1 // SPDX-License-Identifier: GPL-2.0
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
9 /* For the CLR_() macros */
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
31 #include <sys/resource.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
42 * Regular printout to the terminal, supressed if -q is specified:
44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 cpu_set_t bind_cpumask
;
60 unsigned int loops_done
;
66 pthread_mutex_t
*process_lock
;
69 /* Parameters set by options: */
72 /* Startup synchronization: */
73 bool serialize_startup
;
79 /* Working set sizes: */
80 const char *mb_global_str
;
81 const char *mb_proc_str
;
82 const char *mb_proc_locked_str
;
83 const char *mb_thread_str
;
87 double mb_proc_locked
;
90 /* Access patterns to the working set: */
94 bool data_zero_memset
;
100 /* Working set initialization: */
112 long bytes_process_locked
;
118 bool show_convergence
;
119 bool measure_convergence
;
125 /* Affinity options -C and -N: */
131 /* Global, read-writable area, accessible to all processes and threads: */
136 pthread_mutex_t startup_mutex
;
137 int nr_tasks_started
;
139 pthread_mutex_t startup_done_mutex
;
141 pthread_mutex_t start_work_mutex
;
142 int nr_tasks_working
;
144 pthread_mutex_t stop_work_mutex
;
147 struct thread_data
*threads
;
149 /* Convergence latency measurement: */
158 static struct global_info
*g
= NULL
;
160 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
161 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
165 static const struct option options
[] = {
166 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
167 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
169 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
170 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
171 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
172 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
174 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
175 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
176 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
178 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via writes (can be mixed with -W)"),
179 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
180 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
181 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
182 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
185 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
186 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
187 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
188 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
190 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
191 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
192 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
193 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details, "
194 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
195 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
196 OPT_BOOLEAN('q', "quiet" , &p0
.show_quiet
, "quiet mode"),
197 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
199 /* Special option string parsing callbacks: */
200 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
201 "bind the first N tasks to these specific cpus (the rest is unbound)",
203 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
204 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 static const char * const bench_numa_usage
[] = {
210 "perf bench numa <options>",
214 static const char * const numa_usage
[] = {
215 "perf bench numa mem [<options>]",
220 * To get number of numa nodes present.
222 static int nr_numa_nodes(void)
226 for (i
= 0; i
< g
->p
.nr_nodes
; i
++) {
227 if (numa_bitmask_isbitset(numa_nodes_ptr
, i
))
235 * To check if given numa node is present.
237 static int is_node_present(int node
)
239 return numa_bitmask_isbitset(numa_nodes_ptr
, node
);
243 * To check given numa node has cpus.
245 static bool node_has_cpus(int node
)
247 struct bitmask
*cpu
= numa_allocate_cpumask();
250 if (cpu
&& !numa_node_to_cpus(node
, cpu
)) {
251 for (i
= 0; i
< cpu
->size
; i
++) {
252 if (numa_bitmask_isbitset(cpu
, i
))
257 return false; /* lets fall back to nocpus safely */
260 static cpu_set_t
bind_to_cpu(int target_cpu
)
262 cpu_set_t orig_mask
, mask
;
265 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
270 if (target_cpu
== -1) {
273 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
