Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / virt / kvm / kvm_main.c
blob65dea3ffef68ede4ca8d8e5bb7d9c2d3edd3352a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
90 * Ordering of locks:
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 static bool largepages_enabled = true;
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
148 return true;
152 * Switches to specified vcpu, until a matching vcpu_put()
154 void vcpu_load(struct kvm_vcpu *vcpu)
156 int cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
161 EXPORT_SYMBOL_GPL(vcpu_load);
163 void vcpu_put(struct kvm_vcpu *vcpu)
165 preempt_disable();
166 kvm_arch_vcpu_put(vcpu);
167 preempt_notifier_unregister(&vcpu->preempt_notifier);
168 preempt_enable();
170 EXPORT_SYMBOL_GPL(vcpu_put);
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
175 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 * We need to wait for the VCPU to reenable interrupts and get out of
179 * READING_SHADOW_PAGE_TABLES mode.
181 if (req & KVM_REQUEST_WAIT)
182 return mode != OUTSIDE_GUEST_MODE;
185 * Need to kick a running VCPU, but otherwise there is nothing to do.
187 return mode == IN_GUEST_MODE;
190 static void ack_flush(void *_completed)
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
196 if (unlikely(!cpus))
197 cpus = cpu_online_mask;
199 if (cpumask_empty(cpus))
200 return false;
202 smp_call_function_many(cpus, ack_flush, NULL, wait);
203 return true;
206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
208 int i, cpu, me;
209 cpumask_var_t cpus;
210 bool called;
211 struct kvm_vcpu *vcpu;
213 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
215 me = get_cpu();
216 kvm_for_each_vcpu(i, vcpu, kvm) {
217 kvm_make_request(req, vcpu);
218 cpu = vcpu->cpu;
220 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
221 continue;
223 if (cpus != NULL && cpu != -1 && cpu != me &&
224 kvm_request_needs_ipi(vcpu, req))
225 __cpumask_set_cpu(cpu, cpus);
227 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
228 put_cpu();
229 free_cpumask_var(cpus);
230 return called;
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238 * kvm_make_all_cpus_request.
240 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 * We want to publish modifications to the page tables before reading
244 * mode. Pairs with a memory barrier in arch-specific code.
245 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246 * and smp_mb in walk_shadow_page_lockless_begin/end.
247 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
249 * There is already an smp_mb__after_atomic() before
250 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
251 * barrier here.
253 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
254 ++kvm->stat.remote_tlb_flush;
255 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
258 #endif
260 void kvm_reload_remote_mmus(struct kvm *kvm)
262 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
267 struct page *page;
268 int r;
270 mutex_init(&vcpu->mutex);
271 vcpu->cpu = -1;
272 vcpu->kvm = kvm;
273 vcpu->vcpu_id = id;
274 vcpu->pid = NULL;
275 init_swait_queue_head(&vcpu->wq);
276 kvm_async_pf_vcpu_init(vcpu);
278 vcpu->pre_pcpu = -1;
279 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
281 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282 if (!page) {
283 r = -ENOMEM;
284 goto fail;
286 vcpu->run = page_address(page);
288 kvm_vcpu_set_in_spin_loop(vcpu, false);
289 kvm_vcpu_set_dy_eligible(vcpu, false);
290 vcpu->preempted = false;
292 r = kvm_arch_vcpu_init(vcpu);
293 if (r < 0)
294 goto fail_free_run;
295 return 0;
297 fail_free_run:
298 free_page((unsigned long)vcpu->run);
299 fail:
300 return r;
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 * no need for rcu_read_lock as VCPU_RUN is the only place that
308 * will change the vcpu->pid pointer and on uninit all file
309 * descriptors are already gone.
311 put_pid(rcu_dereference_protected(vcpu->pid, 1));
312 kvm_arch_vcpu_uninit(vcpu);
313 free_page((unsigned long)vcpu->run);
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
320 return container_of(mn, struct kvm, mmu_notifier);
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long address,
326 pte_t pte)
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int idx;
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 kvm->mmu_notifier_seq++;
334 kvm_set_spte_hva(kvm, address, pte);
335 spin_unlock(&kvm->mmu_lock);
336 srcu_read_unlock(&kvm->srcu, idx);
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 struct mm_struct *mm,
341 unsigned long start,
342 unsigned long end)
344 struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 int need_tlb_flush = 0, idx;
347 idx = srcu_read_lock(&kvm->srcu);
348 spin_lock(&kvm->mmu_lock);
350 * The count increase must become visible at unlock time as no
351 * spte can be established without taking the mmu_lock and
352 * count is also read inside the mmu_lock critical section.
354 kvm->mmu_notifier_count++;
355 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 need_tlb_flush |= kvm->tlbs_dirty;
357 /* we've to flush the tlb before the pages can be freed */
358 if (need_tlb_flush)
359 kvm_flush_remote_tlbs(kvm);
361 spin_unlock(&kvm->mmu_lock);
363 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
365 srcu_read_unlock(&kvm->srcu, idx);
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
369 struct mm_struct *mm,
370 unsigned long start,
371 unsigned long end)
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 spin_lock(&kvm->mmu_lock);
377 * This sequence increase will notify the kvm page fault that
378 * the page that is going to be mapped in the spte could have
379 * been freed.
381 kvm->mmu_notifier_seq++;
382 smp_wmb();
384 * The above sequence increase must be visible before the
385 * below count decrease, which is ensured by the smp_wmb above
386 * in conjunction with the smp_rmb in mmu_notifier_retry().
388 kvm->mmu_notifier_count--;
389 spin_unlock(&kvm->mmu_lock);
391 BUG_ON(kvm->mmu_notifier_count < 0);
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
395 struct mm_struct *mm,
396 unsigned long start,
397 unsigned long end)
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
405 young = kvm_age_hva(kvm, start, end);
406 if (young)
407 kvm_flush_remote_tlbs(kvm);
409 spin_unlock(&kvm->mmu_lock);
410 srcu_read_unlock(&kvm->srcu, idx);
412 return young;
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
416 struct mm_struct *mm,
417 unsigned long start,
418 unsigned long end)
420 struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 int young, idx;
423 idx = srcu_read_lock(&kvm->srcu);
424 spin_lock(&kvm->mmu_lock);
426 * Even though we do not flush TLB, this will still adversely
427 * affect performance on pre-Haswell Intel EPT, where there is
428 * no EPT Access Bit to clear so that we have to tear down EPT
429 * tables instead. If we find this unacceptable, we can always
430 * add a parameter to kvm_age_hva so that it effectively doesn't
431 * do anything on clear_young.
433 * Also note that currently we never issue secondary TLB flushes
434 * from clear_young, leaving this job up to the regular system
435 * cadence. If we find this inaccurate, we might come up with a
436 * more sophisticated heuristic later.
438 young = kvm_age_hva(kvm, start, end);
439 spin_unlock(&kvm->mmu_lock);
440 srcu_read_unlock(&kvm->srcu, idx);
442 return young;
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
446 struct mm_struct *mm,
447 unsigned long address)
449 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 int young, idx;
452 idx = srcu_read_lock(&kvm->srcu);
453 spin_lock(&kvm->mmu_lock);
454 young = kvm_test_age_hva(kvm, address);
455 spin_unlock(&kvm->mmu_lock);
456 srcu_read_unlock(&kvm->srcu, idx);
458 return young;
461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
462 struct mm_struct *mm)
464 struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 int idx;
467 idx = srcu_read_lock(&kvm->srcu);
468 kvm_arch_flush_shadow_all(kvm);
469 srcu_read_unlock(&kvm->srcu, idx);
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
473 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
474 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
475 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
476 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
477 .clear_young = kvm_mmu_notifier_clear_young,
478 .test_young = kvm_mmu_notifier_test_young,
479 .change_pte = kvm_mmu_notifier_change_pte,
480 .release = kvm_mmu_notifier_release,
483 static int kvm_init_mmu_notifier(struct kvm *kvm)
485 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
486 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
491 static int kvm_init_mmu_notifier(struct kvm *kvm)
493 return 0;
496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
498 static struct kvm_memslots *kvm_alloc_memslots(void)
500 int i;
501 struct kvm_memslots *slots;
503 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
504 if (!slots)
505 return NULL;
507 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
508 slots->id_to_index[i] = slots->memslots[i].id = i;
510 return slots;
513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
515 if (!memslot->dirty_bitmap)
516 return;
518 kvfree(memslot->dirty_bitmap);
519 memslot->dirty_bitmap = NULL;
523 * Free any memory in @free but not in @dont.
525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
528 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
529 kvm_destroy_dirty_bitmap(free);
531 kvm_arch_free_memslot(kvm, free, dont);
533 free->npages = 0;
536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
538 struct kvm_memory_slot *memslot;
540 if (!slots)
541 return;
543 kvm_for_each_memslot(memslot, slots)
544 kvm_free_memslot(kvm, memslot, NULL);
546 kvfree(slots);
549 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
551 int i;
553 if (!kvm->debugfs_dentry)
554 return;
556 debugfs_remove_recursive(kvm->debugfs_dentry);
558 if (kvm->debugfs_stat_data) {
559 for (i = 0; i < kvm_debugfs_num_entries; i++)
560 kfree(kvm->debugfs_stat_data[i]);
561 kfree(kvm->debugfs_stat_data);
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
567 char dir_name[ITOA_MAX_LEN * 2];
568 struct kvm_stat_data *stat_data;
569 struct kvm_stats_debugfs_item *p;
571 if (!debugfs_initialized())
572 return 0;
574 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 kvm_debugfs_dir);
577 if (!kvm->debugfs_dentry)
578 return -ENOMEM;
580 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 sizeof(*kvm->debugfs_stat_data),
582 GFP_KERNEL);
583 if (!kvm->debugfs_stat_data)
584 return -ENOMEM;
586 for (p = debugfs_entries; p->name; p++) {
587 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 if (!stat_data)
589 return -ENOMEM;
591 stat_data->kvm = kvm;
592 stat_data->offset = p->offset;
593 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 if (!debugfs_create_file(p->name, 0644,
595 kvm->debugfs_dentry,
596 stat_data,
597 stat_fops_per_vm[p->kind]))
598 return -ENOMEM;
600 return 0;
603 static struct kvm *kvm_create_vm(unsigned long type)
605 int r, i;
606 struct kvm *kvm = kvm_arch_alloc_vm();
608 if (!kvm)
609 return ERR_PTR(-ENOMEM);
611 spin_lock_init(&kvm->mmu_lock);
612 mmgrab(current->mm);
613 kvm->mm = current->mm;
614 kvm_eventfd_init(kvm);
615 mutex_init(&kvm->lock);
616 mutex_init(&kvm->irq_lock);
617 mutex_init(&kvm->slots_lock);
618 refcount_set(&kvm->users_count, 1);
619 INIT_LIST_HEAD(&kvm->devices);
621 r = kvm_arch_init_vm(kvm, type);
622 if (r)
623 goto out_err_no_disable;
625 r = hardware_enable_all();
626 if (r)
627 goto out_err_no_disable;
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
635 r = -ENOMEM;
636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 struct kvm_memslots *slots = kvm_alloc_memslots();
638 if (!slots)
639 goto out_err_no_srcu;
641 * Generations must be different for each address space.
642 * Init kvm generation close to the maximum to easily test the
643 * code of handling generation number wrap-around.
