1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright (c) 2006-2007 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
39 #include <asm/fsl_lbc.h>
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47 /* mtd information per set */
51 struct nand_chip chip
;
52 struct fsl_elbc_ctrl
*ctrl
;
55 int bank
; /* Chip select bank number */
56 u8 __iomem
*vbase
; /* Chip select base virtual address */
57 int page_size
; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr
; /* FCM Flash Mode Register value */
61 /* overview of the fsl elbc controller */
63 struct fsl_elbc_ctrl
{
64 struct nand_hw_control controller
;
65 struct fsl_elbc_mtd
*chips
[MAX_BANKS
];
69 struct fsl_lbc_regs __iomem
*regs
;
71 wait_queue_head_t irq_wait
;
72 unsigned int irq_status
; /* status read from LTESR by irq handler */
73 u8 __iomem
*addr
; /* Address of assigned FCM buffer */
74 unsigned int page
; /* Last page written to / read from */
75 unsigned int read_bytes
; /* Number of bytes read during command */
76 unsigned int column
; /* Saved column from SEQIN */
77 unsigned int index
; /* Pointer to next byte to 'read' */
78 unsigned int status
; /* status read from LTESR after last op */
79 unsigned int mdr
; /* UPM/FCM Data Register value */
80 unsigned int use_mdr
; /* Non zero if the MDR is to be set */
81 unsigned int oob
; /* Non zero if operating on OOB data */
82 char *oob_poi
; /* Place to write ECC after read back */
85 /* These map to the positions used by the FCM hardware ECC generator */
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0
= {
91 .oobfree
= { {0, 5}, {9, 7} },
94 /* Small Page FLASH with FMR[ECCM] = 1 */
95 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1
= {
98 .oobfree
= { {0, 5}, {6, 2}, {11, 5} },
101 /* Large Page FLASH with FMR[ECCM] = 0 */
102 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0
= {
104 .eccpos
= {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
105 .oobfree
= { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108 /* Large Page FLASH with FMR[ECCM] = 1 */
109 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1
= {
111 .eccpos
= {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
112 .oobfree
= { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
117 * 1, so we have to adjust bad block pattern. This pattern should be used for
118 * x8 chips only. So far hardware does not support x16 chips anyway.
120 static u8 scan_ff_pattern
[] = { 0xff, };
122 static struct nand_bbt_descr largepage_memorybased
= {
126 .pattern
= scan_ff_pattern
,
130 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
131 * interfere with ECC positions, that's why we implement our own descriptors.
132 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
134 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
135 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
137 static struct nand_bbt_descr bbt_main_descr
= {
138 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
139 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
144 .pattern
= bbt_pattern
,
147 static struct nand_bbt_descr bbt_mirror_descr
= {
148 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
149 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
154 .pattern
= mirror_pattern
,
157 /*=================================*/
160 * Set up the FCM hardware block and page address fields, and the fcm
161 * structure addr field to point to the correct FCM buffer in memory
163 static void set_addr(struct mtd_info
*mtd
, int column
, int page_addr
, int oob
)
165 struct nand_chip
*chip
= mtd
->priv
;
166 struct fsl_elbc_mtd
*priv
= chip
->priv
;
167 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
