Linux 2.6.33-rc6
[cris-mirror.git] / drivers / crypto / padlock-aes.c
blob8c2f3703ec855f27a6863cb964c5d58a9d01dfa2
1 /*
2 * Cryptographic API.
4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 */
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/percpu.h>
19 #include <linux/smp.h>
20 #include <asm/byteorder.h>
21 #include <asm/processor.h>
22 #include <asm/i387.h>
23 #include "padlock.h"
26 * Number of data blocks actually fetched for each xcrypt insn.
27 * Processors with prefetch errata will fetch extra blocks.
29 static unsigned int ecb_fetch_blocks = 2;
30 #define MAX_ECB_FETCH_BLOCKS (8)
31 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
33 static unsigned int cbc_fetch_blocks = 1;
34 #define MAX_CBC_FETCH_BLOCKS (4)
35 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
37 /* Control word. */
38 struct cword {
39 unsigned int __attribute__ ((__packed__))
40 rounds:4,
41 algo:3,
42 keygen:1,
43 interm:1,
44 encdec:1,
45 ksize:2;
46 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
48 /* Whenever making any changes to the following
49 * structure *make sure* you keep E, d_data
50 * and cword aligned on 16 Bytes boundaries and
51 * the Hardware can access 16 * 16 bytes of E and d_data
52 * (only the first 15 * 16 bytes matter but the HW reads
53 * more).
55 struct aes_ctx {
56 u32 E[AES_MAX_KEYLENGTH_U32]
57 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
58 u32 d_data[AES_MAX_KEYLENGTH_U32]
59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 struct {
61 struct cword encrypt;
62 struct cword decrypt;
63 } cword;
64 u32 *D;
67 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
69 /* Tells whether the ACE is capable to generate
70 the extended key for a given key_len. */
71 static inline int
72 aes_hw_extkey_available(uint8_t key_len)
74 /* TODO: We should check the actual CPU model/stepping
75 as it's possible that the capability will be
76 added in the next CPU revisions. */
77 if (key_len == 16)
78 return 1;
79 return 0;
82 static inline struct aes_ctx *aes_ctx_common(void *ctx)
84 unsigned long addr = (unsigned long)ctx;
85 unsigned long align = PADLOCK_ALIGNMENT;
87 if (align <= crypto_tfm_ctx_alignment())
88 align = 1;
89 return (struct aes_ctx *)ALIGN(addr, align);
92 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
94 return aes_ctx_common(crypto_tfm_ctx(tfm));
97 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
99 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
103 unsigned int key_len)
105 struct aes_ctx *ctx = aes_ctx(tfm);
106 const __le32 *key = (const __le32 *)in_key;
107 u32 *flags = &tfm->crt_flags;
108 struct crypto_aes_ctx gen_aes;
109 int cpu;
111 if (key_len % 8) {
112 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
113 return -EINVAL;
117 * If the hardware is capable of generating the extended key
118 * itself we must supply the plain key for both encryption
119 * and decryption.
121 ctx->D = ctx->E;
123 ctx->E[0] = le32_to_cpu(key[0]);
124 ctx->E[1] = le32_to_cpu(key[1]);
125 ctx->E[2] = le32_to_cpu(key[2]);
126 ctx->E[3] = le32_to_cpu(key[3]);
128 /* Prepare control words. */
129 memset(&ctx->cword, 0, sizeof(ctx->cword));
131 ctx->cword.decrypt.encdec = 1;
132 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
133 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
134 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
135 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
137 /* Don't generate extended keys if the hardware can do it. */
138 if (aes_hw_extkey_available(key_len))
139 goto ok;
141 ctx->D = ctx->d_data;
142 ctx->cword.encrypt.keygen = 1;
143 ctx->cword.decrypt.keygen = 1;
145 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
146 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
147 return -EINVAL;
150 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154 for_each_online_cpu(cpu)
155 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157 per_cpu(paes_last_cword, cpu) = NULL;
159 return 0;
162 /* ====== Encryption/decryption routines ====== */
164 /* These are the real call to PadLock. */
165 static inline void padlock_reset_key(struct cword *cword)
167 int cpu = raw_smp_processor_id();
169 if (cword != per_cpu(paes_last_cword, cpu))
170 #ifndef CONFIG_X86_64
171 asm volatile ("pushfl; popfl");
172 #else
173 asm volatile ("pushfq; popfq");
174 #endif
177 static inline void padlock_store_cword(struct cword *cword)
179 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
183 * While the padlock instructions don't use FP/SSE registers, they
184 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
185 * should be used only inside the irq_ts_save/restore() context
188 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
189 struct cword *control_word, int count)
191 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
192 : "+S"(input), "+D"(output)
193 : "d"(control_word), "b"(key), "c"(count));
196 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
197 u8 *iv, struct cword *control_word, int count)
199 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
200 : "+S" (input), "+D" (output), "+a" (iv)
201 : "d" (control_word), "b" (key), "c" (count));
202 return iv;
205 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
206 struct cword *cword, int count)
209 * Padlock prefetches extra data so we must provide mapped input buffers.
