Linux 2.6.33-rc6
[cris-mirror.git] / drivers / gpu / drm / ttm / ttm_tt.c
blob9c2b1cc5dba5a10b586d4c8b9a6dc6ffeb02a376
1 /**************************************************************************
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "drm_cache.h"
38 #include "ttm/ttm_module.h"
39 #include "ttm/ttm_bo_driver.h"
40 #include "ttm/ttm_placement.h"
42 static int ttm_tt_swapin(struct ttm_tt *ttm);
44 /**
45 * Allocates storage for pointers to the pages that back the ttm.
47 * Uses kmalloc if possible. Otherwise falls back to vmalloc.
49 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
52 ttm->pages = NULL;
54 if (size <= PAGE_SIZE)
55 ttm->pages = kzalloc(size, GFP_KERNEL);
57 if (!ttm->pages) {
58 ttm->pages = vmalloc_user(size);
59 if (ttm->pages)
60 ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
64 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
66 if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
67 vfree(ttm->pages);
68 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
69 } else {
70 kfree(ttm->pages);
72 ttm->pages = NULL;
75 static struct page *ttm_tt_alloc_page(unsigned page_flags)
77 gfp_t gfp_flags = GFP_USER;
79 if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
80 gfp_flags |= __GFP_ZERO;
82 if (page_flags & TTM_PAGE_FLAG_DMA32)
83 gfp_flags |= __GFP_DMA32;
84 else
85 gfp_flags |= __GFP_HIGHMEM;
87 return alloc_page(gfp_flags);
90 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
92 int write;
93 int dirty;
94 struct page *page;
95 int i;
96 struct ttm_backend *be = ttm->be;
98 BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
99 write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
100 dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
102 if (be)
103 be->func->clear(be);
105 for (i = 0; i < ttm->num_pages; ++i) {
106 page = ttm->pages[i];
107 if (page == NULL)
108 continue;
110 if (page == ttm->dummy_read_page) {
111 BUG_ON(write);
112 continue;
115 if (write && dirty && !PageReserved(page))
116 set_page_dirty_lock(page);
118 ttm->pages[i] = NULL;
119 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
120 put_page(page);
122 ttm->state = tt_unpopulated;
123 ttm->first_himem_page = ttm->num_pages;
124 ttm->last_lomem_page = -1;
127 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
129 struct page *p;
130 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
131 int ret;
133 while (NULL == (p = ttm->pages[index])) {
134 p = ttm_tt_alloc_page(ttm->page_flags);
136 if (!p)
137 return NULL;
139 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
140 if (unlikely(ret != 0))
141 goto out_err;
143 if (PageHighMem(p))
144 ttm->pages[--ttm->first_himem_page] = p;
145 else
146 ttm->pages[++ttm->last_lomem_page] = p;
148 return p;
149 out_err:
150 put_page(p);
151 return NULL;
154 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
156 int ret;
158 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
159 ret = ttm_tt_swapin(ttm);
160 if (unlikely(ret != 0))
161 return NULL;
163 return __ttm_tt_get_page(ttm, index);
166 int ttm_tt_populate(struct ttm_tt *ttm)
168 struct page *page;
169 unsigned long i;
170 struct ttm_backend *be;
171 int ret;
173 if (ttm->state != tt_unpopulated)
174 return 0;
176 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
177 ret = ttm_tt_swapin(ttm);
178 if (unlikely(ret != 0))
179 return ret;
182 be = ttm->be;
184 for (i = 0; i < ttm->num_pages; ++i) {
185 page = __ttm_tt_get_page(ttm, i);
186 if (!page)
187 return -ENOMEM;
190 be->func->populate(be, ttm->num_pages, ttm->pages,
191 ttm->dummy_read_page);
192 ttm->state = tt_unbound;
193 return 0;
195 EXPORT_SYMBOL(ttm_tt_populate);
197 #ifdef CONFIG_X86
198 static inline int ttm_tt_set_page_caching(struct page *p,
199 enum ttm_caching_state c_state)
201 if (PageHighMem(p))
202 return 0;
204 switch (c_state) {
205 case tt_cached:
206 return set_pages_wb(p, 1);
207 case tt_wc:
208 return set_memory_wc((unsigned long) page_address(p), 1);
209 default:
210 return set_pages_uc(p, 1);
213 #else /* CONFIG_X86 */
214 static inline int ttm_tt_set_page_caching(struct page *p,
215 enum ttm_caching_state c_state)
217 return 0;
219 #endif /* CONFIG_X86 */
222 * Change caching policy for the linear kernel map
223 * for range of pages in a ttm.
