->chmap->chmap);
488 intelhaddata->chmap->chmap = NULL;
490 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
491 if (!chmap)
492 return;
494 dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
495 intelhaddata->eld[DRM_ELD_SPEAKER]);
497 /* WA: Fix the max channel supported to 8 */
500 * Sink may support more than 8 channels, if eld_high has more than
501 * one bit set. SOC supports max 8 channels.
502 * Refer eld_speaker_allocation_bits, for sink speaker allocation
505 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
506 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
507 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
508 /* eld_high & (eld_high-1): if more than 1 bit set */
509 /* 0x1F: 7 channels */
510 for (i = 1; i < 4; i++) {
511 high_msb = eld_high & (0x80 >> i);
512 if (high_msb) {
513 intelhaddata->eld[DRM_ELD_SPEAKER] &=
514 high_msb | 0xF;
515 break;
520 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
521 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
522 spk_mask |= eld_speaker_allocation_bits[i];
525 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
526 if (spk_mask == channel_allocations[i].spk_mask) {
527 for (c = 0; c < channel_allocations[i].channels; c++) {
528 chmap->map[c] = spk_to_chmap(
529 channel_allocations[i].speakers[
530 (MAX_SPEAKERS - 1) - c]);
532 chmap->channels = channel_allocations[i].channels;
533 intelhaddata->chmap->chmap = chmap;
534 break;
537 if (i >= ARRAY_SIZE(channel_allocations))
538 kfree(chmap);
542 * ALSA API channel-map control callbacks
544 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
545 struct snd_ctl_elem_info *uinfo)
547 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
548 uinfo->count = HAD_MAX_CHANNEL;
549 uinfo->value.integer.min = 0;
550 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
551 return 0;
554 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
555 struct snd_ctl_elem_value *ucontrol)
557 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
558 struct snd_intelhad *intelhaddata = info->private_data;
559 int i;
560 const struct snd_pcm_chmap_elem *chmap;
562 memset(ucontrol->value.integer.value, 0,
563 sizeof(long) * HAD_MAX_CHANNEL);
564 mutex_lock(&intelhaddata->mutex);
565 if (!intelhaddata->chmap->chmap) {
566 mutex_unlock(&intelhaddata->mutex);
567 return 0;
570 chmap = intelhaddata->chmap->chmap;
571 for (i = 0; i < chmap->channels; i++)
572 ucontrol->value.integer.value[i] = chmap->map[i];
573 mutex_unlock(&intelhaddata->mutex);
575 return 0;
578 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
579 struct snd_pcm *pcm)
581 int err;
583 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
584 NULL, 0, (unsigned long)intelhaddata,
585 &intelhaddata->chmap);
586 if (err < 0)
587 return err;
589 intelhaddata->chmap->private_data = intelhaddata;
590 intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
591 intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
592 intelhaddata->chmap->chmap = NULL;
593 return 0;
597 * Initialize Data Island Packets registers
598 * This function is called in the prepare callback
600 static void had_prog_dip(struct snd_pcm_substream *substream,
601 struct snd_intelhad *intelhaddata)
603 int i;
604 union aud_ctrl_st ctrl_state = {.regval = 0};
605 union aud_info_frame2 frame2 = {.regval = 0};
606 union aud_info_frame3 frame3 = {.regval = 0};
607 u8 checksum = 0;
608 u32 info_frame;
609 int channels;
610 int ca;
612 channels = substream->runtime->channels;
614 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
616 ca = had_channel_allocation(intelhaddata, channels);
617 if (intelhaddata->dp_output) {
618 info_frame = DP_INFO_FRAME_WORD1;
619 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
620 } else {
621 info_frame = HDMI_INFO_FRAME_WORD1;
622 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
623 frame3.regx.chnl_alloc = ca;
625 /* Calculte the byte wide checksum for all valid DIP words */
626 for (i = 0; i < BYTES_PER_WORD; i++)
627 checksum += (info_frame >> (i * 8)) & 0xff;
628 for (i = 0; i < BYTES_PER_WORD; i++)
629 checksum += (frame2.regval >> (i * 8)) & 0xff;
630 for (i = 0; i < BYTES_PER_WORD; i++)
631 checksum += (frame3.regval >> (i * 8)) & 0xff;
633 frame2.regx.chksum = -(checksum);
636 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
637 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
638 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
640 /* program remaining DIP words with zero */
641 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
642 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
644 ctrl_state.regx.dip_freq = 1;
645 ctrl_state.regx.dip_en_sta = 1;
646 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
649 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
651 u32 maud_val;
653 /* Select maud according to DP 1.2 spec */
654 if (link_rate == DP_2_7_GHZ) {
655 switch (aud_samp_freq) {
656 case AUD_SAMPLE_RATE_32:
657 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
658 break;
660 case AUD_SAMPLE_RATE_44_1:
661 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
662 break;
664 case AUD_SAMPLE_RATE_48:
665 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
666 break;
668 case AUD_SAMPLE_RATE_88_2:
669 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
670 break;
672 case AUD_SAMPLE_RATE_96:
673 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
674 break;
676 case AUD_SAMPLE_RATE_176_4:
677 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
678 break;
680 case HAD_MAX_RATE:
681 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
682 break;
684 default:
685 maud_val = -EINVAL;
686 break;
688 } else if (link_rate == DP_1_62_GHZ) {
689 switch (aud_samp_freq) {
690 case AUD_SAMPLE_RATE_32:
691 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
692 break;
694 case AUD_SAMPLE_RATE_44_1:
695 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
696 break;
698 case AUD_SAMPLE_RATE_48:
699 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
700 break;
702 case AUD_SAMPLE_RATE_88_2:
703 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
704 break;
706 case AUD_SAMPLE_RATE_96:
707 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
708 break;
710 case AUD_SAMPLE_RATE_176_4:
711 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
712 break;
714 case HAD_MAX_RATE:
715 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
716 break;
718 default:
719 maud_val = -EINVAL;
720 break;
722 } else
723 maud_val = -EINVAL;
725 return maud_val;
729 * Program HDMI audio CTS value
731 * @aud_samp_freq: sampling frequency of audio data
732 * @tmds: sampling frequency of the display data
733 * @link_rate: DP link rate
734 * @n_param: N value, depends on aud_samp_freq
735 * @intelhaddata: substream private data
737 * Program CTS register based on the audio and display sampling frequency
739 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
740 u32 n_param, struct snd_intelhad *intelhaddata)
742 u32 cts_val;
743 u64 dividend, divisor;
745 if (intelhaddata->dp_output) {
746 /* Substitute cts_val with Maud according to DP 1.2 spec*/
747 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
748 } else {
749 /* Calculate CTS according to HDMI 1.3a spec*/
750 dividend = (u64)tmds * n_param*1000;
751 divisor = 128 * aud_samp_freq;
752 cts_val = div64_u64(dividend, divisor);
754 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
755 tmds, n_param, cts_val);
756 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
759 static int had_calculate_n_value(u32 aud_samp_freq)
761 int n_val;
763 /* Select N according to HDMI 1.3a spec*/
764 switch (aud_samp_freq) {
765 case AUD_SAMPLE_RATE_32:
766 n_val = 4096;
767 break;
769 case AUD_SAMPLE_RATE_44_1:
770 n_val = 6272;
771 break;
773 case AUD_SAMPLE_RATE_48:
774 n_val = 6144;
775 break;
777 case AUD_SAMPLE_RATE_88_2:
778 n_val = 12544;
779 break;
781 case AUD_SAMPLE_RATE_96:
782 n_val = 12288;
783 break;
785 case AUD_SAMPLE_RATE_176_4:
786 n_val = 25088;
787 break;
789 case HAD_MAX_RATE:
790 n_val = 24576;
791 break;
793 default:
794 n_val = -EINVAL;
795 break;
797 return n_val;
801 * Program HDMI audio N value
803 * @aud_samp_freq: sampling frequency of audio data
804 * @n_param: N value, depends on aud_samp_freq
805 * @intelhaddata: substream private data
807 * This function is called in the prepare callback.
808 * It programs based on the audio and display sampling frequency
810 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
811 struct snd_intelhad *intelhaddata)
813 int n_val;
815 if (intelhaddata->dp_output) {
817 * According to DP specs, Maud and Naud values hold
818 * a relationship, which is stated as:
819 * Maud/Naud = 512 * fs / f_LS_Clk
820 * where, fs is the sampling frequency of the audio stream
821 * and Naud is 32768 for Async clock.
824 n_val = DP_NAUD_VAL;
825 } else
826 n_val = had_calculate_n_value(aud_samp_freq);
828 if (n_val < 0)
829 return n_val;
831 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
832 *n_param = n_val;
833 return 0;
837 * PCM ring buffer handling
839 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
840 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
841 * moves at each period elapsed. The below illustrates how it works:
843 * At time=0
844 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845 * BD | 0 | 1 | 2 | 3 |
847 * At time=1 (period elapsed)
848 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849 * BD | 1 | 2 | 3 | 0 |
851 * At time=2 (second period elapsed)
852 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853 * BD | 2 | 3 | 0 | 1 |
855 * The bd_head field points to the index of the BD to be read. It's also the
856 * position to be filled at next. The pcm_head and the pcm_filled fields
857 * point to the indices of the current position and of the next position to
858 * be filled, respectively. For PCM buffer there are both _head and _filled
859 * because they may be difference when nperiods > 4. For example, in the
860 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
862 * pcm_head (=1) --v v-- pcm_filled (=5)
863 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
864 * BD | 1 | 2 | 3 | 0 |
865 * bd_head (=1) --^ ^-- next to fill (= bd_head)
867 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
868 * the hardware skips those BDs in the loop.
