2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
36 #define CREATE_TRACE_POINTS
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
53 __asm__(".arch_extension virt");
56 DEFINE_PER_CPU(kvm_cpu_context_t
, kvm_host_cpu_state
);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid
;
65 static unsigned int kvm_vmid_bits __read_mostly
;
66 static DEFINE_SPINLOCK(kvm_vmid_lock
);
68 static bool vgic_present
;
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
74 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use
);
80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81 * Must be called from non-preemptible context
83 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
85 return __this_cpu_read(kvm_arm_running_vcpu
);
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
91 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
93 return &kvm_arm_running_vcpu
;
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
98 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
101 int kvm_arch_hardware_setup(void)
106 void kvm_arch_check_processor_compat(void *rtn
)
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
116 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
123 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
124 if (!kvm
->arch
.last_vcpu_ran
)
127 for_each_possible_cpu(cpu
)
128 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
130 ret
= kvm_alloc_stage2_pgd(kvm
);
134 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
136 goto out_free_stage2_pgd
;
138 kvm_vgic_early_init(kvm
);
140 /* Mark the initial VMID generation invalid */
141 kvm
->arch
.vmid_gen
= 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm
->arch
.max_vcpus
= vgic_present
?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
149 kvm_free_stage2_pgd(kvm
);
151 free_percpu(kvm
->arch
.last_vcpu_ran
);
152 kvm
->arch
.last_vcpu_ran
= NULL
;
156 bool kvm_arch_has_vcpu_debugfs(void)
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
166 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
168 return VM_FAULT_SIGBUS
;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm
*kvm
)
180 kvm_vgic_destroy(kvm
);
182 free_percpu(kvm
->arch
.last_vcpu_ran
);
183 kvm
->arch
.last_vcpu_ran
= NULL
;
185 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
187 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
188 kvm
->vcpus
[i
] = NULL
;
191 atomic_set(&kvm
->online_vcpus
, 0);
194 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
198 case KVM_CAP_IRQCHIP
:
201 case KVM_CAP_IOEVENTFD
:
202 case KVM_CAP_DEVICE_CTRL
:
203 case KVM_CAP_USER_MEMORY
:
204 case KVM_CAP_SYNC_MMU
:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
206 case KVM_CAP_ONE_REG
:
207 case KVM_CAP_ARM_PSCI
:
208 case KVM_CAP_ARM_PSCI_0_2
:
209 case KVM_CAP_READONLY_MEM
:
210 case KVM_CAP_MP_STATE
:
211 case KVM_CAP_IMMEDIATE_EXIT
:
214 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
217 case KVM_CAP_NR_VCPUS
:
218 r
= num_online_cpus();
220 case KVM_CAP_MAX_VCPUS
:
223 case KVM_CAP_NR_MEMSLOTS
:
224 r
= KVM_USER_MEM_SLOTS
;
226 case KVM_CAP_MSI_DEVID
:
230 r
= kvm
->arch
.vgic
.msis_require_devid
;
232 case KVM_CAP_ARM_USER_IRQ
:
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
240 r
= kvm_arch_dev_ioctl_check_extension(kvm
, ext
);
246 long kvm_arch_dev_ioctl(struct file
*filp
,
247 unsigned int ioctl
, unsigned long arg
)
253 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
256 struct kvm_vcpu
*vcpu
;
258 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
263 if (id
>= kvm
->arch
.max_vcpus
) {
268 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
274 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
278 err
= create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
284 kvm_vcpu_uninit(vcpu
);
286 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
293 kvm_vgic_vcpu_early_init(vcpu
);
296 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
298 if (vcpu
->arch
.has_run_once
&& unlikely(!irqchip_in_kernel(vcpu
->kvm
)))
299 static_branch_dec(&userspace_irqchip_in_use
);
301 kvm_mmu_free_memory_caches(vcpu
);
302 kvm_timer_vcpu_terminate(vcpu
);
303 kvm_pmu_vcpu_destroy(vcpu
);
304 kvm_vcpu_uninit(vcpu
);
305 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
310 kvm_arch_vcpu_free(vcpu
);
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
315 return kvm_timer_is_pending(vcpu
);
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
320 kvm_timer_schedule(vcpu
);
321 kvm_vgic_v4_enable_doorbell(vcpu
);
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
326 kvm_timer_unschedule(vcpu
);
327 kvm_vgic_v4_disable_doorbell(vcpu
);
330 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
332 /* Force users to call KVM_ARM_VCPU_INIT */
333 vcpu
->arch
.target
= -1;
334 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
336 /* Set up the timer */
337 kvm_timer_vcpu_init(vcpu
);
339 kvm_arm_reset_debug_ptr(vcpu
);
341 return kvm_vgic_vcpu_init(vcpu
);
344 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
348 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
351 * We might get preempted before the vCPU actually runs, but
352 * over-invalidation doesn't affect correctness.
