Linux 2.6.33-rc6
[cris-mirror.git] / drivers / mtd / chips / cfi_cmdset_0002.c
blobf3600e8d5382ba9536161340e8196e6b23c0f305
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
20 * This code is GPL
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/compatmac.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
44 #define MAX_WORD_RETRIES 3
46 #define MANUFACTURER_AMD 0x0001
47 #define MANUFACTURER_ATMEL 0x001F
48 #define MANUFACTURER_MACRONIX 0x00C2
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF040B 0x0050
52 #define SST49LF008A 0x005a
53 #define AT49BV6416 0x00d6
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static void cfi_amdstd_destroy(struct mtd_info *);
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
85 /* #define DEBUG_CFI_FEATURES */
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 printk(" Address sensitive unlock: %s\n",
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 extp->VppMin >> 4, extp->VppMin & 0xf);
128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 extp->VppMax >> 4, extp->VppMax & 0xf);
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
136 #endif
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
151 DEBUG(MTD_DEBUG_LEVEL1,
152 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
153 map->name, cfi->mfr, cfi->id);
155 /* AFAICS all 29LV400 with a bottom boot block have a device ID
156 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
157 * These were badly detected as they have the 0x80 bit set
158 * so treat them as a special case.
160 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
162 /* Macronix added CFI to their 2nd generation
163 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
164 * Fujitsu, Spansion, EON, ESI and older Macronix)
165 * has CFI.
167 * Therefore also check the manufacturer.
168 * This reduces the risk of false detection due to
169 * the 8-bit device ID.
171 (cfi->mfr == MANUFACTURER_MACRONIX)) {
172 DEBUG(MTD_DEBUG_LEVEL1,
173 "%s: Macronix MX29LV400C with bottom boot block"
174 " detected\n", map->name);
175 extp->TopBottom = 2; /* bottom boot */
176 } else
177 if (cfi->id & 0x80) {
178 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
179 extp->TopBottom = 3; /* top boot */
180 } else {
181 extp->TopBottom = 2; /* bottom boot */
184 DEBUG(MTD_DEBUG_LEVEL1,
185 "%s: AMD CFI PRI V%c.%c has no boot block field;"
186 " deduced %s from Device ID\n", map->name, major, minor,
187 extp->TopBottom == 2 ? "bottom" : "top");
190 #endif
192 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
194 struct map_info *map = mtd->priv;
195 struct cfi_private *cfi = map->fldrv_priv;
196 if (cfi->cfiq->BufWriteTimeoutTyp) {
197 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
198 mtd->write = cfi_amdstd_write_buffers;
202 /* Atmel chips don't use the same PRI format as AMD chips */
203 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
205 struct map_info *map = mtd->priv;
206 struct cfi_private *cfi = map->fldrv_priv;
207 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
208 struct cfi_pri_atmel atmel_pri;
210 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
211 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
213 if (atmel_pri.Features & 0x02)
214 extp->EraseSuspend = 2;
216 /* Some chips got it backwards... */
217 if (cfi->id == AT49BV6416) {
218 if (atmel_pri.BottomBoot)
219 extp->TopBottom = 3;
220 else
221 extp->TopBottom = 2;
222 } else {
223 if (atmel_pri.BottomBoot)
224 extp->TopBottom = 2;
225 else
226 extp->TopBottom = 3;
229 /* burst write mode not supported */
230 cfi->cfiq->BufWriteTimeoutTyp = 0;
231 cfi->cfiq->BufWriteTimeoutMax = 0;
234 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
236 /* Setup for chips with a secsi area */
237 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
238 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
241 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
243 struct map_info *map = mtd->priv;
244 struct cfi_private *cfi = map->fldrv_priv;
245 if ((cfi->cfiq->NumEraseRegions == 1) &&
246 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
247 mtd->erase = cfi_amdstd_erase_chip;
253 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
254 * locked by default.
256 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
258 mtd->lock = cfi_atmel_lock;
259 mtd->unlock = cfi_atmel_unlock;
260 mtd->flags |= MTD_POWERUP_LOCK;
263 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
265 struct map_info *map = mtd->priv;
266 struct cfi_private *cfi = map->fldrv_priv;
268 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
269 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
270 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
274 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
279 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
280 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
281 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
285 static struct cfi_fixup cfi_fixup_table[] = {
286 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
287 #ifdef AMD_BOOTLOC_BUG
288 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
289 { MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
290 #endif
291 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
292 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
293 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
294 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
295 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
296 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
297 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
298 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
299 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
300 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
301 #if !FORCE_WORD_WRITE
302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
303 #endif
304 { 0, 0, NULL, NULL }
306 static struct cfi_fixup jedec_fixup_table[] = {
307 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
308 { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
309 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
310 { 0, 0, NULL, NULL }
313 static struct cfi_fixup fixup_table[] = {
314 /* The CFI vendor ids and the JEDEC vendor IDs appear
315 * to be common. It is like the devices id's are as
316 * well. This table is to pick all cases where
317 * we know that is the case.
319 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
320 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
321 { 0, 0, NULL, NULL }
325 static void cfi_fixup_major_minor(struct cfi_private *cfi,
326 struct cfi_pri_amdstd *extp)
328 if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
329 extp->MajorVersion == '0')
330 extp->MajorVersion = '1';
333 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
335 struct cfi_private *cfi = map->fldrv_priv;
336 struct mtd_info *mtd;
337 int i;
339 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
340 if (!mtd) {
341 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
342 return NULL;
344 mtd->priv = map;
345 mtd->type = MTD_NORFLASH;
347 /* Fill in the default mtd operations */
348 mtd->erase = cfi_amdstd_erase_varsize;
349 mtd->write = cfi_amdstd_write_words;
350 mtd->read = cfi_amdstd_read;
351 mtd->sync = cfi_amdstd_sync;
352 mtd->suspend = cfi_amdstd_suspend;
353 mtd->resume = cfi_amdstd_resume;
354 mtd->flags = MTD_CAP_NORFLASH;
355 mtd->name = map->name;
356 mtd->writesize = 1;
358 if (cfi->cfi_mode==CFI_MODE_CFI){
359 unsigned char bootloc;
361 * It's a real CFI chip, not one for which the probe
362 * routine faked a CFI structure. So we read the feature
363 * table from it.