210 * Assume there are at least 16 bytes of stack already in use.
212 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
213 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
215 memcpy(tmp, in, count * AES_BLOCK_SIZE);
216 rep_xcrypt_ecb(tmp, out, key, cword, count);
219 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
220 u8 *iv, struct cword *cword, int count)
223 * Padlock prefetches extra data so we must provide mapped input buffers.
224 * Assume there are at least 16 bytes of stack already in use.
226 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
227 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
229 memcpy(tmp, in, count * AES_BLOCK_SIZE);
230 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
234 struct cword *cword, int count)
236 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
237 * We could avoid some copying here but it's probably not worth it.
239 if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
240 ecb_crypt_copy(in, out, key, cword, count);
241 return;
244 rep_xcrypt_ecb(in, out, key, cword, count);
247 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
248 u8 *iv, struct cword *cword, int count)
250 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
251 if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
252 return cbc_crypt_copy(in, out, key, iv, cword, count);
254 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
258 void *control_word, u32 count)
260 u32 initial = count & (ecb_fetch_blocks - 1);
262 if (count < ecb_fetch_blocks) {
263 ecb_crypt(input, output, key, control_word, count);
264 return;
267 if (initial)
268 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
269 : "+S"(input), "+D"(output)
270 : "d"(control_word), "b"(key), "c"(initial));
272 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
273 : "+S"(input), "+D"(output)
274 : "d"(control_word), "b"(key), "c"(count - initial));
277 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
278 u8 *iv, void *control_word, u32 count)
280 u32 initial = count & (cbc_fetch_blocks - 1);
282 if (count < cbc_fetch_blocks)
283 return cbc_crypt(input, output, key, iv, control_word, count);
285 if (initial)
286 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
287 : "+S" (input), "+D" (output), "+a" (iv)
288 : "d" (control_word), "b" (key), "c" (count));
290 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
291 : "+S" (input), "+D" (output), "+a" (iv)
292 : "d" (control_word), "b" (key), "c" (count-initial));
293 return iv;
296 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
298 struct aes_ctx *ctx = aes_ctx(tfm);
299 int ts_state;
301 padlock_reset_key(&ctx->cword.encrypt);
302 ts_state = irq_ts_save();
303 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
304 irq_ts_restore(ts_state);
305 padlock_store_cword(&ctx->cword.encrypt);
308 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
310 struct aes_ctx *ctx = aes_ctx(tfm);
311 int ts_state;
313 padlock_reset_key(&ctx->cword.encrypt);
314 ts_state = irq_ts_save();
315 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
316 irq_ts_restore(ts_state);
317 padlock_store_cword(&ctx->cword.encrypt);
320 static struct crypto_alg aes_alg = {
321 .cra_name = "aes",
322 .cra_driver_name = "aes-padlock",
323 .cra_priority = PADLOCK_CRA_PRIORITY,
324 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
325 .cra_blocksize = AES_BLOCK_SIZE,
326 .cra_ctxsize = sizeof(struct aes_ctx),
327 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
328 .cra_module = THIS_MODULE,
329 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
330 .cra_u = {
331 .cipher = {
332 .cia_min_keysize = AES_MIN_KEY_SIZE,
333 .cia_max_keysize = AES_MAX_KEY_SIZE,
334 .cia_setkey = aes_set_key,
335 .cia_encrypt = aes_encrypt,
336 .cia_decrypt = aes_decrypt,
341 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
342 struct scatterlist *dst, struct scatterlist *src,
343 unsigned int nbytes)
345 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
346 struct blkcipher_walk walk;
347 int err;
348 int ts_state;
350 padlock_reset_key(&ctx->cword.encrypt);
352 blkcipher_walk_init(&walk, dst, src, nbytes);
353 err = blkcipher_walk_virt(desc, &walk);
355 ts_state = irq_ts_save();
356 while ((nbytes = walk.nbytes)) {
357 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358 ctx->E, &ctx->cword.encrypt,
359 nbytes / AES_BLOCK_SIZE);
360 nbytes &= AES_BLOCK_SIZE - 1;
361 err = blkcipher_walk_done(desc, &walk, nbytes);
363 irq_ts_restore(ts_state);
365 padlock_store_cword(&ctx->cword.encrypt);
367 return err;
370 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
371 struct scatterlist *dst, struct scatterlist *src,
372 unsigned int nbytes)
374 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
375 struct blkcipher_walk walk;
376 int err;
377 int ts_state;
379 padlock_reset_key(&ctx->cword.decrypt);
381 blkcipher_walk_init(&walk, dst, src, nbytes);
