2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/doc2000.h>
31 #include <linux/mtd/compatmac.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
35 /* Where to look for the devices? */
36 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
37 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40 static unsigned long __initdata doc_locations
[] = {
41 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
42 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
43 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
44 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
45 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
46 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
47 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
48 #else /* CONFIG_MTD_DOCPROBE_HIGH */
49 0xc8000, 0xca000, 0xcc000, 0xce000,
50 0xd0000, 0xd2000, 0xd4000, 0xd6000,
51 0xd8000, 0xda000, 0xdc000, 0xde000,
52 0xe0000, 0xe2000, 0xe4000, 0xe6000,
53 0xe8000, 0xea000, 0xec000, 0xee000,
54 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
56 #warning Unknown architecture for DiskOnChip. No default probe locations defined
60 static struct mtd_info
*doclist
= NULL
;
63 void __iomem
*virtadr
;
64 unsigned long physadr
;
67 int chips_per_floor
; /* The number of chips detected on each floor */
72 struct mtd_info
*nextdoc
;
75 /* This is the syndrome computed by the HW ecc generator upon reading an empty
76 page, one with all 0xff for data and stored ecc code. */
77 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
79 /* This is the ecc value computed by the HW ecc generator upon writing an empty
80 page, one with all 0xff for data. */
81 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
83 #define INFTL_BBT_RESERVED_BLOCKS 4
85 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
86 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
87 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
89 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
90 unsigned int bitmask
);
91 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
94 module_param(debug
, int, 0);
96 static int try_dword
= 1;
97 module_param(try_dword
, int, 0);
99 static int no_ecc_failures
= 0;
100 module_param(no_ecc_failures
, int, 0);
102 static int no_autopart
= 0;
103 module_param(no_autopart
, int, 0);
105 static int show_firmware_partition
= 0;
106 module_param(show_firmware_partition
, int, 0);
108 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
109 static int inftl_bbt_write
= 1;
111 static int inftl_bbt_write
= 0;
113 module_param(inftl_bbt_write
, int, 0);
115 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
116 module_param(doc_config_location
, ulong
, 0);
117 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
119 /* Sector size for HW ECC */
120 #define SECTOR_SIZE 512
121 /* The sector bytes are packed into NB_DATA 10 bit words */
122 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
123 /* Number of roots */
125 /* First consective root */
127 /* Number of symbols */
130 /* the Reed Solomon control structure */
131 static struct rs_control
*rs_decoder
;
134 * The HW decoder in the DoC ASIC's provides us a error syndrome,
135 * which we must convert to a standard syndrom usable by the generic
136 * Reed-Solomon library code.
138 * Fabrice Bellard figured this out in the old docecc code. I added
139 * some comments, improved a minor bit and converted it to make use
140 * of the generic Reed-Solomon libary. tglx
142 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
144 int i
, j
, nerr
, errpos
[8];
146 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
148 /* Convert the ecc bytes into words */
149 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
150 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
151 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
152 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
155 /* Initialize the syndrom buffer */
156 for (i
= 0; i
< NROOTS
; i
++)
160 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
161 * where x = alpha^(FCR + i)
163 for (j
= 1; j
< NROOTS
; j
++) {
166 tmp
= rs
->index_of
[ds
[j
]];
167 for (i
= 0; i
< NROOTS
; i
++)
168 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
171 /* Calc s[i] = s[i] / alpha^(v + i) */
172 for (i
= 0; i
< NROOTS
; i
++) {
174 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
176 /* Call the decoder library */
177 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
179 /* Incorrectable errors ? */
184 * Correct the errors. The bitpositions are a bit of magic,
185 * but they are given by the design of the de/encoder circuit
188 for (i
= 0; i
< nerr
; i
++) {
189 int index
, bitpos
, pos
= 1015 - errpos
[i
];
191 if (pos
>= NB_DATA
&& pos
< 1019)
194 /* extract bit position (MSB first) */
195 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
196 /* now correct the following 10 bits. At most two bytes
197 can be modified since pos is even */
198 index
= (pos
>> 3) ^ 1;
200 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
201 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
203 if (index
< SECTOR_SIZE
)
206 index
= ((pos
>> 3) + 1) ^ 1;
207 bitpos
= (bitpos
+ 10) & 7;
210 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
211 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
213 if (index
< SECTOR_SIZE
)
218 /* If the parity is wrong, no rescue possible */
219 return parity
? -EBADMSG
: nerr
;
222 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
227 for (i
= 0; i
< cycles
; i
++) {
228 if (DoC_is_Millennium(doc
))
229 dummy
= ReadDOC(doc
->virtadr
, NOP
);
230 else if (DoC_is_MillenniumPlus(doc
))
231 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
233 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