354 if (*last_ran
!= vcpu
->vcpu_id
) {
355 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
356 *last_ran
= vcpu
->vcpu_id
;
360 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(&kvm_host_cpu_state
);
362 kvm_arm_set_running_vcpu(vcpu
);
364 kvm_timer_vcpu_load(vcpu
);
367 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
369 kvm_timer_vcpu_put(vcpu
);
374 kvm_arm_set_running_vcpu(NULL
);
377 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
379 vcpu
->arch
.power_off
= true;
380 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
385 struct kvm_mp_state
*mp_state
)
389 if (vcpu
->arch
.power_off
)
390 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
392 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
399 struct kvm_mp_state
*mp_state
)
405 switch (mp_state
->mp_state
) {
406 case KVM_MP_STATE_RUNNABLE
:
407 vcpu
->arch
.power_off
= false;
409 case KVM_MP_STATE_STOPPED
:
410 vcpu_power_off(vcpu
);
421 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
422 * @v: The VCPU pointer
424 * If the guest CPU is not waiting for interrupts or an interrupt line is
425 * asserted, the CPU is by definition runnable.
427 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
429 return ((!!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
430 && !v
->arch
.power_off
&& !v
->arch
.pause
);
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
435 return vcpu_mode_priv(vcpu
);
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info
)
443 void force_vm_exit(const cpumask_t
*mask
)
446 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
451 * need_new_vmid_gen - check that the VMID is still valid
452 * @kvm: The VM's VMID to check
454 * return true if there is a new generation of VMIDs being used
456 * The hardware supports only 256 values with the value zero reserved for the
457 * host, so we check if an assigned value belongs to a previous generation,
458 * which which requires us to assign a new value. If we're the first to use a
459 * VMID for the new generation, we must flush necessary caches and TLBs on all
462 static bool need_new_vmid_gen(struct kvm
*kvm
)
464 return unlikely(kvm
->arch
.vmid_gen
!= atomic64_read(&kvm_vmid_gen
));
468 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469 * @kvm The guest that we are about to run
471 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
475 static void update_vttbr(struct kvm
*kvm
)
477 phys_addr_t pgd_phys
;
480 if (!need_new_vmid_gen(kvm
))
483 spin_lock(&kvm_vmid_lock
);
486 * We need to re-check the vmid_gen here to ensure that if another vcpu
487 * already allocated a valid vmid for this vm, then this vcpu should
490 if (!need_new_vmid_gen(kvm
)) {
491 spin_unlock(&kvm_vmid_lock
);
495 /* First user of a new VMID generation? */
496 if (unlikely(kvm_next_vmid
== 0)) {
497 atomic64_inc(&kvm_vmid_gen
);
501 * On SMP we know no other CPUs can use this CPU's or each
502 * other's VMID after force_vm_exit returns since the
503 * kvm_vmid_lock blocks them from reentry to the guest.