645 slots->generation = i * 2 - 150;
646 rcu_assign_pointer(kvm->memslots[i], slots);
649 if (init_srcu_struct(&kvm->srcu))
650 goto out_err_no_srcu;
651 if (init_srcu_struct(&kvm->irq_srcu))
652 goto out_err_no_irq_srcu;
653 for (i = 0; i < KVM_NR_BUSES; i++) {
654 rcu_assign_pointer(kvm->buses[i],
655 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
656 if (!kvm->buses[i])
657 goto out_err;
660 r = kvm_init_mmu_notifier(kvm);
661 if (r)
662 goto out_err;
664 spin_lock(&kvm_lock);
665 list_add(&kvm->vm_list, &vm_list);
666 spin_unlock(&kvm_lock);
668 preempt_notifier_inc();
670 return kvm;
672 out_err:
673 cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 hardware_disable_all();
678 out_err_no_disable:
679 refcount_set(&kvm->users_count, 0);
680 for (i = 0; i < KVM_NR_BUSES; i++)
681 kfree(kvm_get_bus(kvm, i));
682 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
683 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
684 kvm_arch_free_vm(kvm);
685 mmdrop(current->mm);
686 return ERR_PTR(r);
689 static void kvm_destroy_devices(struct kvm *kvm)
691 struct kvm_device *dev, *tmp;
694 * We do not need to take the kvm->lock here, because nobody else
695 * has a reference to the struct kvm at this point and therefore
696 * cannot access the devices list anyhow.
698 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
699 list_del(&dev->vm_node);
700 dev->ops->destroy(dev);
704 static void kvm_destroy_vm(struct kvm *kvm)
706 int i;
707 struct mm_struct *mm = kvm->mm;
709 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
710 kvm_destroy_vm_debugfs(kvm);
711 kvm_arch_sync_events(kvm);
712 spin_lock(&kvm_lock);
713 list_del(&kvm->vm_list);
714 spin_unlock(&kvm_lock);
715 kvm_free_irq_routing(kvm);
716 for (i = 0; i < KVM_NR_BUSES; i++) {
717 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
719 if (bus)
720 kvm_io_bus_destroy(bus);
721 kvm->buses[i] = NULL;
723 kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727 kvm_arch_flush_shadow_all(kvm);
728 #endif
729 kvm_arch_destroy_vm(kvm);
730 kvm_destroy_devices(kvm);
731 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
733 cleanup_srcu_struct(&kvm->irq_srcu);
734 cleanup_srcu_struct(&kvm->srcu);
735 kvm_arch_free_vm(kvm);
736 preempt_notifier_dec();
737 hardware_disable_all();
738 mmdrop(mm);
741 void kvm_get_kvm(struct kvm *kvm)
743 refcount_inc(&kvm->users_count);
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
747 void kvm_put_kvm(struct kvm *kvm)
749 if (refcount_dec_and_test(&kvm->users_count))
750 kvm_destroy_vm(kvm);
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
757 struct kvm *kvm = filp->private_data;
759 kvm_irqfd_release(kvm);
761 kvm_put_kvm(kvm);
762 return 0;
766 * Allocation size is twice as large as the actual dirty bitmap size.
767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
771 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
773 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
774 if (!memslot->dirty_bitmap)
775 return -ENOMEM;
777 return 0;
781 * Insert memslot and re-sort memslots based on their GFN,
782 * so binary search could be used to lookup GFN.
783 * Sorting algorithm takes advantage of having initially
784 * sorted array and known changed memslot position.
786 static void update_memslots(struct kvm_memslots *slots,
787 struct kvm_memory_slot *new)
789 int id = new->id;
790 int i = slots->id_to_index[id];
791 struct kvm_memory_slot *mslots = slots->memslots;
793 WARN_ON(mslots[i].id != id);
794 if (!new->npages) {
795 WARN_ON(!mslots[i].npages);
796 if (mslots[i].npages)
797 slots->used_slots--;
798 } else {
799 if (!mslots[i].npages)
800 slots->used_slots++;
803 while (i < KVM_MEM_SLOTS_NUM - 1 &&
804 new->base_gfn <= mslots[i + 1].base_gfn) {
805 if (!mslots[i + 1].npages)
806 break;
807 mslots[i] = mslots[i + 1];
808 slots->id_to_index[mslots[i].id] = i;
809 i++;
813 * The ">=" is needed when creating a slot with base_gfn == 0,
814 * so that it moves before all those with base_gfn == npages == 0.
816 * On the other hand, if new->npages is zero, the above loop has
817 * already left i pointing to the beginning of the empty part of
818 * mslots, and the ">=" would move the hole backwards in this
819 * case---which is wrong. So skip the loop when deleting a slot.
821 if (new->npages) {
822 while (i > 0 &&
823 new->base_gfn >= mslots[i - 1].base_gfn) {
824 mslots[i] = mslots[i - 1];
825 slots->id_to_index[mslots[i].id] = i;
826 i--;
828 } else
829 WARN_ON_ONCE(i != slots->used_slots);
831 mslots[i] = *new;
832 slots->id_to_index[mslots[i].id] = i;
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
837 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
839 #ifdef __KVM_HAVE_READONLY_MEM
840 valid_flags |= KVM_MEM_READONLY;
841 #endif
843 if (mem->flags & ~valid_flags)
844 return -EINVAL;
846 return 0;
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850 int as_id, struct kvm_memslots *slots)
852 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855 * Set the low bit in the generation, which disables SPTE caching
856 * until the end of synchronize_srcu_expedited.
858 WARN_ON(old_memslots->generation & 1);
859 slots->generation = old_memslots->generation + 1;
861 rcu_assign_pointer(kvm->memslots[as_id], slots);
862 synchronize_srcu_expedited(&kvm->srcu);
865 * Increment the new memslot generation a second time. This prevents
866 * vm exits that race with memslot updates from caching a memslot
867 * generation that will (potentially) be valid forever.
869 * Generations must be unique even across address spaces. We do not need
870 * a global counter for that, instead the generation space is evenly split
871 * across address spaces. For example, with two address spaces, address
872 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873 * use generations 2, 6, 10, 14, ...
875 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
877 kvm_arch_memslots_updated(kvm, slots);
879 return old_memslots;
883 * Allocate some memory and give it an address in the guest physical address
884 * space.
886 * Discontiguous memory is allowed, mostly for framebuffers.
888 * Must be called holding kvm->slots_lock for write.
890 int __kvm_set_memory_region(struct kvm *kvm,
891 const struct kvm_userspace_memory_region *mem)
893 int r;
894 gfn_t base_gfn;
895 unsigned long npages;
896 struct kvm_memory_slot *slot;
897 struct kvm_memory_slot old, new;
898 struct kvm_memslots *slots = NULL, *old_memslots;
899 int as_id, id;
900 enum kvm_mr_change change;
902 r = check_memory_region_flags(mem);
903 if (r)
904 goto out;
906 r = -EINVAL;
907 as_id = mem->slot >> 16;
908 id = (u16)mem->slot;
910 /* General sanity checks */
911 if (mem->memory_size & (PAGE_SIZE - 1))
912 goto out;
913 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
914 goto out;
915 /* We can read the guest memory with __xxx_user() later on. */
916 if ((id < KVM_USER_MEM_SLOTS) &&
917 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
918 !access_ok(VERIFY_WRITE,
919 (void __user *)(unsigned long)mem->userspace_addr,
920 mem->memory_size)))
921 goto out;
922 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
923 goto out;
924 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925 goto out;
927 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
928 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
929 npages = mem->memory_size >> PAGE_SHIFT;
931 if (npages > KVM_MEM_MAX_NR_PAGES)
932 goto out;
934 new = old = *slot;
936 new.id = id;
937 new.base_gfn = base_gfn;
938 new.npages = npages;
939 new.flags = mem->flags;
941 if (npages) {
942 if (!old.npages)
943 change = KVM_MR_CREATE;
944 else { /* Modify an existing slot. */
945 if ((mem->userspace_addr != old.userspace_addr) ||
946 (npages != old.npages) ||
947 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948 goto out;
950 if (base_gfn != old.base_gfn)
951 change = KVM_MR_MOVE;
952 else if (new.flags != old.flags)
953 change = KVM_MR_FLAGS_ONLY;
954 else { /* Nothing to change. */
955 r = 0;
956 goto out;
959 } else {
960 if (!old.npages)
961 goto out;
963 change = KVM_MR_DELETE;
964 new.base_gfn = 0;
965 new.flags = 0;
968 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
969 /* Check for overlaps */
970 r = -EEXIST;
971 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
972 if (slot->id == id)
973 continue;
974 if (!((base_gfn + npages <= slot->base_gfn) ||
975 (base_gfn >= slot->base_gfn + slot->npages)))
976 goto out;
980 /* Free page dirty bitmap if unneeded */
981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 new.dirty_bitmap = NULL;
984 r = -ENOMEM;
985 if (change == KVM_MR_CREATE) {
986 new.userspace_addr = mem->userspace_addr;
988 if (kvm_arch_create_memslot(kvm, &new, npages))
989 goto out_free;
992 /* Allocate page dirty bitmap if needed */
993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 if (kvm_create_dirty_bitmap(&new) < 0)
995 goto out_free;
998 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
999 if (!slots)
1000 goto out_free;
1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 slot = id_to_memslot(slots, id);
1005 slot->flags |= KVM_MEMSLOT_INVALID;
1007 old_memslots = install_new_memslots(kvm, as_id, slots);
1009 /* From this point no new shadow pages pointing to a deleted,
1010 * or moved, memslot will be created.
1012 * validation of sp->gfn happens in:
1013 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1014 * - kvm_is_visible_gfn (mmu_check_roots)
1016 kvm_arch_flush_shadow_memslot(kvm, slot);
1019 * We can re-use the old_memslots from above, the only difference
1020 * from the currently installed memslots is the invalid flag. This
1021 * will get overwritten by update_memslots anyway.
1023 slots = old_memslots;
1026 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1027 if (r)
1028 goto out_slots;
1030 /* actual memory is freed via old in kvm_free_memslot below */
1031 if (change == KVM_MR_DELETE) {
1032 new.dirty_bitmap = NULL;
1033 memset(&new.arch, 0, sizeof(new.arch));
1036 update_memslots(slots, &new);
1037 old_memslots = install_new_memslots(kvm, as_id, slots);
1039 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1041 kvm_free_memslot(kvm, &old, &new);
1042 kvfree(old_memslots);
1043 return 0;
1045 out_slots:
1046 kvfree(slots);
1047 out_free:
1048 kvm_free_memslot(kvm, &new, &old);
1049 out:
1050 return r;
1052 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1054 int kvm_set_memory_region(struct kvm *kvm,
1055 const struct kvm_userspace_memory_region *mem)
1057 int r;
1059 mutex_lock(&kvm->slots_lock);
1060 r = __kvm_set_memory_region(kvm, mem);
1061 mutex_unlock(&kvm->slots_lock);
1062 return r;
1064 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1066 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1067 struct kvm_userspace_memory_region *mem)
1069 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1070 return -EINVAL;
1072 return kvm_set_memory_region(kvm, mem);
1075 int kvm_get_dirty_log(struct kvm *kvm,
1076 struct kvm_dirty_log *log, int *is_dirty)
1078 struct kvm_memslots *slots;
1079 struct kvm_memory_slot *memslot;
1080 int i, as_id, id;
1081 unsigned long n;
1082 unsigned long any = 0;
1084 as_id = log->slot >> 16;
1085 id = (u16)log->slot;
1086 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1087 return -EINVAL;
1089 slots = __kvm_memslots(kvm, as_id);
1090 memslot = id_to_memslot(slots, id);
1091 if (!memslot->dirty_bitmap)
1092 return -ENOENT;
1094 n = kvm_dirty_bitmap_bytes(memslot);
1096 for (i = 0; !any && i < n/sizeof(long); ++i)
1097 any = memslot->dirty_bitmap[i];
1099 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1100 return -EFAULT;
1102 if (any)
1103 *is_dirty = 1;
1104 return 0;
1106 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1108 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1110 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1111 * are dirty write protect them for next write.
