Linux 2.6.33-rc6
[cris-mirror.git] / drivers / mtd / nand / nandsim.c
blob7281000fef2d346803d7414af8b91bf1ed3de1aa
1 /*
2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
82 #endif
84 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
85 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
86 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
87 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
88 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
89 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
90 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
91 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
92 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
93 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
94 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
95 static uint log = CONFIG_NANDSIM_LOG;
96 static uint dbg = CONFIG_NANDSIM_DBG;
97 static unsigned long parts[MAX_MTD_DEVICES];
98 static unsigned int parts_num;
99 static char *badblocks = NULL;
100 static char *weakblocks = NULL;
101 static char *weakpages = NULL;
102 static unsigned int bitflips = 0;
103 static char *gravepages = NULL;
104 static unsigned int rptwear = 0;
105 static unsigned int overridesize = 0;
106 static char *cache_file = NULL;
108 module_param(first_id_byte, uint, 0400);
109 module_param(second_id_byte, uint, 0400);
110 module_param(third_id_byte, uint, 0400);
111 module_param(fourth_id_byte, uint, 0400);
112 module_param(access_delay, uint, 0400);
113 module_param(programm_delay, uint, 0400);
114 module_param(erase_delay, uint, 0400);
115 module_param(output_cycle, uint, 0400);
116 module_param(input_cycle, uint, 0400);
117 module_param(bus_width, uint, 0400);
118 module_param(do_delays, uint, 0400);
119 module_param(log, uint, 0400);
120 module_param(dbg, uint, 0400);
121 module_param_array(parts, ulong, &parts_num, 0400);
122 module_param(badblocks, charp, 0400);
123 module_param(weakblocks, charp, 0400);
124 module_param(weakpages, charp, 0400);
125 module_param(bitflips, uint, 0400);
126 module_param(gravepages, charp, 0400);
127 module_param(rptwear, uint, 0400);
128 module_param(overridesize, uint, 0400);
129 module_param(cache_file, charp, 0400);
131 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
132 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
133 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
135 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
136 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
137 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
138 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
139 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
140 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
141 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
142 MODULE_PARM_DESC(log, "Perform logging if not zero");
143 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
144 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
145 /* Page and erase block positions for the following parameters are independent of any partitions */
146 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
147 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
148 " separated by commas e.g. 113:2 means eb 113"
149 " can be erased only twice before failing");
150 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
151 " separated by commas e.g. 1401:2 means page 1401"
152 " can be written only twice before failing");
153 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
154 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
155 " separated by commas e.g. 1401:2 means page 1401"
156 " can be read only twice before failing");
157 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
158 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
159 "The size is specified in erase blocks and as the exponent of a power of two"
160 " e.g. 5 means a size of 32 erase blocks");
161 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
163 /* The largest possible page size */
164 #define NS_LARGEST_PAGE_SIZE 4096
166 /* The prefix for simulator output */
167 #define NS_OUTPUT_PREFIX "[nandsim]"
169 /* Simulator's output macros (logging, debugging, warning, error) */
170 #define NS_LOG(args...) \
171 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
172 #define NS_DBG(args...) \
173 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
174 #define NS_WARN(args...) \
175 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
176 #define NS_ERR(args...) \
177 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
178 #define NS_INFO(args...) \
179 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
181 /* Busy-wait delay macros (microseconds, milliseconds) */
182 #define NS_UDELAY(us) \
183 do { if (do_delays) udelay(us); } while(0)
184 #define NS_MDELAY(us) \
185 do { if (do_delays) mdelay(us); } while(0)
187 /* Is the nandsim structure initialized ? */
188 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
190 /* Good operation completion status */
191 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
193 /* Operation failed completion status */
194 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
196 /* Calculate the page offset in flash RAM image by (row, column) address */
197 #define NS_RAW_OFFSET(ns) \
198 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
200 /* Calculate the OOB offset in flash RAM image by (row, column) address */
201 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
203 /* After a command is input, the simulator goes to one of the following states */
204 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
205 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
206 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
207 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
208 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
209 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
210 #define STATE_CMD_STATUS 0x00000007 /* read status */
211 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
212 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
213 #define STATE_CMD_READID 0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET 0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
218 #define STATE_CMD_MASK 0x0000000F /* command states mask */
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
227 /* Durind data input/output the simulator is in these states */
228 #define STATE_DATAIN 0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
231 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY 0x00000000
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN 0x10000000
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
246 #define ACTION_SECERASE 0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK 0x00700000 /* action mask */
252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
257 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
258 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
259 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
260 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
261 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
262 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
263 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
264 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
266 /* Remove action bits ftom state */
267 #define NS_STATE(x) ((x) & ~ACTION_MASK)
270 * Maximum previous states which need to be saved. Currently saving is
271 * only needed for page programm operation with preceeded read command
272 * (which is only valid for 512-byte pages).
274 #define NS_MAX_PREVSTATES 1
276 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
277 #define NS_MAX_HELD_PAGES 16
280 * A union to represent flash memory contents and flash buffer.
282 union ns_mem {
283 u_char *byte; /* for byte access */
284 uint16_t *word; /* for 16-bit word access */
288 * The structure which describes all the internal simulator data.
290 struct nandsim {
291 struct mtd_partition partitions[MAX_MTD_DEVICES];
292 unsigned int nbparts;
294 uint busw; /* flash chip bus width (8 or 16) */
295 u_char ids[4]; /* chip's ID bytes */
296 uint32_t options; /* chip's characteristic bits */
297 uint32_t state; /* current chip state */
298 uint32_t nxstate; /* next expected state */
300 uint32_t *op; /* current operation, NULL operations isn't known yet */
301 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
302 uint16_t npstates; /* number of previous states saved */
303 uint16_t stateidx; /* current state index */
305 /* The simulated NAND flash pages array */
306 union ns_mem *pages;
308 /* Slab allocator for nand pages */
309 struct kmem_cache *nand_pages_slab;
311 /* Internal buffer of page + OOB size bytes */
312 union ns_mem buf;
314 /* NAND flash "geometry" */
315 struct nandsin_geometry {
316 uint64_t totsz; /* total flash size, bytes */
317 uint32_t secsz; /* flash sector (erase block) size, bytes */
318 uint pgsz; /* NAND flash page size, bytes */
319 uint oobsz; /* page OOB area size, bytes */
320 uint64_t totszoob; /* total flash size including OOB, bytes */
321 uint pgszoob; /* page size including OOB , bytes*/
322 uint secszoob; /* sector size including OOB, bytes */
323 uint pgnum; /* total number of pages */
324 uint pgsec; /* number of pages per sector */
325 uint secshift; /* bits number in sector size */
326 uint pgshift; /* bits number in page size */
327 uint oobshift; /* bits number in OOB size */
328 uint pgaddrbytes; /* bytes per page address */
329 uint secaddrbytes; /* bytes per sector address */
330 uint idbytes; /* the number ID bytes that this chip outputs */
331 } geom;
333 /* NAND flash internal registers */
334 struct nandsim_regs {
335 unsigned command; /* the command register */
336 u_char status; /* the status register */
337 uint row; /* the page number */
338 uint column; /* the offset within page */
339 uint count; /* internal counter */
340 uint num; /* number of bytes which must be processed */
341 uint off; /* fixed page offset */
342 } regs;
344 /* NAND flash lines state */
345 struct ns_lines_status {
346 int ce; /* chip Enable */
347 int cle; /* command Latch Enable */
348 int ale; /* address Latch Enable */
349 int wp; /* write Protect */
350 } lines;
352 /* Fields needed when using a cache file */
353 struct file *cfile; /* Open file */
354 unsigned char *pages_written; /* Which pages have been written */
355 void *file_buf;
356 struct page *held_pages[NS_MAX_HELD_PAGES];
357 int held_cnt;
361 * Operations array. To perform any operation the simulator must pass
362 * through the correspondent states chain.