276 BUG_ON(target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
);
277 CPU_SET(target_cpu
, &mask
);
280 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
286 static cpu_set_t
bind_to_node(int target_node
)
288 int cpus_per_node
= g
->p
.nr_cpus
/ nr_numa_nodes();
289 cpu_set_t orig_mask
, mask
;
293 BUG_ON(cpus_per_node
* nr_numa_nodes() != g
->p
.nr_cpus
);
294 BUG_ON(!cpus_per_node
);
296 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
301 if (target_node
== -1) {
302 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
305 int cpu_start
= (target_node
+ 0) * cpus_per_node
;
306 int cpu_stop
= (target_node
+ 1) * cpus_per_node
;
308 BUG_ON(cpu_stop
> g
->p
.nr_cpus
);
310 for (cpu
= cpu_start
; cpu
< cpu_stop
; cpu
++)
314 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
320 static void bind_to_cpumask(cpu_set_t mask
)
324 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
328 static void mempol_restore(void)
332 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
337 static void bind_to_memnode(int node
)
339 unsigned long nodemask
;
345 BUG_ON(g
->p
.nr_nodes
> (int)sizeof(nodemask
)*8);
346 nodemask
= 1L << node
;
348 ret
= set_mempolicy(MPOL_BIND
, &nodemask
, sizeof(nodemask
)*8);
349 dprintf("binding to node %d, mask: %016lx => %d\n", node
, nodemask
, ret
);
354 #define HPSIZE (2*1024*1024)
356 #define set_taskname(fmt...) \
360 snprintf(name, 20, fmt); \
361 prctl(PR_SET_NAME, name); \
364 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
365 int init_zero
, int init_cpu0
, int thp
, int init_random
)
375 /* Allocate and initialize all memory on CPU#0: */
377 orig_mask
= bind_to_node(0);
381 bytes
= bytes0
+ HPSIZE
;
383 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
384 BUG_ON(buf
== (void *)-1);
386 if (map_flags
== MAP_PRIVATE
) {
388 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
389 if (ret
&& !g
->print_once
) {
391 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
395 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
396 if (ret
&& !g
->print_once
) {
398 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
406 /* Initialize random contents, different in each word: */
408 u64
*wbuf
= (void *)buf
;
412 for (i
= 0; i
< bytes
/8; i
++)
417 /* Align to 2MB boundary: */
418 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
420 /* Restore affinity: */
422 bind_to_cpumask(orig_mask
);
429 static void free_data(void *data
, ssize_t bytes
)
436 ret
= munmap(data
, bytes
);
441 * Create a shared memory buffer that can be shared between processes, zeroed:
443 static void * zalloc_shared_data(ssize_t bytes
)
445 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
449 * Create a shared memory buffer that can be shared between processes:
451 static void * setup_shared_data(ssize_t bytes
)
453 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
457 * Allocate process-local memory - this will either be shared between
458 * threads of this process, or only be accessed by this thread:
460 static void * setup_private_data(ssize_t bytes
)
462 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
466 * Return a process-shared (global) mutex:
468 static void init_global_mutex(pthread_mutex_t
*mutex
)
470 pthread_mutexattr_t attr
;
472 pthread_mutexattr_init(&attr
);
473 pthread_mutexattr_setpshared(&attr
, PTHREAD_PROCESS_SHARED
);
474 pthread_mutex_init(mutex
, &attr
);
477 static int parse_cpu_list(const char *arg
)
479 p0
.cpu_list_str
= strdup(arg
);
481 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
486 static int parse_setup_cpu_list(void)
488 struct thread_data
*td
;
492 if (!g
->p
.cpu_list_str
)
495 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
497 str0
= str
= strdup(g
->p
.cpu_list_str
);
502 tprintf("# binding tasks to CPUs:\n");
506 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
507 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
512 tok
= strsep(&str
, ",");
516 tok_end
= strstr(tok
, "-");
518 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
520 /* Single CPU specified: */
521 bind_cpu_0
= bind_cpu_1
= atol(tok
);
523 /* CPU range specified (for example: "5-11"): */
524 bind_cpu_0
= atol(tok
);
525 bind_cpu_1
= atol(tok_end
+ 1);
529 tok_step
= strstr(tok
, "#");
531 step
= atol(tok_step
+ 1);
532 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
537 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
538 * where the _4 means the next 4 CPUs are allowed.