1112 * @kvm: pointer to kvm instance
1113 * @log: slot id and address to which we copy the log
1114 * @is_dirty: flag set if any page is dirty
1116 * We need to keep it in mind that VCPU threads can write to the bitmap
1117 * concurrently. So, to avoid losing track of dirty pages we keep the
1118 * following order:
1120 * 1. Take a snapshot of the bit and clear it if needed.
1121 * 2. Write protect the corresponding page.
1122 * 3. Copy the snapshot to the userspace.
1123 * 4. Upon return caller flushes TLB's if needed.
1125 * Between 2 and 4, the guest may write to the page using the remaining TLB
1126 * entry. This is not a problem because the page is reported dirty using
1127 * the snapshot taken before and step 4 ensures that writes done after
1128 * exiting to userspace will be logged for the next call.
1131 int kvm_get_dirty_log_protect(struct kvm *kvm,
1132 struct kvm_dirty_log *log, bool *is_dirty)
1134 struct kvm_memslots *slots;
1135 struct kvm_memory_slot *memslot;
1136 int i, as_id, id;
1137 unsigned long n;
1138 unsigned long *dirty_bitmap;
1139 unsigned long *dirty_bitmap_buffer;
1141 as_id = log->slot >> 16;
1142 id = (u16)log->slot;
1143 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1144 return -EINVAL;
1146 slots = __kvm_memslots(kvm, as_id);
1147 memslot = id_to_memslot(slots, id);
1149 dirty_bitmap = memslot->dirty_bitmap;
1150 if (!dirty_bitmap)
1151 return -ENOENT;
1153 n = kvm_dirty_bitmap_bytes(memslot);
1155 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1156 memset(dirty_bitmap_buffer, 0, n);
1158 spin_lock(&kvm->mmu_lock);
1159 *is_dirty = false;
1160 for (i = 0; i < n / sizeof(long); i++) {
1161 unsigned long mask;
1162 gfn_t offset;
1164 if (!dirty_bitmap[i])
1165 continue;
1167 *is_dirty = true;
1169 mask = xchg(&dirty_bitmap[i], 0);
1170 dirty_bitmap_buffer[i] = mask;
1172 if (mask) {
1173 offset = i * BITS_PER_LONG;
1174 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1175 offset, mask);
1179 spin_unlock(&kvm->mmu_lock);
1180 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1181 return -EFAULT;
1182 return 0;
1184 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1185 #endif
1187 bool kvm_largepages_enabled(void)
1189 return largepages_enabled;
1192 void kvm_disable_largepages(void)
1194 largepages_enabled = false;
1196 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1200 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1202 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1204 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1206 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1209 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1211 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1213 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1214 memslot->flags & KVM_MEMSLOT_INVALID)
1215 return false;
1217 return true;
1219 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1221 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1223 struct vm_area_struct *vma;
1224 unsigned long addr, size;
1226 size = PAGE_SIZE;
1228 addr = gfn_to_hva(kvm, gfn);
1229 if (kvm_is_error_hva(addr))
1230 return PAGE_SIZE;
1232 down_read(&current->mm->mmap_sem);
1233 vma = find_vma(current->mm, addr);
1234 if (!vma)
1235 goto out;
1237 size = vma_kernel_pagesize(vma);
1239 out:
1240 up_read(&current->mm->mmap_sem);
1242 return size;
1245 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1247 return slot->flags & KVM_MEM_READONLY;
1250 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1251 gfn_t *nr_pages, bool write)
1253 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1254 return KVM_HVA_ERR_BAD;
1256 if (memslot_is_readonly(slot) && write)
1257 return KVM_HVA_ERR_RO_BAD;
1259 if (nr_pages)
1260 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1262 return __gfn_to_hva_memslot(slot, gfn);
1265 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1266 gfn_t *nr_pages)
1268 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1271 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1272 gfn_t gfn)
1274 return gfn_to_hva_many(slot, gfn, NULL);
1276 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1278 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1280 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1282 EXPORT_SYMBOL_GPL(gfn_to_hva);
1284 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1286 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1288 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1291 * If writable is set to false, the hva returned by this function is only
1292 * allowed to be read.
1294 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1295 gfn_t gfn, bool *writable)
1297 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1299 if (!kvm_is_error_hva(hva) && writable)
1300 *writable = !memslot_is_readonly(slot);
1302 return hva;
1305 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1307 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1309 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1312 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1314 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1319 static inline int check_user_page_hwpoison(unsigned long addr)
1321 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1323 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1324 return rc == -EHWPOISON;
1328 * The atomic path to get the writable pfn which will be stored in @pfn,
1329 * true indicates success, otherwise false is returned.
1331 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1332 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1334 struct page *page[1];
1335 int npages;
1337 if (!(async || atomic))
1338 return false;
1341 * Fast pin a writable pfn only if it is a write fault request
1342 * or the caller allows to map a writable pfn for a read fault
1343 * request.
1345 if (!(write_fault || writable))
1346 return false;
1348 npages = __get_user_pages_fast(addr, 1, 1, page);
1349 if (npages == 1) {
1350 *pfn = page_to_pfn(page[0]);
1352 if (writable)
1353 *writable = true;
1354 return true;
1357 return false;
1361 * The slow path to get the pfn of the specified host virtual address,
1362 * 1 indicates success, -errno is returned if error is detected.
1364 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1365 bool *writable, kvm_pfn_t *pfn)
1367 unsigned int flags = FOLL_HWPOISON;
1368 struct page *page;
1369 int npages = 0;
1371 might_sleep();
1373 if (writable)
1374 *writable = write_fault;
1376 if (write_fault)
1377 flags |= FOLL_WRITE;
1378 if (async)
1379 flags |= FOLL_NOWAIT;
1381 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1382 if (npages != 1)
1383 return npages;
1385 /* map read fault as writable if possible */
1386 if (unlikely(!write_fault) && writable) {
1387 struct page *wpage;
1389 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1390 *writable = true;
1391 put_page(page);
1392 page = wpage;
1395 *pfn = page_to_pfn(page);
1396 return npages;
1399 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1401 if (unlikely(!(vma->vm_flags & VM_READ)))
1402 return false;
1404 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1405 return false;
1407 return true;
1410 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1411 unsigned long addr, bool *async,
1412 bool write_fault, bool *writable,
1413 kvm_pfn_t *p_pfn)
1415 unsigned long pfn;
1416 int r;
1418 r = follow_pfn(vma, addr, &pfn);
1419 if (r) {
1421 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1422 * not call the fault handler, so do it here.
1424 bool unlocked = false;
1425 r = fixup_user_fault(current, current->mm, addr,
1426 (write_fault ? FAULT_FLAG_WRITE : 0),
1427 &unlocked);
1428 if (unlocked)
1429 return -EAGAIN;
1430 if (r)
1431 return r;
1433 r = follow_pfn(vma, addr, &pfn);
1434 if (r)
1435 return r;
1439 if (writable)
1440 *writable = true;
1443 * Get a reference here because callers of *hva_to_pfn* and
1444 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1445 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1446 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1447 * simply do nothing for reserved pfns.
1449 * Whoever called remap_pfn_range is also going to call e.g.
1450 * unmap_mapping_range before the underlying pages are freed,
1451 * causing a call to our MMU notifier.
1453 kvm_get_pfn(pfn);
1455 *p_pfn = pfn;
1456 return 0;
1460 * Pin guest page in memory and return its pfn.
1461 * @addr: host virtual address which maps memory to the guest
1462 * @atomic: whether this function can sleep
1463 * @async: whether this function need to wait IO complete if the
1464 * host page is not in the memory
1465 * @write_fault: whether we should get a writable host page
1466 * @writable: whether it allows to map a writable host page for !@write_fault
1468 * The function will map a writable host page for these two cases:
1469 * 1): @write_fault = true
1470 * 2): @write_fault = false && @writable, @writable will tell the caller
1471 * whether the mapping is writable.
1473 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1474 bool write_fault, bool *writable)
1476 struct vm_area_struct *vma;
1477 kvm_pfn_t pfn = 0;
1478 int npages, r;
1480 /* we can do it either atomically or asynchronously, not both */
1481 BUG_ON(atomic && async);
1483 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1484 return pfn;
1486 if (atomic)
1487 return KVM_PFN_ERR_FAULT;
1489 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1490 if (npages == 1)
1491 return pfn;
1493 down_read(&current->mm->mmap_sem);
1494 if (npages == -EHWPOISON ||
1495 (!async && check_user_page_hwpoison(addr))) {
1496 pfn = KVM_PFN_ERR_HWPOISON;
1497 goto exit;
1500 retry:
1501 vma = find_vma_intersection(current->mm, addr, addr + 1);
1503 if (vma == NULL)
1504 pfn = KVM_PFN_ERR_FAULT;
1505 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1506 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1507 if (r == -EAGAIN)
1508 goto retry;
1509 if (r < 0)
1510 pfn = KVM_PFN_ERR_FAULT;
1511 } else {
1512 if (async && vma_is_valid(vma, write_fault))
1513 *async = true;
1514 pfn = KVM_PFN_ERR_FAULT;
1516 exit:
1517 up_read(&current->mm->mmap_sem);
1518 return pfn;
1521 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1522 bool atomic, bool *async, bool write_fault,
1523 bool *writable)
1525 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1527 if (addr == KVM_HVA_ERR_RO_BAD) {
1528 if (writable)
1529 *writable = false;
1530 return KVM_PFN_ERR_RO_FAULT;
1533 if (kvm_is_error_hva(addr)) {
1534 if (writable)
1535 *writable = false;
1536 return KVM_PFN_NOSLOT;
1539 /* Do not map writable pfn in the readonly memslot. */
1540 if (writable && memslot_is_readonly(slot)) {
1541 *writable = false;
1542 writable = NULL;
1545 return hva_to_pfn(addr, atomic, async, write_fault,
1546 writable);
1548 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1550 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1551 bool *writable)
1553 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1554 write_fault, writable);
1556 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1558 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1560 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1562 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1564 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1566 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1568 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1570 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1572 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1574 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1576 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1578 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1580 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1582 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1584 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1588 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1590 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1592 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1594 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1595 struct page **pages, int nr_pages)
1597 unsigned long addr;
1598 gfn_t entry = 0;
1600 addr = gfn_to_hva_many(slot, gfn, &entry);
1601 if (kvm_is_error_hva(addr))
1602 return -1;
1604 if (entry < nr_pages)
1605 return 0;
1607 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1609 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1611 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1613 if (is_error_noslot_pfn(pfn))
1614 return KVM_ERR_PTR_BAD_PAGE;
1616 if (kvm_is_reserved_pfn(pfn)) {
1617 WARN_ON(1);
1618 return KVM_ERR_PTR_BAD_PAGE;
1621 return pfn_to_page(pfn);
1624 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1626 kvm_pfn_t pfn;
1628 pfn = gfn_to_pfn(kvm, gfn);
1630 return kvm_pfn_to_page(pfn);
1632 EXPORT_SYMBOL_GPL(gfn_to_page);
1634 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 kvm_pfn_t pfn;
1638 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1640 return kvm_pfn_to_page(pfn);
1642 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1644 void kvm_release_page_clean(struct page *page)
1646 WARN_ON(is_error_page(page));
1648 kvm_release_pfn_clean(page_to_pfn(page));
1650 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1652 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1654 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1655 put_page(pfn_to_page(pfn));
1657 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1659 void kvm_release_page_dirty(struct page *page)
1661 WARN_ON(is_error_page(page));
1663 kvm_release_pfn_dirty(page_to_pfn(page));
1665 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1667 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1669 kvm_set_pfn_dirty(pfn);
1670 kvm_release_pfn_clean(pfn);
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1674 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1676 if (!kvm_is_reserved_pfn(pfn)) {
1677 struct page *page = pfn_to_page(pfn);
1679 if (!PageReserved(page))