364 static struct nandsim_operations {
365 uint32_t reqopts; /* options which are required to perform the operation */
366 uint32_t states[NS_OPER_STATES]; /* operation's states */
367 } ops[NS_OPER_NUM] = {
368 /* Read page + OOB from the beginning */
369 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
370 STATE_DATAOUT, STATE_READY}},
371 /* Read page + OOB from the second half */
372 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
373 STATE_DATAOUT, STATE_READY}},
374 /* Read OOB */
375 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
376 STATE_DATAOUT, STATE_READY}},
377 /* Programm page starting from the beginning */
378 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
379 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
380 /* Programm page starting from the beginning */
381 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
382 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383 /* Programm page starting from the second half */
384 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
385 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386 /* Programm OOB */
387 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
388 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 /* Erase sector */
390 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
391 /* Read status */
392 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
393 /* Read multi-plane status */
394 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
395 /* Read ID */
396 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
397 /* Large page devices read page */
398 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
399 STATE_DATAOUT, STATE_READY}},
400 /* Large page devices random page read */
401 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
402 STATE_DATAOUT, STATE_READY}},
405 struct weak_block {
406 struct list_head list;
407 unsigned int erase_block_no;
408 unsigned int max_erases;
409 unsigned int erases_done;
412 static LIST_HEAD(weak_blocks);
414 struct weak_page {
415 struct list_head list;
416 unsigned int page_no;
417 unsigned int max_writes;
418 unsigned int writes_done;
421 static LIST_HEAD(weak_pages);
423 struct grave_page {
424 struct list_head list;
425 unsigned int page_no;
426 unsigned int max_reads;
427 unsigned int reads_done;
430 static LIST_HEAD(grave_pages);
432 static unsigned long *erase_block_wear = NULL;
433 static unsigned int wear_eb_count = 0;
434 static unsigned long total_wear = 0;
435 static unsigned int rptwear_cnt = 0;
437 /* MTD structure for NAND controller */
438 static struct mtd_info *nsmtd;
440 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
443 * Allocate array of page pointers, create slab allocation for an array
444 * and initialize the array by NULL pointers.
446 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
448 static int alloc_device(struct nandsim *ns)
450 struct file *cfile;
451 int i, err;
453 if (cache_file) {
454 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
455 if (IS_ERR(cfile))
456 return PTR_ERR(cfile);
457 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
458 NS_ERR("alloc_device: cache file not readable\n");
459 err = -EINVAL;
460 goto err_close;
462 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
463 NS_ERR("alloc_device: cache file not writeable\n");
464 err = -EINVAL;
465 goto err_close;
467 ns->pages_written = vmalloc(ns->geom.pgnum);
468 if (!ns->pages_written) {
469 NS_ERR("alloc_device: unable to allocate pages written array\n");
470 err = -ENOMEM;
471 goto err_close;
473 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
474 if (!ns->file_buf) {
475 NS_ERR("alloc_device: unable to allocate file buf\n");
476 err = -ENOMEM;
477 goto err_free;
479 ns->cfile = cfile;
480 memset(ns->pages_written, 0, ns->geom.pgnum);
481 return 0;
484 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
485 if (!ns->pages) {
486 NS_ERR("alloc_device: unable to allocate page array\n");
487 return -ENOMEM;
489 for (i = 0; i < ns->geom.pgnum; i++) {
490 ns->pages[i].byte = NULL;
492 ns->nand_pages_slab = kmem_cache_create("nandsim",
493 ns->geom.pgszoob, 0, 0, NULL);
494 if (!ns->nand_pages_slab) {
495 NS_ERR("cache_create: unable to create kmem_cache\n");
496 return -ENOMEM;
499 return 0;
501 err_free:
502 vfree(ns->pages_written);
503 err_close:
504 filp_close(cfile, NULL);
505 return err;
509 * Free any allocated pages, and free the array of page pointers.
511 static void free_device(struct nandsim *ns)
513 int i;
515 if (ns->cfile) {
516 kfree(ns->file_buf);
517 vfree(ns->pages_written);
518 filp_close(ns->cfile, NULL);
519 return;
522 if (ns->pages) {
523 for (i = 0; i < ns->geom.pgnum; i++) {
524 if (ns->pages[i].byte)
525 kmem_cache_free(ns->nand_pages_slab,
526 ns->pages[i].byte);
528 kmem_cache_destroy(ns->nand_pages_slab);
529 vfree(ns->pages);
533 static char *get_partition_name(int i)
535 char buf[64];
536 sprintf(buf, "NAND simulator partition %d", i);
537 return kstrdup(buf, GFP_KERNEL);
540 static uint64_t divide(uint64_t n, uint32_t d)
542 do_div(n, d);
543 return n;
547 * Initialize the nandsim structure.
549 * RETURNS: 0 if success, -ERRNO if failure.
551 static int init_nandsim(struct mtd_info *mtd)
553 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
554 struct nandsim *ns = (struct nandsim *)(chip->priv);
555 int i, ret = 0;
556 uint64_t remains;
557 uint64_t next_offset;
559 if (NS_IS_INITIALIZED(ns)) {
560 NS_ERR("init_nandsim: nandsim is already initialized\n");
561 return -EIO;
564 /* Force mtd to not do delays */
565 chip->chip_delay = 0;
567 /* Initialize the NAND flash parameters */
568 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
569 ns->geom.totsz = mtd->size;
570 ns->geom.pgsz = mtd->writesize;
571 ns->geom.oobsz = mtd->oobsize;
572 ns->geom.secsz = mtd->erasesize;
573 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
574 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
575 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
576 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
577 ns->geom.pgshift = chip->page_shift;
578 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
579 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
580 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
581 ns->options = 0;
583 if (ns->geom.pgsz == 256) {
584 ns->options |= OPT_PAGE256;
586 else if (ns->geom.pgsz == 512) {
587 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
588 if (ns->busw == 8)
589 ns->options |= OPT_PAGE512_8BIT;
590 } else if (ns->geom.pgsz == 2048) {
591 ns->options |= OPT_PAGE2048;
592 } else if (ns->geom.pgsz == 4096) {
593 ns->options |= OPT_PAGE4096;
594 } else {
595 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
596 return -EIO;
599 if (ns->options & OPT_SMALLPAGE) {
600 if (ns->geom.totsz <= (32 << 20)) {
601 ns->geom.pgaddrbytes = 3;
602 ns->geom.secaddrbytes = 2;
603 } else {
604 ns->geom.pgaddrbytes = 4;
605 ns->geom.secaddrbytes = 3;
607 } else {
608 if (ns->geom.totsz <= (128 << 20)) {
609 ns->geom.pgaddrbytes = 4;
610 ns->geom.secaddrbytes = 2;
611 } else {
612 ns->geom.pgaddrbytes = 5;
613 ns->geom.secaddrbytes = 3;
617 /* Fill the partition_info structure */
618 if (parts_num > ARRAY_SIZE(ns->partitions)) {
619 NS_ERR("too many partitions.\n");
620 ret = -EINVAL;
621 goto error;
623 remains = ns->geom.totsz;
624 next_offset = 0;
625 for (i = 0; i < parts_num; ++i) {
626 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
628 if (!part_sz || part_sz > remains) {
629 NS_ERR("bad partition size.\n");
630 ret = -EINVAL;
631 goto error;
633 ns->partitions[i].name = get_partition_name(i);
634 ns->partitions[i].offset = next_offset;
635 ns->partitions[i].size = part_sz;
636 next_offset += ns->partitions[i].size;
637 remains -= ns->partitions[i].size;
639 ns->nbparts = parts_num;
640 if (remains) {
641 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
642 NS_ERR("too many partitions.\n");
643 ret = -EINVAL;
644 goto error;
646 ns->partitions[i].name = get_partition_name(i);
647 ns->partitions[i].offset = next_offset;
648 ns->partitions[i].size = remains;
649 ns->nbparts += 1;
652 /* Detect how many ID bytes the NAND chip outputs */
653 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
654 if (second_id_byte != nand_flash_ids[i].id)
655 continue;
656 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
657 ns->options |= OPT_AUTOINCR;
660 if (ns->busw == 16)
661 NS_WARN("16-bit flashes support wasn't tested\n");
663 printk("flash size: %llu MiB\n",
664 (unsigned long long)ns->geom.totsz >> 20);
665 printk("page size: %u bytes\n", ns->geom.pgsz);
666 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
667 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
668 printk("pages number: %u\n", ns->geom.pgnum);
669 printk("pages per sector: %u\n", ns->geom.pgsec);
670 printk("bus width: %u\n", ns->busw);
671 printk("bits in sector size: %u\n", ns->geom.secshift);
672 printk("bits in page size: %u\n", ns->geom.pgshift);
673 printk("bits in OOB size: %u\n", ns->geom.oobshift);
674 printk("flash size with OOB: %llu KiB\n",
675 (unsigned long long)ns->geom.totszoob >> 10);
676 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
677 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
678 printk("options: %#x\n", ns->options);
680 if ((ret = alloc_device(ns)) != 0)
681 goto error;
683 /* Allocate / initialize the internal buffer */
684 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
685 if (!ns->buf.byte) {
686 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
687 ns->geom.pgszoob);
688 ret = -ENOMEM;
689 goto error;
691 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
693 return 0;
695 error:
696 free_device(ns);
698 return ret;
702 * Free the nandsim structure.