505 force_vm_exit(cpu_all_mask
);
507 * Now broadcast TLB + ICACHE invalidation over the inner
508 * shareable domain to make sure all data structures are
511 kvm_call_hyp(__kvm_flush_vm_context
);
514 kvm
->arch
.vmid_gen
= atomic64_read(&kvm_vmid_gen
);
515 kvm
->arch
.vmid
= kvm_next_vmid
;
517 kvm_next_vmid
&= (1 << kvm_vmid_bits
) - 1;
519 /* update vttbr to be used with the new vmid */
520 pgd_phys
= virt_to_phys(kvm
->arch
.pgd
);
521 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
522 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK(kvm_vmid_bits
);
523 kvm
->arch
.vttbr
= kvm_phys_to_vttbr(pgd_phys
) | vmid
;
525 spin_unlock(&kvm_vmid_lock
);
528 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
530 struct kvm
*kvm
= vcpu
->kvm
;
533 if (likely(vcpu
->arch
.has_run_once
))
536 vcpu
->arch
.has_run_once
= true;
538 if (likely(irqchip_in_kernel(kvm
))) {
540 * Map the VGIC hardware resources before running a vcpu the
541 * first time on this VM.
543 if (unlikely(!vgic_ready(kvm
))) {
544 ret
= kvm_vgic_map_resources(kvm
);
550 * Tell the rest of the code that there are userspace irqchip
553 static_branch_inc(&userspace_irqchip_in_use
);
556 ret
= kvm_timer_enable(vcpu
);
560 ret
= kvm_arm_pmu_v3_enable(vcpu
);
565 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
567 return vgic_initialized(kvm
);
570 void kvm_arm_halt_guest(struct kvm
*kvm
)
573 struct kvm_vcpu
*vcpu
;
575 kvm_for_each_vcpu(i
, vcpu
, kvm
)
576 vcpu
->arch
.pause
= true;
577 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
580 void kvm_arm_resume_guest(struct kvm
*kvm
)
583 struct kvm_vcpu
*vcpu
;
585 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
586 vcpu
->arch
.pause
= false;
587 swake_up(kvm_arch_vcpu_wq(vcpu
));
591 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
593 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
595 swait_event_interruptible(*wq
, ((!vcpu
->arch
.power_off
) &&
596 (!vcpu
->arch
.pause
)));
598 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
599 /* Awaken to handle a signal, request we sleep again later. */
600 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
604 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
606 return vcpu
->arch
.target
>= 0;
609 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
611 if (kvm_request_pending(vcpu
)) {
612 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
613 vcpu_req_sleep(vcpu
);
616 * Clear IRQ_PENDING requests that were made to guarantee
617 * that a VCPU sees new virtual interrupts.
619 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
624 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
625 * @vcpu: The VCPU pointer
626 * @run: The kvm_run structure pointer used for userspace state exchange
628 * This function is called through the VCPU_RUN ioctl called from user space. It
629 * will execute VM code in a loop until the time slice for the process is used
630 * or some emulation is needed from user space in which case the function will
631 * return with return value 0 and with the kvm_run structure filled in with the
632 * required data for the requested emulation.
634 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
638 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
643 ret
= kvm_vcpu_first_run_init(vcpu
);
647 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
648 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
651 if (kvm_arm_handle_step_debug(vcpu
, vcpu
->run
)) {
658 if (run
->immediate_exit
) {
663 kvm_sigset_activate(vcpu
);
666 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
669 * Check conditions before entering the guest
673 update_vttbr(vcpu
->kvm
);
675 check_vcpu_requests(vcpu
);
678 * Preparing the interrupts to be injected also
679 * involves poking the GIC, which must be done in a
680 * non-preemptible context.
684 /* Flush FP/SIMD state that can't survive guest entry/exit */
685 kvm_fpsimd_flush_cpu_state();
687 kvm_pmu_flush_hwstate(vcpu
);
691 kvm_vgic_flush_hwstate(vcpu
);
694 * Exit if we have a signal pending so that we can deliver the
695 * signal to user space.
697 if (signal_pending(current
)) {
699 run
->exit_reason
= KVM_EXIT_INTR
;
703 * If we're using a userspace irqchip, then check if we need
704 * to tell a userspace irqchip about timer or PMU level
705 * changes and if so, exit to userspace (the actual level
706 * state gets updated in kvm_timer_update_run and
707 * kvm_pmu_update_run below).