1680 SetPageDirty(page);
1683 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1685 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1687 if (!kvm_is_reserved_pfn(pfn))
1688 mark_page_accessed(pfn_to_page(pfn));
1690 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1692 void kvm_get_pfn(kvm_pfn_t pfn)
1694 if (!kvm_is_reserved_pfn(pfn))
1695 get_page(pfn_to_page(pfn));
1697 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1699 static int next_segment(unsigned long len, int offset)
1701 if (len > PAGE_SIZE - offset)
1702 return PAGE_SIZE - offset;
1703 else
1704 return len;
1707 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1708 void *data, int offset, int len)
1710 int r;
1711 unsigned long addr;
1713 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1714 if (kvm_is_error_hva(addr))
1715 return -EFAULT;
1716 r = __copy_from_user(data, (void __user *)addr + offset, len);
1717 if (r)
1718 return -EFAULT;
1719 return 0;
1722 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1723 int len)
1725 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1727 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1729 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1731 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1732 int offset, int len)
1734 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1738 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1740 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1742 gfn_t gfn = gpa >> PAGE_SHIFT;
1743 int seg;
1744 int offset = offset_in_page(gpa);
1745 int ret;
1747 while ((seg = next_segment(len, offset)) != 0) {
1748 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1749 if (ret < 0)
1750 return ret;
1751 offset = 0;
1752 len -= seg;
1753 data += seg;
1754 ++gfn;
1756 return 0;
1758 EXPORT_SYMBOL_GPL(kvm_read_guest);
1760 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1762 gfn_t gfn = gpa >> PAGE_SHIFT;
1763 int seg;
1764 int offset = offset_in_page(gpa);
1765 int ret;
1767 while ((seg = next_segment(len, offset)) != 0) {
1768 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1769 if (ret < 0)
1770 return ret;
1771 offset = 0;
1772 len -= seg;
1773 data += seg;
1774 ++gfn;
1776 return 0;
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1780 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1781 void *data, int offset, unsigned long len)
1783 int r;
1784 unsigned long addr;
1786 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1787 if (kvm_is_error_hva(addr))
1788 return -EFAULT;
1789 pagefault_disable();
1790 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1791 pagefault_enable();
1792 if (r)
1793 return -EFAULT;
1794 return 0;
1797 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1798 unsigned long len)
1800 gfn_t gfn = gpa >> PAGE_SHIFT;
1801 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1802 int offset = offset_in_page(gpa);
1804 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1806 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1808 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1809 void *data, unsigned long len)
1811 gfn_t gfn = gpa >> PAGE_SHIFT;
1812 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1813 int offset = offset_in_page(gpa);
1815 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1819 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1820 const void *data, int offset, int len)
1822 int r;
1823 unsigned long addr;
1825 addr = gfn_to_hva_memslot(memslot, gfn);
1826 if (kvm_is_error_hva(addr))
1827 return -EFAULT;
1828 r = __copy_to_user((void __user *)addr + offset, data, len);
1829 if (r)
1830 return -EFAULT;
1831 mark_page_dirty_in_slot(memslot, gfn);
1832 return 0;
1835 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1836 const void *data, int offset, int len)
1838 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1840 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1842 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1844 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1845 const void *data, int offset, int len)
1847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1849 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1853 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1854 unsigned long len)
1856 gfn_t gfn = gpa >> PAGE_SHIFT;
1857 int seg;
1858 int offset = offset_in_page(gpa);
1859 int ret;
1861 while ((seg = next_segment(len, offset)) != 0) {
1862 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1863 if (ret < 0)
1864 return ret;
1865 offset = 0;
1866 len -= seg;
1867 data += seg;
1868 ++gfn;
1870 return 0;
1872 EXPORT_SYMBOL_GPL(kvm_write_guest);
1874 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1875 unsigned long len)
1877 gfn_t gfn = gpa >> PAGE_SHIFT;
1878 int seg;
1879 int offset = offset_in_page(gpa);
1880 int ret;
1882 while ((seg = next_segment(len, offset)) != 0) {
1883 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1884 if (ret < 0)
1885 return ret;
1886 offset = 0;
1887 len -= seg;
1888 data += seg;
1889 ++gfn;
1891 return 0;
1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1895 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1896 struct gfn_to_hva_cache *ghc,
1897 gpa_t gpa, unsigned long len)
1899 int offset = offset_in_page(gpa);
1900 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1901 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1902 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1903 gfn_t nr_pages_avail;
1905 ghc->gpa = gpa;
1906 ghc->generation = slots->generation;
1907 ghc->len = len;
1908 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1909 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1910 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1911 ghc->hva += offset;
1912 } else {
1914 * If the requested region crosses two memslots, we still
1915 * verify that the entire region is valid here.
1917 while (start_gfn <= end_gfn) {
1918 nr_pages_avail = 0;
1919 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1920 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1921 &nr_pages_avail);
1922 if (kvm_is_error_hva(ghc->hva))
1923 return -EFAULT;
1924 start_gfn += nr_pages_avail;
1926 /* Use the slow path for cross page reads and writes. */
1927 ghc->memslot = NULL;
1929 return 0;
1932 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1933 gpa_t gpa, unsigned long len)
1935 struct kvm_memslots *slots = kvm_memslots(kvm);
1936 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1938 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1940 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 void *data, int offset, unsigned long len)
1943 struct kvm_memslots *slots = kvm_memslots(kvm);
1944 int r;
1945 gpa_t gpa = ghc->gpa + offset;
1947 BUG_ON(len + offset > ghc->len);
1949 if (slots->generation != ghc->generation)
1950 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1952 if (unlikely(!ghc->memslot))
1953 return kvm_write_guest(kvm, gpa, data, len);
1955 if (kvm_is_error_hva(ghc->hva))
1956 return -EFAULT;
1958 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1959 if (r)
1960 return -EFAULT;
1961 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1963 return 0;
1965 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1967 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 void *data, unsigned long len)
1970 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1972 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1974 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975 void *data, unsigned long len)
1977 struct kvm_memslots *slots = kvm_memslots(kvm);
1978 int r;
1980 BUG_ON(len > ghc->len);
1982 if (slots->generation != ghc->generation)
1983 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1985 if (unlikely(!ghc->memslot))
1986 return kvm_read_guest(kvm, ghc->gpa, data, len);
1988 if (kvm_is_error_hva(ghc->hva))
1989 return -EFAULT;
1991 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1992 if (r)
1993 return -EFAULT;
1995 return 0;
1997 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1999 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2001 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2003 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2005 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2007 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2009 gfn_t gfn = gpa >> PAGE_SHIFT;
2010 int seg;
2011 int offset = offset_in_page(gpa);
2012 int ret;
2014 while ((seg = next_segment(len, offset)) != 0) {
2015 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2016 if (ret < 0)
2017 return ret;
2018 offset = 0;
2019 len -= seg;
2020 ++gfn;
2022 return 0;
2024 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2026 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2027 gfn_t gfn)
2029 if (memslot && memslot->dirty_bitmap) {
2030 unsigned long rel_gfn = gfn - memslot->base_gfn;
2032 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2036 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2038 struct kvm_memory_slot *memslot;
2040 memslot = gfn_to_memslot(kvm, gfn);
2041 mark_page_dirty_in_slot(memslot, gfn);
2043 EXPORT_SYMBOL_GPL(mark_page_dirty);
2045 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2047 struct kvm_memory_slot *memslot;
2049 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2050 mark_page_dirty_in_slot(memslot, gfn);
2052 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2054 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2056 if (!vcpu->sigset_active)
2057 return;
2060 * This does a lockless modification of ->real_blocked, which is fine
2061 * because, only current can change ->real_blocked and all readers of
2062 * ->real_blocked don't care as long ->real_blocked is always a subset
2063 * of ->blocked.
2065 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2068 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2070 if (!vcpu->sigset_active)
2071 return;
2073 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2074 sigemptyset(&current->real_blocked);
2077 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2079 unsigned int old, val, grow;
2081 old = val = vcpu->halt_poll_ns;
2082 grow = READ_ONCE(halt_poll_ns_grow);
2083 /* 10us base */
2084 if (val == 0 && grow)
2085 val = 10000;
2086 else
2087 val *= grow;
2089 if (val > halt_poll_ns)
2090 val = halt_poll_ns;
2092 vcpu->halt_poll_ns = val;
2093 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2096 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2098 unsigned int old, val, shrink;
2100 old = val = vcpu->halt_poll_ns;
2101 shrink = READ_ONCE(halt_poll_ns_shrink);
2102 if (shrink == 0)
2103 val = 0;
2104 else
2105 val /= shrink;
2107 vcpu->halt_poll_ns = val;
2108 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2111 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2113 if (kvm_arch_vcpu_runnable(vcpu)) {
2114 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2115 return -EINTR;
2117 if (kvm_cpu_has_pending_timer(vcpu))
2118 return -EINTR;
2119 if (signal_pending(current))
2120 return -EINTR;
2122 return 0;
2126 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2128 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2130 ktime_t start, cur;
2131 DECLARE_SWAITQUEUE(wait);
2132 bool waited = false;
2133 u64 block_ns;
2135 start = cur = ktime_get();
2136 if (vcpu->halt_poll_ns) {
2137 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2139 ++vcpu->stat.halt_attempted_poll;
2140 do {
2142 * This sets KVM_REQ_UNHALT if an interrupt
2143 * arrives.
2145 if (kvm_vcpu_check_block(vcpu) < 0) {
2146 ++vcpu->stat.halt_successful_poll;
2147 if (!vcpu_valid_wakeup(vcpu))
2148 ++vcpu->stat.halt_poll_invalid;
2149 goto out;
2151 cur = ktime_get();
2152 } while (single_task_running() && ktime_before(cur, stop));
2155 kvm_arch_vcpu_blocking(vcpu);
2157 for (;;) {
2158 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2160 if (kvm_vcpu_check_block(vcpu) < 0)
2161 break;
2163 waited = true;
2164 schedule();
2167 finish_swait(&vcpu->wq, &wait);
2168 cur = ktime_get();
2170 kvm_arch_vcpu_unblocking(vcpu);
2171 out:
2172 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2174 if (!vcpu_valid_wakeup(vcpu))
2175 shrink_halt_poll_ns(vcpu);
2176 else if (halt_poll_ns) {
2177 if (block_ns <= vcpu->halt_poll_ns)
2179 /* we had a long block, shrink polling */
2180 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2181 shrink_halt_poll_ns(vcpu);
2182 /* we had a short halt and our poll time is too small */
2183 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2184 block_ns < halt_poll_ns)
2185 grow_halt_poll_ns(vcpu);
2186 } else
2187 vcpu->halt_poll_ns = 0;
2189 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2190 kvm_arch_vcpu_block_finish(vcpu);
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2194 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2196 struct swait_queue_head *wqp;
2198 wqp = kvm_arch_vcpu_wq(vcpu);
2199 if (swq_has_sleeper(wqp)) {
2200 swake_up(wqp);
2201 ++vcpu->stat.halt_wakeup;
2202 return true;
2205 return false;
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2209 #ifndef CONFIG_S390
2211 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2213 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2215 int me;
2216 int cpu = vcpu->cpu;
2218 if (kvm_vcpu_wake_up(vcpu))
2219 return;
2221 me = get_cpu();
2222 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223 if (kvm_arch_vcpu_should_kick(vcpu))
2224 smp_send_reschedule(cpu);
2225 put_cpu();
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228 #endif /* !CONFIG_S390 */
2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2232 struct pid *pid;
2233 struct task_struct *task = NULL;
2234 int ret = 0;
2236 rcu_read_lock();
2237 pid = rcu_dereference(target->pid);
2238 if (pid)
2239 task = get_pid_task(pid, PIDTYPE_PID);
2240 rcu_read_unlock();
2241 if (!task)
2242 return ret;
2243 ret = yield_to(task, 1);
2244 put_task_struct(task);
2246 return ret;
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2251 * Helper that checks whether a VCPU is eligible for directed yield.
