1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc
= 1;
54 static int hardware_ecc
= 0;
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static int clock_stop
= 1;
60 static const int clock_stop
= 0;
64 /* new oob placement block for use with hardware ecc generation
67 static struct nand_ecclayout nand_hw_eccoob
= {
73 /* controller and mtd information */
75 struct s3c2410_nand_info
;
78 * struct s3c2410_nand_mtd - driver MTD structure
79 * @mtd: The MTD instance to pass to the MTD layer.
80 * @chip: The NAND chip information.
81 * @set: The platform information supplied for this set of NAND chips.
82 * @info: Link back to the hardware information.
83 * @scan_res: The result from calling nand_scan_ident().
85 struct s3c2410_nand_mtd
{
87 struct nand_chip chip
;
88 struct s3c2410_nand_set
*set
;
89 struct s3c2410_nand_info
*info
;
99 /* overview of the s3c2410 nand state */
102 * struct s3c2410_nand_info - NAND controller state.
103 * @mtds: An array of MTD instances on this controoler.
104 * @platform: The platform data for this board.
105 * @device: The platform device we bound to.
106 * @area: The IO area resource that came from request_mem_region().
107 * @clk: The clock resource for this controller.
108 * @regs: The area mapped for the hardware registers described by @area.
109 * @sel_reg: Pointer to the register controlling the NAND selection.
110 * @sel_bit: The bit in @sel_reg to select the NAND chip.
111 * @mtd_count: The number of MTDs created from this controller.
112 * @save_sel: The contents of @sel_reg to be saved over suspend.
113 * @clk_rate: The clock rate from @clk.
114 * @cpu_type: The exact type of this controller.
116 struct s3c2410_nand_info
{
118 struct nand_hw_control controller
;
119 struct s3c2410_nand_mtd
*mtds
;
120 struct s3c2410_platform_nand
*platform
;
123 struct device
*device
;
124 struct resource
*area
;
127 void __iomem
*sel_reg
;
130 unsigned long save_sel
;
131 unsigned long clk_rate
;
133 enum s3c_cpu_type cpu_type
;
135 #ifdef CONFIG_CPU_FREQ
136 struct notifier_block freq_transition
;
140 /* conversion functions */
142 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
144 return container_of(mtd
, struct s3c2410_nand_mtd
, mtd
);
147 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
149 return s3c2410_nand_mtd_toours(mtd
)->info
;
152 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
154 return platform_get_drvdata(dev
);
157 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
159 return dev
->dev
.platform_data
;
162 static inline int allow_clk_stop(struct s3c2410_nand_info
*info
)
167 /* timing calculations */
169 #define NS_IN_KHZ 1000000
172 * s3c_nand_calc_rate - calculate timing data.
173 * @wanted: The cycle time in nanoseconds.
174 * @clk: The clock rate in kHz.
175 * @max: The maximum divider value.
177 * Calculate the timing value from the given parameters.
179 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
183 result
= DIV_ROUND_UP((wanted
* clk
), NS_IN_KHZ
);
185 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
188 printk("%d ns is too big for current clock rate %ld\n", wanted
, clk
);
198 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
200 /* controller setup */
203 * s3c2410_nand_setrate - setup controller timing information.
204 * @info: The controller instance.
206 * Given the information supplied by the platform, calculate and set
207 * the necessary timing registers in the hardware to generate the
208 * necessary timing cycles to the hardware.