704 static void free_nandsim(struct nandsim *ns)
706 kfree(ns->buf.byte);
707 free_device(ns);
709 return;
712 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
714 char *w;
715 int zero_ok;
716 unsigned int erase_block_no;
717 loff_t offset;
719 if (!badblocks)
720 return 0;
721 w = badblocks;
722 do {
723 zero_ok = (*w == '0' ? 1 : 0);
724 erase_block_no = simple_strtoul(w, &w, 0);
725 if (!zero_ok && !erase_block_no) {
726 NS_ERR("invalid badblocks.\n");
727 return -EINVAL;
729 offset = erase_block_no * ns->geom.secsz;
730 if (mtd->block_markbad(mtd, offset)) {
731 NS_ERR("invalid badblocks.\n");
732 return -EINVAL;
734 if (*w == ',')
735 w += 1;
736 } while (*w);
737 return 0;
740 static int parse_weakblocks(void)
742 char *w;
743 int zero_ok;
744 unsigned int erase_block_no;
745 unsigned int max_erases;
746 struct weak_block *wb;
748 if (!weakblocks)
749 return 0;
750 w = weakblocks;
751 do {
752 zero_ok = (*w == '0' ? 1 : 0);
753 erase_block_no = simple_strtoul(w, &w, 0);
754 if (!zero_ok && !erase_block_no) {
755 NS_ERR("invalid weakblocks.\n");
756 return -EINVAL;
758 max_erases = 3;
759 if (*w == ':') {
760 w += 1;
761 max_erases = simple_strtoul(w, &w, 0);
763 if (*w == ',')
764 w += 1;
765 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
766 if (!wb) {
767 NS_ERR("unable to allocate memory.\n");
768 return -ENOMEM;
770 wb->erase_block_no = erase_block_no;
771 wb->max_erases = max_erases;
772 list_add(&wb->list, &weak_blocks);
773 } while (*w);
774 return 0;
777 static int erase_error(unsigned int erase_block_no)
779 struct weak_block *wb;
781 list_for_each_entry(wb, &weak_blocks, list)
782 if (wb->erase_block_no == erase_block_no) {
783 if (wb->erases_done >= wb->max_erases)
784 return 1;
785 wb->erases_done += 1;
786 return 0;
788 return 0;
791 static int parse_weakpages(void)
793 char *w;
794 int zero_ok;
795 unsigned int page_no;
796 unsigned int max_writes;
797 struct weak_page *wp;
799 if (!weakpages)
800 return 0;
801 w = weakpages;
802 do {
803 zero_ok = (*w == '0' ? 1 : 0);
804 page_no = simple_strtoul(w, &w, 0);
805 if (!zero_ok && !page_no) {
806 NS_ERR("invalid weakpagess.\n");
807 return -EINVAL;
809 max_writes = 3;
810 if (*w == ':') {
811 w += 1;
812 max_writes = simple_strtoul(w, &w, 0);
814 if (*w == ',')
815 w += 1;
816 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
817 if (!wp) {
818 NS_ERR("unable to allocate memory.\n");
819 return -ENOMEM;
821 wp->page_no = page_no;
822 wp->max_writes = max_writes;
823 list_add(&wp->list, &weak_pages);
824 } while (*w);
825 return 0;
828 static int write_error(unsigned int page_no)
830 struct weak_page *wp;
832 list_for_each_entry(wp, &weak_pages, list)
833 if (wp->page_no == page_no) {
834 if (wp->writes_done >= wp->max_writes)
835 return 1;
836 wp->writes_done += 1;
837 return 0;
839 return 0;
842 static int parse_gravepages(void)
844 char *g;
845 int zero_ok;
846 unsigned int page_no;
847 unsigned int max_reads;
848 struct grave_page *gp;
850 if (!gravepages)
851 return 0;
852 g = gravepages;
853 do {
854 zero_ok = (*g == '0' ? 1 : 0);
855 page_no = simple_strtoul(g, &g, 0);
856 if (!zero_ok && !page_no) {
857 NS_ERR("invalid gravepagess.\n");
858 return -EINVAL;
860 max_reads = 3;
861 if (*g == ':') {
862 g += 1;
863 max_reads = simple_strtoul(g, &g, 0);
865 if (*g == ',')
866 g += 1;
867 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
868 if (!gp) {
869 NS_ERR("unable to allocate memory.\n");
870 return -ENOMEM;
872 gp->page_no = page_no;
873 gp->max_reads = max_reads;
874 list_add(&gp->list, &grave_pages);
875 } while (*g);
876 return 0;
879 static int read_error(unsigned int page_no)
881 struct grave_page *gp;
883 list_for_each_entry(gp, &grave_pages, list)
884 if (gp->page_no == page_no) {
885 if (gp->reads_done >= gp->max_reads)
886 return 1;
887 gp->reads_done += 1;
888 return 0;
890 return 0;
893 static void free_lists(void)
895 struct list_head *pos, *n;
896 list_for_each_safe(pos, n, &weak_blocks) {
897 list_del(pos);
898 kfree(list_entry(pos, struct weak_block, list));
900 list_for_each_safe(pos, n, &weak_pages) {
901 list_del(pos);
902 kfree(list_entry(pos, struct weak_page, list));
904 list_for_each_safe(pos, n, &grave_pages) {
905 list_del(pos);
906 kfree(list_entry(pos, struct grave_page, list));
908 kfree(erase_block_wear);
911 static int setup_wear_reporting(struct mtd_info *mtd)
913 size_t mem;
915 if (!rptwear)
916 return 0;
917 wear_eb_count = divide(mtd->size, mtd->erasesize);
918 mem = wear_eb_count * sizeof(unsigned long);
919 if (mem / sizeof(unsigned long) != wear_eb_count) {
920 NS_ERR("Too many erase blocks for wear reporting\n");
921 return -ENOMEM;
923 erase_block_wear = kzalloc(mem, GFP_KERNEL);
924 if (!erase_block_wear) {
925 NS_ERR("Too many erase blocks for wear reporting\n");
926 return -ENOMEM;
928 return 0;
931 static void update_wear(unsigned int erase_block_no)
933 unsigned long wmin = -1, wmax = 0, avg;
934 unsigned long deciles[10], decile_max[10], tot = 0;