238 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
240 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
241 static int _DoC_WaitReady(struct doc_priv
*doc
)
243 void __iomem
*docptr
= doc
->virtadr
;
244 unsigned long timeo
= jiffies
+ (HZ
* 10);
247 printk("_DoC_WaitReady...\n");
248 /* Out-of-line routine to wait for chip response */
249 if (DoC_is_MillenniumPlus(doc
)) {
250 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
251 if (time_after(jiffies
, timeo
)) {
252 printk("_DoC_WaitReady timed out.\n");
259 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
260 if (time_after(jiffies
, timeo
)) {
261 printk("_DoC_WaitReady timed out.\n");
272 static inline int DoC_WaitReady(struct doc_priv
*doc
)
274 void __iomem
*docptr
= doc
->virtadr
;
277 if (DoC_is_MillenniumPlus(doc
)) {
280 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
281 /* Call the out-of-line routine to wait */
282 ret
= _DoC_WaitReady(doc
);
286 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
287 /* Call the out-of-line routine to wait */
288 ret
= _DoC_WaitReady(doc
);
293 printk("DoC_WaitReady OK\n");
297 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
299 struct nand_chip
*this = mtd
->priv
;
300 struct doc_priv
*doc
= this->priv
;
301 void __iomem
*docptr
= doc
->virtadr
;
304 printk("write_byte %02x\n", datum
);
305 WriteDOC(datum
, docptr
, CDSNSlowIO
);
306 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
309 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
311 struct nand_chip
*this = mtd
->priv
;
312 struct doc_priv
*doc
= this->priv
;
313 void __iomem
*docptr
= doc
->virtadr
;
316 ReadDOC(docptr
, CDSNSlowIO
);
318 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
320 printk("read_byte returns %02x\n", ret
);
324 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
326 struct nand_chip
*this = mtd
->priv
;
327 struct doc_priv
*doc
= this->priv
;
328 void __iomem
*docptr
= doc
->virtadr
;
331 printk("writebuf of %d bytes: ", len
);
332 for (i
= 0; i
< len
; i
++) {
333 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
335 printk("%02x ", buf
[i
]);
341 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
343 struct nand_chip
*this = mtd
->priv
;
344 struct doc_priv
*doc
= this->priv
;
345 void __iomem
*docptr
= doc
->virtadr
;
349 printk("readbuf of %d bytes: ", len
);
351 for (i
= 0; i
< len
; i
++) {
352 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
356 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
358 struct nand_chip
*this = mtd
->priv
;
359 struct doc_priv
*doc
= this->priv
;
360 void __iomem
*docptr
= doc
->virtadr
;
364 printk("readbuf_dword of %d bytes: ", len
);
366 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
367 for (i
= 0; i
< len
; i
++) {
368 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
371 for (i
= 0; i
< len
; i
+= 4) {
372 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
377 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
379 struct nand_chip
*this = mtd
->priv
;
380 struct doc_priv
*doc
= this->priv
;
381 void __iomem
*docptr
= doc
->virtadr
;
384 for (i
= 0; i
< len
; i
++)
385 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
390 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
392 struct nand_chip
*this = mtd
->priv
;
393 struct doc_priv
*doc
= this->priv
;
396 doc200x_select_chip(mtd
, nr
);
397 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
398 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
399 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
400 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
402 /* We cant' use dev_ready here, but at least we wait for the
403 * command to complete
407 ret
= this->read_byte(mtd
) << 8;
408 ret
|= this->read_byte(mtd
);
410 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
411 /* First chip probe. See if we get same results by 32-bit access */
416 void __iomem
*docptr
= doc
->virtadr
;
418 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
419 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
420 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
421 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
422 NAND_NCE
| NAND_CTRL_CHANGE
);
426 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
427 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
428 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
429 this->read_buf
= &doc2000_readbuf_dword
;
436 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
438 struct nand_chip
*this = mtd
->priv
;
439 struct doc_priv
*doc
= this->priv
;
443 /* Max 4 chips per floor on DiskOnChip 2000 */
444 doc
->chips_per_floor
= 4;
446 /* Find out what the first chip is */
447 mfrid
= doc200x_ident_chip(mtd
, 0);
449 /* Find how many chips in each floor. */
450 for (i
= 1; i
< 4; i
++) {
451 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
454 doc
->chips_per_floor
= i
;
455 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
458 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
460 struct doc_priv
*doc
= this->priv
;
465 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
467 status
= (int)this->read_byte(mtd
);
472 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
474 struct nand_chip
*this = mtd
->priv
;
475 struct doc_priv
*doc
= this->priv
;
476 void __iomem
*docptr
= doc
->virtadr
;
478 WriteDOC(datum
, docptr
, CDSNSlowIO
);
479 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
480 WriteDOC(datum
, docptr
, WritePipeTerm
);
483 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
485 struct nand_chip
*this = mtd
->priv
;
486 struct doc_priv
*doc
= this->priv
;
487 void __iomem
*docptr
= doc
->virtadr
;
489 //ReadDOC(docptr, CDSNSlowIO);
490 /* 11.4.5 -- delay twice to allow extended length cycle */
