5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8
= {
66 static struct nand_ecclayout nand_oob_16
= {
68 .eccpos
= {0, 1, 2, 3, 6, 7},
74 static struct nand_ecclayout nand_oob_64
= {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
85 static struct nand_ecclayout nand_oob_128
= {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
99 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
102 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
103 struct mtd_oob_ops
*ops
);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger
);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info
*mtd
)
119 struct nand_chip
*chip
= mtd
->priv
;
121 /* De-select the NAND device */
122 chip
->select_chip(mtd
, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip
->controller
->lock
);
126 chip
->controller
->active
= NULL
;
127 chip
->state
= FL_READY
;
128 wake_up(&chip
->controller
->wq
);
129 spin_unlock(&chip
->controller
->lock
);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
140 struct nand_chip
*chip
= mtd
->priv
;
141 return readb(chip
->IO_ADDR_R
);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd
->priv
;
154 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16
nand_read_word(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd
->priv
;
167 return readw(chip
->IO_ADDR_R
);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
179 struct nand_chip
*chip
= mtd
->priv
;
183 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
204 struct nand_chip
*chip
= mtd
->priv
;
206 for (i
= 0; i
< len
; i
++)
207 writeb(buf
[i
], chip
->IO_ADDR_W
);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
221 struct nand_chip
*chip
= mtd
->priv
;
223 for (i
= 0; i
< len
; i
++)
224 buf
[i
] = readb(chip
->IO_ADDR_R
);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
238 struct nand_chip
*chip
= mtd
->priv
;
240 for (i
= 0; i
< len
; i
++)
241 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
257 struct nand_chip
*chip
= mtd
->priv
;
258 u16
*p
= (u16
*) buf
;
261 for (i
= 0; i
< len
; i
++)
262 writew(p
[i
], chip
->IO_ADDR_W
);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
277 struct nand_chip
*chip
= mtd
->priv
;
278 u16
*p
= (u16
*) buf
;
281 for (i
= 0; i
< len
; i
++)
282 p
[i
] = readw(chip
->IO_ADDR_R
);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
296 struct nand_chip
*chip
= mtd
->priv
;
297 u16
*p
= (u16
*) buf
;
300 for (i
= 0; i
< len
; i
++)
301 if (p
[i
] != readw(chip
->IO_ADDR_R
))
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
317 int page
, chipnr
, res
= 0;
318 struct nand_chip
*chip
= mtd
->priv
;
321 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
324 chipnr
= (int)(ofs
>> chip
->chip_shift
);
326 nand_get_device(chip
, mtd
, FL_READING
);
328 /* Select the NAND device */
329 chip
->select_chip(mtd
, chipnr
);
332 if (chip
->options
& NAND_BUSWIDTH_16
) {
333 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
335 bad
= cpu_to_le16(chip
->read_word(mtd
));
336 if (chip
->badblockpos
& 0x1)
338 if ((bad
& 0xFF) != 0xff)
341 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
342 if (chip
->read_byte(mtd
) != 0xff)
347 nand_release_device(mtd
);
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
362 struct nand_chip
*chip
= mtd
->priv
;
363 uint8_t buf
[2] = { 0, 0 };
366 /* Get block number */
367 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
369 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip
->options
& NAND_USE_FLASH_BBT
)
373 ret
= nand_update_bbt(mtd
, ofs
);
375 /* We write two bytes, so we dont have to mess with 16 bit
378 nand_get_device(chip
, mtd
, FL_WRITING
);
380 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
381 chip
->ops
.datbuf
= NULL
;
382 chip
->ops
.oobbuf
= buf
;
383 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
385 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
386 nand_release_device(mtd
);
389 mtd
->ecc_stats
.badblocks
++;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info
*mtd
)
403 struct nand_chip
*chip
= mtd
->priv
;
404 /* Check the WP bit */
405 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
406 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
422 struct nand_chip
*chip
= mtd
->priv
;
425 return chip
->block_bad(mtd
, ofs
, getchip
);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
432 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
433 * @mtd: MTD device structure
436 * Helper function for nand_wait_ready used when needing to wait in interrupt
439 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
441 struct nand_chip
*chip
= mtd
->priv
;
444 /* Wait for the device to get ready */
445 for (i
= 0; i
< timeo
; i
++) {
446 if (chip
->dev_ready(mtd
))
448 touch_softlockup_watchdog();
454 * Wait for the ready pin, after a command
455 * The timeout is catched later.
457 void nand_wait_ready(struct mtd_info
*mtd
)
459 struct nand_chip
*chip
= mtd
->priv
;
460 unsigned long timeo
= jiffies
+ 2;
463 if (in_interrupt() || oops_in_progress
)
464 return panic_nand_wait_ready(mtd
, 400);
466 led_trigger_event(nand_led_trigger
, LED_FULL
);
467 /* wait until command is processed or timeout occures */
469 if (chip
->dev_ready(mtd
))
471 touch_softlockup_watchdog();
472 } while (time_before(jiffies
, timeo
));
473 led_trigger_event(nand_led_trigger
, LED_OFF
);
475 EXPORT_SYMBOL_GPL(nand_wait_ready
);
478 * nand_command - [DEFAULT] Send command to NAND device
479 * @mtd: MTD device structure
480 * @command: the command to be sent
481 * @column: the column address for this command, -1 if none
482 * @page_addr: the page address for this command, -1 if none
484 * Send command to NAND device. This function is used for small page
485 * devices (256/512 Bytes per page)
487 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
488 int column
, int page_addr
)
490 register struct nand_chip
*chip
= mtd
->priv
;
491 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
494 * Write out the command to the device.
496 if (command
== NAND_CMD_SEQIN
) {
499 if (column
>= mtd
->writesize
) {
501 column
-= mtd
->writesize
;
502 readcmd
= NAND_CMD_READOOB
;
503 } else if (column
< 256) {
504 /* First 256 bytes --> READ0 */
505 readcmd
= NAND_CMD_READ0
;
508 readcmd
= NAND_CMD_READ1
;
510 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
511 ctrl
&= ~NAND_CTRL_CHANGE
;
513 chip
->cmd_ctrl(mtd
, command
, ctrl
);
516 * Address cycle, when necessary
518 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
519 /* Serially input address */
521 /* Adjust columns for 16 bit buswidth */
522 if (chip
->options
& NAND_BUSWIDTH_16
)
524 chip
->cmd_ctrl(mtd
, column
, ctrl
);
525 ctrl
&= ~NAND_CTRL_CHANGE
;
527 if (page_addr
!= -1) {
528 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
529 ctrl
&= ~NAND_CTRL_CHANGE
;
530 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
531 /* One more address cycle for devices > 32MiB */
532 if (chip
->chipsize
> (32 << 20))
533 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
535 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
538 * program and erase have their own busy handlers
539 * status and sequential in needs no delay
543 case NAND_CMD_PAGEPROG
:
544 case NAND_CMD_ERASE1
:
545 case NAND_CMD_ERASE2
:
547 case NAND_CMD_STATUS
:
553 udelay(chip
->chip_delay
);
554 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
555 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
557 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
558 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
561 /* This applies to read commands */
564 * If we don't have access to the busy pin, we apply the given
567 if (!chip
->dev_ready
) {
568 udelay(chip
->chip_delay
);
572 /* Apply this short delay always to ensure that we do wait tWB in
573 * any case on any machine. */
576 nand_wait_ready(mtd
);
580 * nand_command_lp - [DEFAULT] Send command to NAND large page device
581 * @mtd: MTD device structure
582 * @command: the command to be sent
583 * @column: the column address for this command, -1 if none
584 * @page_addr: the page address for this command, -1 if none
586 * Send command to NAND device. This is the version for the new large page
587 * devices We dont have the separate regions as we have in the small page
588 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
590 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
591 int column
, int page_addr
)
593 register struct nand_chip
*chip
= mtd
->priv
;
595 /* Emulate NAND_CMD_READOOB */
596 if (command
== NAND_CMD_READOOB
) {
597 column
+= mtd
->writesize
;
598 command
= NAND_CMD_READ0
;
601 /* Command latch cycle */
602 chip
->cmd_ctrl(mtd
, command
& 0xff,
603 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
605 if (column
!= -1 || page_addr
!= -1) {
606 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
608 /* Serially input address */
610 /* Adjust columns for 16 bit buswidth */
611 if (chip
->options
& NAND_BUSWIDTH_16
)
613 chip
->cmd_ctrl(mtd
, column
, ctrl
);
614 ctrl
&= ~NAND_CTRL_CHANGE
;
615 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
617 if (page_addr
!= -1) {
618 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
619 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
620 NAND_NCE
| NAND_ALE
);
621 /* One more address cycle for devices > 128MiB */
622 if (chip
->chipsize
> (128 << 20))
623 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
624 NAND_NCE
| NAND_ALE
);
627 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
630 * program and erase have their own busy handlers
631 * status, sequential in, and deplete1 need no delay
635 case NAND_CMD_CACHEDPROG
:
636 case NAND_CMD_PAGEPROG
:
637 case NAND_CMD_ERASE1
:
638 case NAND_CMD_ERASE2
:
641 case NAND_CMD_STATUS
:
642 case NAND_CMD_DEPLETE1
:
646 * read error status commands require only a short delay
648 case NAND_CMD_STATUS_ERROR
:
649 case NAND_CMD_STATUS_ERROR0
:
650 case NAND_CMD_STATUS_ERROR1
:
651 case NAND_CMD_STATUS_ERROR2
:
652 case NAND_CMD_STATUS_ERROR3
:
653 udelay(chip
->chip_delay
);
659 udelay(chip
->chip_delay
);
660 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
661 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
662 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
663 NAND_NCE
| NAND_CTRL_CHANGE
);
664 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
667 case NAND_CMD_RNDOUT
:
668 /* No ready / busy check necessary */
669 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