935 unsigned int i;
937 if (!erase_block_wear)
938 return;
939 total_wear += 1;
940 if (total_wear == 0)
941 NS_ERR("Erase counter total overflow\n");
942 erase_block_wear[erase_block_no] += 1;
943 if (erase_block_wear[erase_block_no] == 0)
944 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
945 rptwear_cnt += 1;
946 if (rptwear_cnt < rptwear)
947 return;
948 rptwear_cnt = 0;
949 /* Calc wear stats */
950 for (i = 0; i < wear_eb_count; ++i) {
951 unsigned long wear = erase_block_wear[i];
952 if (wear < wmin)
953 wmin = wear;
954 if (wear > wmax)
955 wmax = wear;
956 tot += wear;
958 for (i = 0; i < 9; ++i) {
959 deciles[i] = 0;
960 decile_max[i] = (wmax * (i + 1) + 5) / 10;
962 deciles[9] = 0;
963 decile_max[9] = wmax;
964 for (i = 0; i < wear_eb_count; ++i) {
965 int d;
966 unsigned long wear = erase_block_wear[i];
967 for (d = 0; d < 10; ++d)
968 if (wear <= decile_max[d]) {
969 deciles[d] += 1;
970 break;
973 avg = tot / wear_eb_count;
974 /* Output wear report */
975 NS_INFO("*** Wear Report ***\n");
976 NS_INFO("Total numbers of erases: %lu\n", tot);
977 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
978 NS_INFO("Average number of erases: %lu\n", avg);
979 NS_INFO("Maximum number of erases: %lu\n", wmax);
980 NS_INFO("Minimum number of erases: %lu\n", wmin);
981 for (i = 0; i < 10; ++i) {
982 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
983 if (from > decile_max[i])
984 continue;
985 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
986 from,
987 decile_max[i],
988 deciles[i]);
990 NS_INFO("*** End of Wear Report ***\n");
994 * Returns the string representation of 'state' state.
996 static char *get_state_name(uint32_t state)
998 switch (NS_STATE(state)) {
999 case STATE_CMD_READ0:
1000 return "STATE_CMD_READ0";
1001 case STATE_CMD_READ1:
1002 return "STATE_CMD_READ1";
1003 case STATE_CMD_PAGEPROG:
1004 return "STATE_CMD_PAGEPROG";
1005 case STATE_CMD_READOOB:
1006 return "STATE_CMD_READOOB";
1007 case STATE_CMD_READSTART:
1008 return "STATE_CMD_READSTART";
1009 case STATE_CMD_ERASE1:
1010 return "STATE_CMD_ERASE1";
1011 case STATE_CMD_STATUS:
1012 return "STATE_CMD_STATUS";
1013 case STATE_CMD_STATUS_M:
1014 return "STATE_CMD_STATUS_M";
1015 case STATE_CMD_SEQIN:
1016 return "STATE_CMD_SEQIN";
1017 case STATE_CMD_READID:
1018 return "STATE_CMD_READID";
1019 case STATE_CMD_ERASE2:
1020 return "STATE_CMD_ERASE2";
1021 case STATE_CMD_RESET:
1022 return "STATE_CMD_RESET";
1023 case STATE_CMD_RNDOUT:
1024 return "STATE_CMD_RNDOUT";
1025 case STATE_CMD_RNDOUTSTART:
1026 return "STATE_CMD_RNDOUTSTART";
1027 case STATE_ADDR_PAGE:
1028 return "STATE_ADDR_PAGE";
1029 case STATE_ADDR_SEC:
1030 return "STATE_ADDR_SEC";
1031 case STATE_ADDR_ZERO:
1032 return "STATE_ADDR_ZERO";
1033 case STATE_ADDR_COLUMN:
1034 return "STATE_ADDR_COLUMN";
1035 case STATE_DATAIN:
1036 return "STATE_DATAIN";
1037 case STATE_DATAOUT:
1038 return "STATE_DATAOUT";
1039 case STATE_DATAOUT_ID:
1040 return "STATE_DATAOUT_ID";
1041 case STATE_DATAOUT_STATUS:
1042 return "STATE_DATAOUT_STATUS";
1043 case STATE_DATAOUT_STATUS_M:
1044 return "STATE_DATAOUT_STATUS_M";
1045 case STATE_READY:
1046 return "STATE_READY";
1047 case STATE_UNKNOWN:
1048 return "STATE_UNKNOWN";
1051 NS_ERR("get_state_name: unknown state, BUG\n");
1052 return NULL;
1056 * Check if command is valid.
1058 * RETURNS: 1 if wrong command, 0 if right.
1060 static int check_command(int cmd)
1062 switch (cmd) {
1064 case NAND_CMD_READ0:
1065 case NAND_CMD_READ1:
1066 case NAND_CMD_READSTART:
1067 case NAND_CMD_PAGEPROG:
1068 case NAND_CMD_READOOB:
1069 case NAND_CMD_ERASE1:
1070 case NAND_CMD_STATUS:
1071 case NAND_CMD_SEQIN:
1072 case NAND_CMD_READID:
1073 case NAND_CMD_ERASE2:
1074 case NAND_CMD_RESET:
1075 case NAND_CMD_RNDOUT:
1076 case NAND_CMD_RNDOUTSTART:
1077 return 0;
1079 case NAND_CMD_STATUS_MULTI:
1080 default:
1081 return 1;
1086 * Returns state after command is accepted by command number.
1088 static uint32_t get_state_by_command(unsigned command)
1090 switch (command) {
1091 case NAND_CMD_READ0:
1092 return STATE_CMD_READ0;
1093 case NAND_CMD_READ1:
1094 return STATE_CMD_READ1;
1095 case NAND_CMD_PAGEPROG:
1096 return STATE_CMD_PAGEPROG;
1097 case NAND_CMD_READSTART:
1098 return STATE_CMD_READSTART;
1099 case NAND_CMD_READOOB:
1100 return STATE_CMD_READOOB;
1101 case NAND_CMD_ERASE1:
1102 return STATE_CMD_ERASE1;
1103 case NAND_CMD_STATUS:
1104 return STATE_CMD_STATUS;
1105 case NAND_CMD_STATUS_MULTI:
1106 return STATE_CMD_STATUS_M;
1107 case NAND_CMD_SEQIN:
1108 return STATE_CMD_SEQIN;
1109 case NAND_CMD_READID:
1110 return STATE_CMD_READID;
1111 case NAND_CMD_ERASE2:
1112 return STATE_CMD_ERASE2;
1113 case NAND_CMD_RESET:
1114 return STATE_CMD_RESET;
1115 case NAND_CMD_RNDOUT:
1116 return STATE_CMD_RNDOUT;
1117 case NAND_CMD_RNDOUTSTART:
1118 return STATE_CMD_RNDOUTSTART;
1121 NS_ERR("get_state_by_command: unknown command, BUG\n");
1122 return 0;
1126 * Move an address byte to the correspondent internal register.