709 if (static_branch_unlikely(&userspace_irqchip_in_use
)) {
710 if (kvm_timer_should_notify_user(vcpu
) ||
711 kvm_pmu_should_notify_user(vcpu
)) {
713 run
->exit_reason
= KVM_EXIT_INTR
;
718 * Ensure we set mode to IN_GUEST_MODE after we disable
719 * interrupts and before the final VCPU requests check.
720 * See the comment in kvm_vcpu_exiting_guest_mode() and
721 * Documentation/virtual/kvm/vcpu-requests.rst
723 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
725 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
) ||
726 kvm_request_pending(vcpu
)) {
727 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
728 kvm_pmu_sync_hwstate(vcpu
);
729 if (static_branch_unlikely(&userspace_irqchip_in_use
))
730 kvm_timer_sync_hwstate(vcpu
);
731 kvm_vgic_sync_hwstate(vcpu
);
737 kvm_arm_setup_debug(vcpu
);
739 /**************************************************************
742 trace_kvm_entry(*vcpu_pc(vcpu
));
743 guest_enter_irqoff();
745 kvm_arm_vhe_guest_enter();
747 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
750 kvm_arm_vhe_guest_exit();
751 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
755 *************************************************************/
757 kvm_arm_clear_debug(vcpu
);
760 * We must sync the PMU state before the vgic state so
761 * that the vgic can properly sample the updated state of the
764 kvm_pmu_sync_hwstate(vcpu
);
767 * Sync the vgic state before syncing the timer state because
768 * the timer code needs to know if the virtual timer
769 * interrupts are active.
771 kvm_vgic_sync_hwstate(vcpu
);
774 * Sync the timer hardware state before enabling interrupts as
775 * we don't want vtimer interrupts to race with syncing the
776 * timer virtual interrupt state.
778 if (static_branch_unlikely(&userspace_irqchip_in_use
))
779 kvm_timer_sync_hwstate(vcpu
);
782 * We may have taken a host interrupt in HYP mode (ie
783 * while executing the guest). This interrupt is still
784 * pending, as we haven't serviced it yet!
786 * We're now back in SVC mode, with interrupts
787 * disabled. Enabling the interrupts now will have
788 * the effect of taking the interrupt again, in SVC
794 * We do local_irq_enable() before calling guest_exit() so
795 * that if a timer interrupt hits while running the guest we
796 * account that tick as being spent in the guest. We enable
797 * preemption after calling guest_exit() so that if we get
798 * preempted we make sure ticks after that is not counted as
802 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
804 /* Exit types that need handling before we can be preempted */
805 handle_exit_early(vcpu
, run
, ret
);
809 ret
= handle_exit(vcpu
, run
, ret
);
812 /* Tell userspace about in-kernel device output levels */
813 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
814 kvm_timer_update_run(vcpu
);
815 kvm_pmu_update_run(vcpu
);
818 kvm_sigset_deactivate(vcpu
);
825 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
831 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
832 bit_index
= __ffs(HCR_VI
);
833 else /* KVM_ARM_IRQ_CPU_FIQ */
834 bit_index
= __ffs(HCR_VF
);
836 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
838 set
= test_and_set_bit(bit_index
, ptr
);
840 set
= test_and_clear_bit(bit_index
, ptr
);
843 * If we didn't change anything, no need to wake up or kick other CPUs
849 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
850 * trigger a world-switch round on the running physical CPU to set the
851 * virtual IRQ/FIQ fields in the HCR appropriately.