492 ReadDOC(docptr
, ReadPipeInit
);
493 //return ReadDOC(docptr, Mil_CDSN_IO);
494 return ReadDOC(docptr
, LastDataRead
);
497 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
499 struct nand_chip
*this = mtd
->priv
;
500 struct doc_priv
*doc
= this->priv
;
501 void __iomem
*docptr
= doc
->virtadr
;
504 for (i
= 0; i
< len
; i
++)
505 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
506 /* Terminate write pipeline */
507 WriteDOC(0x00, docptr
, WritePipeTerm
);
510 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
512 struct nand_chip
*this = mtd
->priv
;
513 struct doc_priv
*doc
= this->priv
;
514 void __iomem
*docptr
= doc
->virtadr
;
517 /* Start read pipeline */
518 ReadDOC(docptr
, ReadPipeInit
);
520 for (i
= 0; i
< len
- 1; i
++)
521 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
523 /* Terminate read pipeline */
524 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
527 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
529 struct nand_chip
*this = mtd
->priv
;
530 struct doc_priv
*doc
= this->priv
;
531 void __iomem
*docptr
= doc
->virtadr
;
534 /* Start read pipeline */
535 ReadDOC(docptr
, ReadPipeInit
);
537 for (i
= 0; i
< len
- 1; i
++)
538 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
539 ReadDOC(docptr
, LastDataRead
);
542 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
547 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
549 struct nand_chip
*this = mtd
->priv
;
550 struct doc_priv
*doc
= this->priv
;
551 void __iomem
*docptr
= doc
->virtadr
;
554 ReadDOC(docptr
, Mplus_ReadPipeInit
);
555 ReadDOC(docptr
, Mplus_ReadPipeInit
);
556 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
558 printk("read_byte returns %02x\n", ret
);
562 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
564 struct nand_chip
*this = mtd
->priv
;
565 struct doc_priv
*doc
= this->priv
;
566 void __iomem
*docptr
= doc
->virtadr
;
570 printk("writebuf of %d bytes: ", len
);
571 for (i
= 0; i
< len
; i
++) {
572 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
574 printk("%02x ", buf
[i
]);
580 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
582 struct nand_chip
*this = mtd
->priv
;
583 struct doc_priv
*doc
= this->priv
;
584 void __iomem
*docptr
= doc
->virtadr
;
588 printk("readbuf of %d bytes: ", len
);
590 /* Start read pipeline */
591 ReadDOC(docptr
, Mplus_ReadPipeInit
);
592 ReadDOC(docptr
, Mplus_ReadPipeInit
);
594 for (i
= 0; i
< len
- 2; i
++) {
595 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
597 printk("%02x ", buf
[i
]);
600 /* Terminate read pipeline */
601 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
603 printk("%02x ", buf
[len
- 2]);
604 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
606 printk("%02x ", buf
[len
- 1]);
611 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
613 struct nand_chip
*this = mtd
->priv
;
614 struct doc_priv
*doc
= this->priv
;
615 void __iomem
*docptr
= doc
->virtadr
;
619 printk("verifybuf of %d bytes: ", len
);
621 /* Start read pipeline */
622 ReadDOC(docptr
, Mplus_ReadPipeInit
);
623 ReadDOC(docptr
, Mplus_ReadPipeInit
);
625 for (i
= 0; i
< len
- 2; i
++)
626 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
627 ReadDOC(docptr
, Mplus_LastDataRead
);
628 ReadDOC(docptr
, Mplus_LastDataRead
);
631 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
633 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
638 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
640 struct nand_chip
*this = mtd
->priv
;
641 struct doc_priv
*doc
= this->priv
;
642 void __iomem
*docptr
= doc
->virtadr
;
646 printk("select chip (%d)\n", chip
);
649 /* Disable flash internally */
650 WriteDOC(0, docptr
, Mplus_FlashSelect
);
654 floor
= chip
/ doc
->chips_per_floor
;
655 chip
-= (floor
* doc
->chips_per_floor
);
657 /* Assert ChipEnable and deassert WriteProtect */
658 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
659 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
662 doc
->curfloor
= floor
;
665 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
667 struct nand_chip
*this = mtd
->priv
;
668 struct doc_priv
*doc
= this->priv
;
669 void __iomem
*docptr
= doc
->virtadr
;
673 printk("select chip (%d)\n", chip
);
678 floor
= chip
/ doc
->chips_per_floor
;
679 chip
-= (floor
* doc
->chips_per_floor
);
681 /* 11.4.4 -- deassert CE before changing chip */
682 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
684 WriteDOC(floor
, docptr
, FloorSelect
);
685 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
687 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
690 doc
->curfloor
= floor
;
693 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
695 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
698 struct nand_chip
*this = mtd
->priv
;
699 struct doc_priv
*doc
= this->priv
;
700 void __iomem
*docptr
= doc
->virtadr
;
702 if (ctrl
& NAND_CTRL_CHANGE
) {
703 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
704 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
706 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
707 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
708 /* 11.4.3 -- 4 NOPs after CSDNControl write */
711 if (cmd
!= NAND_CMD_NONE
) {
712 if (DoC_is_2000(doc
))
713 doc2000_write_byte(mtd
, cmd
);
715 doc2001_write_byte(mtd
, cmd
);
719 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
721 struct nand_chip
*this = mtd
->priv
;
722 struct doc_priv
*doc
= this->priv
;
723 void __iomem
*docptr
= doc
->virtadr
;
726 * Must terminate write pipeline before sending any commands
729 if (command
== NAND_CMD_PAGEPROG
) {
730 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
731 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
735 * Write out the command to the device.