870 * An exceptional setup is the case with nperiods=1. Since we have to update
871 * BDs after finishing one BD processing, we'd need at least two BDs, where
872 * both BDs point to the same content, the same address, the same size of the
873 * whole PCM buffer.
876 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
877 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
879 /* Set up a buffer descriptor at the "filled" position */
880 static void had_prog_bd(struct snd_pcm_substream *substream,
881 struct snd_intelhad *intelhaddata)
883 int idx = intelhaddata->bd_head;
884 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
885 u32 addr = substream->runtime->dma_addr + ofs;
887 addr |= AUD_BUF_VALID;
888 if (!substream->runtime->no_period_wakeup)
889 addr |= AUD_BUF_INTR_EN;
890 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
891 had_write_register(intelhaddata, AUD_BUF_LEN(idx),
892 intelhaddata->period_bytes);
894 /* advance the indices to the next */
895 intelhaddata->bd_head++;
896 intelhaddata->bd_head %= intelhaddata->num_bds;
897 intelhaddata->pcmbuf_filled++;
898 intelhaddata->pcmbuf_filled %= substream->runtime->periods;
901 /* invalidate a buffer descriptor with the given index */
902 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
903 int idx)
905 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
906 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
909 /* Initial programming of ring buffer */
910 static void had_init_ringbuf(struct snd_pcm_substream *substream,
911 struct snd_intelhad *intelhaddata)
913 struct snd_pcm_runtime *runtime = substream->runtime;
914 int i, num_periods;
916 num_periods = runtime->periods;
917 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
918 /* set the minimum 2 BDs for num_periods=1 */
919 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
920 intelhaddata->period_bytes =
921 frames_to_bytes(runtime, runtime->period_size);
922 WARN_ON(intelhaddata->period_bytes & 0x3f);
924 intelhaddata->bd_head = 0;
925 intelhaddata->pcmbuf_head = 0;
926 intelhaddata->pcmbuf_filled = 0;
928 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
929 if (i < intelhaddata->num_bds)
930 had_prog_bd(substream, intelhaddata);
931 else /* invalidate the rest */
932 had_invalidate_bd(intelhaddata, i);
935 intelhaddata->bd_head = 0; /* reset at head again before starting */
938 /* process a bd, advance to the next */
939 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
940 struct snd_intelhad *intelhaddata)
942 int num_periods = substream->runtime->periods;
944 /* reprogram the next buffer */
945 had_prog_bd(substream, intelhaddata);
947 /* proceed to next */
948 intelhaddata->pcmbuf_head++;
949 intelhaddata->pcmbuf_head %= num_periods;
952 /* process the current BD(s);
953 * returns the current PCM buffer byte position, or -EPIPE for underrun.
955 static int had_process_ringbuf(struct snd_pcm_substream *substream,
956 struct snd_intelhad *intelhaddata)
958 int len, processed;
959 unsigned long flags;
961 processed = 0;
962 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
963 for (;;) {
964 /* get the remaining bytes on the buffer */
965 had_read_register(intelhaddata,
966 AUD_BUF_LEN(intelhaddata->bd_head),
967 &len);
968 if (len < 0 || len > intelhaddata->period_bytes) {
969 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
970 len);
971 len = -EPIPE;
972 goto out;
975 if (len > 0) /* OK, this is the current buffer */
976 break;
978 /* len=0 => already empty, check the next buffer */
979 if (++processed >= intelhaddata->num_bds) {
980 len = -EPIPE; /* all empty? - report underrun */
981 goto out;
983 had_advance_ringbuf(substream, intelhaddata);
986 len = intelhaddata->period_bytes - len;
987 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
988 out:
989 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
990 return len;
993 /* called from irq handler */
994 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
996 struct snd_pcm_substream *substream;
998 substream = had_substream_get(intelhaddata);
999 if (!substream)
1000 return; /* no stream? - bail out */
1002 if (!intelhaddata->connected) {
1003 snd_pcm_stop_xrun(substream);
1004 goto out; /* disconnected? - bail out */
1007 /* process or stop the stream */
1008 if (had_process_ringbuf(substream, intelhaddata) < 0)
1009 snd_pcm_stop_xrun(substream);
1010 else
1011 snd_pcm_period_elapsed(substream);
1013 out:
1014 had_substream_put(intelhaddata);
1018 * The interrupt status 'sticky' bits might not be cleared by
1019 * setting '1' to that bit once...
1021 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1023 int i;
1024 u32 val;
1026 for (i = 0; i < 100; i++) {
1027 /* clear bit30, 31 AUD_HDMI_STATUS */
1028 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1029 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1030 return;
1031 udelay(100);
1032 cond_resched();
1033 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1035 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1038 /* Perform some reset procedure but only when need_reset is set;
1039 * this is called from prepare or hw_free callbacks once after trigger STOP
1040 * or underrun has been processed in order to settle down the h/w state.