365 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
366 struct cfi_pri_amdstd *extp;
368 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
369 if (!extp) {
370 kfree(mtd);
371 return NULL;
374 cfi_fixup_major_minor(cfi, extp);
376 if (extp->MajorVersion != '1' ||
377 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
378 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
379 "version %c.%c.\n", extp->MajorVersion,
380 extp->MinorVersion);
381 kfree(extp);
382 kfree(mtd);
383 return NULL;
386 /* Install our own private info structure */
387 cfi->cmdset_priv = extp;
389 /* Apply cfi device specific fixups */
390 cfi_fixup(mtd, cfi_fixup_table);
392 #ifdef DEBUG_CFI_FEATURES
393 /* Tell the user about it in lots of lovely detail */
394 cfi_tell_features(extp);
395 #endif
397 bootloc = extp->TopBottom;
398 if ((bootloc != 2) && (bootloc != 3)) {
399 printk(KERN_WARNING "%s: CFI does not contain boot "
400 "bank location. Assuming top.\n", map->name);
401 bootloc = 2;
404 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
405 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
407 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
408 int j = (cfi->cfiq->NumEraseRegions-1)-i;
409 __u32 swap;
411 swap = cfi->cfiq->EraseRegionInfo[i];
412 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
413 cfi->cfiq->EraseRegionInfo[j] = swap;
416 /* Set the default CFI lock/unlock addresses */
417 cfi->addr_unlock1 = 0x555;
418 cfi->addr_unlock2 = 0x2aa;
420 } /* CFI mode */
421 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
422 /* Apply jedec specific fixups */
423 cfi_fixup(mtd, jedec_fixup_table);
425 /* Apply generic fixups */
426 cfi_fixup(mtd, fixup_table);
428 for (i=0; i< cfi->numchips; i++) {
429 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
430 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
431 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
432 cfi->chips[i].ref_point_counter = 0;
433 init_waitqueue_head(&(cfi->chips[i].wq));
436 map->fldrv = &cfi_amdstd_chipdrv;
438 return cfi_amdstd_setup(mtd);
440 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
442 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
444 struct map_info *map = mtd->priv;
445 struct cfi_private *cfi = map->fldrv_priv;
446 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
447 unsigned long offset = 0;
448 int i,j;
450 printk(KERN_NOTICE "number of %s chips: %d\n",
451 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
452 /* Select the correct geometry setup */
453 mtd->size = devsize * cfi->numchips;
455 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
456 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
457 * mtd->numeraseregions, GFP_KERNEL);
458 if (!mtd->eraseregions) {
459 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
460 goto setup_err;
463 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
464 unsigned long ernum, ersize;
465 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
466 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
468 if (mtd->erasesize < ersize) {
469 mtd->erasesize = ersize;
471 for (j=0; j<cfi->numchips; j++) {
472 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
473 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
474 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
476 offset += (ersize * ernum);
478 if (offset != devsize) {
479 /* Argh */
480 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
481 goto setup_err;
483 #if 0
484 // debug
485 for (i=0; i<mtd->numeraseregions;i++){
486 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
487 i,mtd->eraseregions[i].offset,
488 mtd->eraseregions[i].erasesize,
489 mtd->eraseregions[i].numblocks);
491 #endif
493 __module_get(THIS_MODULE);
494 return mtd;
496 setup_err:
497 if(mtd) {
498 kfree(mtd->eraseregions);
499 kfree(mtd);
501 kfree(cfi->cmdset_priv);
502 kfree(cfi->cfiq);
503 return NULL;
507 * Return true if the chip is ready.
509 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
510 * non-suspended sector) and is indicated by no toggle bits toggling.
512 * Note that anything more complicated than checking if no bits are toggling
513 * (including checking DQ5 for an error status) is tricky to get working
514 * correctly and is therefore not done (particulary with interleaved chips
515 * as each chip must be checked independantly of the others).
517 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
519 map_word d, t;
521 d = map_read(map, addr);
522 t = map_read(map, addr);
524 return map_word_equal(map, d, t);
528 * Return true if the chip is ready and has the correct value.
530 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
531 * non-suspended sector) and it is indicated by no bits toggling.
533 * Error are indicated by toggling bits or bits held with the wrong value,
534 * or with bits toggling.
536 * Note that anything more complicated than checking if no bits are toggling
537 * (including checking DQ5 for an error status) is tricky to get working
538 * correctly and is therefore not done (particulary with interleaved chips
539 * as each chip must be checked independantly of the others).
542 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
544 map_word oldd, curd;
546 oldd = map_read(map, addr);
547 curd = map_read(map, addr);
549 return map_word_equal(map, oldd, curd) &&
550 map_word_equal(map, curd, expected);
553 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
555 DECLARE_WAITQUEUE(wait, current);
556 struct cfi_private *cfi = map->fldrv_priv;
557 unsigned long timeo;
558 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
560 resettime:
561 timeo = jiffies + HZ;
562 retry:
563 switch (chip->state) {
565 case FL_STATUS:
566 for (;;) {
567 if (chip_ready(map, adr))
568 break;
570 if (time_after(jiffies, timeo)) {
571 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
572 return -EIO;
574 spin_unlock(chip->mutex);
575 cfi_udelay(1);
576 spin_lock(chip->mutex);
577 /* Someone else might have been playing with it. */
578 goto retry;
581 case FL_READY:
582 case FL_CFI_QUERY:
583 case FL_JEDEC_QUERY:
584 return 0;
586 case FL_ERASING:
587 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
588 !(mode == FL_READY || mode == FL_POINT ||
589 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
590 goto sleep;
592 /* We could check to see if we're trying to access the sector
593 * that is currently being erased. However, no user will try
594 * anything like that so we just wait for the timeout. */
596 /* Erase suspend */
597 /* It's harmless to issue the Erase-Suspend and Erase-Resume
598 * commands when the erase algorithm isn't in progress. */
599 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
600 chip->oldstate = FL_ERASING;
601 chip->state = FL_ERASE_SUSPENDING;
602 chip->erase_suspended = 1;
603 for (;;) {
604 if (chip_ready(map, adr))
605 break;
607 if (time_after(jiffies, timeo)) {
608 /* Should have suspended the erase by now.