1128 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1130 uint byte = (uint)bt;
1132 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1133 ns->regs.column |= (byte << 8 * ns->regs.count);
1134 else {
1135 ns->regs.row |= (byte << 8 * (ns->regs.count -
1136 ns->geom.pgaddrbytes +
1137 ns->geom.secaddrbytes));
1140 return;
1144 * Switch to STATE_READY state.
1146 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1148 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1150 ns->state = STATE_READY;
1151 ns->nxstate = STATE_UNKNOWN;
1152 ns->op = NULL;
1153 ns->npstates = 0;
1154 ns->stateidx = 0;
1155 ns->regs.num = 0;
1156 ns->regs.count = 0;
1157 ns->regs.off = 0;
1158 ns->regs.row = 0;
1159 ns->regs.column = 0;
1160 ns->regs.status = status;
1164 * If the operation isn't known yet, try to find it in the global array
1165 * of supported operations.
1167 * Operation can be unknown because of the following.
1168 * 1. New command was accepted and this is the firs call to find the
1169 * correspondent states chain. In this case ns->npstates = 0;
1170 * 2. There is several operations which begin with the same command(s)
1171 * (for example program from the second half and read from the
1172 * second half operations both begin with the READ1 command). In this
1173 * case the ns->pstates[] array contains previous states.
1175 * Thus, the function tries to find operation containing the following
1176 * states (if the 'flag' parameter is 0):
1177 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1179 * If (one and only one) matching operation is found, it is accepted (
1180 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1181 * zeroed).
1183 * If there are several maches, the current state is pushed to the
1184 * ns->pstates.
1186 * The operation can be unknown only while commands are input to the chip.
1187 * As soon as address command is accepted, the operation must be known.
1188 * In such situation the function is called with 'flag' != 0, and the
1189 * operation is searched using the following pattern:
1190 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1192 * It is supposed that this pattern must either match one operation on
1193 * none. There can't be ambiguity in that case.
1195 * If no matches found, the functions does the following:
1196 * 1. if there are saved states present, try to ignore them and search
1197 * again only using the last command. If nothing was found, switch
1198 * to the STATE_READY state.
1199 * 2. if there are no saved states, switch to the STATE_READY state.
1201 * RETURNS: -2 - no matched operations found.
1202 * -1 - several matches.
1203 * 0 - operation is found.
1205 static int find_operation(struct nandsim *ns, uint32_t flag)
1207 int opsfound = 0;
1208 int i, j, idx = 0;
1210 for (i = 0; i < NS_OPER_NUM; i++) {
1212 int found = 1;
1214 if (!(ns->options & ops[i].reqopts))
1215 /* Ignore operations we can't perform */
1216 continue;
1218 if (flag) {
1219 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1220 continue;
1221 } else {
1222 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1223 continue;
1226 for (j = 0; j < ns->npstates; j++)
1227 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1228 && (ns->options & ops[idx].reqopts)) {
1229 found = 0;
1230 break;
1233 if (found) {
1234 idx = i;
1235 opsfound += 1;
1239 if (opsfound == 1) {
1240 /* Exact match */
1241 ns->op = &ops[idx].states[0];
1242 if (flag) {
1244 * In this case the find_operation function was
1245 * called when address has just began input. But it isn't
1246 * yet fully input and the current state must
1247 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1248 * state must be the next state (ns->nxstate).
1250 ns->stateidx = ns->npstates - 1;
1251 } else {
1252 ns->stateidx = ns->npstates;
1254 ns->npstates = 0;
1255 ns->state = ns->op[ns->stateidx];
1256 ns->nxstate = ns->op[ns->stateidx + 1];
1257 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1258 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1259 return 0;
1262 if (opsfound == 0) {
1263 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1264 if (ns->npstates != 0) {
1265 NS_DBG("find_operation: no operation found, try again with state %s\n",
1266 get_state_name(ns->state));
1267 ns->npstates = 0;
1268 return find_operation(ns, 0);
1271 NS_DBG("find_operation: no operations found\n");
1272 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1273 return -2;
1276 if (flag) {
1277 /* This shouldn't happen */
1278 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1279 return -2;
1282 NS_DBG("find_operation: there is still ambiguity\n");
1284 ns->pstates[ns->npstates++] = ns->state;
1286 return -1;
1289 static void put_pages(struct nandsim *ns)
1291 int i;
1293 for (i = 0; i < ns->held_cnt; i++)
1294 page_cache_release(ns->held_pages[i]);
1297 /* Get page cache pages in advance to provide NOFS memory allocation */
1298 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1300 pgoff_t index, start_index, end_index;
1301 struct page *page;
1302 struct address_space *mapping = file->f_mapping;
1304 start_index = pos >> PAGE_CACHE_SHIFT;
1305 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1306 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1307 return -EINVAL;
1308 ns->held_cnt = 0;
1309 for (index = start_index; index <= end_index; index++) {
1310 page = find_get_page(mapping, index);
1311 if (page == NULL) {
1312 page = find_or_create_page(mapping, index, GFP_NOFS);
1313 if (page == NULL) {
1314 write_inode_now(mapping->host, 1);
1315 page = find_or_create_page(mapping, index, GFP_NOFS);
1317 if (page == NULL) {
1318 put_pages(ns);
1319 return -ENOMEM;
1321 unlock_page(page);
1323 ns->held_pages[ns->held_cnt++] = page;
1325 return 0;
1328 static int set_memalloc(void)
1330 if (current->flags & PF_MEMALLOC)
1331 return 0;
1332 current->flags |= PF_MEMALLOC;
1333 return 1;
1336 static void clear_memalloc(int memalloc)
1338 if (memalloc)
1339 current->flags &= ~PF_MEMALLOC;
1342 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1344 mm_segment_t old_fs;
1345 ssize_t tx;
1346 int err, memalloc;
1348 err = get_pages(ns, file, count, *pos);
1349 if (err)
1350 return err;
1351 old_fs = get_fs();
1352 set_fs(get_ds());
1353 memalloc = set_memalloc();
1354 tx = vfs_read(file, (char __user *)buf, count, pos);
1355 clear_memalloc(memalloc);
1356 set_fs(old_fs);
1357 put_pages(ns);
1358 return tx;
1361 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1363 mm_segment_t old_fs;
1364 ssize_t tx;
1365 int err, memalloc;
1367 err = get_pages(ns, file, count, *pos);
1368 if (err)
1369 return err;
1370 old_fs = get_fs();
1371 set_fs(get_ds());
1372 memalloc = set_memalloc();
1373 tx = vfs_write(file, (char __user *)buf, count, pos);
1374 clear_memalloc(memalloc);
1375 set_fs(old_fs);
1376 put_pages(ns);
1377 return tx;
1381 * Returns a pointer to the current page.
1383 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1385 return &(ns->pages[ns->regs.row]);
1389 * Retuns a pointer to the current byte, within the current page.