737 if (command
== NAND_CMD_SEQIN
) {
740 if (column
>= mtd
->writesize
) {
742 column
-= mtd
->writesize
;
743 readcmd
= NAND_CMD_READOOB
;
744 } else if (column
< 256) {
745 /* First 256 bytes --> READ0 */
746 readcmd
= NAND_CMD_READ0
;
749 readcmd
= NAND_CMD_READ1
;
751 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
753 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
754 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
755 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
757 if (column
!= -1 || page_addr
!= -1) {
758 /* Serially input address */
760 /* Adjust columns for 16 bit buswidth */
761 if (this->options
& NAND_BUSWIDTH_16
)
763 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
765 if (page_addr
!= -1) {
766 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
767 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
768 /* One more address cycle for higher density devices */
769 if (this->chipsize
& 0x0c000000) {
770 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
771 printk("high density\n");
774 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
775 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
777 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
778 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
779 WriteDOC(0, docptr
, Mplus_FlashControl
);
783 * program and erase have their own busy handlers
784 * status and sequential in needs no delay
788 case NAND_CMD_PAGEPROG
:
789 case NAND_CMD_ERASE1
:
790 case NAND_CMD_ERASE2
:
792 case NAND_CMD_STATUS
:
798 udelay(this->chip_delay
);
799 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
800 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
801 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
802 while (!(this->read_byte(mtd
) & 0x40)) ;
805 /* This applies to read commands */
808 * If we don't have access to the busy pin, we apply the given
811 if (!this->dev_ready
) {
812 udelay(this->chip_delay
);
817 /* Apply this short delay always to ensure that we do wait tWB in
818 * any case on any machine. */
820 /* wait until command is processed */
821 while (!this->dev_ready(mtd
)) ;
824 static int doc200x_dev_ready(struct mtd_info
*mtd
)
826 struct nand_chip
*this = mtd
->priv
;
827 struct doc_priv
*doc
= this->priv
;
828 void __iomem
*docptr
= doc
->virtadr
;
830 if (DoC_is_MillenniumPlus(doc
)) {
831 /* 11.4.2 -- must NOP four times before checking FR/B# */
833 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
835 printk("not ready\n");
839 printk("was ready\n");
842 /* 11.4.2 -- must NOP four times before checking FR/B# */
844 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
846 printk("not ready\n");
849 /* 11.4.2 -- Must NOP twice if it's ready */
852 printk("was ready\n");
857 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
859 /* This is our last resort if we couldn't find or create a BBT. Just
860 pretend all blocks are good. */
864 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
866 struct nand_chip
*this = mtd
->priv
;
867 struct doc_priv
*doc
= this->priv
;
868 void __iomem
*docptr
= doc
->virtadr
;
870 /* Prime the ECC engine */
873 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
874 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
877 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
878 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
883 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
885 struct nand_chip
*this = mtd
->priv
;
886 struct doc_priv
*doc
= this->priv
;
887 void __iomem
*docptr
= doc
->virtadr
;
889 /* Prime the ECC engine */
892 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
893 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
896 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
897 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
902 /* This code is only called on write */
903 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
905 struct nand_chip
*this = mtd
->priv
;
906 struct doc_priv
*doc
= this->priv
;
907 void __iomem
*docptr
= doc
->virtadr
;
911 /* flush the pipeline */
912 if (DoC_is_2000(doc
)) {
913 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
914 WriteDOC(0, docptr
, 2k_CDSN_IO
);
915 WriteDOC(0, docptr
, 2k_CDSN_IO
);
916 WriteDOC(0, docptr
, 2k_CDSN_IO
);
917 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
918 } else if (DoC_is_MillenniumPlus(doc
)) {
919 WriteDOC(0, docptr
, Mplus_NOP
);
920 WriteDOC(0, docptr
, Mplus_NOP
);
921 WriteDOC(0, docptr
, Mplus_NOP
);
923 WriteDOC(0, docptr
, NOP
);
924 WriteDOC(0, docptr
, NOP
);
925 WriteDOC(0, docptr
, NOP
);
928 for (i
= 0; i
< 6; i
++) {
929 if (DoC_is_MillenniumPlus(doc
))
930 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
932 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
933 if (ecc_code
[i
] != empty_write_ecc
[i
])
936 if (DoC_is_MillenniumPlus(doc
))
937 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
939 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
941 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
943 /* Note: this somewhat expensive test should not be triggered
944 often. It could be optimized away by examining the data in
945 the writebuf routine, and remembering the result. */
946 for (i
= 0; i
< 512; i
++) {
953 /* If emptymatch still =1, we do have an all-0xff data buffer.