210 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
212 struct s3c2410_platform_nand
*plat
= info
->platform
;
213 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
214 int tacls
, twrph0
, twrph1
;
215 unsigned long clkrate
= clk_get_rate(info
->clk
);
216 unsigned long uninitialized_var(set
), cfg
, uninitialized_var(mask
);
219 /* calculate the timing information for the controller */
221 info
->clk_rate
= clkrate
;
222 clkrate
/= 1000; /* turn clock into kHz for ease of use */
225 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
226 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
227 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
229 /* default timings */
235 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
236 dev_err(info
->device
, "cannot get suitable timings\n");
240 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
241 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
), twrph1
, to_ns(twrph1
, clkrate
));
243 switch (info
->cpu_type
) {
245 mask
= (S3C2410_NFCONF_TACLS(3) |
246 S3C2410_NFCONF_TWRPH0(7) |
247 S3C2410_NFCONF_TWRPH1(7));
248 set
= S3C2410_NFCONF_EN
;
249 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
250 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
251 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
256 mask
= (S3C2440_NFCONF_TACLS(tacls_max
- 1) |
257 S3C2440_NFCONF_TWRPH0(7) |
258 S3C2440_NFCONF_TWRPH1(7));
260 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
261 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
262 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
269 local_irq_save(flags
);
271 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
274 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
276 local_irq_restore(flags
);
278 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
284 * s3c2410_nand_inithw - basic hardware initialisation
285 * @info: The hardware state.
287 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
288 * to setup the hardware access speeds and set the controller to be enabled.
290 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
294 ret
= s3c2410_nand_setrate(info
);
298 switch (info
->cpu_type
) {
305 /* enable the controller and de-assert nFCE */
307 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
314 * s3c2410_nand_select_chip - select the given nand chip
315 * @mtd: The MTD instance for this chip.
316 * @chip: The chip number.
318 * This is called by the MTD layer to either select a given chip for the
319 * @mtd instance, or to indicate that the access has finished and the
320 * chip can be de-selected.
322 * The routine ensures that the nFCE line is correctly setup, and any
323 * platform specific selection code is called to route nFCE to the specific
326 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
328 struct s3c2410_nand_info
*info
;
329 struct s3c2410_nand_mtd
*nmtd
;
330 struct nand_chip
*this = mtd
->priv
;
336 if (chip
!= -1 && allow_clk_stop(info
))
337 clk_enable(info
->clk
);
339 cur
= readl(info
->sel_reg
);
342 cur
|= info
->sel_bit
;
344 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
345 dev_err(info
->device
, "invalid chip %d\n", chip
);
349 if (info
->platform
!= NULL
) {
350 if (info
->platform
->select_chip
!= NULL
)
351 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
354 cur
&= ~info
->sel_bit
;
357 writel(cur
, info
->sel_reg
);
359 if (chip
== -1 && allow_clk_stop(info
))
360 clk_disable(info
->clk
);
363 /* s3c2410_nand_hwcontrol
365 * Issue command and address cycles to the chip
368 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
371 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
373 if (cmd
== NAND_CMD_NONE
)
377 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
379 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
382 /* command and control functions */
384 static void s3c2440_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
387 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
389 if (cmd
== NAND_CMD_NONE
)
393 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
395 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
398 /* s3c2410_nand_devready()
400 * returns 0 if the nand is busy, 1 if it is ready
403 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
405 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
406 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
409 static int s3c2440_nand_devready(struct mtd_info
*mtd
)
411 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
412 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
415 static int s3c2412_nand_devready(struct mtd_info
*mtd
)
417 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
418 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
421 /* ECC handling functions */
423 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
424 u_char
*read_ecc
, u_char
*calc_ecc
)
426 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
427 unsigned int diff0
, diff1
, diff2
;
428 unsigned int bit
, byte
;
430 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
432 diff0
= read_ecc
[0] ^ calc_ecc
[0];
433 diff1
= read_ecc
[1] ^ calc_ecc
[1];
434 diff2
= read_ecc
[2] ^ calc_ecc
[2];
436 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
438 read_ecc
[0], read_ecc
[1], read_ecc
[2],
439 calc_ecc
[0], calc_ecc
[1], calc_ecc
[2],
440 diff0
, diff1
, diff2
);
442 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
443 return 0; /* ECC is ok */
445 /* sometimes people do not think about using the ECC, so check
446 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
447 * the error, on the assumption that this is an un-eccd page.