168 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
171 ctrl
->page
= page_addr
;
174 page_addr
>> (chip
->phys_erase_shift
- chip
->page_shift
));
176 if (priv
->page_size
) {
178 ((page_addr
<< FPAR_LP_PI_SHIFT
) & FPAR_LP_PI
) |
179 (oob
? FPAR_LP_MS
: 0) | column
);
180 buf_num
= (page_addr
& 1) << 2;
183 ((page_addr
<< FPAR_SP_PI_SHIFT
) & FPAR_SP_PI
) |
184 (oob
? FPAR_SP_MS
: 0) | column
);
185 buf_num
= page_addr
& 7;
188 ctrl
->addr
= priv
->vbase
+ buf_num
* 1024;
189 ctrl
->index
= column
;
191 /* for OOB data point to the second half of the buffer */
193 ctrl
->index
+= priv
->page_size
? 2048 : 512;
195 dev_vdbg(ctrl
->dev
, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
196 "index %x, pes %d ps %d\n",
197 buf_num
, ctrl
->addr
, priv
->vbase
, ctrl
->index
,
198 chip
->phys_erase_shift
, chip
->page_shift
);
202 * execute FCM command and wait for it to complete
204 static int fsl_elbc_run_command(struct mtd_info
*mtd
)
206 struct nand_chip
*chip
= mtd
->priv
;
207 struct fsl_elbc_mtd
*priv
= chip
->priv
;
208 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
209 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc
->fmr
, priv
->fmr
| 3);
214 out_be32(&lbc
->mdr
, ctrl
->mdr
);
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc
->fmr
), in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
));
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc
->fbar
), in_be32(&lbc
->fpar
),
223 in_be32(&lbc
->fbcr
), priv
->bank
);
225 ctrl
->irq_status
= 0;
226 /* execute special operation */
227 out_be32(&lbc
->lsor
, priv
->bank
);
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl
->irq_wait
, ctrl
->irq_status
,
231 FCM_TIMEOUT_MSECS
* HZ
/1000);
232 ctrl
->status
= ctrl
->irq_status
;
234 /* store mdr value in case it was needed */
236 ctrl
->mdr
= in_be32(&lbc
->mdr
);
240 if (ctrl
->status
!= LTESR_CC
) {
242 "command failed: fir %x fcr %x status %x mdr %x\n",
243 in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
),
244 ctrl
->status
, ctrl
->mdr
);
251 static void fsl_elbc_do_read(struct nand_chip
*chip
, int oob
)
253 struct fsl_elbc_mtd
*priv
= chip
->priv
;
254 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
255 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
257 if (priv
->page_size
) {
259 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
260 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
261 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
262 (FIR_OP_CM1
<< FIR_OP3_SHIFT
) |
263 (FIR_OP_RBW
<< FIR_OP4_SHIFT
));
265 out_be32(&lbc
->fcr
, (NAND_CMD_READ0
<< FCR_CMD0_SHIFT
) |
266 (NAND_CMD_READSTART
<< FCR_CMD1_SHIFT
));
269 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
270 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
271 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
272 (FIR_OP_RBW
<< FIR_OP3_SHIFT
));
275 out_be32(&lbc
->fcr
, NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
);
277 out_be32(&lbc
->fcr
, NAND_CMD_READ0
<< FCR_CMD0_SHIFT
);
281 /* cmdfunc send commands to the FCM */
282 static void fsl_elbc_cmdfunc(struct mtd_info
*mtd
, unsigned int command
,
283 int column
, int page_addr
)
285 struct nand_chip
*chip
= mtd
->priv
;
286 struct fsl_elbc_mtd
*priv
= chip
->priv
;
287 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
288 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
292 /* clear the read buffer */
293 ctrl
->read_bytes
= 0;
294 if (command
!= NAND_CMD_PAGEPROG
)
298 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
305 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306 " 0x%x, column: 0x%x.\n", page_addr
, column
);
309 out_be32(&lbc
->fbcr
, 0); /* read entire page to enable ECC */
310 set_addr(mtd