541 tok_len
= strstr(tok
, "_");
543 bind_len
= atol(tok_len
+ 1);
544 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
547 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
549 tok_mul
= strstr(tok
, "x");
551 mul
= atol(tok_mul
+ 1);
555 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
557 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
558 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
562 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
563 BUG_ON(bind_cpu_0
> bind_cpu_1
);
565 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
568 for (i
= 0; i
< mul
; i
++) {
571 if (t
>= g
->p
.nr_tasks
) {
572 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
580 tprintf("%2d/%d", bind_cpu
, bind_len
);
582 tprintf("%2d", bind_cpu
);
585 CPU_ZERO(&td
->bind_cpumask
);
586 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
587 BUG_ON(cpu
< 0 || cpu
>= g
->p
.nr_cpus
);
588 CPU_SET(cpu
, &td
->bind_cpumask
);
598 if (t
< g
->p
.nr_tasks
)
599 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
605 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
606 const char *arg
, int unset __maybe_unused
)
611 return parse_cpu_list(arg
);
614 static int parse_node_list(const char *arg
)
616 p0
.node_list_str
= strdup(arg
);
618 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
623 static int parse_setup_node_list(void)
625 struct thread_data
*td
;
629 if (!g
->p
.node_list_str
)
632 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
634 str0
= str
= strdup(g
->p
.node_list_str
);
639 tprintf("# binding tasks to NODEs:\n");
643 int bind_node
, bind_node_0
, bind_node_1
;
644 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
648 tok
= strsep(&str
, ",");
652 tok_end
= strstr(tok
, "-");
654 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
656 /* Single NODE specified: */
657 bind_node_0
= bind_node_1
= atol(tok
);
659 /* NODE range specified (for example: "5-11"): */
660 bind_node_0
= atol(tok
);
661 bind_node_1
= atol(tok_end
+ 1);
665 tok_step
= strstr(tok
, "#");
667 step
= atol(tok_step
+ 1);
668 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
671 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
673 tok_mul
= strstr(tok
, "x");
675 mul
= atol(tok_mul
+ 1);
679 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
681 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
682 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
686 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
687 BUG_ON(bind_node_0
> bind_node_1
);
689 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
692 for (i
= 0; i
< mul
; i
++) {
693 if (t
>= g
->p
.nr_tasks
|| !node_has_cpus(bind_node
)) {
694 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
700 tprintf(" %2d", bind_node
);
702 tprintf(",%2d", bind_node
);
704 td
->bind_node
= bind_node
;
713 if (t
< g
->p
.nr_tasks
)
714 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
720 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
721 const char *arg
, int unset __maybe_unused
)
726 return parse_node_list(arg
);
731 #define BIT(x) (1ul << x)
733 static inline uint32_t lfsr_32(uint32_t lfsr
)
735 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
736 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
740 * Make sure there's real data dependency to RAM (when read
741 * accesses are enabled), so the compiler, the CPU and the
742 * kernel (KSM, zero page, etc.) cannot optimize away RAM
745 static inline u64
access_data(u64
*data
, u64 val
)
749 if (g
->p
.data_writes
)
755 * The worker process does two types of work, a forwards going
756 * loop and a backwards going loop.
758 * We do this so that on multiprocessor systems we do not create
759 * a 'train' of processing, with highly synchronized processes,
760 * skewing the whole benchmark.
762 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
764 long words
= bytes
/sizeof(u64
);
765 u64
*data
= (void *)__data
;
766 long chunk_0
, chunk_1
;
771 BUG_ON(!data
&& words
);
772 BUG_ON(data
&& !words
);
777 /* Very simple memset() work variant: */
778 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
783 /* Spread out by PID/TID nr and by loop nr: */
784 chunk_0
= words
/nr_max
;
785 chunk_1
= words
/g
->p
.nr_loops
;
786 off
= nr
*chunk_0
+ loop
*chunk_1
;
791 if (g
->p
.data_rand_walk
) {
792 u32 lfsr
= nr
+ loop
+ val
;
795 for (i
= 0; i
< words
/1024; i
++) {
798 lfsr
= lfsr_32(lfsr
);
800 start
= lfsr
% words
;
801 end
= min(start
+ 1024, words
-1);
803 if (g
->p
.data_zero_memset
) {
804 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
806 for (j
= start
; j
< end
; j
++)
807 val
= access_data(data
+ j
, val
);
810 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
816 /* Process data forwards: */
818 if (unlikely(d
>= d1
))
820 if (unlikely(d
== d0
))
823 val
= access_data(d
, val
);
828 /* Process data backwards: */
834 /* Process data forwards: */
836 if (unlikely(d
< data
))
838 if (unlikely(d
== d0
))
841 val
= access_data(d
, val
);
850 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
854 cpu
= sched_getcpu();
856 g
->threads
[task_nr
].curr_cpu
= cpu
;
857 prctl(0, bytes_worked
);
860 #define MAX_NR_NODES 64
863 * Count the number of nodes a process's threads
866 * A count of 1 means that the process is compressed
867 * to a single node. A count of g->p.nr_nodes means it's
868 * spread out on the whole system.