609 * Send an Erase-Resume command as either
610 * there was an error (so leave the erase
611 * routine to recover from it) or we trying to
612 * use the erase-in-progress sector. */
613 map_write(map, CMD(0x30), chip->in_progress_block_addr);
614 chip->state = FL_ERASING;
615 chip->oldstate = FL_READY;
616 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
617 return -EIO;
620 spin_unlock(chip->mutex);
621 cfi_udelay(1);
622 spin_lock(chip->mutex);
623 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
624 So we can just loop here. */
626 chip->state = FL_READY;
627 return 0;
629 case FL_XIP_WHILE_ERASING:
630 if (mode != FL_READY && mode != FL_POINT &&
631 (!cfip || !(cfip->EraseSuspend&2)))
632 goto sleep;
633 chip->oldstate = chip->state;
634 chip->state = FL_READY;
635 return 0;
637 case FL_POINT:
638 /* Only if there's no operation suspended... */
639 if (mode == FL_READY && chip->oldstate == FL_READY)
640 return 0;
642 default:
643 sleep:
644 set_current_state(TASK_UNINTERRUPTIBLE);
645 add_wait_queue(&chip->wq, &wait);
646 spin_unlock(chip->mutex);
647 schedule();
648 remove_wait_queue(&chip->wq, &wait);
649 spin_lock(chip->mutex);
650 goto resettime;
655 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
657 struct cfi_private *cfi = map->fldrv_priv;
659 switch(chip->oldstate) {
660 case FL_ERASING:
661 chip->state = chip->oldstate;
662 map_write(map, CMD(0x30), chip->in_progress_block_addr);
663 chip->oldstate = FL_READY;
664 chip->state = FL_ERASING;
665 break;
667 case FL_XIP_WHILE_ERASING:
668 chip->state = chip->oldstate;
669 chip->oldstate = FL_READY;
670 break;
672 case FL_READY:
673 case FL_STATUS:
674 /* We should really make set_vpp() count, rather than doing this */
675 DISABLE_VPP(map);
676 break;
677 default:
678 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
680 wake_up(&chip->wq);
683 #ifdef CONFIG_MTD_XIP
686 * No interrupt what so ever can be serviced while the flash isn't in array
687 * mode. This is ensured by the xip_disable() and xip_enable() functions
688 * enclosing any code path where the flash is known not to be in array mode.
689 * And within a XIP disabled code path, only functions marked with __xipram
690 * may be called and nothing else (it's a good thing to inspect generated
691 * assembly to make sure inline functions were actually inlined and that gcc
692 * didn't emit calls to its own support functions). Also configuring MTD CFI
693 * support to a single buswidth and a single interleave is also recommended.
696 static void xip_disable(struct map_info *map, struct flchip *chip,
697 unsigned long adr)
699 /* TODO: chips with no XIP use should ignore and return */
700 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
701 local_irq_disable();
704 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
705 unsigned long adr)
707 struct cfi_private *cfi = map->fldrv_priv;
709 if (chip->state != FL_POINT && chip->state != FL_READY) {
710 map_write(map, CMD(0xf0), adr);
711 chip->state = FL_READY;
713 (void) map_read(map, adr);
714 xip_iprefetch();
715 local_irq_enable();
719 * When a delay is required for the flash operation to complete, the
720 * xip_udelay() function is polling for both the given timeout and pending
721 * (but still masked) hardware interrupts. Whenever there is an interrupt
722 * pending then the flash erase operation is suspended, array mode restored
723 * and interrupts unmasked. Task scheduling might also happen at that
724 * point. The CPU eventually returns from the interrupt or the call to
725 * schedule() and the suspended flash operation is resumed for the remaining
726 * of the delay period.
728 * Warning: this function _will_ fool interrupt latency tracing tools.
731 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
732 unsigned long adr, int usec)
734 struct cfi_private *cfi = map->fldrv_priv;
735 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
736 map_word status, OK = CMD(0x80);
737 unsigned long suspended, start = xip_currtime();
738 flstate_t oldstate;
740 do {
741 cpu_relax();
742 if (xip_irqpending() && extp &&
743 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
744 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
746 * Let's suspend the erase operation when supported.
747 * Note that we currently don't try to suspend
748 * interleaved chips if there is already another
749 * operation suspended (imagine what happens
750 * when one chip was already done with the current
751 * operation while another chip suspended it, then
752 * we resume the whole thing at once). Yes, it
753 * can happen!
755 map_write(map, CMD(0xb0), adr);
756 usec -= xip_elapsed_since(start);
757 suspended = xip_currtime();
758 do {
759 if (xip_elapsed_since(suspended) > 100000) {
761 * The chip doesn't want to suspend
762 * after waiting for 100 msecs.
763 * This is a critical error but there
764 * is not much we can do here.
766 return;
768 status = map_read(map, adr);
769 } while (!map_word_andequal(map, status, OK, OK));
771 /* Suspend succeeded */
772 oldstate = chip->state;
773 if (!map_word_bitsset(map, status, CMD(0x40)))
774 break;
775 chip->state = FL_XIP_WHILE_ERASING;
776 chip->erase_suspended = 1;
777 map_write(map, CMD(0xf0), adr);
778 (void) map_read(map, adr);
779 xip_iprefetch();
780 local_irq_enable();
781 spin_unlock(chip->mutex);
782 xip_iprefetch();
783 cond_resched();
786 * We're back. However someone else might have
787 * decided to go write to the chip if we are in
788 * a suspended erase state. If so let's wait
789 * until it's done.