, 0, page_addr
, 0);
312 ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
313 ctrl
->index
+= column
;
315 fsl_elbc_do_read(chip
, 0);
316 fsl_elbc_run_command(mtd
);
319 /* READOOB reads only the OOB because no ECC is performed. */
320 case NAND_CMD_READOOB
:
322 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323 " 0x%x, column: 0x%x.\n", page_addr
, column
);
325 out_be32(&lbc
->fbcr
, mtd
->oobsize
- column
);
326 set_addr(mtd
, column
, page_addr
, 1);
328 ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
330 fsl_elbc_do_read(chip
, 1);
331 fsl_elbc_run_command(mtd
);
334 /* READID must read all 5 possible bytes while CEB is active */
335 case NAND_CMD_READID
:
336 dev_vdbg(ctrl
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
338 out_be32(&lbc
->fir
, (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
339 (FIR_OP_UA
<< FIR_OP1_SHIFT
) |
340 (FIR_OP_RBW
<< FIR_OP2_SHIFT
));
341 out_be32(&lbc
->fcr
, NAND_CMD_READID
<< FCR_CMD0_SHIFT
);
342 /* 5 bytes for manuf, device and exts */
343 out_be32(&lbc
->fbcr
, 5);
344 ctrl
->read_bytes
= 5;
348 set_addr(mtd
, 0, 0, 0);
349 fsl_elbc_run_command(mtd
);
352 /* ERASE1 stores the block and page address */
353 case NAND_CMD_ERASE1
:
355 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356 "page_addr: 0x%x.\n", page_addr
);
357 set_addr(mtd
, 0, page_addr
, 0);
360 /* ERASE2 uses the block and page address from ERASE1 */
361 case NAND_CMD_ERASE2
:
362 dev_vdbg(ctrl
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
365 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
366 (FIR_OP_PA
<< FIR_OP1_SHIFT
) |
367 (FIR_OP_CM2
<< FIR_OP2_SHIFT
) |
368 (FIR_OP_CW1
<< FIR_OP3_SHIFT
) |
369 (FIR_OP_RS
<< FIR_OP4_SHIFT
));
372 (NAND_CMD_ERASE1
<< FCR_CMD0_SHIFT
) |
373 (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
374 (NAND_CMD_ERASE2
<< FCR_CMD2_SHIFT
));
376 out_be32(&lbc
->fbcr
, 0);
377 ctrl
->read_bytes
= 0;
380 fsl_elbc_run_command(mtd
);
383 /* SEQIN sets up the addr buffer and all registers except the length */
384 case NAND_CMD_SEQIN
: {
387 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388 "page_addr: 0x%x, column: 0x%x.\n",
391 ctrl
->column
= column
;
395 fcr
= (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
396 (NAND_CMD_SEQIN
<< FCR_CMD2_SHIFT
) |
397 (NAND_CMD_PAGEPROG
<< FCR_CMD3_SHIFT
);
399 if (priv
->page_size
) {
401 (FIR_OP_CM2
<< FIR_OP0_SHIFT
) |
402 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
403 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
404 (FIR_OP_WB
<< FIR_OP3_SHIFT
) |
405 (FIR_OP_CM3
<< FIR_OP4_SHIFT
) |
406 (FIR_OP_CW1
<< FIR_OP5_SHIFT
) |
407 (FIR_OP_RS
<< FIR_OP6_SHIFT
));
410 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
411 (FIR_OP_CM2
<< FIR_OP1_SHIFT
) |
412 (FIR_OP_CA
<< FIR_OP2_SHIFT
) |
413 (FIR_OP_PA
<< FIR_OP3_SHIFT
) |
414 (FIR_OP_WB
<< FIR_OP4_SHIFT
) |
415 (FIR_OP_CM3
<< FIR_OP5_SHIFT
) |
416 (FIR_OP_CW1
<< FIR_OP6_SHIFT
) |
417 (FIR_OP_RS
<< FIR_OP7_SHIFT
));
419 if (column
>= mtd
->writesize
) {
420 /* OOB area --> READOOB */
421 column
-= mtd
->writesize
;
422 fcr
|= NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
;
425 WARN_ON(column
!= 0);
426 /* First 256 bytes --> READ0 */
427 fcr
|= NAND_CMD_READ0
<< FCR_CMD0_SHIFT
;
431 out_be32(&lbc
->fcr
, fcr
);
432 set_addr(mtd
, column
, page_addr
, ctrl
->oob
);
436 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
437 case NAND_CMD_PAGEPROG
: {
440 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441 "writing %d bytes.\n", ctrl
->index
);
443 /* if the write did not start at 0 or is not a full page
444 * then set the exact length, otherwise use a full page
445 * write so the HW generates the ECC.