1042 static void had_do_reset(struct snd_intelhad *intelhaddata)
1044 if (!intelhaddata->need_reset || !intelhaddata->connected)
1045 return;
1047 /* Reset buffer pointers */
1048 had_reset_audio(intelhaddata);
1049 wait_clear_underrun_bit(intelhaddata);
1050 intelhaddata->need_reset = false;
1053 /* called from irq handler */
1054 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1056 struct snd_pcm_substream *substream;
1058 /* Report UNDERRUN error to above layers */
1059 substream = had_substream_get(intelhaddata);
1060 if (substream) {
1061 snd_pcm_stop_xrun(substream);
1062 had_substream_put(intelhaddata);
1064 intelhaddata->need_reset = true;
1068 * ALSA PCM open callback
1070 static int had_pcm_open(struct snd_pcm_substream *substream)
1072 struct snd_intelhad *intelhaddata;
1073 struct snd_pcm_runtime *runtime;
1074 int retval;
1076 intelhaddata = snd_pcm_substream_chip(substream);
1077 runtime = substream->runtime;
1079 pm_runtime_get_sync(intelhaddata->dev);
1081 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1082 runtime->hw = had_pcm_hardware;
1084 retval = snd_pcm_hw_constraint_integer(runtime,
1085 SNDRV_PCM_HW_PARAM_PERIODS);
1086 if (retval < 0)
1087 goto error;
1089 /* Make sure, that the period size is always aligned
1090 * 64byte boundary
1092 retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1093 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1094 if (retval < 0)
1095 goto error;
1097 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1098 if (retval < 0)
1099 goto error;
1101 /* expose PCM substream */
1102 spin_lock_irq(&intelhaddata->had_spinlock);
1103 intelhaddata->stream_info.substream = substream;
1104 intelhaddata->stream_info.substream_refcount++;
1105 spin_unlock_irq(&intelhaddata->had_spinlock);
1107 return retval;
1108 error:
1109 pm_runtime_mark_last_busy(intelhaddata->dev);
1110 pm_runtime_put_autosuspend(intelhaddata->dev);
1111 return retval;
1115 * ALSA PCM close callback
1117 static int had_pcm_close(struct snd_pcm_substream *substream)
1119 struct snd_intelhad *intelhaddata;
1121 intelhaddata = snd_pcm_substream_chip(substream);
1123 /* unreference and sync with the pending PCM accesses */
1124 spin_lock_irq(&intelhaddata->had_spinlock);
1125 intelhaddata->stream_info.substream = NULL;
1126 intelhaddata->stream_info.substream_refcount--;
1127 while (intelhaddata->stream_info.substream_refcount > 0) {
1128 spin_unlock_irq(&intelhaddata->had_spinlock);
1129 cpu_relax();
1130 spin_lock_irq(&intelhaddata->had_spinlock);
1132 spin_unlock_irq(&intelhaddata->had_spinlock);
1134 pm_runtime_mark_last_busy(intelhaddata->dev);
1135 pm_runtime_put_autosuspend(intelhaddata->dev);
1136 return 0;
1140 * ALSA PCM hw_params callback
1142 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1143 struct snd_pcm_hw_params *hw_params)
1145 struct snd_intelhad *intelhaddata;
1146 unsigned long addr;
1147 int pages, buf_size, retval;
1149 intelhaddata = snd_pcm_substream_chip(substream);
1150 buf_size = params_buffer_bytes(hw_params);
1151 retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1152 if (retval < 0)
1153 return retval;
1154 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1155 __func__, buf_size);
1156 /* mark the pages as uncached region */
1157 addr = (unsigned long) substream->runtime->dma_area;
1158 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1159 retval = set_memory_uc(addr, pages);
1160 if (retval) {
1161 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1162 retval);
1163 return retval;
1165 memset(substream->runtime->dma_area, 0, buf_size);
1167 return retval;
1171 * ALSA PCM hw_free callback
1173 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1175 struct snd_intelhad *intelhaddata;
1176 unsigned long addr;
1177 u32 pages;
1179 intelhaddata = snd_pcm_substream_chip(substream);
1180 had_do_reset(intelhaddata);
1182 /* mark back the pages as cached/writeback region before the free */
1183 if (substream->runtime->dma_area != NULL) {
1184 addr = (unsigned long) substream->runtime->dma_area;
1185 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1186 PAGE_SIZE;
1187 set_memory_wb(addr, pages);
1188 return snd_pcm_lib_free_pages(substream);
1190 return 0;
1194 * ALSA PCM trigger callback
1196 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1198 int retval = 0;
1199 struct snd_intelhad *intelhaddata;
1201 intelhaddata = snd_pcm_substream_chip(substream);
1203 spin_lock(&intelhaddata->had_spinlock);
1204 switch (cmd) {
1205 case SNDRV_PCM_TRIGGER_START:
1206 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1207 case SNDRV_PCM_TRIGGER_RESUME:
1208 /* Enable Audio */