670 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
671 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
672 NAND_NCE
| NAND_CTRL_CHANGE
);
676 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
677 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
678 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
679 NAND_NCE
| NAND_CTRL_CHANGE
);
681 /* This applies to read commands */
684 * If we don't have access to the busy pin, we apply the given
687 if (!chip
->dev_ready
) {
688 udelay(chip
->chip_delay
);
693 /* Apply this short delay always to ensure that we do wait tWB in
694 * any case on any machine. */
697 nand_wait_ready(mtd
);
701 * panic_nand_get_device - [GENERIC] Get chip for selected access
702 * @chip: the nand chip descriptor
703 * @mtd: MTD device structure
704 * @new_state: the state which is requested
706 * Used when in panic, no locks are taken.
708 static void panic_nand_get_device(struct nand_chip
*chip
,
709 struct mtd_info
*mtd
, int new_state
)
711 /* Hardware controller shared among independend devices */
712 chip
->controller
->active
= chip
;
713 chip
->state
= new_state
;
717 * nand_get_device - [GENERIC] Get chip for selected access
718 * @chip: the nand chip descriptor
719 * @mtd: MTD device structure
720 * @new_state: the state which is requested
722 * Get the device and lock it for exclusive access
725 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
727 spinlock_t
*lock
= &chip
->controller
->lock
;
728 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
729 DECLARE_WAITQUEUE(wait
, current
);
733 /* Hardware controller shared among independent devices */
734 if (!chip
->controller
->active
)
735 chip
->controller
->active
= chip
;
737 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
738 chip
->state
= new_state
;
742 if (new_state
== FL_PM_SUSPENDED
) {
743 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
744 chip
->state
= FL_PM_SUSPENDED
;
752 set_current_state(TASK_UNINTERRUPTIBLE
);
753 add_wait_queue(wq
, &wait
);
756 remove_wait_queue(wq
, &wait
);
761 * panic_nand_wait - [GENERIC] wait until the command is done
762 * @mtd: MTD device structure
763 * @chip: NAND chip structure
766 * Wait for command done. This is a helper function for nand_wait used when
767 * we are in interrupt context. May happen when in panic and trying to write
768 * an oops trough mtdoops.
770 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
774 for (i
= 0; i
< timeo
; i
++) {
775 if (chip
->dev_ready
) {
776 if (chip
->dev_ready(mtd
))
779 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
787 * nand_wait - [DEFAULT] wait until the command is done
788 * @mtd: MTD device structure
789 * @chip: NAND chip structure
791 * Wait for command done. This applies to erase and program only
792 * Erase can take up to 400ms and program up to 20ms according to
793 * general NAND and SmartMedia specs
795 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
798 unsigned long timeo
= jiffies
;
799 int status
, state
= chip
->state
;
801 if (state
== FL_ERASING
)
802 timeo
+= (HZ
* 400) / 1000;
804 timeo
+= (HZ
* 20) / 1000;
806 led_trigger_event(nand_led_trigger
, LED_FULL
);
808 /* Apply this short delay always to ensure that we do wait tWB in
809 * any case on any machine. */
812 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
813 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
815 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
817 if (in_interrupt() || oops_in_progress
)
818 panic_nand_wait(mtd
, chip
, timeo
);
820 while (time_before(jiffies
, timeo
)) {
821 if (chip
->dev_ready
) {
822 if (chip
->dev_ready(mtd
))
825 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
831 led_trigger_event(nand_led_trigger
, LED_OFF
);
833 status
= (int)chip
->read_byte(mtd
);
838 * nand_read_page_raw - [Intern] read raw page data without ecc
839 * @mtd: mtd info structure
840 * @chip: nand chip info structure
841 * @buf: buffer to store read data
842 * @page: page number to read
844 * Not for syndrome calculating ecc controllers, which use a special oob layout
846 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
847 uint8_t *buf
, int page
)
849 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
850 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
855 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
856 * @mtd: mtd info structure
857 * @chip: nand chip info structure
858 * @buf: buffer to store read data
859 * @page: page number to read
861 * We need a special oob layout and handling even when OOB isn't used.
863 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
864 uint8_t *buf
, int page
)
866 int eccsize
= chip
->ecc
.size
;
867 int eccbytes
= chip
->ecc
.bytes
;
868 uint8_t *oob
= chip
->oob_poi
;
871 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
872 chip
->read_buf(mtd
, buf
, eccsize
);
875 if (chip
->ecc
.prepad
) {
876 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
877 oob
+= chip
->ecc
.prepad
;
880 chip
->read_buf(mtd
, oob
, eccbytes
);
883 if (chip
->ecc
.postpad
) {
884 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
885 oob
+= chip
->ecc
.postpad
;
889 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
891 chip
->read_buf(mtd
, oob
, size
);
897 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
898 * @mtd: mtd info structure
899 * @chip: nand chip info structure
900 * @buf: buffer to store read data
901 * @page: page number to read
903 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
904 uint8_t *buf
, int page
)
906 int i
, eccsize
= chip
->ecc
.size
;
907 int eccbytes
= chip
->ecc
.bytes
;
908 int eccsteps
= chip
->ecc
.steps
;
910 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
911 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
912 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
914 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
916 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
917 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
919 for (i
= 0; i
< chip
->ecc
.total
; i
++)
920 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
922 eccsteps
= chip
->ecc
.steps
;
925 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
928 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
930 mtd
->ecc_stats
.failed
++;
932 mtd
->ecc_stats
.corrected
+= stat
;
938 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
939 * @mtd: mtd info structure
940 * @chip: nand chip info structure
941 * @data_offs: offset of requested data within the page
942 * @readlen: data length
943 * @bufpoi: buffer to store read data
945 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
947 int start_step
, end_step
, num_steps
;
948 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
950 int data_col_addr
, i
, gaps
= 0;
951 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
952 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
954 /* Column address wihin the page aligned to ECC size (256bytes). */
955 start_step
= data_offs
/ chip
->ecc
.size
;
956 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
957 num_steps
= end_step
- start_step
+ 1;
959 /* Data size aligned to ECC ecc.size*/
960 datafrag_len
= num_steps
* chip
->ecc
.size
;
961 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
963 data_col_addr
= start_step
* chip
->ecc
.size
;
964 /* If we read not a page aligned data */
965 if (data_col_addr
!= 0)
966 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
968 p
= bufpoi
+ data_col_addr
;
969 chip
->read_buf(mtd
, p
, datafrag_len
);
972 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
973 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
975 /* The performance is faster if to position offsets
976 according to ecc.pos. Let make sure here that
977 there are no gaps in ecc positions */
978 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
979 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
980 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
986 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
987 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
989 /* send the command to read the particular ecc bytes */
990 /* take care about buswidth alignment in read_buf */
991 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
992 aligned_len
= eccfrag_len
;
993 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
995 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
998 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
999 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1002 for (i
= 0; i
< eccfrag_len
; i
++)
1003 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
1005 p
= bufpoi
+ data_col_addr
;
1006 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1009 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1011 mtd
->ecc_stats
.failed
++;
1013 mtd
->ecc_stats
.corrected
+= stat
;
1019 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1020 * @mtd: mtd info structure
1021 * @chip: nand chip info structure
1022 * @buf: buffer to store read data
1023 * @page: page number to read
1025 * Not for syndrome calculating ecc controllers which need a special oob layout
1027 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1028 uint8_t *buf
, int page
)
1030 int i
, eccsize
= chip
->ecc
.size
;
1031 int eccbytes
= chip
->ecc
.bytes
;
1032 int eccsteps
= chip
->ecc
.steps
;
1034 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1035 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1036 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1038 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1039 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1040 chip
->read_buf(mtd
, p
, eccsize
);
1041 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1043 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1045 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1046 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1048 eccsteps
= chip
->ecc
.steps
;
1051 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1054 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1056 mtd
->ecc_stats
.failed
++;
1058 mtd
->ecc_stats
.corrected
+= stat
;
1064 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1065 * @mtd: mtd info structure
1066 * @chip: nand chip info structure
1067 * @buf: buffer to store read data
1068 * @page: page number to read
1070 * Hardware ECC for large page chips, require OOB to be read first.