447 if (ctrl
->oob
|| ctrl
->column
!= 0 ||
448 ctrl
->index
!= mtd
->writesize
+ mtd
->oobsize
) {
449 out_be32(&lbc
->fbcr
, ctrl
->index
);
452 out_be32(&lbc
->fbcr
, 0);
456 fsl_elbc_run_command(mtd
);
458 /* Read back the page in order to fill in the ECC for the
459 * caller. Is this really needed?
461 if (full_page
&& ctrl
->oob_poi
) {
462 out_be32(&lbc
->fbcr
, 3);
463 set_addr(mtd
, 6, page_addr
, 1);
465 ctrl
->read_bytes
= mtd
->writesize
+ 9;
467 fsl_elbc_do_read(chip
, 1);
468 fsl_elbc_run_command(mtd
);
470 memcpy_fromio(ctrl
->oob_poi
+ 6,
471 &ctrl
->addr
[ctrl
->index
], 3);
475 ctrl
->oob_poi
= NULL
;
479 /* CMD_STATUS must read the status byte while CEB is active */
480 /* Note - it does not wait for the ready line */
481 case NAND_CMD_STATUS
:
483 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
484 (FIR_OP_RBW
<< FIR_OP1_SHIFT
));
485 out_be32(&lbc
->fcr
, NAND_CMD_STATUS
<< FCR_CMD0_SHIFT
);
486 out_be32(&lbc
->fbcr
, 1);
487 set_addr(mtd
, 0, 0, 0);
488 ctrl
->read_bytes
= 1;
490 fsl_elbc_run_command(mtd
);
492 /* The chip always seems to report that it is
493 * write-protected, even when it is not.
495 setbits8(ctrl
->addr
, NAND_STATUS_WP
);
498 /* RESET without waiting for the ready line */
500 dev_dbg(ctrl
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501 out_be32(&lbc
->fir
, FIR_OP_CM0
<< FIR_OP0_SHIFT
);
502 out_be32(&lbc
->fcr
, NAND_CMD_RESET
<< FCR_CMD0_SHIFT
);
503 fsl_elbc_run_command(mtd
);
508 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
513 static void fsl_elbc_select_chip(struct mtd_info
*mtd
, int chip
)
515 /* The hardware does not seem to support multiple
521 * Write buf to the FCM Controller Data Buffer
523 static void fsl_elbc_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
525 struct nand_chip
*chip
= mtd
->priv
;
526 struct fsl_elbc_mtd
*priv
= chip
->priv
;
527 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
528 unsigned int bufsize
= mtd
->writesize
+ mtd
->oobsize
;
531 dev_err(ctrl
->dev
, "write_buf of %d bytes", len
);
536 if ((unsigned int)len
> bufsize
- ctrl
->index
) {
538 "write_buf beyond end of buffer "
539 "(%d requested, %u available)\n",
540 len
, bufsize
- ctrl
->index
);
541 len
= bufsize
- ctrl
->index
;
544 memcpy_toio(&ctrl
->addr
[ctrl
->index
], buf
, len
);
546 * This is workaround for the weird elbc hangs during nand write,
547 * Scott Wood says: "...perhaps difference in how long it takes a
548 * write to make it through the localbus compared to a write to IMMR
549 * is causing problems, and sync isn't helping for some reason."
550 * Reading back the last byte helps though.
552 in_8(&ctrl
->addr
[ctrl
->index
] + len
- 1);
558 * read a byte from either the FCM hardware buffer if it has any data left
559 * otherwise issue a command to read a single byte.