870 static int count_process_nodes(int process_nr
)
872 char node_present
[MAX_NR_NODES
] = { 0, };
876 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
877 struct thread_data
*td
;
881 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
882 td
= g
->threads
+ task_nr
;
884 node
= numa_node_of_cpu(td
->curr_cpu
);
885 if (node
< 0) /* curr_cpu was likely still -1 */
888 node_present
[node
] = 1;
893 for (n
= 0; n
< MAX_NR_NODES
; n
++)
894 nodes
+= node_present
[n
];
900 * Count the number of distinct process-threads a node contains.
902 * A count of 1 means that the node contains only a single
903 * process. If all nodes on the system contain at most one
904 * process then we are well-converged.
906 static int count_node_processes(int node
)
911 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
912 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
913 struct thread_data
*td
;
917 task_nr
= p
*g
->p
.nr_threads
+ t
;
918 td
= g
->threads
+ task_nr
;
920 n
= numa_node_of_cpu(td
->curr_cpu
);
931 static void calc_convergence_compression(int *strong
)
933 unsigned int nodes_min
, nodes_max
;
939 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
940 unsigned int nodes
= count_process_nodes(p
);
947 nodes_min
= min(nodes
, nodes_min
);
948 nodes_max
= max(nodes
, nodes_max
);
951 /* Strong convergence: all threads compress on a single node: */
952 if (nodes_min
== 1 && nodes_max
== 1) {
956 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
960 static void calc_convergence(double runtime_ns_max
, double *convergence
)
962 unsigned int loops_done_min
, loops_done_max
;
964 int nodes
[MAX_NR_NODES
];
975 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
978 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
984 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
985 struct thread_data
*td
= g
->threads
+ t
;
986 unsigned int loops_done
;
990 /* Not all threads have written it yet: */
994 node
= numa_node_of_cpu(cpu
);
998 loops_done
= td
->loops_done
;
999 loops_done_min
= min(loops_done
, loops_done_min
);
1000 loops_done_max
= max(loops_done
, loops_done_max
);
1004 nr_min
= g
->p
.nr_tasks
;
1007 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1008 if (!is_node_present(node
))
1011 nr_min
= min(nr
, nr_min
);
1012 nr_max
= max(nr
, nr_max
);
1015 BUG_ON(nr_min
> nr_max
);
1017 BUG_ON(sum
> g
->p
.nr_tasks
);
1019 if (0 && (sum
< g
->p
.nr_tasks
))
1023 * Count the number of distinct process groups present
1024 * on nodes - when we are converged this will decrease
1029 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1032 if (!is_node_present(node
))
1034 processes
= count_node_processes(node
);
1036 tprintf(" %2d/%-2d", nr
, processes
);
1038 process_groups
+= processes
;
1041 distance
= nr_max
- nr_min
;
1043 tprintf(" [%2d/%-2d]", distance
, process_groups
);
1045 tprintf(" l:%3d-%-3d (%3d)",
1046 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
1048 if (loops_done_min
&& loops_done_max
) {
1049 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
1051 tprintf(" [%4.1f%%]", skew
* 100.0);
1054 calc_convergence_compression(&strong
);
1056 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1057 if (!*convergence
) {
1058 *convergence
= runtime_ns_max
;
1059 tprintf(" (%6.1fs converged)\n", *convergence
/ NSEC_PER_SEC
);
1060 if (g
->p
.measure_convergence
) {
1061 g
->all_converged
= true;
1062 g
->stop_work
= true;
1067 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/ NSEC_PER_SEC
);
1074 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1076 tprintf("\r # %5.1f%% [%.1f mins]",
1077 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/ NSEC_PER_SEC
/ 60.0);
1079 calc_convergence(runtime_ns_max
, convergence
);
1081 if (g
->p
.show_details
>= 0)
1085 static void *worker_thread(void *__tdata
)
1087 struct thread_data
*td
= __tdata
;
1088 struct timeval start0
, start
, stop
, diff
;
1089 int process_nr
= td
->process_nr
;
1090 int thread_nr
= td
->thread_nr
;
1091 unsigned long last_perturbance
;
1092 int task_nr
= td
->task_nr
;
1093 int details
= g
->p
.show_details
;
1094 int first_task
, last_task
;
1095 double convergence
= 0;
1097 double runtime_ns_max
;
1104 struct rusage rusage
;
1106 bind_to_cpumask(td
->bind_cpumask
);
1107 bind_to_memnode(td
->bind_node
);
1109 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1111 global_data
= g
->data
;
1112 process_data
= td
->process_data
;
1113 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1118 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1122 if (process_nr