1071 * For this ECC mode, the write_page method is re-used from ECC_HW.
1072 * These methods read/write ECC from the OOB area, unlike the
1073 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1074 * "infix ECC" scheme and reads/writes ECC from the data area, by
1075 * overwriting the NAND manufacturer bad block markings.
1077 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1078 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1080 int i
, eccsize
= chip
->ecc
.size
;
1081 int eccbytes
= chip
->ecc
.bytes
;
1082 int eccsteps
= chip
->ecc
.steps
;
1084 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1085 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1086 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1088 /* Read the OOB area first */
1089 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1090 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1091 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1093 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1094 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1096 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1099 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1100 chip
->read_buf(mtd
, p
, eccsize
);
1101 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1103 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1105 mtd
->ecc_stats
.failed
++;
1107 mtd
->ecc_stats
.corrected
+= stat
;
1113 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @buf: buffer to store read data
1117 * @page: page number to read
1119 * The hw generator calculates the error syndrome automatically. Therefor
1120 * we need a special oob layout and handling.
1122 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1123 uint8_t *buf
, int page
)
1125 int i
, eccsize
= chip
->ecc
.size
;
1126 int eccbytes
= chip
->ecc
.bytes
;
1127 int eccsteps
= chip
->ecc
.steps
;
1129 uint8_t *oob
= chip
->oob_poi
;
1131 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1134 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1135 chip
->read_buf(mtd
, p
, eccsize
);
1137 if (chip
->ecc
.prepad
) {
1138 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1139 oob
+= chip
->ecc
.prepad
;
1142 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1143 chip
->read_buf(mtd
, oob
, eccbytes
);
1144 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1147 mtd
->ecc_stats
.failed
++;
1149 mtd
->ecc_stats
.corrected
+= stat
;
1153 if (chip
->ecc
.postpad
) {
1154 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1155 oob
+= chip
->ecc
.postpad
;
1159 /* Calculate remaining oob bytes */
1160 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1162 chip
->read_buf(mtd
, oob
, i
);
1168 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1169 * @chip: nand chip structure
1170 * @oob: oob destination address
1171 * @ops: oob ops structure
1172 * @len: size of oob to transfer
1174 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1175 struct mtd_oob_ops
*ops
, size_t len
)
1181 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1184 case MTD_OOB_AUTO
: {
1185 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1186 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1189 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1190 /* Read request not from offset 0 ? */
1191 if (unlikely(roffs
)) {
1192 if (roffs
>= free
->length
) {
1193 roffs
-= free
->length
;
1196 boffs
= free
->offset
+ roffs
;
1197 bytes
= min_t(size_t, len
,
1198 (free
->length
- roffs
));
1201 bytes
= min_t(size_t, len
, free
->length
);
1202 boffs
= free
->offset
;
1204 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1216 * nand_do_read_ops - [Internal] Read data with ECC
1218 * @mtd: MTD device structure
1219 * @from: offset to read from
1220 * @ops: oob ops structure
1222 * Internal function. Called with chip held.
1224 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1225 struct mtd_oob_ops
*ops
)
1227 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1228 struct nand_chip
*chip
= mtd
->priv
;
1229 struct mtd_ecc_stats stats
;
1230 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1233 uint32_t readlen
= ops
->len
;
1234 uint32_t oobreadlen
= ops
->ooblen
;
1235 uint8_t *bufpoi
, *oob
, *buf
;
1237 stats
= mtd
->ecc_stats
;
1239 chipnr
= (int)(from
>> chip
->chip_shift
);
1240 chip
->select_chip(mtd
, chipnr
);
1242 realpage
= (int)(from
>> chip
->page_shift
);
1243 page
= realpage
& chip
->pagemask
;
1245 col
= (int)(from
& (mtd
->writesize
- 1));
1251 bytes
= min(mtd
->writesize
- col
, readlen
);
1252 aligned
= (bytes
== mtd
->writesize
);
1254 /* Is the current page in the buffer ? */
1255 if (realpage
!= chip
->pagebuf
|| oob
) {
1256 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1258 if (likely(sndcmd
)) {
1259 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1263 /* Now read the page into the buffer */
1264 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1265 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1267 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1268 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1270 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1275 /* Transfer not aligned data */
1277 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1278 chip
->pagebuf
= realpage
;
1279 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1284 if (unlikely(oob
)) {
1285 /* Raw mode does data:oob:data:oob */
1286 if (ops
->mode
!= MTD_OOB_RAW
) {
1287 int toread
= min(oobreadlen
,
1288 chip
->ecc
.layout
->oobavail
);
1290 oob
= nand_transfer_oob(chip
,
1292 oobreadlen
-= toread
;
1295 buf
= nand_transfer_oob(chip
,
1296 buf
, ops
, mtd
->oobsize
);
1299 if (!(chip
->options
& NAND_NO_READRDY
)) {
1301 * Apply delay or wait for ready/busy pin. Do
1302 * this before the AUTOINCR check, so no
1303 * problems arise if a chip which does auto
1304 * increment is marked as NOAUTOINCR by the
1307 if (!chip
->dev_ready
)
1308 udelay(chip
->chip_delay
);
1310 nand_wait_ready(mtd
);
1313 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1322 /* For subsequent reads align to page boundary. */
1324 /* Increment page address */
1327 page
= realpage
& chip
->pagemask
;
1328 /* Check, if we cross a chip boundary */
1331 chip
->select_chip(mtd
, -1);
1332 chip
->select_chip(mtd
, chipnr
);
1335 /* Check, if the chip supports auto page increment
1336 * or if we have hit a block boundary.