561 static u8
fsl_elbc_read_byte(struct mtd_info
*mtd
)
563 struct nand_chip
*chip
= mtd
->priv
;
564 struct fsl_elbc_mtd
*priv
= chip
->priv
;
565 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
567 /* If there are still bytes in the FCM, then use the next byte. */
568 if (ctrl
->index
< ctrl
->read_bytes
)
569 return in_8(&ctrl
->addr
[ctrl
->index
++]);
571 dev_err(ctrl
->dev
, "read_byte beyond end of buffer\n");
576 * Read from the FCM Controller Data Buffer
578 static void fsl_elbc_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
580 struct nand_chip
*chip
= mtd
->priv
;
581 struct fsl_elbc_mtd
*priv
= chip
->priv
;
582 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
588 avail
= min((unsigned int)len
, ctrl
->read_bytes
- ctrl
->index
);
589 memcpy_fromio(buf
, &ctrl
->addr
[ctrl
->index
], avail
);
590 ctrl
->index
+= avail
;
594 "read_buf beyond end of buffer "
595 "(%d requested, %d available)\n",
600 * Verify buffer against the FCM Controller Data Buffer
602 static int fsl_elbc_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
604 struct nand_chip
*chip
= mtd
->priv
;
605 struct fsl_elbc_mtd
*priv
= chip
->priv
;
606 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
610 dev_err(ctrl
->dev
, "write_buf of %d bytes", len
);
614 if ((unsigned int)len
> ctrl
->read_bytes
- ctrl
->index
) {
616 "verify_buf beyond end of buffer "
617 "(%d requested, %u available)\n",
618 len
, ctrl
->read_bytes
- ctrl
->index
);
620 ctrl
->index
= ctrl
->read_bytes
;
624 for (i
= 0; i
< len
; i
++)
625 if (in_8(&ctrl
->addr
[ctrl
->index
+ i
]) != buf
[i
])
629 return i
== len
&& ctrl
->status
== LTESR_CC
? 0 : -EIO
;
632 /* This function is called after Program and Erase Operations to
633 * check for success or failure.
635 static int fsl_elbc_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
637 struct fsl_elbc_mtd
*priv
= chip
->priv
;
638 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
640 if (ctrl
->status
!= LTESR_CC
)
641 return NAND_STATUS_FAIL
;
643 /* The chip always seems to report that it is
644 * write-protected, even when it is not.
646 return (ctrl
->mdr
& 0xff) | NAND_STATUS_WP
;
649 static int fsl_elbc_chip_init_tail(struct mtd_info
*mtd
)
651 struct nand_chip
*chip
= mtd
->priv
;
652 struct fsl_elbc_mtd
*priv
= chip
->priv
;
653 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
654 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
657 /* calculate FMR Address Length field */
659 if (chip
->pagemask
& 0xffff0000)
661 if (chip
->pagemask
& 0xff000000)
664 /* add to ECCM mode set in fsl_elbc_init */
665 priv
->fmr
|= (12 << FMR_CWTO_SHIFT
) | /* Timeout > 12 ms */
666 (al
<< FMR_AL_SHIFT
);
668 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->numchips = %d\n",
670 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->chipsize = %lld\n",
672 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->pagemask = %8x\n",
674 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->chip_delay = %d\n",
676 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->badblockpos = %d\n",
678 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->chip_shift = %d\n",
680 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->page_shift = %d\n",