954 Return all-0xff ecc value instead of the computed one, so
955 it'll look just like a freshly-erased page. */
957 memset(ecc_code
, 0xff, 6);
962 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
963 u_char
*read_ecc
, u_char
*isnull
)
966 struct nand_chip
*this = mtd
->priv
;
967 struct doc_priv
*doc
= this->priv
;
968 void __iomem
*docptr
= doc
->virtadr
;
970 volatile u_char dummy
;
973 /* flush the pipeline */
974 if (DoC_is_2000(doc
)) {
975 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
976 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
977 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
978 } else if (DoC_is_MillenniumPlus(doc
)) {
979 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
980 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
981 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
983 dummy
= ReadDOC(docptr
, ECCConf
);
984 dummy
= ReadDOC(docptr
, ECCConf
);
985 dummy
= ReadDOC(docptr
, ECCConf
);
988 /* Error occured ? */
990 for (i
= 0; i
< 6; i
++) {
991 if (DoC_is_MillenniumPlus(doc
))
992 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
994 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
995 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
998 /* If emptymatch=1, the read syndrome is consistent with an
999 all-0xff data and stored ecc block. Check the stored ecc. */
1001 for (i
= 0; i
< 6; i
++) {
1002 if (read_ecc
[i
] == 0xff)
1008 /* If emptymatch still =1, check the data block. */
1010 /* Note: this somewhat expensive test should not be triggered
1011 often. It could be optimized away by examining the data in
1012 the readbuf routine, and remembering the result. */
1013 for (i
= 0; i
< 512; i
++) {
1020 /* If emptymatch still =1, this is almost certainly a freshly-
1021 erased block, in which case the ECC will not come out right.
1022 We'll suppress the error and tell the caller everything's
1023 OK. Because it is. */
1025 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1027 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1029 if (DoC_is_MillenniumPlus(doc
))
1030 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1032 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1033 if (no_ecc_failures
&& (ret
== -EBADMSG
)) {
1034 printk(KERN_ERR
"suppressing ECC failure\n");
1040 //u_char mydatabuf[528];
1042 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1043 * attempt to retain compatibility. It used to read:
1044 * .oobfree = { {8, 8} }
1045 * Since that leaves two bytes unusable, it was changed. But the following
1046 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1047 * .oobfree = { {6, 10} }
1048 * jffs2 seems to handle the above gracefully, but the current scheme seems
1049 * safer. The only problem with it is that any code that parses oobfree must
1050 * be able to handle out-of-order segments.
1052 static struct nand_ecclayout doc200x_oobinfo
= {
1054 .eccpos
= {0, 1, 2, 3, 4, 5},
1055 .oobfree
= {{8, 8}, {6, 2}}
1058 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1059 On successful return, buf will contain a copy of the media header for
1060 further processing. id is the string to scan for, and will presumably be
1061 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1062 header. The page #s of the found media headers are placed in mh0_page and
1063 mh1_page in the DOC private structure. */
1064 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1066 struct nand_chip
*this = mtd
->priv
;
1067 struct doc_priv
*doc
= this->priv
;
1072 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1073 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1074 if (retlen
!= mtd
->writesize
)
1077 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1079 if (memcmp(buf
, id
, 6))
1081 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1082 if (doc
->mh0_page
== -1) {
1083 doc
->mh0_page
= offs
>> this->page_shift
;
1088 doc
->mh1_page
= offs
>> this->page_shift
;
1091 if (doc
->mh0_page
== -1) {
1092 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1095 /* Only one mediaheader was found. We want buf to contain a
1096 mediaheader on return, so we'll have to re-read the one we found. */
1097 offs
= doc
->mh0_page
<< this->page_shift
;
1098 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1099 if (retlen
!= mtd
->writesize
) {
1100 /* Insanity. Give up. */
1101 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1107 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1109 struct nand_chip
*this = mtd
->priv
;
1110 struct doc_priv
*doc
= this->priv
;
1113 struct NFTLMediaHeader
*mh
;
1114 const unsigned psize
= 1 << this->page_shift
;
1116 unsigned blocks
, maxblocks
;
1117 int offs
, numheaders
;
1119 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1121 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1124 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1126 mh
= (struct NFTLMediaHeader
*)buf
;
1128 le16_to_cpus(&mh
->NumEraseUnits
);
1129 le16_to_cpus(&mh
->FirstPhysicalEUN
);
1130 le32_to_cpus(&mh
->FormattedSize
);
1132 printk(KERN_INFO
" DataOrgID = %s\n"
1133 " NumEraseUnits = %d\n"
1134 " FirstPhysicalEUN = %d\n"
1135 " FormattedSize = %d\n"
1136 " UnitSizeFactor = %d\n",
1137 mh
->DataOrgID
, mh
->NumEraseUnits
,
1138 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1139 mh
->UnitSizeFactor
);
1141 blocks
= mtd
->size
>> this->phys_erase_shift
;
1142 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1144 if (mh
->UnitSizeFactor
== 0x00) {
1145 /* Auto-determine UnitSizeFactor. The constraints are:
1146 - There can be at most 32768 virtual blocks.
1147 - There can be at most (virtual block size - page size)
1148 virtual blocks (because MediaHeader+BBT must fit in 1).
1150 mh
->UnitSizeFactor
= 0xff;
1151 while (blocks
> maxblocks
) {
1153 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1154 mh
->UnitSizeFactor
--;
1156 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1159 /* NOTE: The lines below modify internal variables of the NAND and MTD
1160 layers; variables with have already been configured by nand_scan.