== 0 && thread_nr
== 0)
1126 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1127 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1130 if (g
->p
.serialize_startup
) {
1131 pthread_mutex_lock(&g
->startup_mutex
);
1132 g
->nr_tasks_started
++;
1133 pthread_mutex_unlock(&g
->startup_mutex
);
1135 /* Here we will wait for the main process to start us all at once: */
1136 pthread_mutex_lock(&g
->start_work_mutex
);
1137 g
->nr_tasks_working
++;
1139 /* Last one wake the main process: */
1140 if (g
->nr_tasks_working
== g
->p
.nr_tasks
)
1141 pthread_mutex_unlock(&g
->startup_done_mutex
);
1143 pthread_mutex_unlock(&g
->start_work_mutex
);
1146 gettimeofday(&start0
, NULL
);
1148 start
= stop
= start0
;
1149 last_perturbance
= start
.tv_sec
;
1151 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1157 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1158 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1159 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1161 if (g
->p
.sleep_usecs
) {
1162 pthread_mutex_lock(td
->process_lock
);
1163 usleep(g
->p
.sleep_usecs
);
1164 pthread_mutex_unlock(td
->process_lock
);
1167 * Amount of work to be done under a process-global lock:
1169 if (g
->p
.bytes_process_locked
) {
1170 pthread_mutex_lock(td
->process_lock
);
1171 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1172 pthread_mutex_unlock(td
->process_lock
);
1175 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1176 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1178 update_curr_cpu(task_nr
, work_done
);
1179 bytes_done
+= work_done
;
1181 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1186 gettimeofday(&stop
, NULL
);
1188 /* Check whether our max runtime timed out: */
1190 timersub(&stop
, &start0
, &diff
);
1191 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1192 g
->stop_work
= true;
1197 /* Update the summary at most once per second: */
1198 if (start
.tv_sec
== stop
.tv_sec
)
1202 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1203 * by migrating to CPU#0:
1205 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1206 cpu_set_t orig_mask
;
1210 last_perturbance
= stop
.tv_sec
;
1213 * Depending on where we are running, move into
1214 * the other half of the system, to create some
1217 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1218 if (this_cpu
< g
->p
.nr_cpus
/2)
1219 target_cpu
= g
->p
.nr_cpus
-1;
1223 orig_mask
= bind_to_cpu(target_cpu
);
1225 /* Here we are running on the target CPU already */
1227 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1229 bind_to_cpumask(orig_mask
);
1233 timersub(&stop
, &start
, &diff
);
1234 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1235 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1238 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1239 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1246 timersub(&stop
, &start0
, &diff
);
1247 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1248 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1250 show_summary(runtime_ns_max
, l
, &convergence
);
1253 gettimeofday(&stop
, NULL
);
1254 timersub(&stop
, &start0
, &diff
);
1255 td
->runtime_ns
= diff
.tv_sec
* NSEC_PER_SEC
;
1256 td
->runtime_ns
+= diff
.tv_usec
* NSEC_PER_USEC
;
1257 td
->speed_gbs
= bytes_done
/ (td
->runtime_ns
/ NSEC_PER_SEC
) / 1e9
;
1259 getrusage(RUSAGE_THREAD
, &rusage
);
1260 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* NSEC_PER_SEC
;
1261 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
1262 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* NSEC_PER_SEC
;
1263 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
1265 free_data(thread_data
, g
->p
.bytes_thread
);
1267 pthread_mutex_lock(&g
->stop_work_mutex
);
1268 g
->bytes_done
+= bytes_done
;
1269 pthread_mutex_unlock(&g
->stop_work_mutex
);
1275 * A worker process starts a couple of threads:
1277 static void worker_process(int process_nr
)
1279 pthread_mutex_t process_lock
;
1280 struct thread_data
*td
;
1281 pthread_t
*pthreads
;
1287 pthread_mutex_init(&process_lock
, NULL
);
1288 set_taskname("process %d", process_nr
);
1291 * Pick up the memory policy and the CPU binding of our first thread,
1292 * so that we initialize memory accordingly:
1294 task_nr
= process_nr
*g
->p
.nr_threads
;
1295 td
= g
->threads
+ task_nr
;
1297 bind_to_memnode(td
->bind_node
);
1298 bind_to_cpumask(td
->bind_cpumask
);
1300 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1301 process_data
= setup_private_data(g
->p
.bytes_process
);
1303 if (g
->p
.show_details
