2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
33 #include <asm/system_misc.h>
37 static pgd_t
*boot_hyp_pgd
;
38 static pgd_t
*hyp_pgd
;
39 static pgd_t
*merged_hyp_pgd
;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
42 static unsigned long hyp_idmap_start
;
43 static unsigned long hyp_idmap_end
;
44 static phys_addr_t hyp_idmap_vector
;
46 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
54 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
61 * Interface to HYP function to flush all VM TLB entries
63 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
65 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
68 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
70 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
78 static void kvm_flush_dcache_pte(pte_t pte
)
80 __kvm_flush_dcache_pte(pte
);
83 static void kvm_flush_dcache_pmd(pmd_t pmd
)
85 __kvm_flush_dcache_pmd(pmd
);
88 static void kvm_flush_dcache_pud(pud_t pud
)
90 __kvm_flush_dcache_pud(pud
);
93 static bool kvm_is_device_pfn(unsigned long pfn
)
95 return !pfn_valid(pfn
);
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
102 * @pmd: pmd pointer for IPA
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
107 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
109 if (!pmd_thp_or_huge(*pmd
))
113 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
114 put_page(virt_to_page(pmd
));
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
122 BUG_ON(max
> KVM_NR_MEM_OBJS
);
123 if (cache
->nobjs
>= min
)
125 while (cache
->nobjs
< max
) {
126 page
= (void *)__get_free_page(PGALLOC_GFP
);
129 cache
->objects
[cache
->nobjs
++] = page
;
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
137 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
144 BUG_ON(!mc
|| !mc
->nobjs
);
145 p
= mc
->objects
[--mc
->nobjs
];
149 static void clear_stage2_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
151 pud_t
*pud_table __maybe_unused
= stage2_pud_offset(pgd
, 0UL);
152 stage2_pgd_clear(pgd
);
153 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
154 stage2_pud_free(pud_table
);
155 put_page(virt_to_page(pgd
));
158 static void clear_stage2_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
160 pmd_t
*pmd_table __maybe_unused
= stage2_pmd_offset(pud
, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud
));
162 stage2_pud_clear(pud
);
163 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
164 stage2_pmd_free(pmd_table
);
165 put_page(virt_to_page(pud
));
168 static void clear_stage2_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
170 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
171 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
173 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
174 pte_free_kernel(NULL
, pte_table
);
175 put_page(virt_to_page(pmd
));
179 * Unmapping vs dcache management:
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
198 static void unmap_stage2_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
199 phys_addr_t addr
, phys_addr_t end
)
201 phys_addr_t start_addr
= addr
;
202 pte_t
*pte
, *start_pte
;
204 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
206 if (!pte_none(*pte
)) {
207 pte_t old_pte
= *pte
;
209 kvm_set_pte(pte
, __pte(0));
210 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
212 /* No need to invalidate the cache for device mappings */
213 if (!kvm_is_device_pfn(pte_pfn(old_pte
)))
214 kvm_flush_dcache_pte(old_pte
);
216 put_page(virt_to_page(pte
));
218 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
220 if (stage2_pte_table_empty(start_pte
))
221 clear_stage2_pmd_entry(kvm
, pmd
, start_addr
);
224 static void unmap_stage2_pmds(struct kvm
*kvm
, pud_t
*pud
,
225 phys_addr_t addr
, phys_addr_t end
)
227 phys_addr_t next
, start_addr
= addr
;
228 pmd_t
*pmd
, *start_pmd
;
230 start_pmd
= pmd
= stage2_pmd_offset(pud
, addr
);
232 next
= stage2_pmd_addr_end(addr
, end
);
233 if (!pmd_none(*pmd
)) {
234 if (pmd_thp_or_huge(*pmd
)) {
235 pmd_t old_pmd
= *pmd
;
238 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
240 kvm_flush_dcache_pmd(old_pmd
);
242 put_page(virt_to_page(pmd
));
244 unmap_stage2_ptes(kvm
, pmd
, addr
, next
);
247 } while (pmd
++, addr
= next
, addr
!= end
);
249 if (stage2_pmd_table_empty(start_pmd
))
250 clear_stage2_pud_entry(kvm
, pud
, start_addr
);
253 static void unmap_stage2_puds(struct kvm
*kvm
, pgd_t
*pgd
,
254 phys_addr_t addr
, phys_addr_t end
)
256 phys_addr_t next
, start_addr
= addr
;
257 pud_t
*pud
, *start_pud
;
259 start_pud
= pud
= stage2_pud_offset(pgd
, addr
);
261 next
= stage2_pud_addr_end(addr
, end
);
262 if (!stage2_pud_none(*pud
)) {
263 if (stage2_pud_huge(*pud
)) {
264 pud_t old_pud
= *pud
;
266 stage2_pud_clear(pud
);
267 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
268 kvm_flush_dcache_pud(old_pud
);
269 put_page(virt_to_page(pud
));
271 unmap_stage2_pmds(kvm
, pud
, addr
, next
);
274 } while (pud
++, addr
= next
, addr
!= end
);
276 if (stage2_pud_table_empty(start_pud
))
277 clear_stage2_pgd_entry(kvm
, pgd
, start_addr
);
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
291 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
294 phys_addr_t addr
= start
, end
= start
+ size
;
297 assert_spin_locked(&kvm
->mmu_lock
);
298 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
301 * Make sure the page table is still active, as another thread
302 * could have possibly freed the page table, while we released
305 if (!READ_ONCE(kvm
->arch
.pgd
))
307 next
= stage2_pgd_addr_end(addr
, end
);
308 if (!stage2_pgd_none(*pgd
))
309 unmap_stage2_puds(kvm
, pgd
, addr
, next
);
311 * If the range is too large, release the kvm->mmu_lock
312 * to prevent starvation and lockup detector warnings.