226 static int ttm_tt_set_caching(struct ttm_tt *ttm,
227 enum ttm_caching_state c_state)
229 int i, j;
230 struct page *cur_page;
231 int ret;
233 if (ttm->caching_state == c_state)
234 return 0;
236 if (c_state != tt_cached) {
237 ret = ttm_tt_populate(ttm);
238 if (unlikely(ret != 0))
239 return ret;
242 if (ttm->caching_state == tt_cached)
243 drm_clflush_pages(ttm->pages, ttm->num_pages);
245 for (i = 0; i < ttm->num_pages; ++i) {
246 cur_page = ttm->pages[i];
247 if (likely(cur_page != NULL)) {
248 ret = ttm_tt_set_page_caching(cur_page, c_state);
249 if (unlikely(ret != 0))
250 goto out_err;
254 ttm->caching_state = c_state;
256 return 0;
258 out_err:
259 for (j = 0; j < i; ++j) {
260 cur_page = ttm->pages[j];
261 if (likely(cur_page != NULL)) {
262 (void)ttm_tt_set_page_caching(cur_page,
263 ttm->caching_state);
267 return ret;
270 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
272 enum ttm_caching_state state;
274 if (placement & TTM_PL_FLAG_WC)
275 state = tt_wc;
276 else if (placement & TTM_PL_FLAG_UNCACHED)
277 state = tt_uncached;
278 else
279 state = tt_cached;
281 return ttm_tt_set_caching(ttm, state);
283 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
285 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
287 int i;
288 struct page *cur_page;
289 struct ttm_backend *be = ttm->be;
291 if (be)
292 be->func->clear(be);
293 (void)ttm_tt_set_caching(ttm, tt_cached);
294 for (i = 0; i < ttm->num_pages; ++i) {
295 cur_page = ttm->pages[i];
296 ttm->pages[i] = NULL;
297 if (cur_page) {
298 if (page_count(cur_page) != 1)
299 printk(KERN_ERR TTM_PFX
300 "Erroneous page count. "
301 "Leaking pages.\n");
302 ttm_mem_global_free_page(ttm->glob->mem_glob,
303 cur_page);
304 __free_page(cur_page);
307 ttm->state = tt_unpopulated;
308 ttm->first_himem_page = ttm->num_pages;
309 ttm->last_lomem_page = -1;
312 void ttm_tt_destroy(struct ttm_tt *ttm)
314 struct ttm_backend *be;
316 if (unlikely(ttm == NULL))
317 return;
319 be = ttm->be;
320 if (likely(be != NULL)) {
321 be->func->destroy(be);
322 ttm->be = NULL;
325 if (likely(ttm->pages != NULL)) {
326 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
327 ttm_tt_free_user_pages(ttm);
328 else
329 ttm_tt_free_alloced_pages(ttm);
331 ttm_tt_free_page_directory(ttm);
334 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
335 ttm->swap_storage)
336 fput(ttm->swap_storage);
338 kfree(ttm);
341 int ttm_tt_set_user(struct ttm_tt *ttm,
342 struct task_struct *tsk,
343 unsigned long start, unsigned long num_pages)
345 struct mm_struct *mm = tsk->mm;
346 int ret;
347 int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
348 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
350 BUG_ON(num_pages != ttm->num_pages);
351 BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
354 * Account user pages as lowmem pages for now.