791 spin_lock(chip->mutex);
792 while (chip->state != FL_XIP_WHILE_ERASING) {
793 DECLARE_WAITQUEUE(wait, current);
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 add_wait_queue(&chip->wq, &wait);
796 spin_unlock(chip->mutex);
797 schedule();
798 remove_wait_queue(&chip->wq, &wait);
799 spin_lock(chip->mutex);
801 /* Disallow XIP again */
802 local_irq_disable();
804 /* Resume the write or erase operation */
805 map_write(map, CMD(0x30), adr);
806 chip->state = oldstate;
807 start = xip_currtime();
808 } else if (usec >= 1000000/HZ) {
810 * Try to save on CPU power when waiting delay
811 * is at least a system timer tick period.
812 * No need to be extremely accurate here.
814 xip_cpu_idle();
816 status = map_read(map, adr);
817 } while (!map_word_andequal(map, status, OK, OK)
818 && xip_elapsed_since(start) < usec);
821 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
824 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
825 * the flash is actively programming or erasing since we have to poll for
826 * the operation to complete anyway. We can't do that in a generic way with
827 * a XIP setup so do it before the actual flash operation in this case
828 * and stub it out from INVALIDATE_CACHE_UDELAY.
830 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
831 INVALIDATE_CACHED_RANGE(map, from, size)
833 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
834 UDELAY(map, chip, adr, usec)
837 * Extra notes:
839 * Activating this XIP support changes the way the code works a bit. For
840 * example the code to suspend the current process when concurrent access
841 * happens is never executed because xip_udelay() will always return with the
842 * same chip state as it was entered with. This is why there is no care for
843 * the presence of add_wait_queue() or schedule() calls from within a couple
844 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
845 * The queueing and scheduling are always happening within xip_udelay().
847 * Similarly, get_chip() and put_chip() just happen to always be executed
848 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
849 * is in array mode, therefore never executing many cases therein and not
850 * causing any problem with XIP.
853 #else
855 #define xip_disable(map, chip, adr)
856 #define xip_enable(map, chip, adr)
857 #define XIP_INVAL_CACHED_RANGE(x...)
859 #define UDELAY(map, chip, adr, usec) \
860 do { \
861 spin_unlock(chip->mutex); \
862 cfi_udelay(usec); \
863 spin_lock(chip->mutex); \
864 } while (0)
866 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
867 do { \
868 spin_unlock(chip->mutex); \
869 INVALIDATE_CACHED_RANGE(map, adr, len); \
870 cfi_udelay(usec); \
871 spin_lock(chip->mutex); \
872 } while (0)
874 #endif
876 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
878 unsigned long cmd_addr;
879 struct cfi_private *cfi = map->fldrv_priv;
880 int ret;
882 adr += chip->start;
884 /* Ensure cmd read/writes are aligned. */
885 cmd_addr = adr & ~(map_bankwidth(map)-1);
887 spin_lock(chip->mutex);
888 ret = get_chip(map, chip, cmd_addr, FL_READY);
889 if (ret) {
890 spin_unlock(chip->mutex);
891 return ret;
894 if (chip->state != FL_POINT && chip->state != FL_READY) {
895 map_write(map, CMD(0xf0), cmd_addr);
896 chip->state = FL_READY;
899 map_copy_from(map, buf, adr, len);
901 put_chip(map, chip, cmd_addr);
903 spin_unlock(chip->mutex);
904 return 0;
908 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
910 struct map_info *map = mtd->priv;
911 struct cfi_private *cfi = map->fldrv_priv;
912 unsigned long ofs;
913 int chipnum;
914 int ret = 0;
916 /* ofs: offset within the first chip that the first read should start */
918 chipnum = (from >> cfi->chipshift);
919 ofs = from - (chipnum << cfi->chipshift);
922 *retlen = 0;
924 while (len) {
925 unsigned long thislen;
927 if (chipnum >= cfi->numchips)
928 break;
930 if ((len + ofs -1) >> cfi->chipshift)
931 thislen = (1<<cfi->chipshift) - ofs;
932 else
933 thislen = len;
935 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
936 if (ret)
937 break;
939 *retlen += thislen;
940 len -= thislen;
941 buf += thislen;
943 ofs = 0;
944 chipnum++;
946 return ret;
950 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
952 DECLARE_WAITQUEUE(wait, current);
953 unsigned long timeo = jiffies + HZ;
954 struct cfi_private *cfi = map->fldrv_priv;
956 retry:
957 spin_lock(chip->mutex);
959 if (chip->state != FL_READY){
960 #if 0
961 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
962 #endif
963 set_current_state(TASK_UNINTERRUPTIBLE);
964 add_wait_queue(&chip->wq, &wait);
966 spin_unlock(chip->mutex);
968 schedule();
969 remove_wait_queue(&chip->wq, &wait);
970 #if 0
971 if(signal_pending(current))
972 return -EINTR;
973 #endif
974 timeo = jiffies + HZ;
976 goto retry;
979 adr += chip->start;
981 chip->state = FL_READY;
983 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
984 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
985 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
987 map_copy_from(map, buf, adr, len);
989 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
990 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
991 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
992 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
994 wake_up(&chip->wq);
995 spin_unlock(chip->mutex);
997 return 0;
1000 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1002 struct map_info *map = mtd->priv;
1003 struct cfi_private *cfi = map->fldrv_priv;
1004 unsigned long ofs;
1005 int chipnum;
1006 int ret = 0;
1009 /* ofs: offset within the first chip that the first read should start */
1011 /* 8 secsi bytes per chip */
1012 chipnum=from>>3;
1013 ofs=from & 7;
1016 *retlen = 0;
1018 while (len) {
1019 unsigned long thislen;
1021 if (chipnum >= cfi->numchips)
1022 break;
1024 if ((len + ofs -1) >> 3)
1025 thislen = (1<<3) - ofs;
1026 else
1027 thislen = len;
1029 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1030 if (ret)
1031 break;
1033 *retlen += thislen;
1034 len -= thislen;
1035 buf += thislen;
1037 ofs = 0;
1038 chipnum++;
1040 return ret;
1044 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1046 struct cfi_private *cfi = map->fldrv_priv;
1047 unsigned long timeo = jiffies + HZ;
1049 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1050 * have a max write time of a few hundreds usec). However, we should
1051 * use the maximum timeout value given by the chip at probe time
1052 * instead. Unfortunately, struct flchip does have a field for
1053 * maximum timeout, only for typical which can be far too short
1054 * depending of the conditions. The ' + 1' is to avoid having a
1055 * timeout of 0 jiffies if HZ is smaller than 1000.