1391 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1393 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1396 int do_read_error(struct nandsim *ns, int num)
1398 unsigned int page_no = ns->regs.row;
1400 if (read_error(page_no)) {
1401 int i;
1402 memset(ns->buf.byte, 0xFF, num);
1403 for (i = 0; i < num; ++i)
1404 ns->buf.byte[i] = random32();
1405 NS_WARN("simulating read error in page %u\n", page_no);
1406 return 1;
1408 return 0;
1411 void do_bit_flips(struct nandsim *ns, int num)
1413 if (bitflips && random32() < (1 << 22)) {
1414 int flips = 1;
1415 if (bitflips > 1)
1416 flips = (random32() % (int) bitflips) + 1;
1417 while (flips--) {
1418 int pos = random32() % (num * 8);
1419 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1420 NS_WARN("read_page: flipping bit %d in page %d "
1421 "reading from %d ecc: corrected=%u failed=%u\n",
1422 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1423 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1429 * Fill the NAND buffer with data read from the specified page.
1431 static void read_page(struct nandsim *ns, int num)
1433 union ns_mem *mypage;
1435 if (ns->cfile) {
1436 if (!ns->pages_written[ns->regs.row]) {
1437 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1438 memset(ns->buf.byte, 0xFF, num);
1439 } else {
1440 loff_t pos;
1441 ssize_t tx;
1443 NS_DBG("read_page: page %d written, reading from %d\n",
1444 ns->regs.row, ns->regs.column + ns->regs.off);
1445 if (do_read_error(ns, num))
1446 return;
1447 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1448 tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1449 if (tx != num) {
1450 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1451 return;
1453 do_bit_flips(ns, num);
1455 return;
1458 mypage = NS_GET_PAGE(ns);
1459 if (mypage->byte == NULL) {
1460 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1461 memset(ns->buf.byte, 0xFF, num);
1462 } else {
1463 NS_DBG("read_page: page %d allocated, reading from %d\n",
1464 ns->regs.row, ns->regs.column + ns->regs.off);
1465 if (do_read_error(ns, num))
1466 return;
1467 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1468 do_bit_flips(ns, num);
1473 * Erase all pages in the specified sector.
1475 static void erase_sector(struct nandsim *ns)
1477 union ns_mem *mypage;
1478 int i;
1480 if (ns->cfile) {
1481 for (i = 0; i < ns->geom.pgsec; i++)
1482 if (ns->pages_written[ns->regs.row + i]) {
1483 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1484 ns->pages_written[ns->regs.row + i] = 0;
1486 return;
1489 mypage = NS_GET_PAGE(ns);
1490 for (i = 0; i < ns->geom.pgsec; i++) {
1491 if (mypage->byte != NULL) {
1492 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1493 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1494 mypage->byte = NULL;
1496 mypage++;
1501 * Program the specified page with the contents from the NAND buffer.
1503 static int prog_page(struct nandsim *ns, int num)
1505 int i;
1506 union ns_mem *mypage;
1507 u_char *pg_off;
1509 if (ns->cfile) {
1510 loff_t off, pos;
1511 ssize_t tx;
1512 int all;
1514 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1515 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1516 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1517 if (!ns->pages_written[ns->regs.row]) {
1518 all = 1;
1519 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1520 } else {
1521 all = 0;
1522 pos = off;
1523 tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1524 if (tx != num) {
1525 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1526 return -1;
1529 for (i = 0; i < num; i++)
1530 pg_off[i] &= ns->buf.byte[i];
1531 if (all) {
1532 pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1533 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1534 if (tx != ns->geom.pgszoob) {
1535 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1536 return -1;
1538 ns->pages_written[ns->regs.row] = 1;
1539 } else {
1540 pos = off;
1541 tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1542 if (tx != num) {
1543 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1544 return -1;
1547 return 0;
1550 mypage = NS_GET_PAGE(ns);
1551 if (mypage->byte == NULL) {
1552 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1554 * We allocate memory with GFP_NOFS because a flash FS may
1555 * utilize this. If it is holding an FS lock, then gets here,
1556 * then kernel memory alloc runs writeback which goes to the FS
1557 * again and deadlocks. This was seen in practice.
1559 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1560 if (mypage->byte == NULL) {
1561 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1562 return -1;
1564 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1567 pg_off = NS_PAGE_BYTE_OFF(ns);
1568 for (i = 0; i < num; i++)
1569 pg_off[i] &= ns->buf.byte[i];
1571 return 0;
1575 * If state has any action bit, perform this action.
1577 * RETURNS: 0 if success, -1 if error.
1579 static int do_state_action(struct nandsim *ns, uint32_t action)
1581 int num;
1582 int busdiv = ns->busw == 8 ? 1 : 2;
1583 unsigned int erase_block_no, page_no;
1585 action &= ACTION_MASK;
1587 /* Check that page address input is correct */
1588 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1589 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1590 return -1;
1593 switch (action) {
1595 case ACTION_CPY:
1597 * Copy page data to the internal buffer.
1600 /* Column shouldn't be very large */
1601 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1602 NS_ERR("do_state_action: column number is too large\n");
1603 break;
1605 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1606 read_page(ns, num);
1608 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1609 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1611 if (ns->regs.off == 0)
1612 NS_LOG("read page %d\n", ns->regs.row);
1613 else if (ns->regs.off < ns->geom.pgsz)
1614 NS_LOG("read page %d (second half)\n", ns->regs.row);
1615 else
1616 NS_LOG("read OOB of page %d\n", ns->regs.row);
1618 NS_UDELAY(access_delay);
1619 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1621 break;
1623 case ACTION_SECERASE:
1625 * Erase sector.
1628 if (ns->lines.wp) {
1629 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1630 return -1;
1633 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1634 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1635 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1636 return -1;
1639 ns->regs.row = (ns->regs.row <<
1640 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1641 ns->regs.column = 0;
1643 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1645 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1646 ns->regs.row, NS_RAW_OFFSET(ns));
1647 NS_LOG("erase sector %u\n", erase_block_no);
1649 erase_sector(ns);
1651 NS_MDELAY(erase_delay);
1653 if (erase_block_wear)
1654 update_wear(erase_block_no);
1656 if (erase_error(erase_block_no)) {
1657 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1658 return -1;
1661 break;
1663 case ACTION_PRGPAGE:
1665 * Programm page - move internal buffer data to the page.
1668 if (ns->lines.wp) {
1669 NS_WARN("do_state_action: device is write-protected, programm\n");
1670 return -1;
1673 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1674 if (num != ns->regs.count) {
1675 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1676 ns->regs.count, num);
1677 return -1;
1680 if (prog_page(ns, num) == -1)
1681 return -1;
1683 page_no = ns->regs.row;
1685 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1686 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1687 NS_LOG("programm page %d\n", ns->regs.row);
1689 NS_UDELAY(programm_delay);
1690 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1692 if (write_error(page_no)) {
1693 NS_WARN("simulating write failure in page %u\n", page_no);
1694 return -1;
1697 break;
1699 case ACTION_ZEROOFF:
1700 NS_DBG("do_state_action: set internal offset to 0\n");
1701 ns->regs.off = 0;
1702 break;
1704 case ACTION_HALFOFF:
1705 if (!(ns->options & OPT_PAGE512_8BIT)) {
1706 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1707 "byte page size 8x chips\n");
1708 return -1;
1710 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1711 ns->regs.off = ns->geom.pgsz/2;
1712 break;
1714 case ACTION_OOBOFF:
1715 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1716 ns->regs.off = ns->geom.pgsz;
1717 break;
1719 default:
1720 NS_DBG("do_state_action: BUG! unknown action\n");
1723 return 0;
1727 * Switch simulator's state.
1729 static void switch_state(struct nandsim *ns)
1731 if (ns->op) {
1733 * The current operation have already been identified.
1734 * Just follow the states chain.