315 cond_resched_lock(&kvm
->mmu_lock
);
316 } while (pgd
++, addr
= next
, addr
!= end
);
319 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
320 phys_addr_t addr
, phys_addr_t end
)
324 pte
= pte_offset_kernel(pmd
, addr
);
326 if (!pte_none(*pte
) && !kvm_is_device_pfn(pte_pfn(*pte
)))
327 kvm_flush_dcache_pte(*pte
);
328 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
331 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
332 phys_addr_t addr
, phys_addr_t end
)
337 pmd
= stage2_pmd_offset(pud
, addr
);
339 next
= stage2_pmd_addr_end(addr
, end
);
340 if (!pmd_none(*pmd
)) {
341 if (pmd_thp_or_huge(*pmd
))
342 kvm_flush_dcache_pmd(*pmd
);
344 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
346 } while (pmd
++, addr
= next
, addr
!= end
);
349 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
350 phys_addr_t addr
, phys_addr_t end
)
355 pud
= stage2_pud_offset(pgd
, addr
);
357 next
= stage2_pud_addr_end(addr
, end
);
358 if (!stage2_pud_none(*pud
)) {
359 if (stage2_pud_huge(*pud
))
360 kvm_flush_dcache_pud(*pud
);
362 stage2_flush_pmds(kvm
, pud
, addr
, next
);
364 } while (pud
++, addr
= next
, addr
!= end
);
367 static void stage2_flush_memslot(struct kvm
*kvm
,
368 struct kvm_memory_slot
*memslot
)
370 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
371 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
375 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
377 next
= stage2_pgd_addr_end(addr
, end
);
378 stage2_flush_puds(kvm
, pgd
, addr
, next
);
379 } while (pgd
++, addr
= next
, addr
!= end
);
383 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
384 * @kvm: The struct kvm pointer
386 * Go through the stage 2 page tables and invalidate any cache lines
387 * backing memory already mapped to the VM.
389 static void stage2_flush_vm(struct kvm
*kvm
)
391 struct kvm_memslots
*slots
;
392 struct kvm_memory_slot
*memslot
;
395 idx
= srcu_read_lock(&kvm
->srcu
);
396 spin_lock(&kvm
->mmu_lock
);
398 slots
= kvm_memslots(kvm
);
399 kvm_for_each_memslot(memslot
, slots
)
400 stage2_flush_memslot(kvm
, memslot
);
402 spin_unlock(&kvm
->mmu_lock
);
403 srcu_read_unlock(&kvm
->srcu
, idx
);
406 static void clear_hyp_pgd_entry(pgd_t
*pgd
)
408 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0UL);
410 pud_free(NULL
, pud_table
);
411 put_page(virt_to_page(pgd
));
414 static void clear_hyp_pud_entry(pud_t
*pud
)
416 pmd_t
*pmd_table __maybe_unused
= pmd_offset(pud
, 0);
417 VM_BUG_ON(pud_huge(*pud
));
419 pmd_free(NULL
, pmd_table
);
420 put_page(virt_to_page(pud
));
423 static void clear_hyp_pmd_entry(pmd_t
*pmd
)
425 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
426 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
428 pte_free_kernel(NULL
, pte_table
);
429 put_page(virt_to_page(pmd
));
432 static void unmap_hyp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
434 pte_t
*pte
, *start_pte
;
436 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
438 if (!pte_none(*pte
)) {
439 kvm_set_pte(pte
, __pte(0));
440 put_page(virt_to_page(pte
));
442 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
444 if (hyp_pte_table_empty(start_pte
))
445 clear_hyp_pmd_entry(pmd
);
448 static void unmap_hyp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
451 pmd_t
*pmd
, *start_pmd
;
453 start_pmd
= pmd
= pmd_offset(pud
, addr
);
455 next
= pmd_addr_end(addr
, end
);
456 /* Hyp doesn't use huge pmds */
458 unmap_hyp_ptes(pmd
, addr
, next
);
459 } while (pmd
++, addr
= next
, addr
!= end
);
461 if (hyp_pmd_table_empty(start_pmd
))
462 clear_hyp_pud_entry(pud
);
465 static void unmap_hyp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
468 pud_t
*pud
, *start_pud
;
470 start_pud
= pud
= pud_offset(pgd
, addr
);
472 next
= pud_addr_end(addr
, end
);
473 /* Hyp doesn't use huge puds */
475 unmap_hyp_pmds(pud
, addr
, next
);
476 } while (pud
++, addr
= next
, addr
!= end
);
478 if (hyp_pud_table_empty(start_pud
))
479 clear_hyp_pgd_entry(pgd
);
482 static void unmap_hyp_range(pgd_t
*pgdp
, phys_addr_t start
, u64 size
)
485 phys_addr_t addr
= start
, end
= start
+ size
;
489 * We don't unmap anything from HYP, except at the hyp tear down.
490 * Hence, we don't have to invalidate the TLBs here.
492 pgd
= pgdp
+ pgd_index(addr
);
494 next
= pgd_addr_end(addr
, end
);
496 unmap_hyp_puds(pgd
, addr
, next
);
497 } while (pgd
++, addr
= next
, addr
!= end
);
501 * free_hyp_pgds - free Hyp-mode page tables
503 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
504 * therefore contains either mappings in the kernel memory area (above
505 * PAGE_OFFSET), or device mappings in the vmalloc range (from
506 * VMALLOC_START to VMALLOC_END).
508 * boot_hyp_pgd should only map two pages for the init code.