357 ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
358 false, false);
359 if (unlikely(ret != 0))
360 return ret;
362 down_read(&mm->mmap_sem);
363 ret = get_user_pages(tsk, mm, start, num_pages,
364 write, 0, ttm->pages, NULL);
365 up_read(&mm->mmap_sem);
367 if (ret != num_pages && write) {
368 ttm_tt_free_user_pages(ttm);
369 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
370 return -ENOMEM;
373 ttm->tsk = tsk;
374 ttm->start = start;
375 ttm->state = tt_unbound;
377 return 0;
380 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
381 uint32_t page_flags, struct page *dummy_read_page)
383 struct ttm_bo_driver *bo_driver = bdev->driver;
384 struct ttm_tt *ttm;
386 if (!bo_driver)
387 return NULL;
389 ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
390 if (!ttm)
391 return NULL;
393 ttm->glob = bdev->glob;
394 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
395 ttm->first_himem_page = ttm->num_pages;
396 ttm->last_lomem_page = -1;
397 ttm->caching_state = tt_cached;
398 ttm->page_flags = page_flags;
400 ttm->dummy_read_page = dummy_read_page;
402 ttm_tt_alloc_page_directory(ttm);
403 if (!ttm->pages) {
404 ttm_tt_destroy(ttm);
405 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
406 return NULL;
408 ttm->be = bo_driver->create_ttm_backend_entry(bdev);
409 if (!ttm->be) {
410 ttm_tt_destroy(ttm);
411 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
412 return NULL;
414 ttm->state = tt_unpopulated;
415 return ttm;
418 void ttm_tt_unbind(struct ttm_tt *ttm)
420 int ret;
421 struct ttm_backend *be = ttm->be;
423 if (ttm->state == tt_bound) {
424 ret = be->func->unbind(be);
425 BUG_ON(ret);
426 ttm->state = tt_unbound;
430 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
432 int ret = 0;
433 struct ttm_backend *be;
435 if (!ttm)
436 return -EINVAL;
438 if (ttm->state == tt_bound)
439 return 0;
441 be = ttm->be;
443 ret = ttm_tt_populate(ttm);
444 if (ret)
445 return ret;
447 ret = be->func->bind(be, bo_mem);
448 if (ret) {
449 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
450 return ret;
453 ttm->state = tt_bound;
455 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
456 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
457 return 0;
459 EXPORT_SYMBOL(ttm_tt_bind);
461 static int ttm_tt_swapin(struct ttm_tt *ttm)
463 struct address_space *swap_space;
464 struct file *swap_storage;
465 struct page *from_page;
466 struct page *to_page;
467 void *from_virtual;
468 void *to_virtual;
469 int i;
470 int ret;
472 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
473 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
474 ttm->num_pages);
475 if (unlikely(ret != 0))
476 return ret;
478 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
479 return 0;
482 swap_storage = ttm->swap_storage;
483 BUG_ON(swap_storage == NULL);
485 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
487 for (i = 0; i < ttm->num_pages; ++i) {
488 from_page = read_mapping_page(swap_space, i, NULL);
489 if (IS_ERR(from_page))
490 goto out_err;
491 to_page = __ttm_tt_get_page(ttm, i);
492 if (unlikely(to_page == NULL))
493 goto out_err;
495 preempt_disable();
496 from_virtual = kmap_atomic(from_page, KM_USER0);
497 to_virtual = kmap_atomic(to_page, KM_USER1);
498 memcpy(to_virtual, from_virtual, PAGE_SIZE);
499 kunmap_atomic(to_virtual, KM_USER1);
500 kunmap_atomic(from_virtual, KM_USER0);
501 preempt_enable();
502 page_cache_release(from_page);
505 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
506 fput(swap_storage);
507 ttm->swap_storage = NULL;
508 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
510 return 0;
511 out_err:
512 ttm_tt_free_alloced_pages(ttm);
513 return -ENOMEM;
516 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
518 struct address_space *swap_space;
519 struct file *swap_storage;
520 struct page *from_page;
521 struct page *to_page;
522 void *from_virtual;
523 void *to_virtual;
524 int i;
526 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
527 BUG_ON(ttm->caching_state != tt_cached);
530 * For user buffers, just unpin the pages, as there should be
531 * vma references.
534 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
535 ttm_tt_free_user_pages(ttm);
536 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
537 ttm->swap_storage = NULL;
538 return 0;
541 if (!persistant_swap_storage) {
542 swap_storage = shmem_file_setup("ttm swap",
543 ttm->num_pages << PAGE_SHIFT,
545 if (unlikely(IS_ERR(swap_storage))) {
546 printk(KERN_ERR "Failed allocating swap storage.\n");
547 return -ENOMEM;
549 } else
550 swap_storage = persistant_swap_storage;
552 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
554 for (i = 0; i < ttm->num_pages; ++i) {
555 from_page = ttm->pages[i];
556 if (unlikely(from_page == NULL))
557 continue;
558 to_page = read_mapping_page(swap_space, i, NULL);
559 if (unlikely(to_page == NULL))
560 goto out_err;
562 preempt_disable();
563 from_virtual = kmap_atomic(from_page, KM_USER0);
564 to_virtual = kmap_atomic(to_page, KM_USER1);
565 memcpy(to_virtual, from_virtual, PAGE_SIZE);
566 kunmap_atomic(to_virtual, KM_USER1);
567 kunmap_atomic(from_virtual, KM_USER0);
568 preempt_enable();
569 set_page_dirty(to_page);
570 mark_page_accessed(to_page);
571 page_cache_release(to_page);
574 ttm_tt_free_alloced_pages(ttm);
575 ttm->swap_storage = swap_storage;
576 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
577 if (persistant_swap_storage)
578 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
580 return 0;
581 out_err:
582 if (!persistant_swap_storage)
583 fput(swap_storage);
585 return -ENOMEM;