682 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
683 chip
->phys_erase_shift
);
684 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecclayout = %p\n",
686 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecc.mode = %d\n",
688 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecc.steps = %d\n",
690 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecc.bytes = %d\n",
692 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecc.total = %d\n",
694 dev_dbg(ctrl
->dev
, "fsl_elbc_init: nand->ecc.layout = %p\n",
696 dev_dbg(ctrl
->dev
, "fsl_elbc_init: mtd->flags = %08x\n", mtd
->flags
);
697 dev_dbg(ctrl
->dev
, "fsl_elbc_init: mtd->size = %lld\n", mtd
->size
);
698 dev_dbg(ctrl
->dev
, "fsl_elbc_init: mtd->erasesize = %d\n",
700 dev_dbg(ctrl
->dev
, "fsl_elbc_init: mtd->writesize = %d\n",
702 dev_dbg(ctrl
->dev
, "fsl_elbc_init: mtd->oobsize = %d\n",
705 /* adjust Option Register and ECC to match Flash page size */
706 if (mtd
->writesize
== 512) {
708 clrbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
709 } else if (mtd
->writesize
== 2048) {
711 setbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
712 /* adjust ecc setup if needed */
713 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
715 chip
->ecc
.size
= 512;
716 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
717 &fsl_elbc_oob_lp_eccm1
:
718 &fsl_elbc_oob_lp_eccm0
;
719 chip
->badblock_pattern
= &largepage_memorybased
;
723 "fsl_elbc_init: page size %d is not supported\n",
731 static int fsl_elbc_read_page(struct mtd_info
*mtd
,
732 struct nand_chip
*chip
,
736 fsl_elbc_read_buf(mtd
, buf
, mtd
->writesize
);
737 fsl_elbc_read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
739 if (fsl_elbc_wait(mtd
, chip
) & NAND_STATUS_FAIL
)
740 mtd
->ecc_stats
.failed
++;
745 /* ECC will be calculated automatically, and errors will be detected in
748 static void fsl_elbc_write_page(struct mtd_info
*mtd
,
749 struct nand_chip
*chip
,
752 struct fsl_elbc_mtd
*priv
= chip
->priv
;
753 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
755 fsl_elbc_write_buf(mtd
, buf
, mtd
->writesize
);
756 fsl_elbc_write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
758 ctrl
->oob_poi
= chip
->oob_poi
;
761 static int fsl_elbc_chip_init(struct fsl_elbc_mtd
*priv
)
763 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
764 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
765 struct nand_chip
*chip
= &priv
->chip
;
767 dev_dbg(priv
->dev
, "eLBC Set Information for bank %d\n", priv
->bank
);
769 /* Fill in fsl_elbc_mtd structure */
770 priv
->mtd
.priv
= chip
;
771 priv
->mtd
.owner
= THIS_MODULE
;
773 /* Set the ECCM according to the settings in bootloader.*/
774 priv
->fmr
= in_be32(&lbc
->fmr
) & FMR_ECCM
;
776 /* fill in nand_chip structure */
777 /* set up function call table */
778 chip
->read_byte
= fsl_elbc_read_byte
;
779 chip
->write_buf
= fsl_elbc_write_buf
;
780 chip
->read_buf
= fsl_elbc_read_buf
;
781 chip
->verify_buf
= fsl_elbc_verify_buf
;
782 chip
->select_chip
= fsl_elbc_select_chip
;
783 chip
->cmdfunc
= fsl_elbc_cmdfunc
;
784 chip
->waitfunc
= fsl_elbc_wait
;
786 chip
->bbt_td
= &bbt_main_descr
;
787 chip
->bbt_md
= &bbt_mirror_descr
;
789 /* set up nand options */
790 chip