449 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
450 && info
->platform
->ignore_unset_ecc
)
453 /* Can we correct this ECC (ie, one row and column change).
454 * Note, this is similar to the 256 error code on smartmedia */
456 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
457 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
458 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
459 /* calculate the bit position of the error */
461 bit
= ((diff2
>> 3) & 1) |
465 /* calculate the byte position of the error */
467 byte
= ((diff2
<< 7) & 0x100) |
468 ((diff1
<< 0) & 0x80) |
469 ((diff1
<< 1) & 0x40) |
470 ((diff1
<< 2) & 0x20) |
471 ((diff1
<< 3) & 0x10) |
472 ((diff0
>> 4) & 0x08) |
473 ((diff0
>> 3) & 0x04) |
474 ((diff0
>> 2) & 0x02) |
475 ((diff0
>> 1) & 0x01);
477 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
480 dat
[byte
] ^= (1 << bit
);
484 /* if there is only one bit difference in the ECC, then
485 * one of only a row or column parity has changed, which
486 * means the error is most probably in the ECC itself */
488 diff0
|= (diff1
<< 8);
489 diff0
|= (diff2
<< 16);
491 if ((diff0
& ~(1<<fls(diff0
))) == 0)
499 * These allow the s3c2410 and s3c2440 to use the controller's ECC
500 * generator block to ECC the data as it passes through]
503 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
505 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
508 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
509 ctrl
|= S3C2410_NFCONF_INITECC
;
510 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
513 static void s3c2412_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
515 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
518 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
519 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
, info
->regs
+ S3C2440_NFCONT
);
522 static void s3c2440_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
524 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
527 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
528 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
531 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
533 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
535 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
536 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
537 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
539 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__
,
540 ecc_code
[0], ecc_code
[1], ecc_code
[2]);
545 static int s3c2412_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
547 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
548 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
551 ecc_code
[1] = ecc
>> 8;
552 ecc_code
[2] = ecc
>> 16;
554 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code
[0], ecc_code
[1], ecc_code
[2]);
559 static int s3c2440_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
561 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
562 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
565 ecc_code
[1] = ecc
>> 8;
566 ecc_code
[2] = ecc
>> 16;
568 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
573 /* over-ride the standard functions for a little more speed. We can
574 * use read/write block to move the data buffers to/from the controller
577 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
579 struct nand_chip
*this = mtd
->priv
;
580 readsb(this->IO_ADDR_R
, buf
, len
);
583 static void s3c2440_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
585 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
587 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
589 /* cleanup if we've got less than a word to do */
593 for (; len
& 3; len
--)
594 *buf
++ = readb(info
->regs
+ S3C2440_NFDATA
);
598 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
600 struct nand_chip
*this = mtd
->priv
;
601 writesb(this->IO_ADDR_W
, buf
, len
);
604 static void s3c2440_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
606 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
608 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
610 /* cleanup any fractional write */
614 for (; len
& 3; len
--, buf
++)
615 writeb(*buf
, info
->regs
+ S3C2440_NFDATA
);
619 /* cpufreq driver support */
621 #ifdef CONFIG_CPU_FREQ
623 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
624 unsigned long val
, void *data
)
626 struct s3c2410_nand_info
*info
;
627 unsigned long newclk
;
629 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
630 newclk
= clk_get_rate(info
->clk
);
632 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
633 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
634 s3c2410_nand_setrate(info
);
640 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
642 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
644 return cpufreq_register_notifier(&info
->freq_transition
,
645 CPUFREQ_TRANSITION_NOTIFIER
);
648 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
650 cpufreq_unregister_notifier(&info
->freq_transition
,
651 CPUFREQ_TRANSITION_NOTIFIER
);
655 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
660 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