1338 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1342 ops
->retlen
= ops
->len
- (size_t) readlen
;
1344 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1349 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1352 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1356 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1357 * @mtd: MTD device structure
1358 * @from: offset to read from
1359 * @len: number of bytes to read
1360 * @retlen: pointer to variable to store the number of read bytes
1361 * @buf: the databuffer to put data
1363 * Get hold of the chip and call nand_do_read
1365 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1366 size_t *retlen
, uint8_t *buf
)
1368 struct nand_chip
*chip
= mtd
->priv
;
1371 /* Do not allow reads past end of device */
1372 if ((from
+ len
) > mtd
->size
)
1377 nand_get_device(chip
, mtd
, FL_READING
);
1379 chip
->ops
.len
= len
;
1380 chip
->ops
.datbuf
= buf
;
1381 chip
->ops
.oobbuf
= NULL
;
1383 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1385 *retlen
= chip
->ops
.retlen
;
1387 nand_release_device(mtd
);
1393 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1394 * @mtd: mtd info structure
1395 * @chip: nand chip info structure
1396 * @page: page number to read
1397 * @sndcmd: flag whether to issue read command or not
1399 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1400 int page
, int sndcmd
)
1403 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1406 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1411 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1413 * @mtd: mtd info structure
1414 * @chip: nand chip info structure
1415 * @page: page number to read
1416 * @sndcmd: flag whether to issue read command or not
1418 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1419 int page
, int sndcmd
)
1421 uint8_t *buf
= chip
->oob_poi
;
1422 int length
= mtd
->oobsize
;
1423 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1424 int eccsize
= chip
->ecc
.size
;
1425 uint8_t *bufpoi
= buf
;
1426 int i
, toread
, sndrnd
= 0, pos
;
1428 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1429 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1431 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1432 if (mtd
->writesize
> 512)
1433 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1435 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1438 toread
= min_t(int, length
, chunk
);
1439 chip
->read_buf(mtd
, bufpoi
, toread
);
1444 chip
->read_buf(mtd
, bufpoi
, length
);
1450 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1451 * @mtd: mtd info structure
1452 * @chip: nand chip info structure
1453 * @page: page number to write
1455 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1459 const uint8_t *buf
= chip
->oob_poi
;
1460 int length
= mtd
->oobsize
;
1462 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1463 chip
->write_buf(mtd
, buf
, length
);
1464 /* Send command to program the OOB data */
1465 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1467 status
= chip
->waitfunc(mtd
, chip
);
1469 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1473 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1474 * with syndrome - only for large page flash !
1475 * @mtd: mtd info structure
1476 * @chip: nand chip info structure
1477 * @page: page number to write
1479 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1480 struct nand_chip
*chip
, int page
)
1482 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1483 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1484 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1485 const uint8_t *bufpoi
= chip
->oob_poi
;
1488 * data-ecc-data-ecc ... ecc-oob
1490 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1492 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1493 pos
= steps
* (eccsize
+ chunk
);
1498 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1499 for (i
= 0; i
< steps
; i
++) {
1501 if (mtd
->writesize
<= 512) {
1502 uint32_t fill
= 0xFFFFFFFF;
1506 int num
= min_t(int, len
, 4);
1507 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1512 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1513 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1517 len
= min_t(int, length
, chunk
);
1518 chip
->write_buf(mtd
, bufpoi
, len
);
1523 chip
->write_buf(mtd
, bufpoi
, length
);
1525 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1526 status
= chip
->waitfunc(mtd
, chip
);
1528 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1532 * nand_do_read_oob - [Intern] NAND read out-of-band
1533 * @mtd: MTD device structure
1534 * @from: offset to read from
1535 * @ops: oob operations description structure
1537 * NAND read out-of-band data from the spare area
1539 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1540 struct mtd_oob_ops
*ops
)
1542 int page
, realpage
, chipnr
, sndcmd
= 1;
1543 struct nand_chip
*chip
= mtd
->priv
;
1544 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1545 int readlen
= ops
->ooblen
;
1547 uint8_t *buf
= ops
->oobbuf
;
1549 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08Lx, len = %i\n",
1550 __func__
, (unsigned long long)from
, readlen
);
1552 if (ops
->mode
== MTD_OOB_AUTO
)
1553 len
= chip
->ecc
.layout
->oobavail
;
1557 if (unlikely(ops
->ooboffs
>= len
)) {
1558 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start read "
1559 "outside oob\n", __func__
);
1563 /* Do not allow reads past end of device */
1564 if (unlikely(from
>= mtd
->size
||
1565 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1566 (from
>> chip
->page_shift
)) * len
)) {
1567 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read beyond end "
1568 "of device\n", __func__
);
1572 chipnr
= (int)(from
>> chip
->chip_shift
);
1573 chip
->select_chip(mtd
, chipnr
);
1575 /* Shift to get page */
1576 realpage
= (int)(from
>> chip
->page_shift
);
1577 page
= realpage
& chip
->pagemask
;
1580 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1582 len
= min(len
, readlen
);
1583 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1585 if (!(chip
->options
& NAND_NO_READRDY
)) {
1587 * Apply delay or wait for ready/busy pin. Do this
1588 * before the AUTOINCR check, so no problems arise if a
1589 * chip which does auto increment is marked as
1590 * NOAUTOINCR by the board driver.
1592 if (!chip
->dev_ready
)
1593 udelay(chip
->chip_delay
);
1595 nand_wait_ready(mtd
);
1602 /* Increment page address */
1605 page
= realpage
& chip
->pagemask
;
1606 /* Check, if we cross a chip boundary */
1609 chip
->select_chip(mtd
, -1);
1610 chip
->select_chip(mtd
, chipnr
);
1613 /* Check, if the chip supports auto page increment
1614 * or if we have hit a block boundary.
1616 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1620 ops
->oobretlen
= ops
->ooblen
;
1625 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1626 * @mtd: MTD device structure
1627 * @from: offset to read from
1628 * @ops: oob operation description structure
1630 * NAND read data and/or out-of-band data
1632 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1633 struct mtd_oob_ops
*ops
)
1635 struct nand_chip
*chip
= mtd
->priv
;
1636 int ret
= -ENOTSUPP
;
1640 /* Do not allow reads past end of device */
1641 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1642 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read "
1643 "beyond end of device\n", __func__
);
1647 nand_get_device(chip
, mtd
, FL_READING
);
1660 ret
= nand_do_read_oob(mtd
, from
, ops
);
1662 ret
= nand_do_read_ops(mtd
, from
, ops
);
1665 nand_release_device(mtd
);
1671 * nand_write_page_raw - [Intern] raw page write function
1672 * @mtd: mtd info structure
1673 * @chip: nand chip info structure
1676 * Not for syndrome calculating ecc controllers, which use a special oob layout
1678 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1681 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1682 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1686 * nand_write_page_raw_syndrome - [Intern] raw page write function
1687 * @mtd: mtd info structure
1688 * @chip: nand chip info structure
1691 * We need a special oob layout and handling even when ECC isn't checked.
1693 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1696 int eccsize
= chip
->ecc
.size
;
1697 int eccbytes
= chip
->ecc
.bytes
;
1698 uint8_t *oob
= chip
->oob_poi
;
1701 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1702 chip
->write_buf(mtd
, buf
, eccsize
);
1705 if (chip
->ecc
.prepad
) {
1706 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1707 oob
+= chip
->ecc
.prepad
;
1710 chip
->read_buf(mtd
, oob
, eccbytes
);
1713 if (chip
->ecc
.postpad
) {
1714 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1715 oob
+= chip
->ecc
.postpad
;
1719 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1721 chip
->write_buf(mtd
, oob
, size
);
1724 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1725 * @mtd: mtd info structure
1726 * @chip: nand chip info structure
1729 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1732 int i
, eccsize
= chip
->ecc
.size
;
1733 int eccbytes
= chip
->ecc
.bytes
;
1734 int eccsteps
= chip
->ecc
.steps
;
1735 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1736 const uint8_t *p
= buf
;
1737 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1739 /* Software ecc calculation */
1740 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1741 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1743 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1744 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1746 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1750 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1751 * @mtd: mtd info structure
1752 * @chip: nand chip info structure
1755 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1758 int i
, eccsize
= chip
->ecc
.size
;
1759 int eccbytes
= chip
->ecc
.bytes
;
1760 int eccsteps
= chip
->ecc
.steps
;
1761 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1762 const uint8_t *p
= buf
;
1763 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1765 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1766 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1767 chip
->write_buf(mtd
, p
, eccsize
);
1768 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1771 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1772 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1774 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1778 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1779 * @mtd: mtd info structure
1780 * @chip: nand chip info structure
1783 * The hw generator calculates the error syndrome automatically. Therefor
1784 * we need a special oob layout and handling.