>= 3) {
1304 printf(" # process %2d global mem: %p, process mem: %p\n",
1305 process_nr
, g
->data
, process_data
);
1308 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1309 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1310 td
= g
->threads
+ task_nr
;
1312 td
->process_data
= process_data
;
1313 td
->process_nr
= process_nr
;
1315 td
->task_nr
= task_nr
;
1318 td
->process_lock
= &process_lock
;
1320 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1324 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1325 ret
= pthread_join(pthreads
[t
], NULL
);
1329 free_data(process_data
, g
->p
.bytes_process
);
1333 static void print_summary(void)
1335 if (g
->p
.show_details
< 0)
1339 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1340 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", nr_numa_nodes(), g
->p
.nr_cpus
);
1341 printf(" # %5dx %5ldMB global shared mem operations\n",
1342 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1343 printf(" # %5dx %5ldMB process shared mem operations\n",
1344 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1345 printf(" # %5dx %5ldMB thread local mem operations\n",
1346 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1350 printf("\n ###\n"); fflush(stdout
);
1353 static void init_thread_data(void)
1355 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1358 g
->threads
= zalloc_shared_data(size
);
1360 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1361 struct thread_data
*td
= g
->threads
+ t
;
1364 /* Allow all nodes by default: */
1367 /* Allow all CPUs by default: */
1368 CPU_ZERO(&td
->bind_cpumask
);
1369 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1370 CPU_SET(cpu
, &td
->bind_cpumask
);
1374 static void deinit_thread_data(void)
1376 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1378 free_data(g
->threads
, size
);
1381 static int init(void)
1383 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1385 /* Copy over options: */
1388 g
->p
.nr_cpus
= numa_num_configured_cpus();
1390 g
->p
.nr_nodes
= numa_max_node() + 1;
1392 /* char array in count_process_nodes(): */
1393 BUG_ON(g
->p
.nr_nodes
> MAX_NR_NODES
|| g
->p
.nr_nodes
< 0);
1395 if (g
->p
.show_quiet
&& !g
->p
.show_details
)
1396 g
->p
.show_details
= -1;
1398 /* Some memory should be specified: */
1399 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1402 if (g
->p
.mb_global_str
) {
1403 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1404 BUG_ON(g
->p
.mb_global
< 0);
1407 if (g
->p
.mb_proc_str
) {
1408 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1409 BUG_ON(g
->p
.mb_proc
< 0);
1412 if (g
->p
.mb_proc_locked_str
) {
1413 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1414 BUG_ON(g
->p
.mb_proc_locked
< 0);
1415 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1418 if (g
->p
.mb_thread_str
) {
1419 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1420 BUG_ON(g
->p
.mb_thread
< 0);
1423 BUG_ON(g
->p
.nr_threads
<= 0);
1424 BUG_ON(g
->p
.nr_proc
<= 0);
1426 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1428 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1429 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1430 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1431 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1433 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1435 /* Startup serialization: */
1436 init_global_mutex(&g
->start_work_mutex
);
1437 init_global_mutex(&g
->startup_mutex
);
1438 init_global_mutex(&g
->startup_done_mutex
);
1439 init_global_mutex(&g
->stop_work_mutex
);
1444 if (parse_setup_cpu_list() || parse_setup_node_list())
1453 static void deinit(void)
1455 free_data(g
->data
, g
->p
.bytes_global
);
1458 deinit_thread_data();
1460 free_data(g
, sizeof(*g
));
1465 * Print a short or long result, depending on the verbosity setting:
1467 static void print_res(const char *name
, double val
,
1468 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1473 if (!g
->p
.show_quiet
)
1474 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1476 printf(" %14.3f %s\n", val
, txt_long
);
1479 static int __bench_numa(const char *name
)
1481 struct timeval start
, stop
, diff
;
1482 u64 runtime_ns_min
, runtime_ns_sum
;
1483 pid_t
*pids
, pid
, wpid
;
1484 double delta_runtime
;
1486 double runtime_sec_max
;
1487 double runtime_sec_min
;
1495 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1498 /* All threads try to acquire it, this way we can wait for them to start up: */
1499 pthread_mutex_lock(&g
->start_work_mutex
);
1501 if (g
->p