510 void free_hyp_pgds(void)
512 mutex_lock(&kvm_hyp_pgd_mutex
);
515 unmap_hyp_range(boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
516 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
521 unmap_hyp_range(hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
522 unmap_hyp_range(hyp_pgd
, kern_hyp_va(PAGE_OFFSET
),
523 (uintptr_t)high_memory
- PAGE_OFFSET
);
524 unmap_hyp_range(hyp_pgd
, kern_hyp_va(VMALLOC_START
),
525 VMALLOC_END
- VMALLOC_START
);
527 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
530 if (merged_hyp_pgd
) {
531 clear_page(merged_hyp_pgd
);
532 free_page((unsigned long)merged_hyp_pgd
);
533 merged_hyp_pgd
= NULL
;
536 mutex_unlock(&kvm_hyp_pgd_mutex
);
539 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
540 unsigned long end
, unsigned long pfn
,
548 pte
= pte_offset_kernel(pmd
, addr
);
549 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
550 get_page(virt_to_page(pte
));
551 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
553 } while (addr
+= PAGE_SIZE
, addr
!= end
);
556 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
557 unsigned long end
, unsigned long pfn
,
562 unsigned long addr
, next
;
566 pmd
= pmd_offset(pud
, addr
);
568 BUG_ON(pmd_sect(*pmd
));
570 if (pmd_none(*pmd
)) {
571 pte
= pte_alloc_one_kernel(NULL
, addr
);
573 kvm_err("Cannot allocate Hyp pte\n");
576 pmd_populate_kernel(NULL
, pmd
, pte
);
577 get_page(virt_to_page(pmd
));
578 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
581 next
= pmd_addr_end(addr
, end
);
583 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
584 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
585 } while (addr
= next
, addr
!= end
);
590 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
591 unsigned long end
, unsigned long pfn
,
596 unsigned long addr
, next
;
601 pud
= pud_offset(pgd
, addr
);
603 if (pud_none_or_clear_bad(pud
)) {
604 pmd
= pmd_alloc_one(NULL
, addr
);
606 kvm_err("Cannot allocate Hyp pmd\n");
609 pud_populate(NULL
, pud
, pmd
);
610 get_page(virt_to_page(pud
));
611 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
614 next
= pud_addr_end(addr
, end
);
615 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
618 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
619 } while (addr
= next
, addr
!= end
);
624 static int __create_hyp_mappings(pgd_t
*pgdp
, unsigned long ptrs_per_pgd
,
625 unsigned long start
, unsigned long end
,
626 unsigned long pfn
, pgprot_t prot
)
630 unsigned long addr
, next
;
633 mutex_lock(&kvm_hyp_pgd_mutex
);
634 addr
= start
& PAGE_MASK
;
635 end
= PAGE_ALIGN(end
);
637 pgd
= pgdp
+ ((addr
>> PGDIR_SHIFT
) & (ptrs_per_pgd
- 1));
639 if (pgd_none(*pgd
)) {
640 pud
= pud_alloc_one(NULL
, addr
);
642 kvm_err("Cannot allocate Hyp pud\n");
646 pgd_populate(NULL
, pgd
, pud
);
647 get_page(virt_to_page(pgd
));
648 kvm_flush_dcache_to_poc(pgd
, sizeof(*pgd
));
651 next
= pgd_addr_end(addr
, end
);
652 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
655 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
656 } while (addr
= next
, addr
!= end
);
658 mutex_unlock(&kvm_hyp_pgd_mutex
);
662 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
664 if (!is_vmalloc_addr(kaddr
)) {
665 BUG_ON(!virt_addr_valid(kaddr
));
668 return page_to_phys(vmalloc_to_page(kaddr
)) +
669 offset_in_page(kaddr
);
674 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 * @from: The virtual kernel start address of the range
676 * @to: The virtual kernel end address of the range (exclusive)
677 * @prot: The protection to be applied to this range
679 * The same virtual address as the kernel virtual address is also used
680 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
683 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
)
685 phys_addr_t phys_addr
;
686 unsigned long virt_addr
;
687 unsigned long start
= kern_hyp_va((unsigned long)from
);
688 unsigned long end
= kern_hyp_va((unsigned long)to
);
690 if (is_kernel_in_hyp_mode())
693 start
= start
& PAGE_MASK
;
694 end
= PAGE_ALIGN(end
);
696 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
699 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
700 err
= __create_hyp_mappings(hyp_pgd
, PTRS_PER_PGD
,
701 virt_addr
, virt_addr
+ PAGE_SIZE
,
702 __phys_to_pfn(phys_addr
),
712 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713 * @from: The kernel start VA of the range
714 * @to: The kernel end VA of the range (exclusive)
715 * @phys_addr: The physical start address which gets mapped
717 * The resulting HYP VA is the same as the kernel VA, modulo
720 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
722 unsigned long start
= kern_hyp_va((unsigned long)from
);
723 unsigned long end
= kern_hyp_va((unsigned long)to
);
725 if (is_kernel_in_hyp_mode())
728 /* Check for a valid kernel IO mapping */
729 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
732 return __create_hyp_mappings(hyp_pgd
, PTRS_PER_PGD
, start
, end
,
733 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
737 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738 * @kvm: The KVM struct pointer for the VM.
740 * Allocates only the stage-2 HW PGD level table(s) (can support either full
741 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
744 * Note we don't need locking here as this is only called when the VM is
745 * created, which can only be done once.
747 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
751 if (kvm
->arch
.pgd
!= NULL
) {
752 kvm_err("kvm_arch already initialized?\n");
756 /* Allocate the HW PGD, making sure that each page gets its own refcount */
757 pgd
= alloc_pages_exact(S2_PGD_SIZE
, GFP_KERNEL
| __GFP_ZERO
);
765 static void stage2_unmap_memslot(struct kvm
*kvm
,
766 struct kvm_memory_slot
*memslot
)
768 hva_t hva
= memslot
->userspace_addr
;
769 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
770 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
771 hva_t reg_end
= hva
+ size
;
774 * A memory region could potentially cover multiple VMAs, and any holes
775 * between them, so iterate over all of them to find out if we should
778 * +--------------------------------------------+
779 * +---------------+----------------+ +----------------+
780 * | : VMA 1 | VMA 2 | | VMA 3 : |
781 * +---------------+----------------+ +----------------+
783 * +--------------------------------------------+
786 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
787 hva_t vm_start
, vm_end
;
789 if (!vma
|| vma
->vm_start
>= reg_end
)
793 * Take the intersection of this VMA with the memory region
795 vm_start
= max(hva
, vma
->vm_start
);
796 vm_end
= min(reg_end
, vma
->vm_end
);
798 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
799 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
800 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
803 } while (hva
< reg_end
);
807 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808 * @kvm: The struct kvm pointer
810 * Go through the memregions and unmap any reguler RAM
811 * backing memory already mapped to the VM.
813 void stage2_unmap_vm(struct kvm
*kvm
)
815 struct kvm_memslots
*slots
;
816 struct kvm_memory_slot
*memslot
;
819 idx
= srcu_read_lock(&kvm
->srcu
);
820 down_read(¤t
->mm
->mmap_sem
);
821 spin_lock(&kvm
->mmu_lock
);
823 slots
= kvm_memslots(kvm
);
824 kvm_for_each_memslot(memslot
, slots
)
825 stage2_unmap_memslot(kvm
, memslot
);
827 spin_unlock(&kvm
->mmu_lock
);
828 up_read(¤t
->mm
->mmap_sem
);
829 srcu_read_unlock(&kvm
->srcu
, idx
);
833 * kvm_free_stage2_pgd - free all stage-2 tables
834 * @kvm: The KVM struct pointer for the VM.