665 /* device management functions */
667 static int s3c24xx_nand_remove(struct platform_device
*pdev
)
669 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
671 platform_set_drvdata(pdev
, NULL
);
676 s3c2410_nand_cpufreq_deregister(info
);
678 /* Release all our mtds and their partitions, then go through
679 * freeing the resources used
682 if (info
->mtds
!= NULL
) {
683 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
686 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
687 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
688 nand_release(&ptr
->mtd
);
694 /* free the common resources */
696 if (info
->clk
!= NULL
&& !IS_ERR(info
->clk
)) {
697 if (!allow_clk_stop(info
))
698 clk_disable(info
->clk
);
702 if (info
->regs
!= NULL
) {
707 if (info
->area
!= NULL
) {
708 release_resource(info
->area
);
718 #ifdef CONFIG_MTD_PARTITIONS
719 const char *part_probes
[] = { "cmdlinepart", NULL
};
720 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
721 struct s3c2410_nand_mtd
*mtd
,
722 struct s3c2410_nand_set
*set
)
724 struct mtd_partition
*part_info
;
728 return add_mtd_device(&mtd
->mtd
);
730 if (set
->nr_partitions
== 0) {
731 mtd
->mtd
.name
= set
->name
;
732 nr_part
= parse_mtd_partitions(&mtd
->mtd
, part_probes
,
735 if (set
->nr_partitions
> 0 && set
->partitions
!= NULL
) {
736 nr_part
= set
->nr_partitions
;
737 part_info
= set
->partitions
;
741 if (nr_part
> 0 && part_info
)
742 return add_mtd_partitions(&mtd
->mtd
, part_info
, nr_part
);
744 return add_mtd_device(&mtd
->mtd
);
747 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
748 struct s3c2410_nand_mtd
*mtd
,
749 struct s3c2410_nand_set
*set
)
751 return add_mtd_device(&mtd
->mtd
);
756 * s3c2410_nand_init_chip - initialise a single instance of an chip
757 * @info: The base NAND controller the chip is on.
758 * @nmtd: The new controller MTD instance to fill in.
759 * @set: The information passed from the board specific platform data.
761 * Initialise the given @nmtd from the information in @info and @set. This
762 * readies the structure for use with the MTD layer functions by ensuring
763 * all pointers are setup and the necessary control routines selected.
765 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
766 struct s3c2410_nand_mtd
*nmtd
,
767 struct s3c2410_nand_set
*set
)
769 struct nand_chip
*chip
= &nmtd
->chip
;
770 void __iomem
*regs
= info
->regs
;
772 chip
->write_buf
= s3c2410_nand_write_buf
;
773 chip
->read_buf
= s3c2410_nand_read_buf
;
774 chip
->select_chip
= s3c2410_nand_select_chip
;
775 chip
->chip_delay
= 50;
777 chip
->options
= set
->options
;
778 chip
->controller
= &info
->controller
;
780 switch (info
->cpu_type
) {
782 chip
->IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
783 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
784 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
785 chip
->cmd_ctrl
= s3c2410_nand_hwcontrol
;
786 chip
->dev_ready
= s3c2410_nand_devready
;
790 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
791 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
792 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
793 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
794 chip
->dev_ready
= s3c2440_nand_devready
;
795 chip
->read_buf
= s3c2440_nand_read_buf
;
796 chip
->write_buf
= s3c2440_nand_write_buf
;
800 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
801 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
802 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
803 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
804 chip
->dev_ready
= s3c2412_nand_devready
;
806 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
807 dev_info(info
->device
, "System booted from NAND\n");
812 chip
->IO_ADDR_R
= chip
->IO_ADDR_W
;
815 nmtd
->mtd
.priv
= chip
;
816 nmtd
->mtd
.owner
= THIS_MODULE
;
820 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
821 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
822 chip
->ecc
.mode
= NAND_ECC_HW
;
824 switch (info
->cpu_type
) {
826 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
827 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
831 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
832 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
836 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
837 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
842 chip
->ecc
.mode
= NAND_ECC_SOFT
;
845 if (set
->ecc_layout
!= NULL
)
846 chip
->ecc
.layout
= set
->ecc_layout
;
848 if (set
->disable_ecc
)
849 chip
->ecc
.mode
= NAND_ECC_NONE
;
851 switch (chip
->ecc
.mode
) {
853 dev_info(info
->device
, "NAND ECC disabled\n");
856 dev_info(info
->device
, "NAND soft ECC\n");
859 dev_info(info
->device
, "NAND hardware ECC\n");
862 dev_info(info
->device
, "NAND ECC UNKNOWN\n");
866 /* If you use u-boot BBT creation code, specifying this flag will
867 * let the kernel fish out the BBT from the NAND, and also skip the
868 * full NAND scan that can take 1/2s or so. Little things... */
870 chip
->options
|= NAND_USE_FLASH_BBT
| NAND_SKIP_BBTSCAN
;
874 * s3c2410_nand_update_chip - post probe update
875 * @info: The controller instance.