1161 Unfortunately, we didn't know before this point what these values
1162 should be. Thus, this code is somewhat dependant on the exact
1163 implementation of the NAND layer. */
1164 if (mh
->UnitSizeFactor
!= 0xff) {
1165 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1166 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1167 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1168 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1169 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1172 if (blocks
> maxblocks
) {
1173 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1177 /* Skip past the media headers. */
1178 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1179 offs
<<= this->page_shift
;
1180 offs
+= mtd
->erasesize
;
1182 if (show_firmware_partition
== 1) {
1183 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1184 parts
[0].offset
= 0;
1185 parts
[0].size
= offs
;
1189 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1190 parts
[numparts
].offset
= offs
;
1191 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1193 offs
+= parts
[numparts
].size
;
1196 if (offs
< mtd
->size
) {
1197 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1198 parts
[numparts
].offset
= offs
;
1199 parts
[numparts
].size
= mtd
->size
- offs
;
1209 /* This is a stripped-down copy of the code in inftlmount.c */
1210 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1212 struct nand_chip
*this = mtd
->priv
;
1213 struct doc_priv
*doc
= this->priv
;
1216 struct INFTLMediaHeader
*mh
;
1217 struct INFTLPartition
*ip
;
1220 int vshift
, lastvunit
= 0;
1222 int end
= mtd
->size
;
1224 if (inftl_bbt_write
)
1225 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1227 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1229 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1233 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1235 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1236 mh
= (struct INFTLMediaHeader
*)buf
;
1238 le32_to_cpus(&mh
->NoOfBootImageBlocks
);
1239 le32_to_cpus(&mh
->NoOfBinaryPartitions
);
1240 le32_to_cpus(&mh
->NoOfBDTLPartitions
);
1241 le32_to_cpus(&mh
->BlockMultiplierBits
);
1242 le32_to_cpus(&mh
->FormatFlags
);
1243 le32_to_cpus(&mh
->PercentUsed
);
1245 printk(KERN_INFO
" bootRecordID = %s\n"
1246 " NoOfBootImageBlocks = %d\n"
1247 " NoOfBinaryPartitions = %d\n"
1248 " NoOfBDTLPartitions = %d\n"
1249 " BlockMultiplerBits = %d\n"
1250 " FormatFlgs = %d\n"
1251 " OsakVersion = %d.%d.%d.%d\n"
1252 " PercentUsed = %d\n",
1253 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1254 mh
->NoOfBinaryPartitions
,
1255 mh
->NoOfBDTLPartitions
,
1256 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1257 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1258 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1259 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1260 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1263 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1265 blocks
= mtd
->size
>> vshift
;
1266 if (blocks
> 32768) {
1267 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1271 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1272 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1273 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1277 /* Scan the partitions */
1278 for (i
= 0; (i
< 4); i
++) {
1279 ip
= &(mh
->Partitions
[i
]);
1280 le32_to_cpus(&ip
->virtualUnits
);
1281 le32_to_cpus(&ip
->firstUnit
);
1282 le32_to_cpus(&ip
->lastUnit
);
1283 le32_to_cpus(&ip
->flags
);
1284 le32_to_cpus(&ip
->spareUnits
);
1285 le32_to_cpus(&ip
->Reserved0
);
1287 printk(KERN_INFO
" PARTITION[%d] ->\n"
1288 " virtualUnits = %d\n"
1292 " spareUnits = %d\n",
1293 i
, ip
->virtualUnits
, ip
->firstUnit
,
1294 ip
->lastUnit
, ip
->flags
,
1297 if ((show_firmware_partition
== 1) &&
1298 (i
== 0) && (ip
->firstUnit
> 0)) {
1299 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1300 parts
[0].offset
= 0;
1301 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1305 if (ip
->flags
& INFTL_BINARY
)
1306 parts
[numparts
].name
= " DiskOnChip BDK partition";
1308 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1309 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1310 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1312 if (ip
->lastUnit
> lastvunit
)
1313 lastvunit
= ip
->lastUnit
;
1314 if (ip
->flags
& INFTL_LAST
)
1318 if ((lastvunit
<< vshift
) < end
) {
1319 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1320 parts
[numparts
].offset
= lastvunit
<< vshift
;
1321 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1330 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1333 struct nand_chip
*this = mtd
->priv
;
1334 struct doc_priv
*doc
= this->priv
;
1335 struct mtd_partition parts
[2];
1337 memset((char *)parts
, 0, sizeof(parts
));
1338 /* On NFTL, we have to find the media headers before we can read the
1339 BBTs, since they're stored in the media header eraseblocks. */
1340 numparts
= nftl_partscan(mtd
, parts
);
1343 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1344 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1346 this->bbt_td
->veroffs
= 7;
1347 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1348 if (doc
->mh1_page
!= -1) {
1349 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1350 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1352 this->bbt_md
->veroffs
= 7;
1353 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1355 this->bbt_md
= NULL
;
1358 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1359 At least as nand_bbt.c is currently written. */