1209 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1210 had_enable_audio(intelhaddata, true);
1211 break;
1213 case SNDRV_PCM_TRIGGER_STOP:
1214 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1215 /* Disable Audio */
1216 had_enable_audio(intelhaddata, false);
1217 intelhaddata->need_reset = true;
1218 break;
1220 default:
1221 retval = -EINVAL;
1223 spin_unlock(&intelhaddata->had_spinlock);
1224 return retval;
1228 * ALSA PCM prepare callback
1230 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1232 int retval;
1233 u32 disp_samp_freq, n_param;
1234 u32 link_rate = 0;
1235 struct snd_intelhad *intelhaddata;
1236 struct snd_pcm_runtime *runtime;
1238 intelhaddata = snd_pcm_substream_chip(substream);
1239 runtime = substream->runtime;
1241 dev_dbg(intelhaddata->dev, "period_size=%d\n",
1242 (int)frames_to_bytes(runtime, runtime->period_size));
1243 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1244 dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1245 (int)snd_pcm_lib_buffer_bytes(substream));
1246 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1247 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1249 had_do_reset(intelhaddata);
1251 /* Get N value in KHz */
1252 disp_samp_freq = intelhaddata->tmds_clock_speed;
1254 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1255 if (retval) {
1256 dev_err(intelhaddata->dev,
1257 "programming N value failed %#x\n", retval);
1258 goto prep_end;
1261 if (intelhaddata->dp_output)
1262 link_rate = intelhaddata->link_rate;
1264 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1265 n_param, intelhaddata);
1267 had_prog_dip(substream, intelhaddata);
1269 retval = had_init_audio_ctrl(substream, intelhaddata);
1271 /* Prog buffer address */
1272 had_init_ringbuf(substream, intelhaddata);
1275 * Program channel mapping in following order:
1276 * FL, FR, C, LFE, RL, RR
1279 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1281 prep_end:
1282 return retval;
1286 * ALSA PCM pointer callback
1288 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1290 struct snd_intelhad *intelhaddata;
1291 int len;
1293 intelhaddata = snd_pcm_substream_chip(substream);
1295 if (!intelhaddata->connected)
1296 return SNDRV_PCM_POS_XRUN;
1298 len = had_process_ringbuf(substream, intelhaddata);
1299 if (len < 0)
1300 return SNDRV_PCM_POS_XRUN;
1301 len = bytes_to_frames(substream->runtime, len);
1302 /* wrapping may happen when periods=1 */
1303 len %= substream->runtime->buffer_size;
1304 return len;
1308 * ALSA PCM mmap callback
1310 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1311 struct vm_area_struct *vma)
1313 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314 return remap_pfn_range(vma, vma->vm_start,
1315 substream->dma_buffer.addr >> PAGE_SHIFT,
1316 vma->vm_end - vma->vm_start, vma->vm_page_prot);
1320 * ALSA PCM ops
1322 static const struct snd_pcm_ops had_pcm_ops = {
1323 .open = had_pcm_open,
1324 .close = had_pcm_close,
1325 .ioctl = snd_pcm_lib_ioctl,
1326 .hw_params = had_pcm_hw_params,
1327 .hw_free = had_pcm_hw_free,
1328 .prepare = had_pcm_prepare,
1329 .trigger = had_pcm_trigger,
1330 .pointer = had_pcm_pointer,
1331 .mmap = had_pcm_mmap,
1334 /* process mode change of the running stream; called in mutex */
1335 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1337 struct snd_pcm_substream *substream;
1338 int retval = 0;
1339 u32 disp_samp_freq, n_param;
1340 u32 link_rate = 0;
1342 substream = had_substream_get(intelhaddata);
1343 if (!substream)
1344 return 0;
1346 /* Disable Audio */
1347 had_enable_audio(intelhaddata, false);
1349 /* Update CTS value */
1350 disp_samp_freq = intelhaddata->tmds_clock_speed;
1352 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1353 if (retval) {
1354 dev_err(intelhaddata->dev,
1355 "programming N value failed %#x\n", retval);
1356 goto out;
1359 if (intelhaddata->dp_output)
1360 link_rate = intelhaddata->link_rate;
1362 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1363 n_param, intelhaddata);
1365 /* Enable Audio */
1366 had_enable_audio(intelhaddata, true);
1368 out:
1369 had_substream_put(intelhaddata);
1370 return retval;
1373 /* process hot plug, called from wq with mutex locked */
1374 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1376 struct snd_pcm_substream *substream;
1378 spin_lock_irq(&intelhaddata->had_spinlock);
1379 if (intelhaddata->connected) {
1380 dev_dbg(intelhaddata->dev, "Device already connected\n");
1381 spin_unlock_irq(&intelhaddata->had_spinlock);
1382 return;
1385 /* Disable Audio */
1386 had_enable_audio(intelhaddata, false);
1388 intelhaddata->connected = true;
1389 dev_dbg(intelhaddata->dev,