1737 ns->stateidx += 1;
1738 ns->state = ns->nxstate;
1739 ns->nxstate = ns->op[ns->stateidx + 1];
1741 NS_DBG("switch_state: operation is known, switch to the next state, "
1742 "state: %s, nxstate: %s\n",
1743 get_state_name(ns->state), get_state_name(ns->nxstate));
1745 /* See, whether we need to do some action */
1746 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1747 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748 return;
1751 } else {
1753 * We don't yet know which operation we perform.
1754 * Try to identify it.
1758 * The only event causing the switch_state function to
1759 * be called with yet unknown operation is new command.
1761 ns->state = get_state_by_command(ns->regs.command);
1763 NS_DBG("switch_state: operation is unknown, try to find it\n");
1765 if (find_operation(ns, 0) != 0)
1766 return;
1768 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1769 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1770 return;
1774 /* For 16x devices column means the page offset in words */
1775 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1776 NS_DBG("switch_state: double the column number for 16x device\n");
1777 ns->regs.column <<= 1;
1780 if (NS_STATE(ns->nxstate) == STATE_READY) {
1782 * The current state is the last. Return to STATE_READY
1785 u_char status = NS_STATUS_OK(ns);
1787 /* In case of data states, see if all bytes were input/output */
1788 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1789 && ns->regs.count != ns->regs.num) {
1790 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1791 ns->regs.num - ns->regs.count);
1792 status = NS_STATUS_FAILED(ns);
1795 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1797 switch_to_ready_state(ns, status);
1799 return;
1800 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1802 * If the next state is data input/output, switch to it now
1805 ns->state = ns->nxstate;
1806 ns->nxstate = ns->op[++ns->stateidx + 1];
1807 ns->regs.num = ns->regs.count = 0;
1809 NS_DBG("switch_state: the next state is data I/O, switch, "
1810 "state: %s, nxstate: %s\n",
1811 get_state_name(ns->state), get_state_name(ns->nxstate));
1814 * Set the internal register to the count of bytes which
1815 * are expected to be input or output
1817 switch (NS_STATE(ns->state)) {
1818 case STATE_DATAIN:
1819 case STATE_DATAOUT:
1820 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1821 break;
1823 case STATE_DATAOUT_ID:
1824 ns->regs.num = ns->geom.idbytes;
1825 break;
1827 case STATE_DATAOUT_STATUS:
1828 case STATE_DATAOUT_STATUS_M:
1829 ns->regs.count = ns->regs.num = 0;
1830 break;
1832 default:
1833 NS_ERR("switch_state: BUG! unknown data state\n");
1836 } else if (ns->nxstate & STATE_ADDR_MASK) {
1838 * If the next state is address input, set the internal
1839 * register to the number of expected address bytes
1842 ns->regs.count = 0;
1844 switch (NS_STATE(ns->nxstate)) {
1845 case STATE_ADDR_PAGE:
1846 ns->regs.num = ns->geom.pgaddrbytes;
1848 break;
1849 case STATE_ADDR_SEC:
1850 ns->regs.num = ns->geom.secaddrbytes;
1851 break;
1853 case STATE_ADDR_ZERO:
1854 ns->regs.num = 1;
1855 break;
1857 case STATE_ADDR_COLUMN:
1858 /* Column address is always 2 bytes */
1859 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1860 break;
1862 default:
1863 NS_ERR("switch_state: BUG! unknown address state\n");
1865 } else {
1867 * Just reset internal counters.
1870 ns->regs.num = 0;
1871 ns->regs.count = 0;
1875 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1877 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1878 u_char outb = 0x00;
1880 /* Sanity and correctness checks */
1881 if (!ns->lines.ce) {
1882 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1883 return outb;
1885 if (ns->lines.ale || ns->lines.cle) {
1886 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1887 return outb;
1889 if (!(ns->state & STATE_DATAOUT_MASK)) {
1890 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1891 "return %#x\n", get_state_name(ns->state), (uint)outb);
1892 return outb;
1895 /* Status register may be read as many times as it is wanted */
1896 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1897 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1898 return ns->regs.status;
1901 /* Check if there is any data in the internal buffer which may be read */
1902 if (ns->regs.count == ns->regs.num) {
1903 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1904 return outb;
1907 switch (NS_STATE(ns->state)) {
1908 case STATE_DATAOUT:
1909 if (ns->busw == 8) {
1910 outb = ns->buf.byte[ns->regs.count];
1911 ns->regs.count += 1;
1912 } else {
1913 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1914 ns->regs.count += 2;
1916 break;
1917 case STATE_DATAOUT_ID:
1918 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1919 outb = ns->ids[ns->regs.count];
1920 ns->regs.count += 1;
1921 break;
1922 default:
1923 BUG();
1926 if (ns->regs.count == ns->regs.num) {
1927 NS_DBG("read_byte: all bytes were read\n");
1930 * The OPT_AUTOINCR allows to read next conseqitive pages without
1931 * new read operation cycle.
1933 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1934 ns->regs.count = 0;
1935 if (ns->regs.row + 1 < ns->geom.pgnum)
1936 ns->regs.row += 1;
1937 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1938 do_state_action(ns, ACTION_CPY);
1940 else if (NS_STATE(ns->nxstate) == STATE_READY)
1941 switch_state(ns);
1945 return outb;
1948 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1950 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1952 /* Sanity and correctness checks */
1953 if (!ns->lines.ce) {
1954 NS_ERR("write_byte: chip is disabled, ignore write\n");
1955 return;
1957 if (ns->lines.ale && ns->lines.cle) {
1958 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1959 return;
1962 if (ns->lines.cle == 1) {
1964 * The byte written is a command.
1967 if (byte == NAND_CMD_RESET) {
1968 NS_LOG("reset chip\n");
1969 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1970 return;
1973 /* Check that the command byte is correct */
1974 if (check_command(byte)) {
1975 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1976 return;
1979 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1980 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1981 || NS_STATE(ns->state) == STATE_DATAOUT) {
1982 int row = ns->regs.row;
1984 switch_state(ns);
1985 if (byte == NAND_CMD_RNDOUT)
1986 ns->regs.row = row;
1989 /* Check if chip is expecting command */
1990 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1991 /* Do not warn if only 2 id bytes are read */
1992 if (!(ns->regs.command == NAND_CMD_READID &&
1993 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1995 * We are in situation when something else (not command)
1996 * was expected but command was input. In this case ignore
1997 * previous command(s)/state(s) and accept the last one.
1999 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2000 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2002 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2005 NS_DBG("command byte corresponding to %s state accepted\n",
2006 get_state_name(get_state_by_command(byte)));
2007 ns->regs.command = byte;
2008 switch_state(ns);
2010 } else if (ns->lines.ale == 1) {
2012 * The byte written is an address.
2015 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2017 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2019 if (find_operation(ns, 1) < 0)
2020 return;
2022 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2023 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2024 return;
2027 ns->regs.count = 0;
2028 switch (NS_STATE(ns->nxstate)) {
2029 case STATE_ADDR_PAGE:
2030 ns->regs.num = ns->geom.pgaddrbytes;
2031 break;
2032 case STATE_ADDR_SEC:
2033 ns->regs.num = ns->geom.secaddrbytes;
2034 break;
2035 case STATE_ADDR_ZERO:
2036 ns->regs.num = 1;
2037 break;
2038 default:
2039 BUG();
2043 /* Check that chip is expecting address */
2044 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2045 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2046 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2047 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2048 return;
2051 /* Check if this is expected byte */
2052 if (ns->regs.count == ns->regs.num) {
2053 NS_ERR("write_byte: no more address bytes expected\n");
2054 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2055 return;
2058 accept_addr_byte(ns, byte);
2060 ns->regs.count += 1;
2062 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2063 (uint)byte, ns->regs.count, ns->regs.num);
2065 if (ns->regs.count == ns->regs.num) {
2066 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2067 switch_state(ns);
2070 } else {
2072 * The byte written is an input data.