836 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837 * underlying level-2 and level-3 tables before freeing the actual level-1 table
838 * and setting the struct pointer to NULL.
840 void kvm_free_stage2_pgd(struct kvm
*kvm
)
844 spin_lock(&kvm
->mmu_lock
);
846 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
847 pgd
= READ_ONCE(kvm
->arch
.pgd
);
848 kvm
->arch
.pgd
= NULL
;
850 spin_unlock(&kvm
->mmu_lock
);
852 /* Free the HW pgd, one page at a time */
854 free_pages_exact(pgd
, S2_PGD_SIZE
);
857 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
863 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
864 if (WARN_ON(stage2_pgd_none(*pgd
))) {
867 pud
= mmu_memory_cache_alloc(cache
);
868 stage2_pgd_populate(pgd
, pud
);
869 get_page(virt_to_page(pgd
));
872 return stage2_pud_offset(pgd
, addr
);
875 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
881 pud
= stage2_get_pud(kvm
, cache
, addr
);
885 if (stage2_pud_none(*pud
)) {
888 pmd
= mmu_memory_cache_alloc(cache
);
889 stage2_pud_populate(pud
, pmd
);
890 get_page(virt_to_page(pud
));
893 return stage2_pmd_offset(pud
, addr
);
896 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
897 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
901 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
905 * Mapping in huge pages should only happen through a fault. If a
906 * page is merged into a transparent huge page, the individual
907 * subpages of that huge page should be unmapped through MMU
908 * notifiers before we get here.
910 * Merging of CompoundPages is not supported; they should become
911 * splitting first, unmapped, merged, and mapped back in on-demand.
913 VM_BUG_ON(pmd_present(*pmd
) && pmd_pfn(*pmd
) != pmd_pfn(*new_pmd
));
916 if (pmd_present(old_pmd
)) {
918 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
920 get_page(virt_to_page(pmd
));
923 kvm_set_pmd(pmd
, *new_pmd
);
927 static bool stage2_is_exec(struct kvm
*kvm
, phys_addr_t addr
)
932 pmdp
= stage2_get_pmd(kvm
, NULL
, addr
);
933 if (!pmdp
|| pmd_none(*pmdp
) || !pmd_present(*pmdp
))
936 if (pmd_thp_or_huge(*pmdp
))
937 return kvm_s2pmd_exec(pmdp
);
939 ptep
= pte_offset_kernel(pmdp
, addr
);
940 if (!ptep
|| pte_none(*ptep
) || !pte_present(*ptep
))
943 return kvm_s2pte_exec(ptep
);
946 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
947 phys_addr_t addr
, const pte_t
*new_pte
,
952 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
953 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
955 VM_BUG_ON(logging_active
&& !cache
);
957 /* Create stage-2 page table mapping - Levels 0 and 1 */
958 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
961 * Ignore calls from kvm_set_spte_hva for unallocated
968 * While dirty page logging - dissolve huge PMD, then continue on to
972 stage2_dissolve_pmd(kvm
, addr
, pmd
);
974 /* Create stage-2 page mappings - Level 2 */
975 if (pmd_none(*pmd
)) {
977 return 0; /* ignore calls from kvm_set_spte_hva */
978 pte
= mmu_memory_cache_alloc(cache
);
979 pmd_populate_kernel(NULL
, pmd
, pte
);
980 get_page(virt_to_page(pmd
));
983 pte
= pte_offset_kernel(pmd
, addr
);
985 if (iomap
&& pte_present(*pte
))
988 /* Create 2nd stage page table mapping - Level 3 */
990 if (pte_present(old_pte
)) {
991 kvm_set_pte(pte
, __pte(0));
992 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
994 get_page(virt_to_page(pte
));
997 kvm_set_pte(pte
, *new_pte
);
1001 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1002 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
1004 if (pte_young(*pte
)) {
1005 *pte
= pte_mkold(*pte
);
1011 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
1013 return __ptep_test_and_clear_young(pte
);
1017 static int stage2_pmdp_test_and_clear_young(pmd_t
*pmd
)
1019 return stage2_ptep_test_and_clear_young((pte_t
*)pmd
);
1023 * kvm_phys_addr_ioremap - map a device range to guest IPA
1025 * @kvm: The KVM pointer
1026 * @guest_ipa: The IPA at which to insert the mapping
1027 * @pa: The physical address of the device
1028 * @size: The size of the mapping
1030 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
1031 phys_addr_t pa
, unsigned long size
, bool writable
)
1033 phys_addr_t addr
, end
;
1036 struct kvm_mmu_memory_cache cache
= { 0, };
1038 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1039 pfn
= __phys_to_pfn(pa
);
1041 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
1042 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
1045 pte
= kvm_s2pte_mkwrite(pte
);
1047 ret
= mmu_topup_memory_cache(&cache
, KVM_MMU_CACHE_MIN_PAGES
,
1051 spin_lock(&kvm
->mmu_lock
);
1052 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
1053 KVM_S2PTE_FLAG_IS_IOMAP
);
1054 spin_unlock(&kvm
->mmu_lock
);
1062 mmu_free_memory_cache(&cache
);
1066 static bool transparent_hugepage_adjust(kvm_pfn_t
*pfnp
, phys_addr_t
*ipap
)
1068 kvm_pfn_t pfn
= *pfnp
;
1069 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
1071 if (PageTransCompoundMap(pfn_to_page(pfn
))) {
1074 * The address we faulted on is backed by a transparent huge
1075 * page. However, because we map the compound huge page and
1076 * not the individual tail page, we need to transfer the
1077 * refcount to the head page. We have to be careful that the
1078 * THP doesn't start to split while we are adjusting the
1081 * We are sure this doesn't happen, because mmu_notifier_retry
1082 * was successful and we are holding the mmu_lock, so if this
1083 * THP is trying to split, it will be blocked in the mmu
1084 * notifier before touching any of the pages, specifically
1085 * before being able to call __split_huge_page_refcount().