1390 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391 __func__, __LINE__);
1392 spin_unlock_irq(&intelhaddata->had_spinlock);
1394 had_build_channel_allocation_map(intelhaddata);
1396 /* Report to above ALSA layer */
1397 substream = had_substream_get(intelhaddata);
1398 if (substream) {
1399 snd_pcm_stop_xrun(substream);
1400 had_substream_put(intelhaddata);
1403 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1406 /* process hot unplug, called from wq with mutex locked */
1407 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1409 struct snd_pcm_substream *substream;
1411 spin_lock_irq(&intelhaddata->had_spinlock);
1412 if (!intelhaddata->connected) {
1413 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1414 spin_unlock_irq(&intelhaddata->had_spinlock);
1415 return;
1419 /* Disable Audio */
1420 had_enable_audio(intelhaddata, false);
1422 intelhaddata->connected = false;
1423 dev_dbg(intelhaddata->dev,
1424 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425 __func__, __LINE__);
1426 spin_unlock_irq(&intelhaddata->had_spinlock);
1428 kfree(intelhaddata->chmap->chmap);
1429 intelhaddata->chmap->chmap = NULL;
1431 /* Report to above ALSA layer */
1432 substream = had_substream_get(intelhaddata);
1433 if (substream) {
1434 snd_pcm_stop_xrun(substream);
1435 had_substream_put(intelhaddata);
1438 snd_jack_report(intelhaddata->jack, 0);
1442 * ALSA iec958 and ELD controls
1445 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1446 struct snd_ctl_elem_info *uinfo)
1448 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1449 uinfo->count = 1;
1450 return 0;
1453 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1454 struct snd_ctl_elem_value *ucontrol)
1456 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1458 mutex_lock(&intelhaddata->mutex);
1459 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1460 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1461 ucontrol->value.iec958.status[2] =
1462 (intelhaddata->aes_bits >> 16) & 0xff;
1463 ucontrol->value.iec958.status[3] =
1464 (intelhaddata->aes_bits >> 24) & 0xff;
1465 mutex_unlock(&intelhaddata->mutex);
1466 return 0;
1469 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1470 struct snd_ctl_elem_value *ucontrol)
1472 ucontrol->value.iec958.status[0] = 0xff;
1473 ucontrol->value.iec958.status[1] = 0xff;
1474 ucontrol->value.iec958.status[2] = 0xff;
1475 ucontrol->value.iec958.status[3] = 0xff;
1476 return 0;
1479 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1480 struct snd_ctl_elem_value *ucontrol)
1482 unsigned int val;
1483 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484 int changed = 0;
1486 val = (ucontrol->value.iec958.status[0] << 0) |
1487 (ucontrol->value.iec958.status[1] << 8) |
1488 (ucontrol->value.iec958.status[2] << 16) |
1489 (ucontrol->value.iec958.status[3] << 24);
1490 mutex_lock(&intelhaddata->mutex);
1491 if (intelhaddata->aes_bits != val) {
1492 intelhaddata->aes_bits = val;
1493 changed = 1;
1495 mutex_unlock(&intelhaddata->mutex);
1496 return changed;
1499 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1500 struct snd_ctl_elem_info *uinfo)
1502 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1503 uinfo->count = HDMI_MAX_ELD_BYTES;
1504 return 0;
1507 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1508 struct snd_ctl_elem_value *ucontrol)
1510 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1512 mutex_lock(&intelhaddata->mutex);
1513 memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1514 HDMI_MAX_ELD_BYTES);
1515 mutex_unlock(&intelhaddata->mutex);
1516 return 0;
1519 static const struct snd_kcontrol_new had_controls[] = {
1521 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1522 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1524 .info = had_iec958_info, /* shared */
1525 .get = had_iec958_mask_get,
1528 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1529 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1530 .info = had_iec958_info,
1531 .get = had_iec958_get,
1532 .put = had_iec958_put,
1535 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1536 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1537 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1538 .name = "ELD",
1539 .info = had_ctl_eld_info,
1540 .get = had_ctl_eld_get,
1545 * audio interrupt handler
1547 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1549 struct snd_intelhad_card *card_ctx = dev_id;
1550 u32 audio_stat[3] = {};
1551 int pipe, port;
1553 for_each_pipe(card_ctx, pipe) {
1554 /* use raw register access to ack IRQs even while disconnected */
1555 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1556 AUD_HDMI_STATUS) &