->options
= NAND_NO_READRDY
| NAND_NO_AUTOINCR
|
793 chip
->controller
= &ctrl
->controller
;
796 chip
->ecc
.read_page
= fsl_elbc_read_page
;
797 chip
->ecc
.write_page
= fsl_elbc_write_page
;
799 /* If CS Base Register selects full hardware ECC then use it */
800 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
802 chip
->ecc
.mode
= NAND_ECC_HW
;
803 /* put in small page settings and adjust later if needed */
804 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
805 &fsl_elbc_oob_sp_eccm1
: &fsl_elbc_oob_sp_eccm0
;
806 chip
->ecc
.size
= 512;
809 /* otherwise fall back to default software ECC */
810 chip
->ecc
.mode
= NAND_ECC_SOFT
;
816 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd
*priv
)
818 struct fsl_elbc_ctrl
*ctrl
= priv
->ctrl
;
820 nand_release(&priv
->mtd
);
822 kfree(priv
->mtd
.name
);
825 iounmap(priv
->vbase
);
827 ctrl
->chips
[priv
->bank
] = NULL
;
833 static int __devinit
fsl_elbc_chip_probe(struct fsl_elbc_ctrl
*ctrl
,
834 struct device_node
*node
)
836 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
837 struct fsl_elbc_mtd
*priv
;
839 #ifdef CONFIG_MTD_PARTITIONS
840 static const char *part_probe_types
[]
841 = { "cmdlinepart", "RedBoot", NULL
};
842 struct mtd_partition
*parts
;
847 /* get, allocate and map the memory resource */
848 ret
= of_address_to_resource(node
, 0, &res
);
850 dev_err(ctrl
->dev
, "failed to get resource\n");
854 /* find which chip select it is connected to */
855 for (bank
= 0; bank
< MAX_BANKS
; bank
++)
856 if ((in_be32(&lbc
->bank
[bank
].br
) & BR_V
) &&
857 (in_be32(&lbc
->bank
[bank
].br
) & BR_MSEL
) == BR_MS_FCM
&&
858 (in_be32(&lbc
->bank
[bank
].br
) &
859 in_be32(&lbc
->bank
[bank
].or) & BR_BA
)
863 if (bank
>= MAX_BANKS
) {
864 dev_err(ctrl
->dev
, "address did not match any chip selects\n");
868 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
872 ctrl
->chips
[bank
] = priv
;
875 priv
->dev
= ctrl
->dev
;
877 priv
->vbase
= ioremap(res
.start
, res
.end
- res
.start
+ 1);
879 dev_err(ctrl
->dev
, "failed to map chip region\n");
884 priv
->mtd
.name
= kasprintf(GFP_KERNEL
, "%x.flash", (unsigned)res
.start
);
885 if (!priv
->mtd
.name
) {
890 ret
= fsl_elbc_chip_init(priv
);
894 ret
= nand_scan_ident(&priv
->mtd
, 1);
898 ret
= fsl_elbc_chip_init_tail(&priv
->mtd
);
902 ret
= nand_scan_tail(&priv
->mtd
);
906 #ifdef CONFIG_MTD_PARTITIONS
907 /* First look for RedBoot table or partitions on the command
908 * line, these take precedence over device tree information */
909 ret
= parse_mtd_partitions(&priv
->mtd
, part_probe_types
, &parts
, 0);
913 #ifdef CONFIG_MTD_OF_PARTS
915 ret
= of_mtd_parse_partitions(priv
->dev
, node
, &parts
);
922 add_mtd_partitions(&priv
->mtd
, parts
, ret
);
925 add_mtd_device(&priv
->mtd
);
927 printk(KERN_INFO
"eLBC NAND device at 0x%llx, bank %d\n",
928 (unsigned long long)res
.start
, priv
->bank
);
932 fsl_elbc_chip_remove(priv
);
936 static int __devinit
fsl_elbc_ctrl_init(struct fsl_elbc_ctrl
*ctrl
)
938 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
941 * NAND transactions can tie up the bus for a long time, so set the
942 * bus timeout to max by clearing LBCR[BMT] (highest base counter
943 * value) and setting LBCR[BMTPS] to the highest prescaler value.