853 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
859 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
862 u32 irq
= irq_level
->irq
;
863 unsigned int irq_type
, vcpu_idx
, irq_num
;
864 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
865 struct kvm_vcpu
*vcpu
= NULL
;
866 bool level
= irq_level
->level
;
868 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
869 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
870 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
872 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
875 case KVM_ARM_IRQ_TYPE_CPU
:
876 if (irqchip_in_kernel(kvm
))
879 if (vcpu_idx
>= nrcpus
)
882 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
886 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
889 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
890 case KVM_ARM_IRQ_TYPE_PPI
:
891 if (!irqchip_in_kernel(kvm
))
894 if (vcpu_idx
>= nrcpus
)
897 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
901 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
904 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
905 case KVM_ARM_IRQ_TYPE_SPI
:
906 if (!irqchip_in_kernel(kvm
))
909 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
912 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
918 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
919 const struct kvm_vcpu_init
*init
)
922 int phys_target
= kvm_target_cpu();
924 if (init
->target
!= phys_target
)
928 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
929 * use the same target.
931 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
934 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
935 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
936 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
938 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
942 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
943 * use the same feature set.
945 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
946 test_bit(i
, vcpu
->arch
.features
) != set
)
950 set_bit(i
, vcpu
->arch
.features
);
953 vcpu
->arch
.target
= phys_target
;
955 /* Now we know what it is, we can reset it. */
956 return kvm_reset_vcpu(vcpu
);
960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
961 struct kvm_vcpu_init
*init
)
965 ret
= kvm_vcpu_set_target(vcpu
, init
);
970 * Ensure a rebooted VM will fault in RAM pages and detect if the
971 * guest MMU is turned off and flush the caches as needed.
973 if (vcpu
->arch
.has_run_once
)
974 stage2_unmap_vm(vcpu
->kvm
);
976 vcpu_reset_hcr(vcpu
);
979 * Handle the "start in power-off" case.
981 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
982 vcpu_power_off(vcpu
);
984 vcpu
->arch
.power_off
= false;
989 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
990 struct kvm_device_attr
*attr
)
994 switch (attr
->group
) {
996 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
1003 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
1004 struct kvm_device_attr
*attr
)
1008 switch (attr
->group
) {
1010 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
1017 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
1018 struct kvm_device_attr
*attr
)
1022 switch (attr
->group
) {
1024 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
1031 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1032 unsigned int ioctl
, unsigned long arg
)
1034 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1035 void __user
*argp
= (void __user
*)arg
;
1036 struct kvm_device_attr attr
;
1042 case KVM_ARM_VCPU_INIT
: {
1043 struct kvm_vcpu_init init
;
1046 if (copy_from_user(&init
, argp
, sizeof(init
)))
1049 r
= kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
1052 case KVM_SET_ONE_REG
:
1053 case KVM_GET_ONE_REG
: {
1054 struct kvm_one_reg reg
;
1057 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1061 if (copy_from_user(®
, argp
, sizeof(reg
)))
1064 if (ioctl
== KVM_SET_ONE_REG
)
1065 r
= kvm_arm_set_reg(vcpu
, ®
);
1067 r
= kvm_arm_get_reg(vcpu
, ®
);
1070 case KVM_GET_REG_LIST
: {
1071 struct kvm_reg_list __user
*user_list
= argp
;
1072 struct kvm_reg_list reg_list
;
1076 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1080 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1083 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1084 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1089 r
= kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1092 case KVM_SET_DEVICE_ATTR
: {
1094 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1096 r
= kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1099 case KVM_GET_DEVICE_ATTR
: {
1101 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1103 r
= kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1106 case KVM_HAS_DEVICE_ATTR
: {
1108 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1110 r
= kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1122 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1123 * @kvm: kvm instance
1124 * @log: slot id and address to which we copy the log
1126 * Steps 1-4 below provide general overview of dirty page logging. See
1127 * kvm_get_dirty_log_protect() function description for additional details.
1129 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1130 * always flush the TLB (step 4) even if previous step failed and the dirty
1131 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1132 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1133 * writes will be marked dirty for next log read.
1135 * 1. Take a snapshot of the bit and clear it if needed.
1136 * 2. Write protect the corresponding page.
1137 * 3. Copy the snapshot to the userspace.
1138 * 4. Flush TLB's if needed.