1057 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1058 int ret = 0;
1059 map_word oldd;
1060 int retry_cnt = 0;
1062 adr += chip->start;
1064 spin_lock(chip->mutex);
1065 ret = get_chip(map, chip, adr, FL_WRITING);
1066 if (ret) {
1067 spin_unlock(chip->mutex);
1068 return ret;
1071 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1072 __func__, adr, datum.x[0] );
1075 * Check for a NOP for the case when the datum to write is already
1076 * present - it saves time and works around buggy chips that corrupt
1077 * data at other locations when 0xff is written to a location that
1078 * already contains 0xff.
1080 oldd = map_read(map, adr);
1081 if (map_word_equal(map, oldd, datum)) {
1082 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1083 __func__);
1084 goto op_done;
1087 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1088 ENABLE_VPP(map);
1089 xip_disable(map, chip, adr);
1090 retry:
1091 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1092 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1093 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1094 map_write(map, datum, adr);
1095 chip->state = FL_WRITING;
1097 INVALIDATE_CACHE_UDELAY(map, chip,
1098 adr, map_bankwidth(map),
1099 chip->word_write_time);
1101 /* See comment above for timeout value. */
1102 timeo = jiffies + uWriteTimeout;
1103 for (;;) {
1104 if (chip->state != FL_WRITING) {
1105 /* Someone's suspended the write. Sleep */
1106 DECLARE_WAITQUEUE(wait, current);
1108 set_current_state(TASK_UNINTERRUPTIBLE);
1109 add_wait_queue(&chip->wq, &wait);
1110 spin_unlock(chip->mutex);
1111 schedule();
1112 remove_wait_queue(&chip->wq, &wait);
1113 timeo = jiffies + (HZ / 2); /* FIXME */
1114 spin_lock(chip->mutex);
1115 continue;
1118 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1119 xip_enable(map, chip, adr);
1120 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1121 xip_disable(map, chip, adr);
1122 break;
1125 if (chip_ready(map, adr))
1126 break;
1128 /* Latency issues. Drop the lock, wait a while and retry */
1129 UDELAY(map, chip, adr, 1);
1131 /* Did we succeed? */
1132 if (!chip_good(map, adr, datum)) {
1133 /* reset on all failures. */
1134 map_write( map, CMD(0xF0), chip->start );
1135 /* FIXME - should have reset delay before continuing */
1137 if (++retry_cnt <= MAX_WORD_RETRIES)
1138 goto retry;
1140 ret = -EIO;
1142 xip_enable(map, chip, adr);
1143 op_done:
1144 chip->state = FL_READY;
1145 put_chip(map, chip, adr);
1146 spin_unlock(chip->mutex);
1148 return ret;
1152 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1153 size_t *retlen, const u_char *buf)
1155 struct map_info *map = mtd->priv;
1156 struct cfi_private *cfi = map->fldrv_priv;
1157 int ret = 0;
1158 int chipnum;
1159 unsigned long ofs, chipstart;
1160 DECLARE_WAITQUEUE(wait, current);
1162 *retlen = 0;
1163 if (!len)
1164 return 0;
1166 chipnum = to >> cfi->chipshift;
1167 ofs = to - (chipnum << cfi->chipshift);
1168 chipstart = cfi->chips[chipnum].start;
1170 /* If it's not bus-aligned, do the first byte write */
1171 if (ofs & (map_bankwidth(map)-1)) {
1172 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1173 int i = ofs - bus_ofs;
1174 int n = 0;
1175 map_word tmp_buf;
1177 retry:
1178 spin_lock(cfi->chips[chipnum].mutex);
1180 if (cfi->chips[chipnum].state != FL_READY) {
1181 #if 0
1182 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1183 #endif
1184 set_current_state(TASK_UNINTERRUPTIBLE);
1185 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1187 spin_unlock(cfi->chips[chipnum].mutex);
1189 schedule();
1190 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1191 #if 0
1192 if(signal_pending(current))
1193 return -EINTR;
1194 #endif
1195 goto retry;
1198 /* Load 'tmp_buf' with old contents of flash */
1199 tmp_buf = map_read(map, bus_ofs+chipstart);
1201 spin_unlock(cfi->chips[chipnum].mutex);
1203 /* Number of bytes to copy from buffer */
1204 n = min_t(int, len, map_bankwidth(map)-i);
1206 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1208 ret = do_write_oneword(map, &cfi->chips[chipnum],
1209 bus_ofs, tmp_buf);
1210 if (ret)
1211 return ret;
1213 ofs += n;
1214 buf += n;
1215 (*retlen) += n;
1216 len -= n;
1218 if (ofs >> cfi->chipshift) {
1219 chipnum ++;
1220 ofs = 0;
1221 if (chipnum == cfi->numchips)
1222 return 0;
1226 /* We are now aligned, write as much as possible */
1227 while(len >= map_bankwidth(map)) {
1228 map_word datum;
1230 datum = map_word_load(map, buf);
1232 ret = do_write_oneword(map, &cfi->chips[chipnum],
1233 ofs, datum);
1234 if (ret)
1235 return ret;
1237 ofs += map_bankwidth(map);
1238 buf += map_bankwidth(map);
1239 (*retlen) += map_bankwidth(map);
1240 len -= map_bankwidth(map);
1242 if (ofs >> cfi->chipshift) {
1243 chipnum ++;
1244 ofs = 0;
1245 if (chipnum == cfi->numchips)
1246 return 0;
1247 chipstart = cfi->chips[chipnum].start;
1251 /* Write the trailing bytes if any */
1252 if (len & (map_bankwidth(map)-1)) {
1253 map_word tmp_buf;
1255 retry1:
1256 spin_lock(cfi->chips[chipnum].mutex);
1258 if (cfi->chips[chipnum].state != FL_READY) {
1259 #if 0
1260 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1261 #endif
1262 set_current_state(TASK_UNINTERRUPTIBLE);
1263 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1265 spin_unlock(cfi->chips[chipnum].mutex);
1267 schedule();
1268 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1269 #if 0
1270 if(signal_pending(current))
1271 return -EINTR;
1272 #endif
1273 goto retry1;
1276 tmp_buf = map_read(map, ofs + chipstart);
1278 spin_unlock(cfi->chips[chipnum].mutex);
1280 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1282 ret = do_write_oneword(map, &cfi->chips[chipnum],
1283 ofs, tmp_buf);
1284 if (ret)
1285 return ret;
1287 (*retlen) += len;
1290 return 0;
1295 * FIXME: interleaved mode not tested, and probably not supported!