.serialize_startup
) {
1503 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1506 gettimeofday(&start
, NULL
);
1508 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1510 dprintf(" # process %2d: PID %d\n", i
, pid
);
1514 /* Child process: */
1522 /* Wait for all the threads to start up: */
1523 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1524 usleep(USEC_PER_MSEC
);
1526 BUG_ON(g
->nr_tasks_started
!= g
->p
.nr_tasks
);
1528 if (g
->p
.serialize_startup
) {
1531 pthread_mutex_lock(&g
->startup_done_mutex
);
1533 /* This will start all threads: */
1534 pthread_mutex_unlock(&g
->start_work_mutex
);
1536 /* This mutex is locked - the last started thread will wake us: */
1537 pthread_mutex_lock(&g
->startup_done_mutex
);
1539 gettimeofday(&stop
, NULL
);
1541 timersub(&stop
, &start
, &diff
);
1543 startup_sec
= diff
.tv_sec
* NSEC_PER_SEC
;
1544 startup_sec
+= diff
.tv_usec
* NSEC_PER_USEC
;
1545 startup_sec
/= NSEC_PER_SEC
;
1547 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1551 pthread_mutex_unlock(&g
->startup_done_mutex
);
1553 gettimeofday(&start
, NULL
);
1556 /* Parent process: */
1559 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1560 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1562 BUG_ON(!WIFEXITED(wait_stat
));
1567 runtime_ns_min
= -1LL;
1569 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1570 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1572 runtime_ns_sum
+= thread_runtime_ns
;
1573 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1576 gettimeofday(&stop
, NULL
);
1577 timersub(&stop
, &start
, &diff
);
1579 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1581 tprintf("\n ###\n");
1584 runtime_sec_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1585 runtime_sec_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1586 runtime_sec_max
/= NSEC_PER_SEC
;
1588 runtime_sec_min
= runtime_ns_min
/ NSEC_PER_SEC
;
1590 bytes
= g
->bytes_done
;
1591 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ NSEC_PER_SEC
;
1593 if (g
->p
.measure_convergence
) {
1594 print_res(name
, runtime_sec_max
,
1595 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1598 print_res(name
, runtime_sec_max
,
1599 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1601 print_res(name
, runtime_sec_min
,
1602 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1604 print_res(name
, runtime_avg
,
1605 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1607 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1608 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1609 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1611 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1612 "GB,", "data/thread", "GB data processed, per thread");
1614 print_res(name
, bytes
/ 1e9
,
1615 "GB,", "data-total", "GB data processed, total");
1617 print_res(name
, runtime_sec_max
* NSEC_PER_SEC
/ (bytes
/ g
->p
.nr_tasks
),
1618 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1620 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1621 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1623 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1624 "GB/sec,", "total-speed", "GB/sec total speed");
1626 if (g
->p
.show_details
>= 2) {
1627 char tname
[14 + 2 * 10 + 1];
1628 struct thread_data
*td
;
1629 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1630 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1631 memset(tname
, 0, sizeof(tname
));
1632 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1633 snprintf(tname
, sizeof(tname
), "process%d:thread%d", p
, t
);
1634 print_res(tname
, td
->speed_gbs
,
1635 "GB/sec", "thread-speed", "GB/sec/thread speed");
1636 print_res(tname
, td
->system_time_ns
/ NSEC_PER_SEC
,
1637 "secs", "thread-system-time", "system CPU time/thread");
1638 print_res(tname
, td
->user_time_ns
/ NSEC_PER_SEC
,
1639 "secs", "thread-user-time", "user CPU time/thread");
1653 static int command_size(const char **argv
)
1662 BUG_ON(size
>= MAX_ARGS
);
1667 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1671 printf("\n # Running %s \"perf bench numa", name
);
1673 for (i
= 0; i
< argc
; i
++)
1674 printf(" %s", argv
[i
]);
1678 memset(p
, 0, sizeof(*p
));
1680 /* Initialize nonzero defaults: */
1682 p
->serialize_startup
= 1;
1683 p
->data_reads
= true;
1684 p
->data_writes
= true;
1685 p
->data_backwards
= true;
1686 p
->data_rand_walk
= true;
1688 p
->init_random
= true;
1689 p
->mb_global_str
= "1";
1693 p
->run_all
= argc
== 1;
1696 static int run_bench_numa(const char *name
, const char **argv