1786 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
1787 struct nand_chip
*chip
, const uint8_t *buf
)
1789 int i
, eccsize
= chip
->ecc
.size
;
1790 int eccbytes
= chip
->ecc
.bytes
;
1791 int eccsteps
= chip
->ecc
.steps
;
1792 const uint8_t *p
= buf
;
1793 uint8_t *oob
= chip
->oob_poi
;
1795 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1797 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1798 chip
->write_buf(mtd
, p
, eccsize
);
1800 if (chip
->ecc
.prepad
) {
1801 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1802 oob
+= chip
->ecc
.prepad
;
1805 chip
->ecc
.calculate(mtd
, p
, oob
);
1806 chip
->write_buf(mtd
, oob
, eccbytes
);
1809 if (chip
->ecc
.postpad
) {
1810 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1811 oob
+= chip
->ecc
.postpad
;
1815 /* Calculate remaining oob bytes */
1816 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1818 chip
->write_buf(mtd
, oob
, i
);
1822 * nand_write_page - [REPLACEABLE] write one page
1823 * @mtd: MTD device structure
1824 * @chip: NAND chip descriptor
1825 * @buf: the data to write
1826 * @page: page number to write
1827 * @cached: cached programming
1828 * @raw: use _raw version of write_page
1830 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1831 const uint8_t *buf
, int page
, int cached
, int raw
)
1835 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1838 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1840 chip
->ecc
.write_page(mtd
, chip
, buf
);
1843 * Cached progamming disabled for now, Not sure if its worth the
1844 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1848 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
1850 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1851 status
= chip
->waitfunc(mtd
, chip
);
1853 * See if operation failed and additional status checks are
1856 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1857 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
1860 if (status
& NAND_STATUS_FAIL
)
1863 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
1864 status
= chip
->waitfunc(mtd
, chip
);
1867 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1868 /* Send command to read back the data */
1869 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1871 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
1878 * nand_fill_oob - [Internal] Transfer client buffer to oob
1879 * @chip: nand chip structure
1880 * @oob: oob data buffer
1881 * @ops: oob ops structure
1883 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
,
1884 struct mtd_oob_ops
*ops
)
1886 size_t len
= ops
->ooblen
;
1892 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
1895 case MTD_OOB_AUTO
: {
1896 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1897 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
1900 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1901 /* Write request not from offset 0 ? */
1902 if (unlikely(woffs
)) {
1903 if (woffs
>= free
->length
) {
1904 woffs
-= free
->length
;
1907 boffs
= free
->offset
+ woffs
;
1908 bytes
= min_t(size_t, len
,
1909 (free
->length
- woffs
));
1912 bytes
= min_t(size_t, len
, free
->length
);
1913 boffs
= free
->offset
;
1915 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
1926 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1929 * nand_do_write_ops - [Internal] NAND write with ECC
1930 * @mtd: MTD device structure
1931 * @to: offset to write to
1932 * @ops: oob operations description structure
1934 * NAND write with ECC
1936 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
1937 struct mtd_oob_ops
*ops
)
1939 int chipnr
, realpage
, page
, blockmask
, column
;
1940 struct nand_chip
*chip
= mtd
->priv
;
1941 uint32_t writelen
= ops
->len
;
1942 uint8_t *oob
= ops
->oobbuf
;
1943 uint8_t *buf
= ops
->datbuf
;
1950 /* reject writes, which are not page aligned */
1951 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
1952 printk(KERN_NOTICE
"%s: Attempt to write not "
1953 "page aligned data\n", __func__
);
1957 column
= to
& (mtd
->writesize
- 1);
1958 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
1963 chipnr
= (int)(to
>> chip
->chip_shift
);
1964 chip
->select_chip(mtd
, chipnr
);
1966 /* Check, if it is write protected */
1967 if (nand_check_wp(mtd
))
1970 realpage
= (int)(to
>> chip
->page_shift
);
1971 page
= realpage
& chip
->pagemask
;
1972 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1974 /* Invalidate the page cache, when we write to the cached page */
1975 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
1976 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
1979 /* If we're not given explicit OOB data, let it be 0xFF */
1981 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1984 int bytes
= mtd
->writesize
;
1985 int cached
= writelen
> bytes
&& page
!= blockmask
;
1986 uint8_t *wbuf
= buf
;
1988 /* Partial page write ? */
1989 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
1991 bytes
= min_t(int, bytes
- column
, (int) writelen
);
1993 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
1994 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
1995 wbuf
= chip
->buffers
->databuf
;
1999 oob
= nand_fill_oob(chip
, oob
, ops
);
2001 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
2002 (ops
->mode
== MTD_OOB_RAW
));
2014 page
= realpage
& chip
->pagemask
;
2015 /* Check, if we cross a chip boundary */
2018 chip
->select_chip(mtd
, -1);
2019 chip
->select_chip(mtd
, chipnr
);
2023 ops
->retlen
= ops
->len
- writelen
;
2025 ops
->oobretlen
= ops
->ooblen
;
2030 * panic_nand_write - [MTD Interface] NAND write with ECC
2031 * @mtd: MTD device structure
2032 * @to: offset to write to
2033 * @len: number of bytes to write
2034 * @retlen: pointer to variable to store the number of written bytes
2035 * @buf: the data to write
2037 * NAND write with ECC. Used when performing writes in interrupt context, this
2038 * may for example be called by mtdoops when writing an oops while in panic.
2040 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2041 size_t *retlen
, const uint8_t *buf
)
2043 struct nand_chip
*chip
= mtd
->priv
;
2046 /* Do not allow reads past end of device */
2047 if ((to
+ len
) > mtd
->size
)
2052 /* Wait for the device to get ready. */
2053 panic_nand_wait(mtd
, chip
, 400);
2055 /* Grab the device. */
2056 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2058 chip
->ops
.len
= len
;
2059 chip
->ops
.datbuf
= (uint8_t *)buf
;
2060 chip
->ops
.oobbuf
= NULL
;
2062 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2064 *retlen
= chip
->ops
.retlen
;
2069 * nand_write - [MTD Interface] NAND write with ECC
2070 * @mtd: MTD device structure
2071 * @to: offset to write to
2072 * @len: number of bytes to write
2073 * @retlen: pointer to variable to store the number of written bytes
2074 * @buf: the data to write
2076 * NAND write with ECC
2078 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2079 size_t *retlen
, const uint8_t *buf
)
2081 struct nand_chip
*chip
= mtd
->priv
;
2084 /* Do not allow reads past end of device */
2085 if ((to
+ len
) > mtd
->size
)
2090 nand_get_device(chip
, mtd
, FL_WRITING
);
2092 chip
->ops
.len
= len
;
2093 chip
->ops
.datbuf
= (uint8_t *)buf
;
2094 chip
->ops
.oobbuf
= NULL
;
2096 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2098 *retlen
= chip
->ops
.retlen
;
2100 nand_release_device(mtd
);
2106 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2107 * @mtd: MTD device structure
2108 * @to: offset to write to
2109 * @ops: oob operation description structure
2111 * NAND write out-of-band
2113 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2114 struct mtd_oob_ops
*ops
)
2116 int chipnr
, page
, status
, len
;
2117 struct nand_chip
*chip
= mtd
->priv
;
2119 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2120 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2122 if (ops
->mode
== MTD_OOB_AUTO
)
2123 len
= chip
->ecc
.layout
->oobavail
;
2127 /* Do not allow write past end of page */
2128 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2129 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to write "
2130 "past end of page\n", __func__
);
2134 if (unlikely(ops
->ooboffs
>= len
)) {
2135 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start "
2136 "write outside oob\n", __func__
);
2140 /* Do not allow reads past end of device */
2141 if (unlikely(to
>= mtd
->size
||
2142 ops
->ooboffs
+ ops
->ooblen
>
2143 ((mtd
->size
>> chip
->page_shift
) -
2144 (to
>> chip
->page_shift
)) * len
)) {
2145 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2146 "end of device\n", __func__
);
2150 chipnr
= (int)(to
>> chip
->chip_shift
);
2151 chip
->select_chip(mtd
, chipnr
);
2153 /* Shift to get page */
2154 page
= (int)(to
>> chip
->page_shift
);
2157 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2158 * of my DiskOnChip 2000 test units) will clear the whole data page too
2159 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2160 * it in the doc2000 driver in August 1999. dwmw2.