1087 * We can therefore safely transfer the refcount from PG_tail
1088 * to PG_head and switch the pfn from a tail page to the head
1091 mask
= PTRS_PER_PMD
- 1;
1092 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
1095 kvm_release_pfn_clean(pfn
);
1107 static bool kvm_is_write_fault(struct kvm_vcpu
*vcpu
)
1109 if (kvm_vcpu_trap_is_iabt(vcpu
))
1112 return kvm_vcpu_dabt_iswrite(vcpu
);
1116 * stage2_wp_ptes - write protect PMD range
1117 * @pmd: pointer to pmd entry
1118 * @addr: range start address
1119 * @end: range end address
1121 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1125 pte
= pte_offset_kernel(pmd
, addr
);
1127 if (!pte_none(*pte
)) {
1128 if (!kvm_s2pte_readonly(pte
))
1129 kvm_set_s2pte_readonly(pte
);
1131 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1135 * stage2_wp_pmds - write protect PUD range
1136 * @pud: pointer to pud entry
1137 * @addr: range start address
1138 * @end: range end address
1140 static void stage2_wp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
1145 pmd
= stage2_pmd_offset(pud
, addr
);
1148 next
= stage2_pmd_addr_end(addr
, end
);
1149 if (!pmd_none(*pmd
)) {
1150 if (pmd_thp_or_huge(*pmd
)) {
1151 if (!kvm_s2pmd_readonly(pmd
))
1152 kvm_set_s2pmd_readonly(pmd
);
1154 stage2_wp_ptes(pmd
, addr
, next
);
1157 } while (pmd
++, addr
= next
, addr
!= end
);
1161 * stage2_wp_puds - write protect PGD range
1162 * @pgd: pointer to pgd entry
1163 * @addr: range start address
1164 * @end: range end address
1166 * Process PUD entries, for a huge PUD we cause a panic.
1168 static void stage2_wp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
1173 pud
= stage2_pud_offset(pgd
, addr
);
1175 next
= stage2_pud_addr_end(addr
, end
);
1176 if (!stage2_pud_none(*pud
)) {
1177 /* TODO:PUD not supported, revisit later if supported */
1178 BUG_ON(stage2_pud_huge(*pud
));
1179 stage2_wp_pmds(pud
, addr
, next
);
1181 } while (pud
++, addr
= next
, addr
!= end
);
1185 * stage2_wp_range() - write protect stage2 memory region range
1186 * @kvm: The KVM pointer
1187 * @addr: Start address of range
1188 * @end: End address of range
1190 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1195 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
1198 * Release kvm_mmu_lock periodically if the memory region is
1199 * large. Otherwise, we may see kernel panics with
1200 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1201 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1202 * will also starve other vCPUs. We have to also make sure
1203 * that the page tables are not freed while we released
1206 cond_resched_lock(&kvm
->mmu_lock
);
1207 if (!READ_ONCE(kvm
->arch
.pgd
))
1209 next
= stage2_pgd_addr_end(addr
, end
);
1210 if (stage2_pgd_present(*pgd
))
1211 stage2_wp_puds(pgd
, addr
, next
);
1212 } while (pgd
++, addr
= next
, addr
!= end
);
1216 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1217 * @kvm: The KVM pointer
1218 * @slot: The memory slot to write protect
1220 * Called to start logging dirty pages after memory region
1221 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1222 * all present PMD and PTEs are write protected in the memory region.
1223 * Afterwards read of dirty page log can be called.
1225 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1226 * serializing operations for VM memory regions.
1228 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1230 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1231 struct kvm_memory_slot
*memslot
= id_to_memslot(slots
, slot
);
1232 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1233 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1235 spin_lock(&kvm
->mmu_lock
);
1236 stage2_wp_range(kvm
, start
, end
);
1237 spin_unlock(&kvm
->mmu_lock
);
1238 kvm_flush_remote_tlbs(kvm
);
1242 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1243 * @kvm: The KVM pointer
1244 * @slot: The memory slot associated with mask
1245 * @gfn_offset: The gfn offset in memory slot
1246 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1247 * slot to be write protected
1249 * Walks bits set in mask write protects the associated pte's. Caller must
1250 * acquire kvm_mmu_lock.
1252 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1253 struct kvm_memory_slot
*slot
,
1254 gfn_t gfn_offset
, unsigned long mask
)
1256 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1257 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1258 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1260 stage2_wp_range(kvm
, start
, end
);
1264 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1267 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1268 * enable dirty logging for them.
1270 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1271 struct kvm_memory_slot
*slot
,
1272 gfn_t gfn_offset
, unsigned long mask
)
1274 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1277 static void clean_dcache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
1279 __clean_dcache_guest_page(pfn
, size
);
1282 static void invalidate_icache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
1284 __invalidate_icache_guest_page(pfn
, size
);
1287 static void kvm_send_hwpoison_signal(unsigned long address
,
1288 struct vm_area_struct
*vma
)
1292 info
.si_signo
= SIGBUS
;
1294 info
.si_code
= BUS_MCEERR_AR
;
1295 info
.si_addr
= (void __user
*)address
;
1297 if (is_vm_hugetlb_page(vma
))
1298 info
.si_addr_lsb
= huge_page_shift(hstate_vma(vma
));
1300 info
.si_addr_lsb
= PAGE_SHIFT
;
1302 send_sig_info(SIGBUS
, &info
, current
);
1305 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1306 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1307 unsigned long fault_status
)
1310 bool write_fault
, exec_fault
, writable
, hugetlb
= false, force_pte
= false;
1311 unsigned long mmu_seq
;
1312 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1313 struct kvm
*kvm
= vcpu
->kvm
;
1314 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1315 struct vm_area_struct
*vma
;
1317 pgprot_t mem_type
= PAGE_S2
;
1318 bool logging_active
= memslot_is_logging(memslot
);
1319 unsigned long flags
= 0;
1321 write_fault
= kvm_is_write_fault(vcpu
);
1322 exec_fault
= kvm_vcpu_trap_is_iabt(vcpu
);
1323 VM_BUG_ON(write_fault
&& exec_fault
);
1325 if (fault_status
== FSC_PERM
&& !write_fault
&& !exec_fault
) {
1326 kvm_err("Unexpected L2 read permission error\n");
1330 /* Let's check if we will get back a huge page backed by hugetlbfs */
1331 down_read(¤t
->mm
->mmap_sem
);
1332 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1333 if (unlikely(!vma
)) {
1334 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1335 up_read(¤t
->mm
->mmap_sem
);
1339 if (vma_kernel_pagesize(vma
) == PMD_SIZE
&& !logging_active
) {
1341 gfn
= (fault_ipa
& PMD_MASK
) >> PAGE_SHIFT
;
1344 * Pages belonging to memslots that don't have the same
1345 * alignment for userspace and IPA cannot be mapped using
1346 * block descriptors even if the pages belong to a THP for
1347 * the process, because the stage-2 block descriptor will
1348 * cover more than a single THP and we loose atomicity for
1349 * unmapping, updates, and splits of the THP or other pages
1350 * in the stage-2 block range.