1297 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1298 unsigned long adr, const u_char *buf,
1299 int len)
1301 struct cfi_private *cfi = map->fldrv_priv;
1302 unsigned long timeo = jiffies + HZ;
1303 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1304 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1305 int ret = -EIO;
1306 unsigned long cmd_adr;
1307 int z, words;
1308 map_word datum;
1310 adr += chip->start;
1311 cmd_adr = adr;
1313 spin_lock(chip->mutex);
1314 ret = get_chip(map, chip, adr, FL_WRITING);
1315 if (ret) {
1316 spin_unlock(chip->mutex);
1317 return ret;
1320 datum = map_word_load(map, buf);
1322 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1323 __func__, adr, datum.x[0] );
1325 XIP_INVAL_CACHED_RANGE(map, adr, len);
1326 ENABLE_VPP(map);
1327 xip_disable(map, chip, cmd_adr);
1329 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1330 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1331 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1333 /* Write Buffer Load */
1334 map_write(map, CMD(0x25), cmd_adr);
1336 chip->state = FL_WRITING_TO_BUFFER;
1338 /* Write length of data to come */
1339 words = len / map_bankwidth(map);
1340 map_write(map, CMD(words - 1), cmd_adr);
1341 /* Write data */
1342 z = 0;
1343 while(z < words * map_bankwidth(map)) {
1344 datum = map_word_load(map, buf);
1345 map_write(map, datum, adr + z);
1347 z += map_bankwidth(map);
1348 buf += map_bankwidth(map);
1350 z -= map_bankwidth(map);
1352 adr += z;
1354 /* Write Buffer Program Confirm: GO GO GO */
1355 map_write(map, CMD(0x29), cmd_adr);
1356 chip->state = FL_WRITING;
1358 INVALIDATE_CACHE_UDELAY(map, chip,
1359 adr, map_bankwidth(map),
1360 chip->word_write_time);
1362 timeo = jiffies + uWriteTimeout;
1364 for (;;) {
1365 if (chip->state != FL_WRITING) {
1366 /* Someone's suspended the write. Sleep */
1367 DECLARE_WAITQUEUE(wait, current);
1369 set_current_state(TASK_UNINTERRUPTIBLE);
1370 add_wait_queue(&chip->wq, &wait);
1371 spin_unlock(chip->mutex);
1372 schedule();
1373 remove_wait_queue(&chip->wq, &wait);
1374 timeo = jiffies + (HZ / 2); /* FIXME */
1375 spin_lock(chip->mutex);
1376 continue;
1379 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1380 break;
1382 if (chip_ready(map, adr)) {
1383 xip_enable(map, chip, adr);
1384 goto op_done;
1387 /* Latency issues. Drop the lock, wait a while and retry */
1388 UDELAY(map, chip, adr, 1);
1391 /* reset on all failures. */
1392 map_write( map, CMD(0xF0), chip->start );
1393 xip_enable(map, chip, adr);
1394 /* FIXME - should have reset delay before continuing */
1396 printk(KERN_WARNING "MTD %s(): software timeout\n",
1397 __func__ );
1399 ret = -EIO;
1400 op_done:
1401 chip->state = FL_READY;
1402 put_chip(map, chip, adr);
1403 spin_unlock(chip->mutex);
1405 return ret;
1409 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1410 size_t *retlen, const u_char *buf)
1412 struct map_info *map = mtd->priv;
1413 struct cfi_private *cfi = map->fldrv_priv;
1414 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1415 int ret = 0;
1416 int chipnum;
1417 unsigned long ofs;
1419 *retlen = 0;
1420 if (!len)
1421 return 0;
1423 chipnum = to >> cfi->chipshift;
1424 ofs = to - (chipnum << cfi->chipshift);
1426 /* If it's not bus-aligned, do the first word write */
1427 if (ofs & (map_bankwidth(map)-1)) {
1428 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1429 if (local_len > len)
1430 local_len = len;
1431 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1432 local_len, retlen, buf);
1433 if (ret)
1434 return ret;
1435 ofs += local_len;
1436 buf += local_len;
1437 len -= local_len;
1439 if (ofs >> cfi->chipshift) {
1440 chipnum ++;
1441 ofs = 0;
1442 if (chipnum == cfi->numchips)
1443 return 0;
1447 /* Write buffer is worth it only if more than one word to write... */
1448 while (len >= map_bankwidth(map) * 2) {
1449 /* We must not cross write block boundaries */
1450 int size = wbufsize - (ofs & (wbufsize-1));
1452 if (size > len)
1453 size = len;
1454 if (size % map_bankwidth(map))
1455 size -= size % map_bankwidth(map);
1457 ret = do_write_buffer(map, &cfi->chips[chipnum],
1458 ofs, buf, size);
1459 if (ret)
1460 return ret;
1462 ofs += size;
1463 buf += size;
1464 (*retlen) += size;
1465 len -= size;
1467 if (ofs >> cfi->chipshift) {
1468 chipnum ++;
1469 ofs = 0;
1470 if (chipnum == cfi->numchips)
1471 return 0;
1475 if (len) {
1476 size_t retlen_dregs = 0;
1478 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1479 len, &retlen_dregs, buf);
1481 *retlen += retlen_dregs;
1482 return ret;
1485 return 0;
1490 * Handle devices with one erase region, that only implement
1491 * the chip erase command.