2252 * Most eligible candidate to yield is decided by following heuristics:
2254 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255 * (preempted lock holder), indicated by @in_spin_loop.
2256 * Set at the beiginning and cleared at the end of interception/PLE handler.
2258 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259 * chance last time (mostly it has become eligible now since we have probably
2260 * yielded to lockholder in last iteration. This is done by toggling
2261 * @dy_eligible each time a VCPU checked for eligibility.)
2263 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264 * to preempted lock-holder could result in wrong VCPU selection and CPU
2265 * burning. Giving priority for a potential lock-holder increases lock
2266 * progress.
2268 * Since algorithm is based on heuristics, accessing another VCPU data without
2269 * locking does not harm. It may result in trying to yield to same VCPU, fail
2270 * and continue with next VCPU and so on.
2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275 bool eligible;
2277 eligible = !vcpu->spin_loop.in_spin_loop ||
2278 vcpu->spin_loop.dy_eligible;
2280 if (vcpu->spin_loop.in_spin_loop)
2281 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2283 return eligible;
2284 #else
2285 return true;
2286 #endif
2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2291 struct kvm *kvm = me->kvm;
2292 struct kvm_vcpu *vcpu;
2293 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294 int yielded = 0;
2295 int try = 3;
2296 int pass;
2297 int i;
2299 kvm_vcpu_set_in_spin_loop(me, true);
2301 * We boost the priority of a VCPU that is runnable but not
2302 * currently running, because it got preempted by something
2303 * else and called schedule in __vcpu_run. Hopefully that
2304 * VCPU is holding the lock that we need and will release it.
2305 * We approximate round-robin by starting at the last boosted VCPU.
2307 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308 kvm_for_each_vcpu(i, vcpu, kvm) {
2309 if (!pass && i <= last_boosted_vcpu) {
2310 i = last_boosted_vcpu;
2311 continue;
2312 } else if (pass && i > last_boosted_vcpu)
2313 break;
2314 if (!READ_ONCE(vcpu->preempted))
2315 continue;
2316 if (vcpu == me)
2317 continue;
2318 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319 continue;
2320 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2321 continue;
2322 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2323 continue;
2325 yielded = kvm_vcpu_yield_to(vcpu);
2326 if (yielded > 0) {
2327 kvm->last_boosted_vcpu = i;
2328 break;
2329 } else if (yielded < 0) {
2330 try--;
2331 if (!try)
2332 break;
2336 kvm_vcpu_set_in_spin_loop(me, false);
2338 /* Ensure vcpu is not eligible during next spinloop */
2339 kvm_vcpu_set_dy_eligible(me, false);
2341 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2343 static int kvm_vcpu_fault(struct vm_fault *vmf)
2345 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2346 struct page *page;
2348 if (vmf->pgoff == 0)
2349 page = virt_to_page(vcpu->run);
2350 #ifdef CONFIG_X86
2351 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2352 page = virt_to_page(vcpu->arch.pio_data);
2353 #endif
2354 #ifdef CONFIG_KVM_MMIO
2355 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2356 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2357 #endif
2358 else
2359 return kvm_arch_vcpu_fault(vcpu, vmf);
2360 get_page(page);
2361 vmf->page = page;
2362 return 0;
2365 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2366 .fault = kvm_vcpu_fault,
2369 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2371 vma->vm_ops = &kvm_vcpu_vm_ops;
2372 return 0;
2375 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2377 struct kvm_vcpu *vcpu = filp->private_data;
2379 debugfs_remove_recursive(vcpu->debugfs_dentry);
2380 kvm_put_kvm(vcpu->kvm);
2381 return 0;
2384 static struct file_operations kvm_vcpu_fops = {
2385 .release = kvm_vcpu_release,
2386 .unlocked_ioctl = kvm_vcpu_ioctl,
2387 #ifdef CONFIG_KVM_COMPAT
2388 .compat_ioctl = kvm_vcpu_compat_ioctl,
2389 #endif
2390 .mmap = kvm_vcpu_mmap,
2391 .llseek = noop_llseek,
2395 * Allocates an inode for the vcpu.
2397 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2399 char name[8 + 1 + ITOA_MAX_LEN + 1];
2401 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2402 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2405 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2407 char dir_name[ITOA_MAX_LEN * 2];
2408 int ret;
2410 if (!kvm_arch_has_vcpu_debugfs())
2411 return 0;
2413 if (!debugfs_initialized())
2414 return 0;
2416 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2417 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2418 vcpu->kvm->debugfs_dentry);
2419 if (!vcpu->debugfs_dentry)
2420 return -ENOMEM;
2422 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2423 if (ret < 0) {
2424 debugfs_remove_recursive(vcpu->debugfs_dentry);
2425 return ret;
2428 return 0;
2432 * Creates some virtual cpus. Good luck creating more than one.
2434 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2436 int r;
2437 struct kvm_vcpu *vcpu;
2439 if (id >= KVM_MAX_VCPU_ID)
2440 return -EINVAL;
2442 mutex_lock(&kvm->lock);
2443 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2444 mutex_unlock(&kvm->lock);
2445 return -EINVAL;
2448 kvm->created_vcpus++;
2449 mutex_unlock(&kvm->lock);
2451 vcpu = kvm_arch_vcpu_create(kvm, id);
2452 if (IS_ERR(vcpu)) {
2453 r = PTR_ERR(vcpu);
2454 goto vcpu_decrement;
2457 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2459 r = kvm_arch_vcpu_setup(vcpu);
2460 if (r)
2461 goto vcpu_destroy;
2463 r = kvm_create_vcpu_debugfs(vcpu);
2464 if (r)
2465 goto vcpu_destroy;
2467 mutex_lock(&kvm->lock);
2468 if (kvm_get_vcpu_by_id(kvm, id)) {
2469 r = -EEXIST;
2470 goto unlock_vcpu_destroy;
2473 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2475 /* Now it's all set up, let userspace reach it */
2476 kvm_get_kvm(kvm);
2477 r = create_vcpu_fd(vcpu);
2478 if (r < 0) {
2479 kvm_put_kvm(kvm);
2480 goto unlock_vcpu_destroy;
2483 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2486 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2487 * before kvm->online_vcpu's incremented value.
2489 smp_wmb();
2490 atomic_inc(&kvm->online_vcpus);
2492 mutex_unlock(&kvm->lock);
2493 kvm_arch_vcpu_postcreate(vcpu);
2494 return r;
2496 unlock_vcpu_destroy:
2497 mutex_unlock(&kvm->lock);
2498 debugfs_remove_recursive(vcpu->debugfs_dentry);
2499 vcpu_destroy:
2500 kvm_arch_vcpu_destroy(vcpu);
2501 vcpu_decrement:
2502 mutex_lock(&kvm->lock);
2503 kvm->created_vcpus--;
2504 mutex_unlock(&kvm->lock);
2505 return r;
2508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2510 if (sigset) {
2511 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512 vcpu->sigset_active = 1;
2513 vcpu->sigset = *sigset;
2514 } else
2515 vcpu->sigset_active = 0;
2516 return 0;
2519 static long kvm_vcpu_ioctl(struct file *filp,
2520 unsigned int ioctl, unsigned long arg)
2522 struct kvm_vcpu *vcpu = filp->private_data;
2523 void __user *argp = (void __user *)arg;
2524 int r;
2525 struct kvm_fpu *fpu = NULL;
2526 struct kvm_sregs *kvm_sregs = NULL;
2528 if (vcpu->kvm->mm != current->mm)
2529 return -EIO;
2531 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2532 return -EINVAL;
2535 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2536 * execution; mutex_lock() would break them.
2538 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2539 if (r != -ENOIOCTLCMD)
2540 return r;
2542 if (mutex_lock_killable(&vcpu->mutex))
2543 return -EINTR;
2544 switch (ioctl) {
2545 case KVM_RUN: {
2546 struct pid *oldpid;
2547 r = -EINVAL;
2548 if (arg)
2549 goto out;
2550 oldpid = rcu_access_pointer(vcpu->pid);
2551 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2552 /* The thread running this VCPU changed. */
2553 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2555 rcu_assign_pointer(vcpu->pid, newpid);
2556 if (oldpid)
2557 synchronize_rcu();
2558 put_pid(oldpid);
2560 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2561 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2562 break;
2564 case KVM_GET_REGS: {
2565 struct kvm_regs *kvm_regs;
2567 r = -ENOMEM;
2568 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2569 if (!kvm_regs)
2570 goto out;
2571 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2572 if (r)
2573 goto out_free1;
2574 r = -EFAULT;
2575 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2576 goto out_free1;
2577 r = 0;
2578 out_free1:
2579 kfree(kvm_regs);
2580 break;
2582 case KVM_SET_REGS: {
2583 struct kvm_regs *kvm_regs;
2585 r = -ENOMEM;
2586 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2587 if (IS_ERR(kvm_regs)) {
2588 r = PTR_ERR(kvm_regs);
2589 goto out;
2591 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2592 kfree(kvm_regs);
2593 break;
2595 case KVM_GET_SREGS: {
2596 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2597 r = -ENOMEM;
2598 if (!kvm_sregs)
2599 goto out;
2600 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2601 if (r)
2602 goto out;
2603 r = -EFAULT;
2604 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2605 goto out;
2606 r = 0;
2607 break;
2609 case KVM_SET_SREGS: {
2610 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2611 if (IS_ERR(kvm_sregs)) {
2612 r = PTR_ERR(kvm_sregs);
2613 kvm_sregs = NULL;
2614 goto out;
2616 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2617 break;
2619 case KVM_GET_MP_STATE: {
2620 struct kvm_mp_state mp_state;
2622 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2623 if (r)
2624 goto out;
2625 r = -EFAULT;
2626 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2627 goto out;
2628 r = 0;
2629 break;
2631 case KVM_SET_MP_STATE: {
2632 struct kvm_mp_state mp_state;
2634 r = -EFAULT;
2635 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2636 goto out;
2637 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2638 break;
2640 case KVM_TRANSLATE: {
2641 struct kvm_translation tr;
2643 r = -EFAULT;
2644 if (copy_from_user(&tr, argp, sizeof(tr)))
2645 goto out;
2646 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2647 if (r)
2648 goto out;
2649 r = -EFAULT;
2650 if (copy_to_user(argp, &tr, sizeof(tr)))
2651 goto out;
2652 r = 0;
2653 break;
2655 case KVM_SET_GUEST_DEBUG: {
2656 struct kvm_guest_debug dbg;
2658 r = -EFAULT;
2659 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2660 goto out;
2661 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2662 break;
2664 case KVM_SET_SIGNAL_MASK: {
2665 struct kvm_signal_mask __user *sigmask_arg = argp;
2666 struct kvm_signal_mask kvm_sigmask;
2667 sigset_t sigset, *p;
2669 p = NULL;
2670 if (argp) {
2671 r = -EFAULT;
2672 if (copy_from_user(&kvm_sigmask, argp,
2673 sizeof(kvm_sigmask)))
2674 goto out;
2675 r = -EINVAL;
2676 if (kvm_sigmask.len != sizeof(sigset))
2677 goto out;
2678 r = -EFAULT;
2679 if (copy_from_user(&sigset, sigmask_arg->sigset,
2680 sizeof(sigset)))
2681 goto out;
2682 p = &sigset;
2684 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2685 break;
2687 case KVM_GET_FPU: {
2688 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2689 r = -ENOMEM;
2690 if (!fpu)
2691 goto out;
2692 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2693 if (r)
2694 goto out;
2695 r = -EFAULT;
2696 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2697 goto out;
2698 r = 0;
2699 break;
2701 case KVM_SET_FPU: {
2702 fpu = memdup_user(argp, sizeof(*fpu));