2162 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2164 /* Check, if it is write protected */
2165 if (nand_check_wp(mtd
))
2168 /* Invalidate the page cache, if we write to the cached page */
2169 if (page
== chip
->pagebuf
)
2172 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2173 nand_fill_oob(chip
, ops
->oobbuf
, ops
);
2174 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2175 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2180 ops
->oobretlen
= ops
->ooblen
;
2186 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2187 * @mtd: MTD device structure
2188 * @to: offset to write to
2189 * @ops: oob operation description structure
2191 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2192 struct mtd_oob_ops
*ops
)
2194 struct nand_chip
*chip
= mtd
->priv
;
2195 int ret
= -ENOTSUPP
;
2199 /* Do not allow writes past end of device */
2200 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2201 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2202 "end of device\n", __func__
);
2206 nand_get_device(chip
, mtd
, FL_WRITING
);
2219 ret
= nand_do_write_oob(mtd
, to
, ops
);
2221 ret
= nand_do_write_ops(mtd
, to
, ops
);
2224 nand_release_device(mtd
);
2229 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2230 * @mtd: MTD device structure
2231 * @page: the page address of the block which will be erased
2233 * Standard erase command for NAND chips
2235 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2237 struct nand_chip
*chip
= mtd
->priv
;
2238 /* Send commands to erase a block */
2239 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2240 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2244 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2245 * @mtd: MTD device structure
2246 * @page: the page address of the block which will be erased
2248 * AND multi block erase command function
2249 * Erase 4 consecutive blocks
2251 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2253 struct nand_chip
*chip
= mtd
->priv
;
2254 /* Send commands to erase a block */
2255 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2256 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2257 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2258 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2259 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2263 * nand_erase - [MTD Interface] erase block(s)
2264 * @mtd: MTD device structure
2265 * @instr: erase instruction
2267 * Erase one ore more blocks
2269 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2271 return nand_erase_nand(mtd
, instr
, 0);
2274 #define BBT_PAGE_MASK 0xffffff3f
2276 * nand_erase_nand - [Internal] erase block(s)
2277 * @mtd: MTD device structure
2278 * @instr: erase instruction
2279 * @allowbbt: allow erasing the bbt area
2281 * Erase one ore more blocks
2283 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2286 int page
, status
, pages_per_block
, ret
, chipnr
;
2287 struct nand_chip
*chip
= mtd
->priv
;
2288 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2289 unsigned int bbt_masked_page
= 0xffffffff;
2292 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
2293 __func__
, (unsigned long long)instr
->addr
,
2294 (unsigned long long)instr
->len
);
2296 /* Start address must align on block boundary */
2297 if (instr
->addr
& ((1 << chip
->phys_erase_shift
) - 1)) {
2298 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Unaligned address\n", __func__
);
2302 /* Length must align on block boundary */
2303 if (instr
->len
& ((1 << chip
->phys_erase_shift
) - 1)) {
2304 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Length not block aligned\n",
2309 /* Do not allow erase past end of device */
2310 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2311 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Erase past end of device\n",
2316 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2318 /* Grab the lock and see if the device is available */
2319 nand_get_device(chip
, mtd
, FL_ERASING
);
2321 /* Shift to get first page */
2322 page
= (int)(instr
->addr
>> chip
->page_shift
);
2323 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2325 /* Calculate pages in each block */
2326 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2328 /* Select the NAND device */
2329 chip
->select_chip(mtd
, chipnr
);
2331 /* Check, if it is write protected */
2332 if (nand_check_wp(mtd
)) {
2333 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
2335 instr
->state
= MTD_ERASE_FAILED
;
2340 * If BBT requires refresh, set the BBT page mask to see if the BBT
2341 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2342 * can not be matched. This is also done when the bbt is actually
2343 * erased to avoid recusrsive updates
2345 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2346 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2348 /* Loop through the pages */
2351 instr
->state
= MTD_ERASING
;
2355 * heck if we have a bad block, we do not erase bad blocks !
2357 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2358 chip
->page_shift
, 0, allowbbt
)) {
2359 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2360 "at page 0x%08x\n", __func__
, page
);
2361 instr
->state
= MTD_ERASE_FAILED
;
2366 * Invalidate the page cache, if we erase the block which
2367 * contains the current cached page
2369 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2370 (page
+ pages_per_block
))
2373 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2375 status
= chip
->waitfunc(mtd
, chip
);
2378 * See if operation failed and additional status checks are
2381 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2382 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2385 /* See if block erase succeeded */
2386 if (status
& NAND_STATUS_FAIL
) {
2387 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed erase, "
2388 "page 0x%08x\n", __func__
, page
);
2389 instr
->state
= MTD_ERASE_FAILED
;
2391 ((loff_t
)page
<< chip
->page_shift
);
2396 * If BBT requires refresh, set the BBT rewrite flag to the
2399 if (bbt_masked_page
!= 0xffffffff &&
2400 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2401 rewrite_bbt
[chipnr
] =
2402 ((loff_t
)page
<< chip
->page_shift
);
2404 /* Increment page address and decrement length */
2405 len
-= (1 << chip
->phys_erase_shift
);
2406 page
+= pages_per_block
;
2408 /* Check, if we cross a chip boundary */
2409 if (len
&& !(page
& chip
->pagemask
)) {
2411 chip
->select_chip(mtd
, -1);
2412 chip
->select_chip(mtd
, chipnr
);
2415 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2416 * page mask to see if this BBT should be rewritten
2418 if (bbt_masked_page
!= 0xffffffff &&
2419 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2420 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2424 instr
->state
= MTD_ERASE_DONE
;
2428 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2430 /* Deselect and wake up anyone waiting on the device */
2431 nand_release_device(mtd
);
2433 /* Do call back function */
2435 mtd_erase_callback(instr
);
2438 * If BBT requires refresh and erase was successful, rewrite any
2439 * selected bad block tables
2441 if (bbt_masked_page
== 0xffffffff || ret
)
2444 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2445 if (!rewrite_bbt
[chipnr
])
2447 /* update the BBT for chip */
2448 DEBUG(MTD_DEBUG_LEVEL0
, "%s: nand_update_bbt "
2449 "(%d:0x%0llx 0x%0x)\n", __func__
, chipnr
,
2450 rewrite_bbt
[chipnr
], chip
->bbt_td
->pages
[chipnr
]);
2451 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2454 /* Return more or less happy */
2459 * nand_sync - [MTD Interface] sync
2460 * @mtd: MTD device structure
2462 * Sync is actually a wait for chip ready function
2464 static void nand_sync(struct mtd_info
*mtd
)
2466 struct nand_chip
*chip
= mtd
->priv
;
2468 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2470 /* Grab the lock and see if the device is available */
2471 nand_get_device(chip
, mtd
, FL_SYNCING
);
2472 /* Release it and go back */
2473 nand_release_device(mtd
);
2477 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2478 * @mtd: MTD device structure
2479 * @offs: offset relative to mtd start
2481 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2483 /* Check for invalid offset */
2484 if (offs
> mtd
->size
)
2487 return nand_block_checkbad(mtd
, offs
, 1, 0);
2491 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2492 * @mtd: MTD device structure
2493 * @ofs: offset relative to mtd start
2495 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2497 struct nand_chip
*chip
= mtd
->priv
;
2500 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2501 /* If it was bad already, return success and do nothing. */