1360 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1362 add_mtd_device(mtd
);
1363 #ifdef CONFIG_MTD_PARTITIONS
1365 add_mtd_partitions(mtd
, parts
, numparts
);
1370 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1373 struct nand_chip
*this = mtd
->priv
;
1374 struct doc_priv
*doc
= this->priv
;
1375 struct mtd_partition parts
[5];
1377 if (this->numchips
> doc
->chips_per_floor
) {
1378 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1382 if (DoC_is_MillenniumPlus(doc
)) {
1383 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1384 if (inftl_bbt_write
)
1385 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1386 this->bbt_td
->pages
[0] = 2;
1387 this->bbt_md
= NULL
;
1389 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1390 if (inftl_bbt_write
)
1391 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1392 this->bbt_td
->offs
= 8;
1393 this->bbt_td
->len
= 8;
1394 this->bbt_td
->veroffs
= 7;
1395 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1396 this->bbt_td
->reserved_block_code
= 0x01;
1397 this->bbt_td
->pattern
= "MSYS_BBT";
1399 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1400 if (inftl_bbt_write
)
1401 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1402 this->bbt_md
->offs
= 8;
1403 this->bbt_md
->len
= 8;
1404 this->bbt_md
->veroffs
= 7;
1405 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1406 this->bbt_md
->reserved_block_code
= 0x01;
1407 this->bbt_md
->pattern
= "TBB_SYSM";
1410 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411 At least as nand_bbt.c is currently written. */
1412 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1414 memset((char *)parts
, 0, sizeof(parts
));
1415 numparts
= inftl_partscan(mtd
, parts
);
1416 /* At least for now, require the INFTL Media Header. We could probably
1417 do without it for non-INFTL use, since all it gives us is
1418 autopartitioning, but I want to give it more thought. */
1421 add_mtd_device(mtd
);
1422 #ifdef CONFIG_MTD_PARTITIONS
1424 add_mtd_partitions(mtd
, parts
, numparts
);
1429 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1431 struct nand_chip
*this = mtd
->priv
;
1432 struct doc_priv
*doc
= this->priv
;
1434 this->read_byte
= doc2000_read_byte
;
1435 this->write_buf
= doc2000_writebuf
;
1436 this->read_buf
= doc2000_readbuf
;
1437 this->verify_buf
= doc2000_verifybuf
;
1438 this->scan_bbt
= nftl_scan_bbt
;
1440 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1441 doc2000_count_chips(mtd
);
1442 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1443 return (4 * doc
->chips_per_floor
);
1446 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1448 struct nand_chip
*this = mtd
->priv
;
1449 struct doc_priv
*doc
= this->priv
;
1451 this->read_byte
= doc2001_read_byte
;
1452 this->write_buf
= doc2001_writebuf
;
1453 this->read_buf
= doc2001_readbuf
;
1454 this->verify_buf
= doc2001_verifybuf
;
1456 ReadDOC(doc
->virtadr
, ChipID
);
1457 ReadDOC(doc
->virtadr
, ChipID
);
1458 ReadDOC(doc
->virtadr
, ChipID
);
1459 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1460 /* It's not a Millennium; it's one of the newer
1461 DiskOnChip 2000 units with a similar ASIC.
1462 Treat it like a Millennium, except that it
1463 can have multiple chips. */
1464 doc2000_count_chips(mtd
);
1465 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1466 this->scan_bbt
= inftl_scan_bbt
;
1467 return (4 * doc
->chips_per_floor
);
1469 /* Bog-standard Millennium */
1470 doc
->chips_per_floor
= 1;
1471 mtd
->name
= "DiskOnChip Millennium";
1472 this->scan_bbt
= nftl_scan_bbt
;
1477 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1479 struct nand_chip
*this = mtd
->priv
;
1480 struct doc_priv
*doc
= this->priv
;
1482 this->read_byte
= doc2001plus_read_byte
;
1483 this->write_buf
= doc2001plus_writebuf
;
1484 this->read_buf
= doc2001plus_readbuf
;
1485 this->verify_buf
= doc2001plus_verifybuf
;
1486 this->scan_bbt
= inftl_scan_bbt
;
1487 this->cmd_ctrl
= NULL
;
1488 this->select_chip
= doc2001plus_select_chip
;
1489 this->cmdfunc
= doc2001plus_command
;
1490 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1492 doc
->chips_per_floor
= 1;
1493 mtd
->name
= "DiskOnChip Millennium Plus";
1498 static int __init
doc_probe(unsigned long physadr
)
1500 unsigned char ChipID
;
1501 struct mtd_info
*mtd
;
1502 struct nand_chip
*nand
;
1503 struct doc_priv
*doc
;
1504 void __iomem
*virtadr
;
1505 unsigned char save_control
;
1506 unsigned char tmp
, tmpb
, tmpc
;
1507 int reg
, len
, numchips
;
1510 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1512 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1516 /* It's not possible to cleanly detect the DiskOnChip - the
1517 * bootup procedure will put the device into reset mode, and
1518 * it's not possible to talk to it without actually writing
1519 * to the DOCControl register. So we store the current contents
1520 * of the DOCControl register's location, in case we later decide
1521 * that it's not a DiskOnChip, and want to put it back how we
1524 save_control
= ReadDOC(virtadr
, DOCControl
);
1526 /* Reset the DiskOnChip ASIC */
1527 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1528 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1530 /* Enable the DiskOnChip ASIC */
1531 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1532 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1534 ChipID
= ReadDOC(virtadr
, ChipID
);
1537 case DOC_ChipID_Doc2k
:
1538 reg
= DoC_2k_ECCStatus
;
1540 case DOC_ChipID_DocMil
:
1543 case DOC_ChipID_DocMilPlus16
:
1544 case DOC_ChipID_DocMilPlus32
:
1546 /* Possible Millennium Plus, need to do more checks */
1547 /* Possibly release from power down mode */