2703 if (IS_ERR(fpu)) {
2704 r = PTR_ERR(fpu);
2705 fpu = NULL;
2706 goto out;
2708 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2709 break;
2711 default:
2712 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2714 out:
2715 mutex_unlock(&vcpu->mutex);
2716 kfree(fpu);
2717 kfree(kvm_sregs);
2718 return r;
2721 #ifdef CONFIG_KVM_COMPAT
2722 static long kvm_vcpu_compat_ioctl(struct file *filp,
2723 unsigned int ioctl, unsigned long arg)
2725 struct kvm_vcpu *vcpu = filp->private_data;
2726 void __user *argp = compat_ptr(arg);
2727 int r;
2729 if (vcpu->kvm->mm != current->mm)
2730 return -EIO;
2732 switch (ioctl) {
2733 case KVM_SET_SIGNAL_MASK: {
2734 struct kvm_signal_mask __user *sigmask_arg = argp;
2735 struct kvm_signal_mask kvm_sigmask;
2736 sigset_t sigset;
2738 if (argp) {
2739 r = -EFAULT;
2740 if (copy_from_user(&kvm_sigmask, argp,
2741 sizeof(kvm_sigmask)))
2742 goto out;
2743 r = -EINVAL;
2744 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2745 goto out;
2746 r = -EFAULT;
2747 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2748 goto out;
2749 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2750 } else
2751 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2752 break;
2754 default:
2755 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2758 out:
2759 return r;
2761 #endif
2763 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2764 int (*accessor)(struct kvm_device *dev,
2765 struct kvm_device_attr *attr),
2766 unsigned long arg)
2768 struct kvm_device_attr attr;
2770 if (!accessor)
2771 return -EPERM;
2773 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2774 return -EFAULT;
2776 return accessor(dev, &attr);
2779 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2780 unsigned long arg)
2782 struct kvm_device *dev = filp->private_data;
2784 switch (ioctl) {
2785 case KVM_SET_DEVICE_ATTR:
2786 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2787 case KVM_GET_DEVICE_ATTR:
2788 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2789 case KVM_HAS_DEVICE_ATTR:
2790 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2791 default:
2792 if (dev->ops->ioctl)
2793 return dev->ops->ioctl(dev, ioctl, arg);
2795 return -ENOTTY;
2799 static int kvm_device_release(struct inode *inode, struct file *filp)
2801 struct kvm_device *dev = filp->private_data;
2802 struct kvm *kvm = dev->kvm;
2804 kvm_put_kvm(kvm);
2805 return 0;
2808 static const struct file_operations kvm_device_fops = {
2809 .unlocked_ioctl = kvm_device_ioctl,
2810 #ifdef CONFIG_KVM_COMPAT
2811 .compat_ioctl = kvm_device_ioctl,
2812 #endif
2813 .release = kvm_device_release,
2816 struct kvm_device *kvm_device_from_filp(struct file *filp)
2818 if (filp->f_op != &kvm_device_fops)
2819 return NULL;
2821 return filp->private_data;
2824 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2825 #ifdef CONFIG_KVM_MPIC
2826 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2827 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2828 #endif
2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2833 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834 return -ENOSPC;
2836 if (kvm_device_ops_table[type] != NULL)
2837 return -EEXIST;
2839 kvm_device_ops_table[type] = ops;
2840 return 0;
2843 void kvm_unregister_device_ops(u32 type)
2845 if (kvm_device_ops_table[type] != NULL)
2846 kvm_device_ops_table[type] = NULL;
2849 static int kvm_ioctl_create_device(struct kvm *kvm,
2850 struct kvm_create_device *cd)
2852 struct kvm_device_ops *ops = NULL;
2853 struct kvm_device *dev;
2854 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855 int ret;
2857 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858 return -ENODEV;
2860 ops = kvm_device_ops_table[cd->type];
2861 if (ops == NULL)
2862 return -ENODEV;
2864 if (test)
2865 return 0;
2867 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868 if (!dev)
2869 return -ENOMEM;
2871 dev->ops = ops;
2872 dev->kvm = kvm;
2874 mutex_lock(&kvm->lock);
2875 ret = ops->create(dev, cd->type);
2876 if (ret < 0) {
2877 mutex_unlock(&kvm->lock);
2878 kfree(dev);
2879 return ret;
2881 list_add(&dev->vm_node, &kvm->devices);
2882 mutex_unlock(&kvm->lock);
2884 if (ops->init)
2885 ops->init(dev);
2887 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888 if (ret < 0) {
2889 mutex_lock(&kvm->lock);
2890 list_del(&dev->vm_node);
2891 mutex_unlock(&kvm->lock);
2892 ops->destroy(dev);
2893 return ret;
2896 kvm_get_kvm(kvm);
2897 cd->fd = ret;
2898 return 0;
2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2903 switch (arg) {
2904 case KVM_CAP_USER_MEMORY:
2905 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907 case KVM_CAP_INTERNAL_ERROR_DATA:
2908 #ifdef CONFIG_HAVE_KVM_MSI
2909 case KVM_CAP_SIGNAL_MSI:
2910 #endif
2911 #ifdef CONFIG_HAVE_KVM_IRQFD
2912 case KVM_CAP_IRQFD:
2913 case KVM_CAP_IRQFD_RESAMPLE:
2914 #endif
2915 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916 case KVM_CAP_CHECK_EXTENSION_VM:
2917 return 1;
2918 #ifdef CONFIG_KVM_MMIO
2919 case KVM_CAP_COALESCED_MMIO:
2920 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2921 #endif
2922 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2923 case KVM_CAP_IRQ_ROUTING:
2924 return KVM_MAX_IRQ_ROUTES;
2925 #endif
2926 #if KVM_ADDRESS_SPACE_NUM > 1
2927 case KVM_CAP_MULTI_ADDRESS_SPACE:
2928 return KVM_ADDRESS_SPACE_NUM;
2929 #endif
2930 case KVM_CAP_MAX_VCPU_ID:
2931 return KVM_MAX_VCPU_ID;
2932 default:
2933 break;
2935 return kvm_vm_ioctl_check_extension(kvm, arg);
2938 static long kvm_vm_ioctl(struct file *filp,
2939 unsigned int ioctl, unsigned long arg)
2941 struct kvm *kvm = filp->private_data;
2942 void __user *argp = (void __user *)arg;
2943 int r;
2945 if (kvm->mm != current->mm)
2946 return -EIO;
2947 switch (ioctl) {
2948 case KVM_CREATE_VCPU:
2949 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2950 break;
2951 case KVM_SET_USER_MEMORY_REGION: {
2952 struct kvm_userspace_memory_region kvm_userspace_mem;
2954 r = -EFAULT;
2955 if (copy_from_user(&kvm_userspace_mem, argp,
2956 sizeof(kvm_userspace_mem)))
2957 goto out;
2959 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2960 break;
2962 case KVM_GET_DIRTY_LOG: {
2963 struct kvm_dirty_log log;
2965 r = -EFAULT;
2966 if (copy_from_user(&log, argp, sizeof(log)))
2967 goto out;
2968 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2969 break;
2971 #ifdef CONFIG_KVM_MMIO
2972 case KVM_REGISTER_COALESCED_MMIO: {
2973 struct kvm_coalesced_mmio_zone zone;
2975 r = -EFAULT;
2976 if (copy_from_user(&zone, argp, sizeof(zone)))
2977 goto out;
2978 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2979 break;
2981 case KVM_UNREGISTER_COALESCED_MMIO: {
2982 struct kvm_coalesced_mmio_zone zone;
2984 r = -EFAULT;
2985 if (copy_from_user(&zone, argp, sizeof(zone)))
2986 goto out;
2987 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2988 break;
2990 #endif
2991 case KVM_IRQFD: {
2992 struct kvm_irqfd data;
2994 r = -EFAULT;
2995 if (copy_from_user(&data, argp, sizeof(data)))
2996 goto out;
2997 r = kvm_irqfd(kvm, &data);
2998 break;
3000 case KVM_IOEVENTFD: {
3001 struct kvm_ioeventfd data;
3003 r = -EFAULT;
3004 if (copy_from_user(&data, argp, sizeof(data)))
3005 goto out;
3006 r = kvm_ioeventfd(kvm, &data);
3007 break;
3009 #ifdef CONFIG_HAVE_KVM_MSI
3010 case KVM_SIGNAL_MSI: {
3011 struct kvm_msi msi;
3013 r = -EFAULT;
3014 if (copy_from_user(&msi, argp, sizeof(msi)))
3015 goto out;
3016 r = kvm_send_userspace_msi(kvm, &msi);
3017 break;
3019 #endif
3020 #ifdef __KVM_HAVE_IRQ_LINE
3021 case KVM_IRQ_LINE_STATUS:
3022 case KVM_IRQ_LINE: {
3023 struct kvm_irq_level irq_event;
3025 r = -EFAULT;
3026 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3027 goto out;
3029 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3030 ioctl == KVM_IRQ_LINE_STATUS);
3031 if (r)
3032 goto out;
3034 r = -EFAULT;
3035 if (ioctl == KVM_IRQ_LINE_STATUS) {
3036 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3037 goto out;
3040 r = 0;
3041 break;
3043 #endif
3044 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3045 case KVM_SET_GSI_ROUTING: {
3046 struct kvm_irq_routing routing;
3047 struct kvm_irq_routing __user *urouting;
3048 struct kvm_irq_routing_entry *entries = NULL;
3050 r = -EFAULT;
3051 if (copy_from_user(&routing, argp, sizeof(routing)))
3052 goto out;
3053 r = -EINVAL;
3054 if (!kvm_arch_can_set_irq_routing(kvm))
3055 goto out;
3056 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3057 goto out;
3058 if (routing.flags)
3059 goto out;
3060 if (routing.nr) {
3061 r = -ENOMEM;
3062 entries = vmalloc(routing.nr * sizeof(*entries));
3063 if (!entries)
3064 goto out;
3065 r = -EFAULT;
3066 urouting = argp;
3067 if (copy_from_user(entries, urouting->entries,
3068 routing.nr * sizeof(*entries)))
3069 goto out_free_irq_routing;
3071 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3072 routing.flags);
3073 out_free_irq_routing:
3074 vfree(entries);
3075 break;
3077 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3078 case KVM_CREATE_DEVICE: {
3079 struct kvm_create_device cd;
3081 r = -EFAULT;
3082 if (copy_from_user(&cd, argp, sizeof(cd)))
3083 goto out;
3085 r = kvm_ioctl_create_device(kvm, &cd);
3086 if (r)
3087 goto out;
3089 r = -EFAULT;
3090 if (copy_to_user(argp, &cd, sizeof(cd)))
3091 goto out;
3093 r = 0;
3094 break;
3096 case KVM_CHECK_EXTENSION:
3097 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3098 break;
3099 default:
3100 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3102 out:
3103 return r;
3106 #ifdef CONFIG_KVM_COMPAT
3107 struct compat_kvm_dirty_log {
3108 __u32 slot;
3109 __u32 padding1;
3110 union {
3111 compat_uptr_t dirty_bitmap; /* one bit per page */
3112 __u64 padding2;
3116 static long kvm_vm_compat_ioctl(struct file *filp,
3117 unsigned int ioctl, unsigned long arg)
3119 struct kvm *kvm = filp->private_data;
3120 int r;
3122 if (kvm->mm != current->mm)
3123 return -EIO;
3124 switch (ioctl) {
3125 case KVM_GET_DIRTY_LOG: {
3126 struct compat_kvm_dirty_log compat_log;
3127 struct kvm_dirty_log log;
3129 if (copy_from_user(&compat_log, (void __user *)arg,
3130 sizeof(compat_log)))
3131 return -EFAULT;
3132 log.slot = compat_log.slot;
3133 log.padding1 = compat_log.padding1;
3134 log.padding2 = compat_log.padding2;
3135 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3137 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3138 break;
3140 default:
3141 r = kvm_vm_ioctl(filp, ioctl, arg);
3143 return r;
3145 #endif
3147 static struct file_operations kvm_vm_fops = {
3148 .release = kvm_vm_release,
3149 .unlocked_ioctl = kvm_vm_ioctl,
3150 #ifdef CONFIG_KVM_COMPAT
3151 .compat_ioctl = kvm_vm_compat_ioctl,
3152 #endif
3153 .llseek = noop_llseek,
3156 static int kvm_dev_ioctl_create_vm(unsigned long type)
3158 int r;
3159 struct kvm *kvm;
3160 struct file *file;
3162 kvm = kvm_create_vm(type);
3163 if (IS_ERR(kvm))
3164 return PTR_ERR(kvm);
3165 #ifdef CONFIG_KVM_MMIO
3166 r = kvm_coalesced_mmio_init(kvm);
3167 if (r < 0)
3168 goto put_kvm;
3169 #endif
3170 r = get_unused_fd_flags(O_CLOEXEC);
3171 if (r < 0)
3172 goto put_kvm;
3174 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175 if (IS_ERR(file)) {
3176 put_unused_fd(r);
3177 r = PTR_ERR(file);
3178 goto put_kvm;
3182 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3183 * already set, with ->release() being kvm_vm_release(). In error
3184 * cases it will be called by the final fput(file) and will take
3185 * care of doing kvm_put_kvm(kvm).