1493 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1495 struct cfi_private *cfi = map->fldrv_priv;
1496 unsigned long timeo = jiffies + HZ;
1497 unsigned long int adr;
1498 DECLARE_WAITQUEUE(wait, current);
1499 int ret = 0;
1501 adr = cfi->addr_unlock1;
1503 spin_lock(chip->mutex);
1504 ret = get_chip(map, chip, adr, FL_WRITING);
1505 if (ret) {
1506 spin_unlock(chip->mutex);
1507 return ret;
1510 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1511 __func__, chip->start );
1513 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1514 ENABLE_VPP(map);
1515 xip_disable(map, chip, adr);
1517 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1518 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1519 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1520 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1521 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1522 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1524 chip->state = FL_ERASING;
1525 chip->erase_suspended = 0;
1526 chip->in_progress_block_addr = adr;
1528 INVALIDATE_CACHE_UDELAY(map, chip,
1529 adr, map->size,
1530 chip->erase_time*500);
1532 timeo = jiffies + (HZ*20);
1534 for (;;) {
1535 if (chip->state != FL_ERASING) {
1536 /* Someone's suspended the erase. Sleep */
1537 set_current_state(TASK_UNINTERRUPTIBLE);
1538 add_wait_queue(&chip->wq, &wait);
1539 spin_unlock(chip->mutex);
1540 schedule();
1541 remove_wait_queue(&chip->wq, &wait);
1542 spin_lock(chip->mutex);
1543 continue;
1545 if (chip->erase_suspended) {
1546 /* This erase was suspended and resumed.
1547 Adjust the timeout */
1548 timeo = jiffies + (HZ*20); /* FIXME */
1549 chip->erase_suspended = 0;
1552 if (chip_ready(map, adr))
1553 break;
1555 if (time_after(jiffies, timeo)) {
1556 printk(KERN_WARNING "MTD %s(): software timeout\n",
1557 __func__ );
1558 break;
1561 /* Latency issues. Drop the lock, wait a while and retry */
1562 UDELAY(map, chip, adr, 1000000/HZ);
1564 /* Did we succeed? */
1565 if (!chip_good(map, adr, map_word_ff(map))) {
1566 /* reset on all failures. */
1567 map_write( map, CMD(0xF0), chip->start );
1568 /* FIXME - should have reset delay before continuing */
1570 ret = -EIO;
1573 chip->state = FL_READY;
1574 xip_enable(map, chip, adr);
1575 put_chip(map, chip, adr);
1576 spin_unlock(chip->mutex);
1578 return ret;
1582 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1584 struct cfi_private *cfi = map->fldrv_priv;
1585 unsigned long timeo = jiffies + HZ;
1586 DECLARE_WAITQUEUE(wait, current);
1587 int ret = 0;
1589 adr += chip->start;
1591 spin_lock(chip->mutex);
1592 ret = get_chip(map, chip, adr, FL_ERASING);
1593 if (ret) {
1594 spin_unlock(chip->mutex);
1595 return ret;
1598 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1599 __func__, adr );
1601 XIP_INVAL_CACHED_RANGE(map, adr, len);
1602 ENABLE_VPP(map);
1603 xip_disable(map, chip, adr);
1605 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1607 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1608 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1609 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1610 map_write(map, CMD(0x30), adr);
1612 chip->state = FL_ERASING;
1613 chip->erase_suspended = 0;
1614 chip->in_progress_block_addr = adr;
1616 INVALIDATE_CACHE_UDELAY(map, chip,
1617 adr, len,
1618 chip->erase_time*500);
1620 timeo = jiffies + (HZ*20);
1622 for (;;) {
1623 if (chip->state != FL_ERASING) {
1624 /* Someone's suspended the erase. Sleep */
1625 set_current_state(TASK_UNINTERRUPTIBLE);
1626 add_wait_queue(&chip->wq, &wait);
1627 spin_unlock(chip->mutex);
1628 schedule();
1629 remove_wait_queue(&chip->wq, &wait);
1630 spin_lock(chip->mutex);
1631 continue;
1633 if (chip->erase_suspended) {
1634 /* This erase was suspended and resumed.