1352 if ((memslot
->userspace_addr
& ~PMD_MASK
) !=
1353 ((memslot
->base_gfn
<< PAGE_SHIFT
) & ~PMD_MASK
))
1356 up_read(¤t
->mm
->mmap_sem
);
1358 /* We need minimum second+third level pages */
1359 ret
= mmu_topup_memory_cache(memcache
, KVM_MMU_CACHE_MIN_PAGES
,
1364 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1366 * Ensure the read of mmu_notifier_seq happens before we call
1367 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1368 * the page we just got a reference to gets unmapped before we have a
1369 * chance to grab the mmu_lock, which ensure that if the page gets
1370 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1371 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1372 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1376 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1377 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
1378 kvm_send_hwpoison_signal(hva
, vma
);
1381 if (is_error_noslot_pfn(pfn
))
1384 if (kvm_is_device_pfn(pfn
)) {
1385 mem_type
= PAGE_S2_DEVICE
;
1386 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1387 } else if (logging_active
) {
1389 * Faults on pages in a memslot with logging enabled
1390 * should not be mapped with huge pages (it introduces churn
1391 * and performance degradation), so force a pte mapping.
1394 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1397 * Only actually map the page as writable if this was a write
1404 spin_lock(&kvm
->mmu_lock
);
1405 if (mmu_notifier_retry(kvm
, mmu_seq
))
1408 if (!hugetlb
&& !force_pte
)
1409 hugetlb
= transparent_hugepage_adjust(&pfn
, &fault_ipa
);
1412 pmd_t new_pmd
= pfn_pmd(pfn
, mem_type
);
1413 new_pmd
= pmd_mkhuge(new_pmd
);
1415 new_pmd
= kvm_s2pmd_mkwrite(new_pmd
);
1416 kvm_set_pfn_dirty(pfn
);
1419 if (fault_status
!= FSC_PERM
)
1420 clean_dcache_guest_page(pfn
, PMD_SIZE
);
1423 new_pmd
= kvm_s2pmd_mkexec(new_pmd
);
1424 invalidate_icache_guest_page(pfn
, PMD_SIZE
);
1425 } else if (fault_status
== FSC_PERM
) {
1426 /* Preserve execute if XN was already cleared */
1427 if (stage2_is_exec(kvm
, fault_ipa
))
1428 new_pmd
= kvm_s2pmd_mkexec(new_pmd
);
1431 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1433 pte_t new_pte
= pfn_pte(pfn
, mem_type
);
1436 new_pte
= kvm_s2pte_mkwrite(new_pte
);
1437 kvm_set_pfn_dirty(pfn
);
1438 mark_page_dirty(kvm
, gfn
);
1441 if (fault_status
!= FSC_PERM
)
1442 clean_dcache_guest_page(pfn
, PAGE_SIZE
);
1445 new_pte
= kvm_s2pte_mkexec(new_pte
);
1446 invalidate_icache_guest_page(pfn
, PAGE_SIZE
);
1447 } else if (fault_status
== FSC_PERM
) {
1448 /* Preserve execute if XN was already cleared */
1449 if (stage2_is_exec(kvm
, fault_ipa
))
1450 new_pte
= kvm_s2pte_mkexec(new_pte
);
1453 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1457 spin_unlock(&kvm
->mmu_lock
);
1458 kvm_set_pfn_accessed(pfn
);
1459 kvm_release_pfn_clean(pfn
);
1464 * Resolve the access fault by making the page young again.
1465 * Note that because the faulting entry is guaranteed not to be
1466 * cached in the TLB, we don't need to invalidate anything.
1467 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1468 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1470 static void handle_access_fault(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
)
1475 bool pfn_valid
= false;
1477 trace_kvm_access_fault(fault_ipa
);
1479 spin_lock(&vcpu
->kvm
->mmu_lock
);
1481 pmd
= stage2_get_pmd(vcpu
->kvm
, NULL
, fault_ipa
);
1482 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1485 if (pmd_thp_or_huge(*pmd
)) { /* THP, HugeTLB */
1486 *pmd
= pmd_mkyoung(*pmd
);
1487 pfn
= pmd_pfn(*pmd
);
1492 pte
= pte_offset_kernel(pmd
, fault_ipa
);
1493 if (pte_none(*pte
)) /* Nothing there either */
1496 *pte
= pte_mkyoung(*pte
); /* Just a page... */
1497 pfn
= pte_pfn(*pte
);
1500 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1502 kvm_set_pfn_accessed(pfn
);
1506 * kvm_handle_guest_abort - handles all 2nd stage aborts
1507 * @vcpu: the VCPU pointer
1508 * @run: the kvm_run structure
1510 * Any abort that gets to the host is almost guaranteed to be caused by a
1511 * missing second stage translation table entry, which can mean that either the
1512 * guest simply needs more memory and we must allocate an appropriate page or it
1513 * can mean that the guest tried to access I/O memory, which is emulated by user
1514 * space. The distinction is based on the IPA causing the fault and whether this
1515 * memory region has been registered as standard RAM by user space.
1517 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1519 unsigned long fault_status
;
1520 phys_addr_t fault_ipa
;
1521 struct kvm_memory_slot
*memslot
;
1523 bool is_iabt
, write_fault
, writable
;
1527 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1529 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1530 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1532 /* Synchronous External Abort? */
1533 if (kvm_vcpu_dabt_isextabt(vcpu
)) {
1535 * For RAS the host kernel may handle this abort.