2507 return chip
->block_markbad(mtd
, ofs
);
2511 * nand_suspend - [MTD Interface] Suspend the NAND flash
2512 * @mtd: MTD device structure
2514 static int nand_suspend(struct mtd_info
*mtd
)
2516 struct nand_chip
*chip
= mtd
->priv
;
2518 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2522 * nand_resume - [MTD Interface] Resume the NAND flash
2523 * @mtd: MTD device structure
2525 static void nand_resume(struct mtd_info
*mtd
)
2527 struct nand_chip
*chip
= mtd
->priv
;
2529 if (chip
->state
== FL_PM_SUSPENDED
)
2530 nand_release_device(mtd
);
2532 printk(KERN_ERR
"%s called for a chip which is not "
2533 "in suspended state\n", __func__
);
2537 * Set default functions
2539 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2541 /* check for proper chip_delay setup, set 20us if not */
2542 if (!chip
->chip_delay
)
2543 chip
->chip_delay
= 20;
2545 /* check, if a user supplied command function given */
2546 if (chip
->cmdfunc
== NULL
)
2547 chip
->cmdfunc
= nand_command
;
2549 /* check, if a user supplied wait function given */
2550 if (chip
->waitfunc
== NULL
)
2551 chip
->waitfunc
= nand_wait
;
2553 if (!chip
->select_chip
)
2554 chip
->select_chip
= nand_select_chip
;
2555 if (!chip
->read_byte
)
2556 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2557 if (!chip
->read_word
)
2558 chip
->read_word
= nand_read_word
;
2559 if (!chip
->block_bad
)
2560 chip
->block_bad
= nand_block_bad
;
2561 if (!chip
->block_markbad
)
2562 chip
->block_markbad
= nand_default_block_markbad
;
2563 if (!chip
->write_buf
)
2564 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2565 if (!chip
->read_buf
)
2566 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2567 if (!chip
->verify_buf
)
2568 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2569 if (!chip
->scan_bbt
)
2570 chip
->scan_bbt
= nand_default_bbt
;
2572 if (!chip
->controller
) {
2573 chip
->controller
= &chip
->hwcontrol
;
2574 spin_lock_init(&chip
->controller
->lock
);
2575 init_waitqueue_head(&chip
->controller
->wq
);
2581 * Get the flash and manufacturer id and lookup if the type is supported
2583 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2584 struct nand_chip
*chip
,
2585 int busw
, int *maf_id
)
2587 struct nand_flash_dev
*type
= NULL
;
2588 int i
, dev_id
, maf_idx
;
2589 int tmp_id
, tmp_manf
;
2591 /* Select the device */
2592 chip
->select_chip(mtd
, 0);
2595 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2598 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2600 /* Send the command for reading device ID */
2601 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2603 /* Read manufacturer and device IDs */
2604 *maf_id
= chip
->read_byte(mtd
);
2605 dev_id
= chip
->read_byte(mtd
);
2607 /* Try again to make sure, as some systems the bus-hold or other
2608 * interface concerns can cause random data which looks like a
2609 * possibly credible NAND flash to appear. If the two results do
2610 * not match, ignore the device completely.
2613 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2615 /* Read manufacturer and device IDs */
2617 tmp_manf
= chip
->read_byte(mtd
);
2618 tmp_id
= chip
->read_byte(mtd
);
2620 if (tmp_manf
!= *maf_id
|| tmp_id
!= dev_id
) {
2621 printk(KERN_INFO
"%s: second ID read did not match "
2622 "%02x,%02x against %02x,%02x\n", __func__
,
2623 *maf_id
, dev_id
, tmp_manf
, tmp_id
);
2624 return ERR_PTR(-ENODEV
);
2627 /* Lookup the flash id */
2628 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2629 if (dev_id
== nand_flash_ids
[i
].id
) {
2630 type
= &nand_flash_ids
[i
];
2636 return ERR_PTR(-ENODEV
);
2639 mtd
->name
= type
->name
;
2641 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2643 /* Newer devices have all the information in additional id bytes */
2644 if (!type
->pagesize
) {
2646 /* The 3rd id byte holds MLC / multichip data */
2647 chip
->cellinfo
= chip
->read_byte(mtd
);
2648 /* The 4th id byte is the important one */
2649 extid
= chip
->read_byte(mtd
);
2651 mtd
->writesize
= 1024 << (extid
& 0x3);
2654 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->writesize
>> 9);
2656 /* Calc blocksize. Blocksize is multiples of 64KiB */
2657 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2659 /* Get buswidth information */
2660 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2664 * Old devices have chip data hardcoded in the device id table
2666 mtd
->erasesize
= type
->erasesize
;
2667 mtd
->writesize
= type
->pagesize
;
2668 mtd
->oobsize
= mtd
->writesize
/ 32;
2669 busw
= type
->options
& NAND_BUSWIDTH_16
;
2672 /* Try to identify manufacturer */
2673 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2674 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2679 * Check, if buswidth is correct. Hardware drivers should set
2682 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2683 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2684 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2685 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2686 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2687 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2689 return ERR_PTR(-EINVAL
);
2692 /* Calculate the address shift from the page size */
2693 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2694 /* Convert chipsize to number of pages per chip -1. */
2695 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2697 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2698 ffs(mtd
->erasesize
) - 1;
2699 if (chip
->chipsize
& 0xffffffff)
2700 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2702 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2704 /* Set the bad block position */
2705 chip
->badblockpos
= mtd
->writesize
> 512 ?
2706 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2708 /* Get chip options, preserve non chip based options */
2709 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2710 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2713 * Set chip as a default. Board drivers can override it, if necessary
2715 chip
->options
|= NAND_NO_AUTOINCR
;
2717 /* Check if chip is a not a samsung device. Do not clear the
2718 * options for chips which are not having an extended id.
2720 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2721 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2723 /* Check for AND chips with 4 page planes */
2724 if (chip
->options
& NAND_4PAGE_ARRAY
)
2725 chip
->erase_cmd
= multi_erase_cmd
;
2727 chip
->erase_cmd
= single_erase_cmd
;
2729 /* Do not replace user supplied command function ! */
2730 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2731 chip
->cmdfunc
= nand_command_lp
;
2733 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2734 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2735 nand_manuf_ids
[maf_idx
].name
, type
->name
);
2741 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2742 * @mtd: MTD device structure
2743 * @maxchips: Number of chips to scan for
2745 * This is the first phase of the normal nand_scan() function. It
2746 * reads the flash ID and sets up MTD fields accordingly.
2748 * The mtd->owner field must be set to the module of the caller.
2750 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
)
2752 int i
, busw
, nand_maf_id
;
2753 struct nand_chip
*chip
= mtd
->priv
;
2754 struct nand_flash_dev
*type
;
2756 /* Get buswidth to select the correct functions */
2757 busw
= chip
->options
& NAND_BUSWIDTH_16
;
2758 /* Set the default functions */
2759 nand_set_defaults(chip
, busw
);
2761 /* Read the flash type */
2762 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
);
2765 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
2766 printk(KERN_WARNING
"No NAND device found.\n");
2767 chip
->select_chip(mtd
, -1);
2768 return PTR_ERR(type
);
2771 /* Check for a chip array */
2772 for (i
= 1; i
< maxchips
; i
++) {
2773 chip
->select_chip(mtd
, i
);
2774 /* See comment in nand_get_flash_type for reset */
2775 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2776 /* Send the command for reading device ID */
2777 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2778 /* Read manufacturer and device IDs */
2779 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
2780 type
->id
!= chip
->read_byte(mtd
))
2784 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2786 /* Store the number of chips and calc total size for mtd */
2788 mtd
->size
= i
* chip
->chipsize
;
2795 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2796 * @mtd: MTD device structure
2798 * This is the second phase of the normal nand_scan() function. It
2799 * fills out all the uninitialized function pointers with the defaults
2800 * and scans for a bad block table if appropriate.