382 err = blkcipher_walk_virt(desc, &walk);
384 ts_state = irq_ts_save();
385 while ((nbytes = walk.nbytes)) {
386 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
387 ctx->D, &ctx->cword.decrypt,
388 nbytes / AES_BLOCK_SIZE);
389 nbytes &= AES_BLOCK_SIZE - 1;
390 err = blkcipher_walk_done(desc, &walk, nbytes);
392 irq_ts_restore(ts_state);
394 padlock_store_cword(&ctx->cword.encrypt);
396 return err;
399 static struct crypto_alg ecb_aes_alg = {
400 .cra_name = "ecb(aes)",
401 .cra_driver_name = "ecb-aes-padlock",
402 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
403 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
404 .cra_blocksize = AES_BLOCK_SIZE,
405 .cra_ctxsize = sizeof(struct aes_ctx),
406 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
407 .cra_type = &crypto_blkcipher_type,
408 .cra_module = THIS_MODULE,
409 .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
410 .cra_u = {
411 .blkcipher = {
412 .min_keysize = AES_MIN_KEY_SIZE,
413 .max_keysize = AES_MAX_KEY_SIZE,
414 .setkey = aes_set_key,
415 .encrypt = ecb_aes_encrypt,
416 .decrypt = ecb_aes_decrypt,
421 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
422 struct scatterlist *dst, struct scatterlist *src,
423 unsigned int nbytes)
425 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
426 struct blkcipher_walk walk;
427 int err;
428 int ts_state;
430 padlock_reset_key(&ctx->cword.encrypt);
432 blkcipher_walk_init(&walk, dst, src, nbytes);
433 err = blkcipher_walk_virt(desc, &walk);
435 ts_state = irq_ts_save();
436 while ((nbytes = walk.nbytes)) {
437 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
438 walk.dst.virt.addr, ctx->E,
439 walk.iv, &ctx->cword.encrypt,
440 nbytes / AES_BLOCK_SIZE);
441 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
442 nbytes &= AES_BLOCK_SIZE - 1;
443 err = blkcipher_walk_done(desc, &walk, nbytes);
445 irq_ts_restore(ts_state);
447 padlock_store_cword(&ctx->cword.decrypt);
449 return err;
452 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
453 struct scatterlist *dst, struct scatterlist *src,
454 unsigned int nbytes)
456 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
457 struct blkcipher_walk walk;
458 int err;
459 int ts_state;
461 padlock_reset_key(&ctx->cword.encrypt);
463 blkcipher_walk_init(&walk, dst, src, nbytes);
464 err = blkcipher_walk_virt(desc, &walk);
466 ts_state = irq_ts_save();
467 while ((nbytes = walk.nbytes)) {
468 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
469 ctx->D, walk.iv, &ctx->cword.decrypt,
470 nbytes / AES_BLOCK_SIZE);
471 nbytes &= AES_BLOCK_SIZE - 1;
472 err = blkcipher_walk_done(desc, &walk, nbytes);
475 irq_ts_restore(ts_state);
477 padlock_store_cword(&ctx->cword.encrypt);
479 return err;
482 static struct crypto_alg cbc_aes_alg = {
483 .cra_name = "cbc(aes)",
484 .cra_driver_name = "cbc-aes-padlock",
485 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
486 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
487 .cra_blocksize = AES_BLOCK_SIZE,
488 .cra_ctxsize = sizeof(struct aes_ctx),
489 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
490 .cra_type = &crypto_blkcipher_type,
491 .cra_module = THIS_MODULE,
492 .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
493 .cra_u = {
494 .blkcipher = {
495 .min_keysize = AES_MIN_KEY_SIZE,
496 .max_keysize = AES_MAX_KEY_SIZE,
497 .ivsize = AES_BLOCK_SIZE,
498 .setkey = aes_set_key,
499 .encrypt = cbc_aes_encrypt,
500 .decrypt = cbc_aes_decrypt,
505 static int __init padlock_init(void)
507 int ret;
508 struct cpuinfo_x86 *c = &cpu_data(0);
510 if (!cpu_has_xcrypt) {
511 printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
512 return -ENODEV;
515 if (!cpu_has_xcrypt_enabled) {
516 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
517 return -ENODEV;
520 if ((ret = crypto_register_alg(&aes_alg)))
521 goto aes_err;
523 if ((ret = crypto_register_alg(&ecb_aes_alg)))
524 goto ecb_aes_err;
526 if ((ret = crypto_register_alg(&cbc_aes_alg)))
527 goto cbc_aes_err;
529 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
531 if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
532 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
533 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
534 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
537 out:
538 return ret;
540 cbc_aes_err:
541 crypto_unregister_alg(&ecb_aes_alg);
542 ecb_aes_err:
543 crypto_unregister_alg(&aes_alg);
544 aes_err:
545 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
546 goto out;
549 static void __exit padlock_fini(void)
551 crypto_unregister_alg(&cbc_aes_alg);
552 crypto_unregister_alg(&ecb_aes_alg);
553 crypto_unregister_alg(&aes_alg);
556 module_init(padlock_init);
557 module_exit(padlock_fini);
559 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
560 MODULE_LICENSE("GPL");
561 MODULE_AUTHOR("Michal Ludvig");
563 MODULE_ALIAS("aes");