1536 * There is no need to pass the error into the guest.
1538 if (!handle_guest_sea(fault_ipa
, kvm_vcpu_get_hsr(vcpu
)))
1541 if (unlikely(!is_iabt
)) {
1542 kvm_inject_vabt(vcpu
);
1547 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1548 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1550 /* Check the stage-2 fault is trans. fault or write fault */
1551 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
&&
1552 fault_status
!= FSC_ACCESS
) {
1553 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1554 kvm_vcpu_trap_get_class(vcpu
),
1555 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1556 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1560 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1562 gfn
= fault_ipa
>> PAGE_SHIFT
;
1563 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1564 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1565 write_fault
= kvm_is_write_fault(vcpu
);
1566 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1568 /* Prefetch Abort on I/O address */
1569 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
1575 * Check for a cache maintenance operation. Since we
1576 * ended-up here, we know it is outside of any memory
1577 * slot. But we can't find out if that is for a device,
1578 * or if the guest is just being stupid. The only thing
1579 * we know for sure is that this range cannot be cached.
1581 * So let's assume that the guest is just being
1582 * cautious, and skip the instruction.
1584 if (kvm_vcpu_dabt_is_cm(vcpu
)) {
1585 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1591 * The IPA is reported as [MAX:12], so we need to
1592 * complement it with the bottom 12 bits from the
1593 * faulting VA. This is always 12 bits, irrespective
1596 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1597 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1601 /* Userspace should not be able to register out-of-bounds IPAs */
1602 VM_BUG_ON(fault_ipa
>= KVM_PHYS_SIZE
);
1604 if (fault_status
== FSC_ACCESS
) {
1605 handle_access_fault(vcpu
, fault_ipa
);
1610 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
1614 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1618 static int handle_hva_to_gpa(struct kvm
*kvm
,
1619 unsigned long start
,
1621 int (*handler
)(struct kvm
*kvm
,
1622 gpa_t gpa
, u64 size
,
1626 struct kvm_memslots
*slots
;
1627 struct kvm_memory_slot
*memslot
;
1630 slots
= kvm_memslots(kvm
);
1632 /* we only care about the pages that the guest sees */
1633 kvm_for_each_memslot(memslot
, slots
) {
1634 unsigned long hva_start
, hva_end
;
1637 hva_start
= max(start
, memslot
->userspace_addr
);
1638 hva_end
= min(end
, memslot
->userspace_addr
+
1639 (memslot
->npages
<< PAGE_SHIFT
));
1640 if (hva_start
>= hva_end
)
1643 gpa
= hva_to_gfn_memslot(hva_start
, memslot
) << PAGE_SHIFT
;
1644 ret
|= handler(kvm
, gpa
, (u64
)(hva_end
- hva_start
), data
);
1650 static int kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
1652 unmap_stage2_range(kvm
, gpa
, size
);
1656 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1658 unsigned long end
= hva
+ PAGE_SIZE
;
1663 trace_kvm_unmap_hva(hva
);
1664 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
1668 int kvm_unmap_hva_range(struct kvm
*kvm
,
1669 unsigned long start
, unsigned long end
)
1674 trace_kvm_unmap_hva_range(start
, end
);
1675 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
1679 static int kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
1681 pte_t
*pte
= (pte_t
*)data
;
1683 WARN_ON(size
!= PAGE_SIZE
);
1685 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1686 * flag clear because MMU notifiers will have unmapped a huge PMD before
1687 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1688 * therefore stage2_set_pte() never needs to clear out a huge PMD
1689 * through this calling path.
1691 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
1696 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1698 unsigned long end
= hva
+ PAGE_SIZE
;
1704 trace_kvm_set_spte_hva(hva
);
1705 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
1706 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
1709 static int kvm_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
1714 WARN_ON(size
!= PAGE_SIZE
&& size
!= PMD_SIZE
);
1715 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1716 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1719 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1720 return stage2_pmdp_test_and_clear_young(pmd
);
1722 pte
= pte_offset_kernel(pmd
, gpa
);
1726 return stage2_ptep_test_and_clear_young(pte
);
1729 static int kvm_test_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, u64 size
, void *data
)
1734 WARN_ON(size
!= PAGE_SIZE
&& size
!= PMD_SIZE
);
1735 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1736 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1739 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1740 return pmd_young(*pmd
);
1742 pte
= pte_offset_kernel(pmd
, gpa
);
1743 if (!pte_none(*pte
)) /* Just a page... */
1744 return pte_young(*pte
);
1749 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1753 trace_kvm_age_hva(start
, end
);
1754 return handle_hva_to_gpa(kvm
, start
, end
, kvm_age_hva_handler
, NULL
);
1757 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1761 trace_kvm_test_age_hva(hva
);
1762 return handle_hva_to_gpa(kvm
, hva
, hva
, kvm_test_age_hva_handler
, NULL
);
1765 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
1767 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
1770 phys_addr_t
kvm_mmu_get_httbr(void)
1772 if (__kvm_cpu_uses_extended_idmap())
1773 return virt_to_phys(merged_hyp_pgd
);
1775 return virt_to_phys(hyp_pgd
);
1778 phys_addr_t
kvm_get_idmap_vector(void)
1780 return hyp_idmap_vector
;
1783 static int kvm_map_idmap_text(pgd_t
*pgd
)
1787 /* Create the idmap in the boot page tables */
1788 err
= __create_hyp_mappings(pgd
, __kvm_idmap_ptrs_per_pgd(),
1789 hyp_idmap_start
, hyp_idmap_end
,
1790 __phys_to_pfn(hyp_idmap_start
),
1793 kvm_err("Failed to idmap %lx-%lx\n",
1794 hyp_idmap_start
, hyp_idmap_end
);
1799 int kvm_mmu_init(void)
1803 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
1804 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
1805 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
1808 * We rely on the linker script to ensure at build time that the HYP
1809 * init code does not cross a page boundary.