3187 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3188 put_unused_fd(r);
3189 fput(file);
3190 return -ENOMEM;
3192 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3194 fd_install(r, file);
3195 return r;
3197 put_kvm:
3198 kvm_put_kvm(kvm);
3199 return r;
3202 static long kvm_dev_ioctl(struct file *filp,
3203 unsigned int ioctl, unsigned long arg)
3205 long r = -EINVAL;
3207 switch (ioctl) {
3208 case KVM_GET_API_VERSION:
3209 if (arg)
3210 goto out;
3211 r = KVM_API_VERSION;
3212 break;
3213 case KVM_CREATE_VM:
3214 r = kvm_dev_ioctl_create_vm(arg);
3215 break;
3216 case KVM_CHECK_EXTENSION:
3217 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3218 break;
3219 case KVM_GET_VCPU_MMAP_SIZE:
3220 if (arg)
3221 goto out;
3222 r = PAGE_SIZE; /* struct kvm_run */
3223 #ifdef CONFIG_X86
3224 r += PAGE_SIZE; /* pio data page */
3225 #endif
3226 #ifdef CONFIG_KVM_MMIO
3227 r += PAGE_SIZE; /* coalesced mmio ring page */
3228 #endif
3229 break;
3230 case KVM_TRACE_ENABLE:
3231 case KVM_TRACE_PAUSE:
3232 case KVM_TRACE_DISABLE:
3233 r = -EOPNOTSUPP;
3234 break;
3235 default:
3236 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3238 out:
3239 return r;
3242 static struct file_operations kvm_chardev_ops = {
3243 .unlocked_ioctl = kvm_dev_ioctl,
3244 .compat_ioctl = kvm_dev_ioctl,
3245 .llseek = noop_llseek,
3248 static struct miscdevice kvm_dev = {
3249 KVM_MINOR,
3250 "kvm",
3251 &kvm_chardev_ops,
3254 static void hardware_enable_nolock(void *junk)
3256 int cpu = raw_smp_processor_id();
3257 int r;
3259 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3260 return;
3262 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3264 r = kvm_arch_hardware_enable();
3266 if (r) {
3267 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3268 atomic_inc(&hardware_enable_failed);
3269 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 static int kvm_starting_cpu(unsigned int cpu)
3275 raw_spin_lock(&kvm_count_lock);
3276 if (kvm_usage_count)
3277 hardware_enable_nolock(NULL);
3278 raw_spin_unlock(&kvm_count_lock);
3279 return 0;
3282 static void hardware_disable_nolock(void *junk)
3284 int cpu = raw_smp_processor_id();
3286 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287 return;
3288 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289 kvm_arch_hardware_disable();
3292 static int kvm_dying_cpu(unsigned int cpu)
3294 raw_spin_lock(&kvm_count_lock);
3295 if (kvm_usage_count)
3296 hardware_disable_nolock(NULL);
3297 raw_spin_unlock(&kvm_count_lock);
3298 return 0;
3301 static void hardware_disable_all_nolock(void)
3303 BUG_ON(!kvm_usage_count);
3305 kvm_usage_count--;
3306 if (!kvm_usage_count)
3307 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 static void hardware_disable_all(void)
3312 raw_spin_lock(&kvm_count_lock);
3313 hardware_disable_all_nolock();
3314 raw_spin_unlock(&kvm_count_lock);
3317 static int hardware_enable_all(void)
3319 int r = 0;
3321 raw_spin_lock(&kvm_count_lock);
3323 kvm_usage_count++;
3324 if (kvm_usage_count == 1) {
3325 atomic_set(&hardware_enable_failed, 0);
3326 on_each_cpu(hardware_enable_nolock, NULL, 1);
3328 if (atomic_read(&hardware_enable_failed)) {
3329 hardware_disable_all_nolock();
3330 r = -EBUSY;
3334 raw_spin_unlock(&kvm_count_lock);
3336 return r;
3339 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3340 void *v)
3343 * Some (well, at least mine) BIOSes hang on reboot if
3344 * in vmx root mode.
3346 * And Intel TXT required VMX off for all cpu when system shutdown.
3348 pr_info("kvm: exiting hardware virtualization\n");
3349 kvm_rebooting = true;
3350 on_each_cpu(hardware_disable_nolock, NULL, 1);
3351 return NOTIFY_OK;
3354 static struct notifier_block kvm_reboot_notifier = {
3355 .notifier_call = kvm_reboot,
3356 .priority = 0,
3359 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3361 int i;
3363 for (i = 0; i < bus->dev_count; i++) {
3364 struct kvm_io_device *pos = bus->range[i].dev;
3366 kvm_iodevice_destructor(pos);
3368 kfree(bus);
3371 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3372 const struct kvm_io_range *r2)
3374 gpa_t addr1 = r1->addr;
3375 gpa_t addr2 = r2->addr;
3377 if (addr1 < addr2)
3378 return -1;
3380 /* If r2->len == 0, match the exact address. If r2->len != 0,
3381 * accept any overlapping write. Any order is acceptable for
3382 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3383 * we process all of them.
3385 if (r2->len) {
3386 addr1 += r1->len;
3387 addr2 += r2->len;
3390 if (addr1 > addr2)
3391 return 1;
3393 return 0;
3396 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3398 return kvm_io_bus_cmp(p1, p2);
3401 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3402 gpa_t addr, int len)
3404 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3405 .addr = addr,
3406 .len = len,
3407 .dev = dev,
3410 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3411 kvm_io_bus_sort_cmp, NULL);
3413 return 0;
3416 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3417 gpa_t addr, int len)
3419 struct kvm_io_range *range, key;
3420 int off;
3422 key = (struct kvm_io_range) {
3423 .addr = addr,
3424 .len = len,
3427 range = bsearch(&key, bus->range, bus->dev_count,
3428 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3429 if (range == NULL)
3430 return -ENOENT;
3432 off = range - bus->range;
3434 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3435 off--;
3437 return off;
3440 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3441 struct kvm_io_range *range, const void *val)
3443 int idx;
3445 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3446 if (idx < 0)
3447 return -EOPNOTSUPP;
3449 while (idx < bus->dev_count &&
3450 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3451 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3452 range->len, val))
3453 return idx;
3454 idx++;
3457 return -EOPNOTSUPP;
3460 /* kvm_io_bus_write - called under kvm->slots_lock */
3461 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3462 int len, const void *val)
3464 struct kvm_io_bus *bus;
3465 struct kvm_io_range range;
3466 int r;
3468 range = (struct kvm_io_range) {
3469 .addr = addr,
3470 .len = len,
3473 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3474 if (!bus)
3475 return -ENOMEM;
3476 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477 return r < 0 ? r : 0;
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482 gpa_t addr, int len, const void *val, long cookie)
3484 struct kvm_io_bus *bus;
3485 struct kvm_io_range range;
3487 range = (struct kvm_io_range) {
3488 .addr = addr,
3489 .len = len,
3492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493 if (!bus)
3494 return -ENOMEM;
3496 /* First try the device referenced by cookie. */
3497 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3498 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3499 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3500 val))
3501 return cookie;
3504 * cookie contained garbage; fall back to search and return the
3505 * correct cookie value.
3507 return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3511 struct kvm_io_range *range, void *val)
3513 int idx;
3515 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3516 if (idx < 0)
3517 return -EOPNOTSUPP;
3519 while (idx < bus->dev_count &&
3520 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3521 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3522 range->len, val))
3523 return idx;
3524 idx++;
3527 return -EOPNOTSUPP;
3529 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3531 /* kvm_io_bus_read - called under kvm->slots_lock */
3532 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3533 int len, void *val)
3535 struct kvm_io_bus *bus;
3536 struct kvm_io_range range;
3537 int r;
3539 range = (struct kvm_io_range) {
3540 .addr = addr,
3541 .len = len,
3544 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3545 if (!bus)
3546 return -ENOMEM;
3547 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3548 return r < 0 ? r : 0;
3552 /* Caller must hold slots_lock. */
3553 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3554 int len, struct kvm_io_device *dev)
3556 struct kvm_io_bus *new_bus, *bus;
3558 bus = kvm_get_bus(kvm, bus_idx);
3559 if (!bus)
3560 return -ENOMEM;
3562 /* exclude ioeventfd which is limited by maximum fd */
3563 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3564 return -ENOSPC;
3566 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3567 sizeof(struct kvm_io_range)), GFP_KERNEL);
3568 if (!new_bus)
3569 return -ENOMEM;
3570 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3571 sizeof(struct kvm_io_range)));
3572 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3573 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3574 synchronize_srcu_expedited(&kvm->srcu);
3575 kfree(bus);
3577 return 0;
3580 /* Caller must hold slots_lock. */
3581 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3582 struct kvm_io_device *dev)
3584 int i;
3585 struct kvm_io_bus *new_bus, *bus;
3587 bus = kvm_get_bus(kvm, bus_idx);
3588 if (!bus)
3589 return;
3591 for (i = 0; i < bus->dev_count; i++)
3592 if (bus->range[i].dev == dev) {
3593 break;
3596 if (i == bus->dev_count)
3597 return;
3599 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3600 sizeof(struct kvm_io_range)), GFP_KERNEL);
3601 if (!new_bus) {
3602 pr_err("kvm: failed to shrink bus, removing it completely\n");
3603 goto broken;
3606 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3607 new_bus->dev_count--;
3608 memcpy(new_bus->range + i, bus->range + i + 1,
3609 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3611 broken:
3612 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3613 synchronize_srcu_expedited(&kvm->srcu);
3614 kfree(bus);
3615 return;
3618 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3619 gpa_t addr)
3621 struct kvm_io_bus *bus;
3622 int dev_idx, srcu_idx;
3623 struct kvm_io_device *iodev = NULL;
3625 srcu_idx = srcu_read_lock(&kvm->srcu);
3627 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3628 if (!bus)
3629 goto out_unlock;
3631 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3632 if (dev_idx < 0)
3633 goto out_unlock;
3635 iodev = bus->range[dev_idx].dev;
3637 out_unlock:
3638 srcu_read_unlock(&kvm->srcu, srcu_idx);
3640 return iodev;
3642 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3644 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3645 int (*get)(void *, u64 *), int (*set)(void *, u64),
3646 const char *fmt)
3648 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3649 inode->i_private;
3651 /* The debugfs files are a reference to the kvm struct which
3652 * is still valid when kvm_destroy_vm is called.