1557 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1559 if (audio_stat[pipe])
1560 had_write_register_raw(card_ctx, pipe,
1561 AUD_HDMI_STATUS, audio_stat[pipe]);
1564 for_each_port(card_ctx, port) {
1565 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1566 int pipe = ctx->pipe;
1568 if (pipe < 0)
1569 continue;
1571 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1572 had_process_buffer_done(ctx);
1573 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1574 had_process_buffer_underrun(ctx);
1577 return IRQ_HANDLED;
1581 * monitor plug/unplug notification from i915; just kick off the work
1583 static void notify_audio_lpe(struct platform_device *pdev, int port)
1585 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1586 struct snd_intelhad *ctx;
1588 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1589 if (single_port)
1590 ctx->port = port;
1592 schedule_work(&ctx->hdmi_audio_wq);
1595 /* the work to handle monitor hot plug/unplug */
1596 static void had_audio_wq(struct work_struct *work)
1598 struct snd_intelhad *ctx =
1599 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1600 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1601 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1603 pm_runtime_get_sync(ctx->dev);
1604 mutex_lock(&ctx->mutex);
1605 if (ppdata->pipe < 0) {
1606 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607 __func__, ctx->port);
1609 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1611 ctx->dp_output = false;
1612 ctx->tmds_clock_speed = 0;
1613 ctx->link_rate = 0;
1615 /* Shut down the stream */
1616 had_process_hot_unplug(ctx);
1618 ctx->pipe = -1;
1619 } else {
1620 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621 __func__, ctx->port, ppdata->ls_clock);
1623 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1625 ctx->dp_output = ppdata->dp_output;
1626 if (ctx->dp_output) {
1627 ctx->tmds_clock_speed = 0;
1628 ctx->link_rate = ppdata->ls_clock;
1629 } else {
1630 ctx->tmds_clock_speed = ppdata->ls_clock;
1631 ctx->link_rate = 0;
1635 * Shut down the stream before we change
1636 * the pipe assignment for this pcm device
1638 had_process_hot_plug(ctx);
1640 ctx->pipe = ppdata->pipe;
1642 /* Restart the stream if necessary */
1643 had_process_mode_change(ctx);
1646 mutex_unlock(&ctx->mutex);
1647 pm_runtime_mark_last_busy(ctx->dev);
1648 pm_runtime_put_autosuspend(ctx->dev);
1652 * Jack interface
1654 static int had_create_jack(struct snd_intelhad *ctx,
1655 struct snd_pcm *pcm)
1657 char hdmi_str[32];
1658 int err;
1660 snprintf(hdmi_str, sizeof(hdmi_str),
1661 "HDMI/DP,pcm=%d", pcm->device);
1663 err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1664 SND_JACK_AVOUT, &ctx->jack,
1665 true, false);
1666 if (err < 0)
1667 return err;
1668 ctx->jack->private_data = ctx;
1669 return 0;
1673 * PM callbacks
1676 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1678 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1679 int port;
1681 for_each_port(card_ctx, port) {
1682 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1683 struct snd_pcm_substream *substream;
1685 substream = had_substream_get(ctx);
1686 if (substream) {
1687 snd_pcm_suspend(substream);
1688 had_substream_put(ctx);
1692 return 0;
1695 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1697 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1698 int err;
1700 err = hdmi_lpe_audio_runtime_suspend(dev);
1701 if (!err)
1702 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1703 return err;
1706 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1708 pm_runtime_mark_last_busy(dev);
1709 return 0;
1712 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1714 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1716 hdmi_lpe_audio_runtime_resume(dev);
1717 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1718 return 0;
1721 /* release resources */
1722 static void hdmi_lpe_audio_free(struct snd_card *card)
1724 struct snd_intelhad_card *card_ctx = card->private_data;
1725 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1726 int port;
1728 spin_lock_irq(&pdata->lpe_audio_slock);
1729 pdata->notify_audio_lpe = NULL;
1730 spin_unlock_irq(&pdata->lpe_audio_slock);
1732 for_each_port(card_ctx, port) {
1733 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1735 cancel_work_sync(&ctx->hdmi_audio_wq);
1738 if (card_ctx->mmio_start)
1739 iounmap(card_ctx->mmio_start);
1740 if (card_ctx->irq >= 0)
1741 free_irq(card_ctx->irq, card_ctx);
1745 * hdmi_lpe_audio_probe - start bridge with i915
1747 * This function is called when the i915 driver creates the
1748 * hdmi-lpe-audio platform device.