1811 BUG_ON((hyp_idmap_start
^ (hyp_idmap_end
- 1)) & PAGE_MASK
);
1813 kvm_info("IDMAP page: %lx\n", hyp_idmap_start
);
1814 kvm_info("HYP VA range: %lx:%lx\n",
1815 kern_hyp_va(PAGE_OFFSET
), kern_hyp_va(~0UL));
1817 if (hyp_idmap_start
>= kern_hyp_va(PAGE_OFFSET
) &&
1818 hyp_idmap_start
< kern_hyp_va(~0UL) &&
1819 hyp_idmap_start
!= (unsigned long)__hyp_idmap_text_start
) {
1821 * The idmap page is intersecting with the VA space,
1822 * it is not safe to continue further.
1824 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1829 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1831 kvm_err("Hyp mode PGD not allocated\n");
1836 if (__kvm_cpu_uses_extended_idmap()) {
1837 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
1839 if (!boot_hyp_pgd
) {
1840 kvm_err("Hyp boot PGD not allocated\n");
1845 err
= kvm_map_idmap_text(boot_hyp_pgd
);
1849 merged_hyp_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1850 if (!merged_hyp_pgd
) {
1851 kvm_err("Failed to allocate extra HYP pgd\n");
1854 __kvm_extend_hypmap(boot_hyp_pgd
, hyp_pgd
, merged_hyp_pgd
,
1857 err
= kvm_map_idmap_text(hyp_pgd
);
1868 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1869 const struct kvm_userspace_memory_region
*mem
,
1870 const struct kvm_memory_slot
*old
,
1871 const struct kvm_memory_slot
*new,
1872 enum kvm_mr_change change
)
1875 * At this point memslot has been committed and there is an
1876 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1877 * memory slot is write protected.
1879 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1880 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
1883 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1884 struct kvm_memory_slot
*memslot
,
1885 const struct kvm_userspace_memory_region
*mem
,
1886 enum kvm_mr_change change
)
1888 hva_t hva
= mem
->userspace_addr
;
1889 hva_t reg_end
= hva
+ mem
->memory_size
;
1890 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
1893 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
1894 change
!= KVM_MR_FLAGS_ONLY
)
1898 * Prevent userspace from creating a memory region outside of the IPA
1899 * space addressable by the KVM guest IPA space.
1901 if (memslot
->base_gfn
+ memslot
->npages
>=
1902 (KVM_PHYS_SIZE
>> PAGE_SHIFT
))
1905 down_read(¤t
->mm
->mmap_sem
);
1907 * A memory region could potentially cover multiple VMAs, and any holes
1908 * between them, so iterate over all of them to find out if we can map
1909 * any of them right now.
1911 * +--------------------------------------------+
1912 * +---------------+----------------+ +----------------+
1913 * | : VMA 1 | VMA 2 | | VMA 3 : |
1914 * +---------------+----------------+ +----------------+
1916 * +--------------------------------------------+
1919 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
1920 hva_t vm_start
, vm_end
;
1922 if (!vma
|| vma
->vm_start
>= reg_end
)
1926 * Mapping a read-only VMA is only allowed if the
1927 * memory region is configured as read-only.
1929 if (writable
&& !(vma
->vm_flags
& VM_WRITE
)) {
1935 * Take the intersection of this VMA with the memory region
1937 vm_start
= max(hva
, vma
->vm_start
);
1938 vm_end
= min(reg_end
, vma
->vm_end
);
1940 if (vma
->vm_flags
& VM_PFNMAP
) {
1941 gpa_t gpa
= mem
->guest_phys_addr
+
1942 (vm_start
- mem
->userspace_addr
);
1945 pa
= (phys_addr_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
1946 pa
+= vm_start
- vma
->vm_start
;
1948 /* IO region dirty page logging not allowed */
1949 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1954 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
1961 } while (hva
< reg_end
);
1963 if (change
== KVM_MR_FLAGS_ONLY
)
1966 spin_lock(&kvm
->mmu_lock
);
1968 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
1970 stage2_flush_memslot(kvm
, memslot
);
1971 spin_unlock(&kvm
->mmu_lock
);
1973 up_read(¤t
->mm
->mmap_sem
);
1977 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
1978 struct kvm_memory_slot
*dont
)
1982 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
1983 unsigned long npages
)
1988 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
1992 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
1994 kvm_free_stage2_pgd(kvm
);
1997 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1998 struct kvm_memory_slot
*slot
)
2000 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
2001 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
2003 spin_lock(&kvm
->mmu_lock
);
2004 unmap_stage2_range(kvm
, gpa
, size
);
2005 spin_unlock(&kvm
->mmu_lock
);
2009 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2012 * - S/W ops are local to a CPU (not broadcast)
2013 * - We have line migration behind our back (speculation)
2014 * - System caches don't support S/W at all (damn!)
2016 * In the face of the above, the best we can do is to try and convert
2017 * S/W ops to VA ops. Because the guest is not allowed to infer the
2018 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2019 * which is a rather good thing for us.
2021 * Also, it is only used when turning caches on/off ("The expected
2022 * usage of the cache maintenance instructions that operate by set/way
2023 * is associated with the cache maintenance instructions associated
2024 * with the powerdown and powerup of caches, if this is required by
2025 * the implementation.").
2027 * We use the following policy:
2029 * - If we trap a S/W operation, we enable VM trapping to detect
2030 * caches being turned on/off, and do a full clean.
2032 * - We flush the caches on both caches being turned on and off.
2034 * - Once the caches are enabled, we stop trapping VM ops.
2036 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
2038 unsigned long hcr
= vcpu_get_hcr(vcpu
);
2041 * If this is the first time we do a S/W operation
2042 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2045 * Otherwise, rely on the VM trapping to wait for the MMU +
2046 * Caches to be turned off. At that point, we'll be able to
2047 * clean the caches again.
2049 if (!(hcr
& HCR_TVM
)) {
2050 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
2051 vcpu_has_cache_enabled(vcpu
));
2052 stage2_flush_vm(vcpu
->kvm
);
2053 vcpu_set_hcr(vcpu
, hcr
| HCR_TVM
);
2057 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
2059 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
2062 * If switching the MMU+caches on, need to invalidate the caches.
2063 * If switching it off, need to clean the caches.
2064 * Clean + invalidate does the trick always.
2066 if (now_enabled
!= was_enabled
)
2067 stage2_flush_vm(vcpu
->kvm
);
2069 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2071 vcpu_set_hcr(vcpu
, vcpu_get_hcr(vcpu
) & ~HCR_TVM
);
2073 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);