3653 * To avoid the race between open and the removal of the debugfs
3654 * directory we test against the users count.
3656 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3657 return -ENOENT;
3659 if (simple_attr_open(inode, file, get, set, fmt)) {
3660 kvm_put_kvm(stat_data->kvm);
3661 return -ENOMEM;
3664 return 0;
3667 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3669 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3670 inode->i_private;
3672 simple_attr_release(inode, file);
3673 kvm_put_kvm(stat_data->kvm);
3675 return 0;
3678 static int vm_stat_get_per_vm(void *data, u64 *val)
3680 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3682 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3684 return 0;
3687 static int vm_stat_clear_per_vm(void *data, u64 val)
3689 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3691 if (val)
3692 return -EINVAL;
3694 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3696 return 0;
3699 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3701 __simple_attr_check_format("%llu\n", 0ull);
3702 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3703 vm_stat_clear_per_vm, "%llu\n");
3706 static const struct file_operations vm_stat_get_per_vm_fops = {
3707 .owner = THIS_MODULE,
3708 .open = vm_stat_get_per_vm_open,
3709 .release = kvm_debugfs_release,
3710 .read = simple_attr_read,
3711 .write = simple_attr_write,
3712 .llseek = no_llseek,
3715 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3717 int i;
3718 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719 struct kvm_vcpu *vcpu;
3721 *val = 0;
3723 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3724 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3726 return 0;
3729 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3731 int i;
3732 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3733 struct kvm_vcpu *vcpu;
3735 if (val)
3736 return -EINVAL;
3738 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3739 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3741 return 0;
3744 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3746 __simple_attr_check_format("%llu\n", 0ull);
3747 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3748 vcpu_stat_clear_per_vm, "%llu\n");
3751 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3752 .owner = THIS_MODULE,
3753 .open = vcpu_stat_get_per_vm_open,
3754 .release = kvm_debugfs_release,
3755 .read = simple_attr_read,
3756 .write = simple_attr_write,
3757 .llseek = no_llseek,
3760 static const struct file_operations *stat_fops_per_vm[] = {
3761 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3762 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3765 static int vm_stat_get(void *_offset, u64 *val)
3767 unsigned offset = (long)_offset;
3768 struct kvm *kvm;
3769 struct kvm_stat_data stat_tmp = {.offset = offset};
3770 u64 tmp_val;
3772 *val = 0;
3773 spin_lock(&kvm_lock);
3774 list_for_each_entry(kvm, &vm_list, vm_list) {
3775 stat_tmp.kvm = kvm;
3776 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3777 *val += tmp_val;
3779 spin_unlock(&kvm_lock);
3780 return 0;
3783 static int vm_stat_clear(void *_offset, u64 val)
3785 unsigned offset = (long)_offset;
3786 struct kvm *kvm;
3787 struct kvm_stat_data stat_tmp = {.offset = offset};
3789 if (val)
3790 return -EINVAL;
3792 spin_lock(&kvm_lock);
3793 list_for_each_entry(kvm, &vm_list, vm_list) {
3794 stat_tmp.kvm = kvm;
3795 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3797 spin_unlock(&kvm_lock);
3799 return 0;
3802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3804 static int vcpu_stat_get(void *_offset, u64 *val)
3806 unsigned offset = (long)_offset;
3807 struct kvm *kvm;
3808 struct kvm_stat_data stat_tmp = {.offset = offset};
3809 u64 tmp_val;
3811 *val = 0;
3812 spin_lock(&kvm_lock);
3813 list_for_each_entry(kvm, &vm_list, vm_list) {
3814 stat_tmp.kvm = kvm;
3815 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3816 *val += tmp_val;
3818 spin_unlock(&kvm_lock);
3819 return 0;
3822 static int vcpu_stat_clear(void *_offset, u64 val)
3824 unsigned offset = (long)_offset;
3825 struct kvm *kvm;
3826 struct kvm_stat_data stat_tmp = {.offset = offset};
3828 if (val)
3829 return -EINVAL;
3831 spin_lock(&kvm_lock);
3832 list_for_each_entry(kvm, &vm_list, vm_list) {
3833 stat_tmp.kvm = kvm;
3834 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3836 spin_unlock(&kvm_lock);
3838 return 0;
3841 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3842 "%llu\n");
3844 static const struct file_operations *stat_fops[] = {
3845 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3846 [KVM_STAT_VM] = &vm_stat_fops,
3849 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3851 struct kobj_uevent_env *env;
3852 unsigned long long created, active;
3854 if (!kvm_dev.this_device || !kvm)
3855 return;
3857 spin_lock(&kvm_lock);
3858 if (type == KVM_EVENT_CREATE_VM) {
3859 kvm_createvm_count++;
3860 kvm_active_vms++;
3861 } else if (type == KVM_EVENT_DESTROY_VM) {
3862 kvm_active_vms--;
3864 created = kvm_createvm_count;
3865 active = kvm_active_vms;
3866 spin_unlock(&kvm_lock);
3868 env = kzalloc(sizeof(*env), GFP_KERNEL);
3869 if (!env)
3870 return;
3872 add_uevent_var(env, "CREATED=%llu", created);
3873 add_uevent_var(env, "COUNT=%llu", active);
3875 if (type == KVM_EVENT_CREATE_VM) {
3876 add_uevent_var(env, "EVENT=create");
3877 kvm->userspace_pid = task_pid_nr(current);
3878 } else if (type == KVM_EVENT_DESTROY_VM) {
3879 add_uevent_var(env, "EVENT=destroy");
3881 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3883 if (kvm->debugfs_dentry) {
3884 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3886 if (p) {
3887 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3888 if (!IS_ERR(tmp))
3889 add_uevent_var(env, "STATS_PATH=%s", tmp);
3890 kfree(p);
3893 /* no need for checks, since we are adding at most only 5 keys */
3894 env->envp[env->envp_idx++] = NULL;
3895 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3896 kfree(env);
3899 static int kvm_init_debug(void)
3901 int r = -EEXIST;
3902 struct kvm_stats_debugfs_item *p;
3904 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3905 if (kvm_debugfs_dir == NULL)
3906 goto out;
3908 kvm_debugfs_num_entries = 0;
3909 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3910 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3911 (void *)(long)p->offset,
3912 stat_fops[p->kind]))
3913 goto out_dir;
3916 return 0;
3918 out_dir:
3919 debugfs_remove_recursive(kvm_debugfs_dir);
3920 out:
3921 return r;
3924 static int kvm_suspend(void)
3926 if (kvm_usage_count)
3927 hardware_disable_nolock(NULL);
3928 return 0;
3931 static void kvm_resume(void)
3933 if (kvm_usage_count) {
3934 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3935 hardware_enable_nolock(NULL);
3939 static struct syscore_ops kvm_syscore_ops = {
3940 .suspend = kvm_suspend,
3941 .resume = kvm_resume,
3944 static inline
3945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3947 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3952 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3954 if (vcpu->preempted)
3955 vcpu->preempted = false;
3957 kvm_arch_sched_in(vcpu, cpu);
3959 kvm_arch_vcpu_load(vcpu, cpu);
3962 static void kvm_sched_out(struct preempt_notifier *pn,
3963 struct task_struct *next)
3965 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3967 if (current->state == TASK_RUNNING)
3968 vcpu->preempted = true;
3969 kvm_arch_vcpu_put(vcpu);
3972 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3973 struct module *module)
3975 int r;
3976 int cpu;
3978 r = kvm_arch_init(opaque);
3979 if (r)
3980 goto out_fail;
3983 * kvm_arch_init makes sure there's at most one caller
3984 * for architectures that support multiple implementations,
3985 * like intel and amd on x86.
3986 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3987 * conflicts in case kvm is already setup for another implementation.
3989 r = kvm_irqfd_init();
3990 if (r)
3991 goto out_irqfd;
3993 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3994 r = -ENOMEM;
3995 goto out_free_0;
3998 r = kvm_arch_hardware_setup();
3999 if (r < 0)
4000 goto out_free_0a;
4002 for_each_online_cpu(cpu) {
4003 smp_call_function_single(cpu,
4004 kvm_arch_check_processor_compat,
4005 &r, 1);
4006 if (r < 0)
4007 goto out_free_1;
4010 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4011 kvm_starting_cpu, kvm_dying_cpu);
4012 if (r)
4013 goto out_free_2;
4014 register_reboot_notifier(&kvm_reboot_notifier);
4016 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4017 if (!vcpu_align)
4018 vcpu_align = __alignof__(struct kvm_vcpu);
4019 kvm_vcpu_cache =
4020 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4021 SLAB_ACCOUNT,
4022 offsetof(struct kvm_vcpu, arch),
4023 sizeof_field(struct kvm_vcpu, arch),
4024 NULL);
4025 if (!kvm_vcpu_cache) {
4026 r = -ENOMEM;
4027 goto out_free_3;
4030 r = kvm_async_pf_init();
4031 if (r)
4032 goto out_free;
4034 kvm_chardev_ops.owner = module;
4035 kvm_vm_fops.owner = module;
4036 kvm_vcpu_fops.owner = module;
4038 r = misc_register(&kvm_dev);
4039 if (r) {
4040 pr_err("kvm: misc device register failed\n");
4041 goto out_unreg;
4044 register_syscore_ops(&kvm_syscore_ops);
4046 kvm_preempt_ops.sched_in = kvm_sched_in;
4047 kvm_preempt_ops.sched_out = kvm_sched_out;
4049 r = kvm_init_debug();
4050 if (r) {
4051 pr_err("kvm: create debugfs files failed\n");
4052 goto out_undebugfs;
4055 r = kvm_vfio_ops_init();
4056 WARN_ON(r);
4058 return 0;
4060 out_undebugfs:
4061 unregister_syscore_ops(&kvm_syscore_ops);
4062 misc_deregister(&kvm_dev);
4063 out_unreg:
4064 kvm_async_pf_deinit();
4065 out_free:
4066 kmem_cache_destroy(kvm_vcpu_cache);
4067 out_free_3:
4068 unregister_reboot_notifier(&kvm_reboot_notifier);
4069 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4070 out_free_2:
4071 out_free_1:
4072 kvm_arch_hardware_unsetup();
4073 out_free_0a:
4074 free_cpumask_var(cpus_hardware_enabled);
4075 out_free_0:
4076 kvm_irqfd_exit();
4077 out_irqfd:
4078 kvm_arch_exit();
4079 out_fail:
4080 return r;
4082 EXPORT_SYMBOL_GPL(kvm_init);
4084 void kvm_exit(void)
4086 debugfs_remove_recursive(kvm_debugfs_dir);
4087 misc_deregister(&kvm_dev);
4088 kmem_cache_destroy(kvm_vcpu_cache);
4089 kvm_async_pf_deinit();
4090 unregister_syscore_ops(&kvm_syscore_ops);
4091 unregister_reboot_notifier(&kvm_reboot_notifier);
4092 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4093 on_each_cpu(hardware_disable_nolock, NULL, 1);
4094 kvm_arch_hardware_unsetup();
4095 kvm_arch_exit();
4096 kvm_irqfd_exit();
4097 free_cpumask_var(cpus_hardware_enabled);
4098 kvm_vfio_ops_exit();
4100 EXPORT_SYMBOL_GPL(kvm_exit);