2802 int nand_scan_tail(struct mtd_info
*mtd
)
2805 struct nand_chip
*chip
= mtd
->priv
;
2807 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2808 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
2812 /* Set the internal oob buffer location, just after the page data */
2813 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
2816 * If no default placement scheme is given, select an appropriate one
2818 if (!chip
->ecc
.layout
) {
2819 switch (mtd
->oobsize
) {
2821 chip
->ecc
.layout
= &nand_oob_8
;
2824 chip
->ecc
.layout
= &nand_oob_16
;
2827 chip
->ecc
.layout
= &nand_oob_64
;
2830 chip
->ecc
.layout
= &nand_oob_128
;
2833 printk(KERN_WARNING
"No oob scheme defined for "
2834 "oobsize %d\n", mtd
->oobsize
);
2839 if (!chip
->write_page
)
2840 chip
->write_page
= nand_write_page
;
2843 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2844 * selected and we have 256 byte pagesize fallback to software ECC
2847 switch (chip
->ecc
.mode
) {
2848 case NAND_ECC_HW_OOB_FIRST
:
2849 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2850 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2852 printk(KERN_WARNING
"No ECC functions supplied; "
2853 "Hardware ECC not possible\n");
2856 if (!chip
->ecc
.read_page
)
2857 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
2860 /* Use standard hwecc read page function ? */
2861 if (!chip
->ecc
.read_page
)
2862 chip
->ecc
.read_page
= nand_read_page_hwecc
;
2863 if (!chip
->ecc
.write_page
)
2864 chip
->ecc
.write_page
= nand_write_page_hwecc
;
2865 if (!chip
->ecc
.read_page_raw
)
2866 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2867 if (!chip
->ecc
.write_page_raw
)
2868 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2869 if (!chip
->ecc
.read_oob
)
2870 chip
->ecc
.read_oob
= nand_read_oob_std
;
2871 if (!chip
->ecc
.write_oob
)
2872 chip
->ecc
.write_oob
= nand_write_oob_std
;
2874 case NAND_ECC_HW_SYNDROME
:
2875 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2876 !chip
->ecc
.hwctl
) &&
2877 (!chip
->ecc
.read_page
||
2878 chip
->ecc
.read_page
== nand_read_page_hwecc
||
2879 !chip
->ecc
.write_page
||
2880 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
2881 printk(KERN_WARNING
"No ECC functions supplied; "
2882 "Hardware ECC not possible\n");
2885 /* Use standard syndrome read/write page function ? */
2886 if (!chip
->ecc
.read_page
)
2887 chip
->ecc
.read_page
= nand_read_page_syndrome
;
2888 if (!chip
->ecc
.write_page
)
2889 chip
->ecc
.write_page
= nand_write_page_syndrome
;
2890 if (!chip
->ecc
.read_page_raw
)
2891 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
2892 if (!chip
->ecc
.write_page_raw
)
2893 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
2894 if (!chip
->ecc
.read_oob
)
2895 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
2896 if (!chip
->ecc
.write_oob
)
2897 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
2899 if (mtd
->writesize
>= chip
->ecc
.size
)
2901 printk(KERN_WARNING
"%d byte HW ECC not possible on "
2902 "%d byte page size, fallback to SW ECC\n",
2903 chip
->ecc
.size
, mtd
->writesize
);
2904 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2907 chip
->ecc
.calculate
= nand_calculate_ecc
;
2908 chip
->ecc
.correct
= nand_correct_data
;
2909 chip
->ecc
.read_page
= nand_read_page_swecc
;
2910 chip
->ecc
.read_subpage
= nand_read_subpage
;
2911 chip
->ecc
.write_page
= nand_write_page_swecc
;
2912 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2913 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2914 chip
->ecc
.read_oob
= nand_read_oob_std
;
2915 chip
->ecc
.write_oob
= nand_write_oob_std
;
2916 if (!chip
->ecc
.size
)
2917 chip
->ecc
.size
= 256;
2918 chip
->ecc
.bytes
= 3;
2922 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
2923 "This is not recommended !!\n");
2924 chip
->ecc
.read_page
= nand_read_page_raw
;
2925 chip
->ecc
.write_page
= nand_write_page_raw
;
2926 chip
->ecc
.read_oob
= nand_read_oob_std
;
2927 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2928 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2929 chip
->ecc
.write_oob
= nand_write_oob_std
;
2930 chip
->ecc
.size
= mtd
->writesize
;
2931 chip
->ecc
.bytes
= 0;
2935 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
2941 * The number of bytes available for a client to place data into
2942 * the out of band area
2944 chip
->ecc
.layout
->oobavail
= 0;
2945 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
2946 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
2947 chip
->ecc
.layout
->oobavail
+=
2948 chip
->ecc
.layout
->oobfree
[i
].length
;
2949 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
2952 * Set the number of read / write steps for one page depending on ECC
2955 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
2956 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
2957 printk(KERN_WARNING
"Invalid ecc parameters\n");
2960 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
2963 * Allow subpage writes up to ecc.steps. Not possible for MLC
2966 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2967 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
2968 switch(chip
->ecc
.steps
) {
2970 mtd
->subpage_sft
= 1;
2975 mtd
->subpage_sft
= 2;
2979 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
2981 /* Initialize state */
2982 chip
->state
= FL_READY
;
2984 /* De-select the device */
2985 chip
->select_chip(mtd
, -1);
2987 /* Invalidate the pagebuffer reference */
2990 /* Fill in remaining MTD driver data */
2991 mtd
->type
= MTD_NANDFLASH
;
2992 mtd
->flags
= MTD_CAP_NANDFLASH
;
2993 mtd
->erase
= nand_erase
;
2995 mtd
->unpoint
= NULL
;
2996 mtd
->read
= nand_read
;
2997 mtd
->write
= nand_write
;
2998 mtd
->panic_write
= panic_nand_write
;
2999 mtd
->read_oob
= nand_read_oob
;
3000 mtd
->write_oob
= nand_write_oob
;
3001 mtd
->sync
= nand_sync
;
3004 mtd
->suspend
= nand_suspend
;
3005 mtd
->resume
= nand_resume
;
3006 mtd
->block_isbad
= nand_block_isbad
;
3007 mtd
->block_markbad
= nand_block_markbad
;
3009 /* propagate ecc.layout to mtd_info */
3010 mtd
->ecclayout
= chip
->ecc
.layout
;
3012 /* Check, if we should skip the bad block table scan */
3013 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3016 /* Build bad block table */
3017 return chip
->scan_bbt(mtd
);
3020 /* is_module_text_address() isn't exported, and it's mostly a pointless
3021 test if this is a module _anyway_ -- they'd have to try _really_ hard
3022 to call us from in-kernel code if the core NAND support is modular. */
3024 #define caller_is_module() (1)
3026 #define caller_is_module() \
3027 is_module_text_address((unsigned long)__builtin_return_address(0))
3031 * nand_scan - [NAND Interface] Scan for the NAND device
3032 * @mtd: MTD device structure
3033 * @maxchips: Number of chips to scan for
3035 * This fills out all the uninitialized function pointers
3036 * with the defaults.
3037 * The flash ID is read and the mtd/chip structures are
3038 * filled with the appropriate values.
3039 * The mtd->owner field must be set to the module of the caller
3042 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3046 /* Many callers got this wrong, so check for it for a while... */
3047 if (!mtd
->owner
&& caller_is_module()) {
3048 printk(KERN_CRIT
"%s called with NULL mtd->owner!\n",
3053 ret
= nand_scan_ident(mtd
, maxchips
);
3055 ret
= nand_scan_tail(mtd
);
3060 * nand_release - [NAND Interface] Free resources held by the NAND device
3061 * @mtd: MTD device structure
3063 void nand_release(struct mtd_info
*mtd
)
3065 struct nand_chip
*chip
= mtd
->priv
;
3067 #ifdef CONFIG_MTD_PARTITIONS
3068 /* Deregister partitions */
3069 del_mtd_partitions(mtd
);
3071 /* Deregister the device */
3072 del_mtd_device(mtd
);
3074 /* Free bad block table memory */
3076 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3077 kfree(chip
->buffers
);
3080 EXPORT_SYMBOL_GPL(nand_scan
);
3081 EXPORT_SYMBOL_GPL(nand_scan_ident
);
3082 EXPORT_SYMBOL_GPL(nand_scan_tail
);
3083 EXPORT_SYMBOL_GPL(nand_release
);
3085 static int __init
nand_base_init(void)
3087 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3091 static void __exit
nand_base_exit(void)
3093 led_trigger_unregister_simple(nand_led_trigger
);
3096 module_init(nand_base_init
);
3097 module_exit(nand_base_exit
);
3099 MODULE_LICENSE("GPL");
3100 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3101 MODULE_DESCRIPTION("Generic NAND flash driver code");