1140 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1142 bool is_dirty
= false;
1145 mutex_lock(&kvm
->slots_lock
);
1147 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
1150 kvm_flush_remote_tlbs(kvm
);
1152 mutex_unlock(&kvm
->slots_lock
);
1156 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1157 struct kvm_arm_device_addr
*dev_addr
)
1159 unsigned long dev_id
, type
;
1161 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1162 KVM_ARM_DEVICE_ID_SHIFT
;
1163 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1164 KVM_ARM_DEVICE_TYPE_SHIFT
;
1167 case KVM_ARM_DEVICE_VGIC_V2
:
1170 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1176 long kvm_arch_vm_ioctl(struct file
*filp
,
1177 unsigned int ioctl
, unsigned long arg
)
1179 struct kvm
*kvm
= filp
->private_data
;
1180 void __user
*argp
= (void __user
*)arg
;
1183 case KVM_CREATE_IRQCHIP
: {
1187 mutex_lock(&kvm
->lock
);
1188 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1189 mutex_unlock(&kvm
->lock
);
1192 case KVM_ARM_SET_DEVICE_ADDR
: {
1193 struct kvm_arm_device_addr dev_addr
;
1195 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1197 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1199 case KVM_ARM_PREFERRED_TARGET
: {
1201 struct kvm_vcpu_init init
;
1203 err
= kvm_vcpu_preferred_target(&init
);
1207 if (copy_to_user(argp
, &init
, sizeof(init
)))
1217 static void cpu_init_hyp_mode(void *dummy
)
1219 phys_addr_t pgd_ptr
;
1220 unsigned long hyp_stack_ptr
;
1221 unsigned long stack_page
;
1222 unsigned long vector_ptr
;
1224 /* Switch from the HYP stub to our own HYP init vector */
1225 __hyp_set_vectors(kvm_get_idmap_vector());
1227 pgd_ptr
= kvm_mmu_get_httbr();
1228 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1229 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1230 vector_ptr
= (unsigned long)kvm_get_hyp_vector();
1232 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1233 __cpu_init_stage2();
1235 kvm_arm_init_debug();
1238 static void cpu_hyp_reset(void)
1240 if (!is_kernel_in_hyp_mode())
1241 __hyp_reset_vectors();
1244 static void cpu_hyp_reinit(void)
1248 if (is_kernel_in_hyp_mode()) {
1250 * __cpu_init_stage2() is safe to call even if the PM
1251 * event was cancelled before the CPU was reset.
1253 __cpu_init_stage2();
1254 kvm_timer_init_vhe();
1256 cpu_init_hyp_mode(NULL
);
1260 kvm_vgic_init_cpu_hardware();
1263 static void _kvm_arch_hardware_enable(void *discard
)
1265 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1267 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1271 int kvm_arch_hardware_enable(void)
1273 _kvm_arch_hardware_enable(NULL
);
1277 static void _kvm_arch_hardware_disable(void *discard
)
1279 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1281 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1285 void kvm_arch_hardware_disable(void)
1287 _kvm_arch_hardware_disable(NULL
);
1290 #ifdef CONFIG_CPU_PM
1291 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1296 * kvm_arm_hardware_enabled is left with its old value over
1297 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1302 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1304 * don't update kvm_arm_hardware_enabled here
1305 * so that the hardware will be re-enabled
1306 * when we resume. See below.
1311 case CPU_PM_ENTER_FAILED
:
1313 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1314 /* The hardware was enabled before suspend. */
1324 static struct notifier_block hyp_init_cpu_pm_nb
= {
1325 .notifier_call
= hyp_init_cpu_pm_notifier
,
1328 static void __init
hyp_cpu_pm_init(void)
1330 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1332 static void __init
hyp_cpu_pm_exit(void)
1334 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1337 static inline void hyp_cpu_pm_init(void)
1340 static inline void hyp_cpu_pm_exit(void)
1345 static int init_common_resources(void)
1347 /* set size of VMID supported by CPU */
1348 kvm_vmid_bits
= kvm_get_vmid_bits();
1349 kvm_info("%d-bit VMID\n", kvm_vmid_bits
);
1354 static int init_subsystems(void)
1359 * Enable hardware so that subsystem initialisation can access EL2.