)
1698 int argc
= command_size(argv
);
1700 init_params(&p0
, name
, argc
, argv
);
1701 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1705 if (__bench_numa(name
))
1714 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1715 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1717 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1718 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1720 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1721 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1724 * The built-in test-suite executed by "perf bench numa -a".
1726 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1728 static const char *tests
[][MAX_ARGS
] = {
1729 /* Basic single-stream NUMA bandwidth measurements: */
1730 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1731 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1732 { "RAM-bw-local-NOTHP,",
1733 "mem", "-p", "1", "-t", "1", "-P", "1024",
1734 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1735 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1736 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1738 /* 2-stream NUMA bandwidth measurements: */
1739 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1740 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1741 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1742 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1744 /* Cross-stream NUMA bandwidth measurement: */
1745 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1746 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1748 /* Convergence latency measurements: */
1749 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1750 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1751 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1752 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1753 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1754 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1755 { " 4x4-convergence-NOTHP,",
1756 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1757 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1758 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1759 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1760 { " 8x4-convergence-NOTHP,",
1761 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1762 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1763 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1764 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1765 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1766 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1768 /* Various NUMA process/thread layout bandwidth measurements: */
1769 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1770 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1771 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1772 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1773 { " 8x1-bw-process-NOTHP,",
1774 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1775 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1777 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1778 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1779 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1780 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1782 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1783 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1784 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1785 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1786 { " 4x8-bw-thread-NOTHP,",
1787 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1788 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1789 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1791 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1792 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1794 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1795 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1796 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1797 { "numa01-bw-thread-NOTHP,",
1798 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1801 static int bench_all(void)
1803 int nr
= ARRAY_SIZE(tests
);
1807 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1810 for (i
= 0; i
< nr
; i
++) {
1811 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1819 int bench_numa(int argc
, const char **argv
)
1821 init_params(&p0
, "main,", argc
, argv
);
1822 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1829 if (__bench_numa(NULL
))
1835 usage_with_options(numa_usage
, options
);