945 clrsetbits_be32(&lbc
->lbcr
, LBCR_BMT
, 15);
947 /* clear event registers */
948 setbits32(&lbc
->ltesr
, LTESR_NAND_MASK
);
949 out_be32(&lbc
->lteatr
, 0);
951 /* Enable interrupts for any detected events */
952 out_be32(&lbc
->lteir
, LTESR_NAND_MASK
);
954 ctrl
->read_bytes
= 0;
961 static int fsl_elbc_ctrl_remove(struct of_device
*ofdev
)
963 struct fsl_elbc_ctrl
*ctrl
= dev_get_drvdata(&ofdev
->dev
);
966 for (i
= 0; i
< MAX_BANKS
; i
++)
968 fsl_elbc_chip_remove(ctrl
->chips
[i
]);
971 free_irq(ctrl
->irq
, ctrl
);
976 dev_set_drvdata(&ofdev
->dev
, NULL
);
981 /* NOTE: This interrupt is also used to report other localbus events,
982 * such as transaction errors on other chipselects. If we want to
983 * capture those, we'll need to move the IRQ code into a shared
987 static irqreturn_t
fsl_elbc_ctrl_irq(int irqno
, void *data
)
989 struct fsl_elbc_ctrl
*ctrl
= data
;
990 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
991 __be32 status
= in_be32(&lbc
->ltesr
) & LTESR_NAND_MASK
;
994 out_be32(&lbc
->ltesr
, status
);
995 out_be32(&lbc
->lteatr
, 0);
997 ctrl
->irq_status
= status
;
999 wake_up(&ctrl
->irq_wait
);
1007 /* fsl_elbc_ctrl_probe
1009 * called by device layer when it finds a device matching
1010 * one our driver can handled. This code allocates all of
1011 * the resources needed for the controller only. The
1012 * resources for the NAND banks themselves are allocated
1013 * in the chip probe function.
1016 static int __devinit
fsl_elbc_ctrl_probe(struct of_device
*ofdev
,
1017 const struct of_device_id
*match
)
1019 struct device_node
*child
;
1020 struct fsl_elbc_ctrl
*ctrl
;
1023 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
1027 dev_set_drvdata(&ofdev
->dev
, ctrl
);
1029 spin_lock_init(&ctrl
->controller
.lock
);
1030 init_waitqueue_head(&ctrl
->controller
.wq
);
1031 init_waitqueue_head(&ctrl
->irq_wait
);
1033 ctrl
->regs
= of_iomap(ofdev
->node
, 0);
1035 dev_err(&ofdev
->dev
, "failed to get memory region\n");
1040 ctrl
->irq
= of_irq_to_resource(ofdev
->node
, 0, NULL
);
1041 if (ctrl
->irq
== NO_IRQ
) {
1042 dev_err(&ofdev
->dev
, "failed to get irq resource\n");
1047 ctrl
->dev
= &ofdev
->dev
;
1049 ret
= fsl_elbc_ctrl_init(ctrl
);
1053 ret
= request_irq(ctrl
->irq
, fsl_elbc_ctrl_irq
, 0, "fsl-elbc", ctrl
);
1055 dev_err(&ofdev
->dev
, "failed to install irq (%d)\n",
1061 for_each_child_of_node(ofdev
->node
, child
)
1062 if (of_device_is_compatible(child
, "fsl,elbc-fcm-nand"))
1063 fsl_elbc_chip_probe(ctrl
, child
);
1068 fsl_elbc_ctrl_remove(ofdev
);
1072 static const struct of_device_id fsl_elbc_match
[] = {
1074 .compatible
= "fsl,elbc",
1079 static struct of_platform_driver fsl_elbc_ctrl_driver
= {
1083 .match_table
= fsl_elbc_match
,
1084 .probe
= fsl_elbc_ctrl_probe
,
1085 .remove
= fsl_elbc_ctrl_remove
,
1088 static int __init
fsl_elbc_init(void)
1090 return of_register_platform_driver(&fsl_elbc_ctrl_driver
);
1093 static void __exit
fsl_elbc_exit(void)
1095 of_unregister_platform_driver(&fsl_elbc_ctrl_driver
);
1098 module_init(fsl_elbc_init
);
1099 module_exit(fsl_elbc_exit
);
1101 MODULE_LICENSE("GPL");
1102 MODULE_AUTHOR("Freescale");
1103 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");