1750 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1752 struct snd_card *card;
1753 struct snd_intelhad_card *card_ctx;
1754 struct snd_intelhad *ctx;
1755 struct snd_pcm *pcm;
1756 struct intel_hdmi_lpe_audio_pdata *pdata;
1757 int irq;
1758 struct resource *res_mmio;
1759 int port, ret;
1761 pdata = pdev->dev.platform_data;
1762 if (!pdata) {
1763 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1764 return -EINVAL;
1767 /* get resources */
1768 irq = platform_get_irq(pdev, 0);
1769 if (irq < 0) {
1770 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1771 return irq;
1774 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775 if (!res_mmio) {
1776 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1777 return -ENXIO;
1780 /* create a card instance with ALSA framework */
1781 ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1782 THIS_MODULE, sizeof(*card_ctx), &card);
1783 if (ret)
1784 return ret;
1786 card_ctx = card->private_data;
1787 card_ctx->dev = &pdev->dev;
1788 card_ctx->card = card;
1789 strcpy(card->driver, INTEL_HAD);
1790 strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1791 strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1793 card_ctx->irq = -1;
1795 card->private_free = hdmi_lpe_audio_free;
1797 platform_set_drvdata(pdev, card_ctx);
1799 card_ctx->num_pipes = pdata->num_pipes;
1800 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1802 for_each_port(card_ctx, port) {
1803 ctx = &card_ctx->pcm_ctx[port];
1804 ctx->card_ctx = card_ctx;
1805 ctx->dev = card_ctx->dev;
1806 ctx->port = single_port ? -1 : port;
1807 ctx->pipe = -1;
1809 spin_lock_init(&ctx->had_spinlock);
1810 mutex_init(&ctx->mutex);
1811 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1814 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815 __func__, (unsigned int)res_mmio->start,
1816 (unsigned int)res_mmio->end);
1818 card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1819 (size_t)(resource_size(res_mmio)));
1820 if (!card_ctx->mmio_start) {
1821 dev_err(&pdev->dev, "Could not get ioremap\n");
1822 ret = -EACCES;
1823 goto err;
1826 /* setup interrupt handler */
1827 ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1828 pdev->name, card_ctx);
1829 if (ret < 0) {
1830 dev_err(&pdev->dev, "request_irq failed\n");
1831 goto err;
1834 card_ctx->irq = irq;
1836 /* only 32bit addressable */
1837 dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1840 init_channel_allocations();
1842 card_ctx->num_pipes = pdata->num_pipes;
1843 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1845 for_each_port(card_ctx, port) {
1846 int i;
1848 ctx = &card_ctx->pcm_ctx[port];
1849 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1850 MAX_CAP_STREAMS, &pcm);
1851 if (ret)
1852 goto err;
1854 /* setup private data which can be retrieved when required */
1855 pcm->private_data = ctx;
1856 pcm->info_flags = 0;
1857 strncpy(pcm->name, card->shortname, strlen(card->shortname));
1858 /* setup the ops for playabck */
1859 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1861 /* allocate dma pages;
1862 * try to allocate 600k buffer as default which is large enough
1864 snd_pcm_lib_preallocate_pages_for_all(pcm,
1865 SNDRV_DMA_TYPE_DEV, NULL,
1866 HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1868 /* create controls */
1869 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1870 struct snd_kcontrol *kctl;
1872 kctl = snd_ctl_new1(&had_controls[i], ctx);
1873 if (!kctl) {
1874 ret = -ENOMEM;
1875 goto err;
1878 kctl->id.device = pcm->device;
1880 ret = snd_ctl_add(card, kctl);
1881 if (ret < 0)
1882 goto err;
1885 /* Register channel map controls */
1886 ret = had_register_chmap_ctls(ctx, pcm);
1887 if (ret < 0)
1888 goto err;
1890 ret = had_create_jack(ctx, pcm);
1891 if (ret < 0)
1892 goto err;
1895 ret = snd_card_register(card);
1896 if (ret)
1897 goto err;
1899 spin_lock_irq(&pdata->lpe_audio_slock);
1900 pdata->notify_audio_lpe = notify_audio_lpe;
1901 spin_unlock_irq(&pdata->lpe_audio_slock);
1903 pm_runtime_use_autosuspend(&pdev->dev);
1904 pm_runtime_mark_last_busy(&pdev->dev);
1905 pm_runtime_set_active(&pdev->dev);
1907 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1908 for_each_port(card_ctx, port) {
1909 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1911 schedule_work(&ctx->hdmi_audio_wq);
1914 return 0;
1916 err:
1917 snd_card_free(card);
1918 return ret;
1922 * hdmi_lpe_audio_remove - stop bridge with i915
1924 * This function is called when the platform device is destroyed.
1926 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1928 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1930 snd_card_free(card_ctx->card);
1931 return 0;
1934 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1935 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1936 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1937 hdmi_lpe_audio_runtime_resume, NULL)
1940 static struct platform_driver hdmi_lpe_audio_driver = {
1941 .driver = {
1942 .name = "hdmi-lpe-audio",
1943 .pm = &hdmi_lpe_audio_pm,
1945 .probe = hdmi_lpe_audio_probe,
1946 .remove = hdmi_lpe_audio_remove,
1949 module_platform_driver(hdmi_lpe_audio_driver);
1950 MODULE_ALIAS("platform:hdmi_lpe_audio");
1952 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");