1635 Adjust the timeout */
1636 timeo = jiffies + (HZ*20); /* FIXME */
1637 chip->erase_suspended = 0;
1640 if (chip_ready(map, adr)) {
1641 xip_enable(map, chip, adr);
1642 break;
1645 if (time_after(jiffies, timeo)) {
1646 xip_enable(map, chip, adr);
1647 printk(KERN_WARNING "MTD %s(): software timeout\n",
1648 __func__ );
1649 break;
1652 /* Latency issues. Drop the lock, wait a while and retry */
1653 UDELAY(map, chip, adr, 1000000/HZ);
1655 /* Did we succeed? */
1656 if (!chip_good(map, adr, map_word_ff(map))) {
1657 /* reset on all failures. */
1658 map_write( map, CMD(0xF0), chip->start );
1659 /* FIXME - should have reset delay before continuing */
1661 ret = -EIO;
1664 chip->state = FL_READY;
1665 put_chip(map, chip, adr);
1666 spin_unlock(chip->mutex);
1667 return ret;
1671 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1673 unsigned long ofs, len;
1674 int ret;
1676 ofs = instr->addr;
1677 len = instr->len;
1679 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1680 if (ret)
1681 return ret;
1683 instr->state = MTD_ERASE_DONE;
1684 mtd_erase_callback(instr);
1686 return 0;
1690 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1692 struct map_info *map = mtd->priv;
1693 struct cfi_private *cfi = map->fldrv_priv;
1694 int ret = 0;
1696 if (instr->addr != 0)
1697 return -EINVAL;
1699 if (instr->len != mtd->size)
1700 return -EINVAL;
1702 ret = do_erase_chip(map, &cfi->chips[0]);
1703 if (ret)
1704 return ret;
1706 instr->state = MTD_ERASE_DONE;
1707 mtd_erase_callback(instr);
1709 return 0;
1712 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1713 unsigned long adr, int len, void *thunk)
1715 struct cfi_private *cfi = map->fldrv_priv;
1716 int ret;
1718 spin_lock(chip->mutex);
1719 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1720 if (ret)
1721 goto out_unlock;
1722 chip->state = FL_LOCKING;
1724 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1725 __func__, adr, len);
1727 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1728 cfi->device_type, NULL);
1729 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1730 cfi->device_type, NULL);
1731 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1732 cfi->device_type, NULL);
1733 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1734 cfi->device_type, NULL);
1735 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1736 cfi->device_type, NULL);
1737 map_write(map, CMD(0x40), chip->start + adr);
1739 chip->state = FL_READY;
1740 put_chip(map, chip, adr + chip->start);
1741 ret = 0;
1743 out_unlock:
1744 spin_unlock(chip->mutex);
1745 return ret;
1748 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1749 unsigned long adr, int len, void *thunk)
1751 struct cfi_private *cfi = map->fldrv_priv;
1752 int ret;
1754 spin_lock(chip->mutex);
1755 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1756 if (ret)
1757 goto out_unlock;
1758 chip->state = FL_UNLOCKING;
1760 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1761 __func__, adr, len);
1763 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1764 cfi->device_type, NULL);
1765 map_write(map, CMD(0x70), adr);
1767 chip->state = FL_READY;
1768 put_chip(map, chip, adr + chip->start);
1769 ret = 0;
1771 out_unlock:
1772 spin_unlock(chip->mutex);
1773 return ret;
1776 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1778 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1781 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1783 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1787 static void cfi_amdstd_sync (struct mtd_info *mtd)
1789 struct map_info *map = mtd->priv;
1790 struct cfi_private *cfi = map->fldrv_priv;
1791 int i;
1792 struct flchip *chip;
1793 int ret = 0;
1794 DECLARE_WAITQUEUE(wait, current);
1796 for (i=0; !ret && i<cfi->numchips; i++) {
1797 chip = &cfi->chips[i];
1799 retry:
1800 spin_lock(chip->mutex);
1802 switch(chip->state) {
1803 case FL_READY:
1804 case FL_STATUS:
1805 case FL_CFI_QUERY:
1806 case FL_JEDEC_QUERY:
1807 chip->oldstate = chip->state;
1808 chip->state = FL_SYNCING;
1809 /* No need to wake_up() on this state change -
1810 * as the whole point is that nobody can do anything
1811 * with the chip now anyway.
1813 case FL_SYNCING:
1814 spin_unlock(chip->mutex);
1815 break;
1817 default:
1818 /* Not an idle state */
1819 set_current_state(TASK_UNINTERRUPTIBLE);
1820 add_wait_queue(&chip->wq, &wait);
1822 spin_unlock(chip->mutex);
1824 schedule();
1826 remove_wait_queue(&chip->wq, &wait);
1828 goto retry;
1832 /* Unlock the chips again */
1834 for (i--; i >=0; i--) {
1835 chip = &cfi->chips[i];
1837 spin_lock(chip->mutex);
1839 if (chip->state == FL_SYNCING) {
1840 chip->state = chip->oldstate;
1841 wake_up(&chip->wq);
1843 spin_unlock(chip->mutex);
1848 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1850 struct map_info *map = mtd->priv;
1851 struct cfi_private *cfi = map->fldrv_priv;
1852 int i;
1853 struct flchip *chip;
1854 int ret = 0;
1856 for (i=0; !ret && i<cfi->numchips; i++) {
1857 chip = &cfi->chips[i];
1859 spin_lock(chip->mutex);
1861 switch(chip->state) {
1862 case FL_READY:
1863 case FL_STATUS:
1864 case FL_CFI_QUERY:
1865 case FL_JEDEC_QUERY:
1866 chip->oldstate = chip->state;
1867 chip->state = FL_PM_SUSPENDED;
1868 /* No need to wake_up() on this state change -
1869 * as the whole point is that nobody can do anything
1870 * with the chip now anyway.
1872 case FL_PM_SUSPENDED:
1873 break;
1875 default:
1876 ret = -EAGAIN;
1877 break;
1879 spin_unlock(chip->mutex);
1882 /* Unlock the chips again */
1884 if (ret) {
1885 for (i--; i >=0; i--) {
1886 chip = &cfi->chips[i];
1888 spin_lock(chip->mutex);
1890 if (chip->state == FL_PM_SUSPENDED) {
1891 chip->state = chip->oldstate;
1892 wake_up(&chip->wq);
1894 spin_unlock(chip->mutex);
1898 return ret;
1902 static void cfi_amdstd_resume(struct mtd_info *mtd)
1904 struct map_info *map = mtd->priv;
1905 struct cfi_private *cfi = map->fldrv_priv;
1906 int i;
1907 struct flchip *chip;
1909 for (i=0; i<cfi->numchips; i++) {
1911 chip = &cfi->chips[i];
1913 spin_lock(chip->mutex);
1915 if (chip->state == FL_PM_SUSPENDED) {
1916 chip->state = FL_READY;
1917 map_write(map, CMD(0xF0), chip->start);
1918 wake_up(&chip->wq);
1920 else
1921 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1923 spin_unlock(chip->mutex);
1927 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1929 struct map_info *map = mtd->priv;
1930 struct cfi_private *cfi = map->fldrv_priv;
1932 kfree(cfi->cmdset_priv);
1933 kfree(cfi->cfiq);
1934 kfree(cfi);
1935 kfree(mtd->eraseregions);
1938 MODULE_LICENSE("GPL");
1939 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1940 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");