1548 for (tmp
= 0; (tmp
< 4); tmp
++)
1549 ReadDOC(virtadr
, Mplus_Power
);
1551 /* Reset the Millennium Plus ASIC */
1552 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1553 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1554 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1557 /* Enable the Millennium Plus ASIC */
1558 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1559 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1560 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1563 ChipID
= ReadDOC(virtadr
, ChipID
);
1566 case DOC_ChipID_DocMilPlus16
:
1567 reg
= DoC_Mplus_Toggle
;
1569 case DOC_ChipID_DocMilPlus32
:
1570 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1581 /* Check the TOGGLE bit in the ECC register */
1582 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1583 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1584 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1585 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1586 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1591 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1592 unsigned char oldval
;
1593 unsigned char newval
;
1596 /* Use the alias resolution register to determine if this is
1597 in fact the same DOC aliased to a new address. If writes
1598 to one chip's alias resolution register change the value on
1599 the other chip, they're the same chip. */
1600 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1601 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1602 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1604 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1605 newval
= ReadDOC(virtadr
, AliasResolution
);
1607 if (oldval
!= newval
)
1609 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1610 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1611 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1612 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1614 WriteDOC(~newval
, virtadr
, AliasResolution
);
1615 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1616 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1619 if (oldval
== newval
) {
1620 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1625 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1627 len
= sizeof(struct mtd_info
) +
1628 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1629 mtd
= kzalloc(len
, GFP_KERNEL
);
1631 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1636 nand
= (struct nand_chip
*) (mtd
+ 1);
1637 doc
= (struct doc_priv
*) (nand
+ 1);
1638 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1639 nand
->bbt_md
= nand
->bbt_td
+ 1;
1642 mtd
->owner
= THIS_MODULE
;
1645 nand
->select_chip
= doc200x_select_chip
;
1646 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1647 nand
->dev_ready
= doc200x_dev_ready
;
1648 nand
->waitfunc
= doc200x_wait
;
1649 nand
->block_bad
= doc200x_block_bad
;
1650 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1651 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1652 nand
->ecc
.correct
= doc200x_correct_data
;
1654 nand
->ecc
.layout
= &doc200x_oobinfo
;
1655 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1656 nand
->ecc
.size
= 512;
1657 nand
->ecc
.bytes
= 6;
1658 nand
->options
= NAND_USE_FLASH_BBT
;
1660 doc
->physadr
= physadr
;
1661 doc
->virtadr
= virtadr
;
1662 doc
->ChipID
= ChipID
;
1667 doc
->nextdoc
= doclist
;
1669 if (ChipID
== DOC_ChipID_Doc2k
)
1670 numchips
= doc2000_init(mtd
);
1671 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1672 numchips
= doc2001plus_init(mtd
);
1674 numchips
= doc2001_init(mtd
);
1676 if ((ret
= nand_scan(mtd
, numchips
))) {
1677 /* DBB note: i believe nand_release is necessary here, as
1678 buffers may have been allocated in nand_base. Check with
1680 /* nand_release will call del_mtd_device, but we haven't yet
1681 added it. This is handled without incident by
1682 del_mtd_device, as far as I can tell. */
1693 /* Put back the contents of the DOCControl register, in case it's not
1694 actually a DiskOnChip. */
1695 WriteDOC(save_control
, virtadr
, DOCControl
);
1701 static void release_nanddoc(void)
1703 struct mtd_info
*mtd
, *nextmtd
;
1704 struct nand_chip
*nand
;
1705 struct doc_priv
*doc
;
1707 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1711 nextmtd
= doc
->nextdoc
;
1713 iounmap(doc
->virtadr
);
1718 static int __init
init_nanddoc(void)
1722 /* We could create the decoder on demand, if memory is a concern.
1723 * This way we have it handy, if an error happens
1725 * Symbolsize is 10 (bits)
1726 * Primitve polynomial is x^10+x^3+1
1727 * first consecutive root is 510
1728 * primitve element to generate roots = 1
1729 * generator polinomial degree = 4
1731 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1733 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1737 if (doc_config_location
) {
1738 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1739 ret
= doc_probe(doc_config_location
);
1743 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1744 doc_probe(doc_locations
[i
]);
1747 /* No banner message any more. Print a message if no DiskOnChip
1748 found, so the user knows we at least tried. */
1750 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1756 free_rs(rs_decoder
);
1760 static void __exit
cleanup_nanddoc(void)
1762 /* Cleanup the nand/DoC resources */
1765 /* Free the reed solomon resources */
1767 free_rs(rs_decoder
);
1771 module_init(init_nanddoc
);
1772 module_exit(cleanup_nanddoc
);
1774 MODULE_LICENSE("GPL");
1775 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1776 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");