1361 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1364 * Register CPU lower-power notifier
1369 * Init HYP view of VGIC
1371 err
= kvm_vgic_hyp_init();
1374 vgic_present
= true;
1378 vgic_present
= false;
1386 * Init HYP architected timer support
1388 err
= kvm_timer_hyp_init(vgic_present
);
1393 kvm_coproc_table_init();
1396 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1401 static void teardown_hyp_mode(void)
1406 for_each_possible_cpu(cpu
)
1407 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1412 * Inits Hyp-mode on all online CPUs
1414 static int init_hyp_mode(void)
1420 * Allocate Hyp PGD and setup Hyp identity mapping
1422 err
= kvm_mmu_init();
1427 * Allocate stack pages for Hypervisor-mode
1429 for_each_possible_cpu(cpu
) {
1430 unsigned long stack_page
;
1432 stack_page
= __get_free_page(GFP_KERNEL
);
1438 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1442 * Map the Hyp-code called directly from the host
1444 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1445 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1447 kvm_err("Cannot map world-switch code\n");
1451 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1452 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1454 kvm_err("Cannot map rodata section\n");
1458 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1459 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1461 kvm_err("Cannot map bss section\n");
1465 err
= kvm_map_vectors();
1467 kvm_err("Cannot map vectors\n");
1472 * Map the Hyp stack pages
1474 for_each_possible_cpu(cpu
) {
1475 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1476 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1480 kvm_err("Cannot map hyp stack\n");
1485 for_each_possible_cpu(cpu
) {
1486 kvm_cpu_context_t
*cpu_ctxt
;
1488 cpu_ctxt
= per_cpu_ptr(&kvm_host_cpu_state
, cpu
);
1489 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1, PAGE_HYP
);
1492 kvm_err("Cannot map host CPU state: %d\n", err
);
1500 teardown_hyp_mode();
1501 kvm_err("error initializing Hyp mode: %d\n", err
);
1505 static void check_kvm_target_cpu(void *ret
)
1507 *(int *)ret
= kvm_target_cpu();
1510 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1512 struct kvm_vcpu
*vcpu
;
1515 mpidr
&= MPIDR_HWID_BITMASK
;
1516 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1517 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1523 bool kvm_arch_has_irq_bypass(void)
1528 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
1529 struct irq_bypass_producer
*prod
)
1531 struct kvm_kernel_irqfd
*irqfd
=
1532 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1534 return kvm_vgic_v4_set_forwarding(irqfd
->kvm
, prod
->irq
,
1537 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
1538 struct irq_bypass_producer
*prod
)
1540 struct kvm_kernel_irqfd
*irqfd
=
1541 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1543 kvm_vgic_v4_unset_forwarding(irqfd
->kvm
, prod
->irq
,
1547 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*cons
)
1549 struct kvm_kernel_irqfd
*irqfd
=
1550 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1552 kvm_arm_halt_guest(irqfd
->kvm
);
1555 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*cons
)
1557 struct kvm_kernel_irqfd
*irqfd
=
1558 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1560 kvm_arm_resume_guest(irqfd
->kvm
);
1564 * Initialize Hyp-mode and memory mappings on all CPUs.
1566 int kvm_arch_init(void *opaque
)
1572 if (!is_hyp_mode_available()) {
1573 kvm_info("HYP mode not available\n");
1577 for_each_online_cpu(cpu
) {
1578 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1580 kvm_err("Error, CPU %d not supported!\n", cpu
);
1585 err
= init_common_resources();
1589 in_hyp_mode
= is_kernel_in_hyp_mode();
1592 err
= init_hyp_mode();
1597 err
= init_subsystems();
1602 kvm_info("VHE mode initialized successfully\n");
1604 kvm_info("Hyp mode initialized successfully\n");
1610 teardown_hyp_mode();
1615 /* NOP: Compiling as a module not supported */
1616 void kvm_arch_exit(void)
1618 kvm_perf_teardown();
1621 static int arm_init(void)
1623 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1627 module_init(arm_init
);