2075 /* Check that chip is expecting data input */
2076 if (!(ns->state & STATE_DATAIN_MASK)) {
2077 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2078 "switch to %s\n", (uint)byte,
2079 get_state_name(ns->state), get_state_name(STATE_READY));
2080 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2081 return;
2084 /* Check if this is expected byte */
2085 if (ns->regs.count == ns->regs.num) {
2086 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2087 ns->regs.num);
2088 return;
2091 if (ns->busw == 8) {
2092 ns->buf.byte[ns->regs.count] = byte;
2093 ns->regs.count += 1;
2094 } else {
2095 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2096 ns->regs.count += 2;
2100 return;
2103 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2105 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2107 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2108 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2109 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2111 if (cmd != NAND_CMD_NONE)
2112 ns_nand_write_byte(mtd, cmd);
2115 static int ns_device_ready(struct mtd_info *mtd)
2117 NS_DBG("device_ready\n");
2118 return 1;
2121 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2123 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2125 NS_DBG("read_word\n");
2127 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2130 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2132 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2134 /* Check that chip is expecting data input */
2135 if (!(ns->state & STATE_DATAIN_MASK)) {
2136 NS_ERR("write_buf: data input isn't expected, state is %s, "
2137 "switch to STATE_READY\n", get_state_name(ns->state));
2138 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2139 return;
2142 /* Check if these are expected bytes */
2143 if (ns->regs.count + len > ns->regs.num) {
2144 NS_ERR("write_buf: too many input bytes\n");
2145 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2146 return;
2149 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2150 ns->regs.count += len;
2152 if (ns->regs.count == ns->regs.num) {
2153 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2157 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2159 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2161 /* Sanity and correctness checks */
2162 if (!ns->lines.ce) {
2163 NS_ERR("read_buf: chip is disabled\n");
2164 return;
2166 if (ns->lines.ale || ns->lines.cle) {
2167 NS_ERR("read_buf: ALE or CLE pin is high\n");
2168 return;
2170 if (!(ns->state & STATE_DATAOUT_MASK)) {
2171 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2172 get_state_name(ns->state));
2173 return;
2176 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2177 int i;
2179 for (i = 0; i < len; i++)
2180 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2182 return;
2185 /* Check if these are expected bytes */
2186 if (ns->regs.count + len > ns->regs.num) {
2187 NS_ERR("read_buf: too many bytes to read\n");
2188 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2189 return;
2192 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2193 ns->regs.count += len;
2195 if (ns->regs.count == ns->regs.num) {
2196 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2197 ns->regs.count = 0;
2198 if (ns->regs.row + 1 < ns->geom.pgnum)
2199 ns->regs.row += 1;
2200 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2201 do_state_action(ns, ACTION_CPY);
2203 else if (NS_STATE(ns->nxstate) == STATE_READY)
2204 switch_state(ns);
2207 return;
2210 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2212 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2214 if (!memcmp(buf, &ns_verify_buf[0], len)) {
2215 NS_DBG("verify_buf: the buffer is OK\n");
2216 return 0;
2217 } else {
2218 NS_DBG("verify_buf: the buffer is wrong\n");
2219 return -EFAULT;
2224 * Module initialization function
2226 static int __init ns_init_module(void)
2228 struct nand_chip *chip;
2229 struct nandsim *nand;
2230 int retval = -ENOMEM, i;
2232 if (bus_width != 8 && bus_width != 16) {
2233 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2234 return -EINVAL;
2237 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2238 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2239 + sizeof(struct nandsim), GFP_KERNEL);
2240 if (!nsmtd) {
2241 NS_ERR("unable to allocate core structures.\n");
2242 return -ENOMEM;
2244 chip = (struct nand_chip *)(nsmtd + 1);
2245 nsmtd->priv = (void *)chip;
2246 nand = (struct nandsim *)(chip + 1);
2247 chip->priv = (void *)nand;
2250 * Register simulator's callbacks.
2252 chip->cmd_ctrl = ns_hwcontrol;
2253 chip->read_byte = ns_nand_read_byte;
2254 chip->dev_ready = ns_device_ready;
2255 chip->write_buf = ns_nand_write_buf;
2256 chip->read_buf = ns_nand_read_buf;
2257 chip->verify_buf = ns_nand_verify_buf;
2258 chip->read_word = ns_nand_read_word;
2259 chip->ecc.mode = NAND_ECC_SOFT;
2260 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261 /* and 'badblocks' parameters to work */
2262 chip->options |= NAND_SKIP_BBTSCAN;
2265 * Perform minimum nandsim structure initialization to handle
2266 * the initial ID read command correctly
2268 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2269 nand->geom.idbytes = 4;
2270 else
2271 nand->geom.idbytes = 2;
2272 nand->regs.status = NS_STATUS_OK(nand);
2273 nand->nxstate = STATE_UNKNOWN;
2274 nand->options |= OPT_PAGE256; /* temporary value */
2275 nand->ids[0] = first_id_byte;
2276 nand->ids[1] = second_id_byte;
2277 nand->ids[2] = third_id_byte;
2278 nand->ids[3] = fourth_id_byte;
2279 if (bus_width == 16) {
2280 nand->busw = 16;
2281 chip->options |= NAND_BUSWIDTH_16;
2284 nsmtd->owner = THIS_MODULE;
2286 if ((retval = parse_weakblocks()) != 0)
2287 goto error;
2289 if ((retval = parse_weakpages()) != 0)
2290 goto error;
2292 if ((retval = parse_gravepages()) != 0)
2293 goto error;
2295 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2296 NS_ERR("can't register NAND Simulator\n");
2297 if (retval > 0)
2298 retval = -ENXIO;
2299 goto error;
2302 if (overridesize) {
2303 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2304 if (new_size >> overridesize != nsmtd->erasesize) {
2305 NS_ERR("overridesize is too big\n");
2306 goto err_exit;
2308 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2309 nsmtd->size = new_size;
2310 chip->chipsize = new_size;
2311 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2312 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2315 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2316 goto err_exit;
2318 if ((retval = init_nandsim(nsmtd)) != 0)
2319 goto err_exit;
2321 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2322 goto err_exit;
2324 if ((retval = nand_default_bbt(nsmtd)) != 0)
2325 goto err_exit;
2327 /* Register NAND partitions */
2328 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2329 goto err_exit;
2331 return 0;
2333 err_exit:
2334 free_nandsim(nand);
2335 nand_release(nsmtd);
2336 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2337 kfree(nand->partitions[i].name);
2338 error:
2339 kfree(nsmtd);
2340 free_lists();
2342 return retval;
2345 module_init(ns_init_module);
2348 * Module clean-up function
2350 static void __exit ns_cleanup_module(void)
2352 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2353 int i;
2355 free_nandsim(ns); /* Free nandsim private resources */
2356 nand_release(nsmtd); /* Unregister driver */
2357 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2358 kfree(ns->partitions[i].name);
2359 kfree(nsmtd); /* Free other structures */
2360 free_lists();
2363 module_exit(ns_cleanup_module);
2365 MODULE_LICENSE ("GPL");
2366 MODULE_AUTHOR ("Artem B. Bityuckiy");
2367 MODULE_DESCRIPTION ("The NAND flash simulator");