876 * @nmtd: The driver version of the MTD instance.
878 * This routine is called after the chip probe has successfully completed
879 * and the relevant per-chip information updated. This call ensure that
880 * we update the internal state accordingly.
882 * The internal state is currently limited to the ECC state information.
884 static void s3c2410_nand_update_chip(struct s3c2410_nand_info
*info
,
885 struct s3c2410_nand_mtd
*nmtd
)
887 struct nand_chip
*chip
= &nmtd
->chip
;
889 dev_dbg(info
->device
, "chip %p => page shift %d\n",
890 chip
, chip
->page_shift
);
892 if (chip
->ecc
.mode
!= NAND_ECC_HW
)
895 /* change the behaviour depending on wether we are using
896 * the large or small page nand device */
898 if (chip
->page_shift
> 10) {
899 chip
->ecc
.size
= 256;
902 chip
->ecc
.size
= 512;
904 chip
->ecc
.layout
= &nand_hw_eccoob
;
908 /* s3c24xx_nand_probe
910 * called by device layer when it finds a device matching
911 * one our driver can handled. This code checks to see if
912 * it can allocate all necessary resources then calls the
913 * nand layer to look for devices
915 static int s3c24xx_nand_probe(struct platform_device
*pdev
)
917 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
918 enum s3c_cpu_type cpu_type
;
919 struct s3c2410_nand_info
*info
;
920 struct s3c2410_nand_mtd
*nmtd
;
921 struct s3c2410_nand_set
*sets
;
922 struct resource
*res
;
928 cpu_type
= platform_get_device_id(pdev
)->driver_data
;
930 pr_debug("s3c2410_nand_probe(%p)\n", pdev
);
932 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
934 dev_err(&pdev
->dev
, "no memory for flash info\n");
939 memset(info
, 0, sizeof(*info
));
940 platform_set_drvdata(pdev
, info
);
942 spin_lock_init(&info
->controller
.lock
);
943 init_waitqueue_head(&info
->controller
.wq
);
945 /* get the clock source and enable it */
947 info
->clk
= clk_get(&pdev
->dev
, "nand");
948 if (IS_ERR(info
->clk
)) {
949 dev_err(&pdev
->dev
, "failed to get clock\n");
954 clk_enable(info
->clk
);
956 /* allocate and map the resource */
958 /* currently we assume we have the one resource */
959 res
= pdev
->resource
;
960 size
= res
->end
- res
->start
+ 1;
962 info
->area
= request_mem_region(res
->start
, size
, pdev
->name
);
964 if (info
->area
== NULL
) {
965 dev_err(&pdev
->dev
, "cannot reserve register region\n");
970 info
->device
= &pdev
->dev
;
971 info
->platform
= plat
;
972 info
->regs
= ioremap(res
->start
, size
);
973 info
->cpu_type
= cpu_type
;
975 if (info
->regs
== NULL
) {
976 dev_err(&pdev
->dev
, "cannot reserve register region\n");
981 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
983 /* initialise the hardware */
985 err
= s3c2410_nand_inithw(info
);
989 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
990 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
992 info
->mtd_count
= nr_sets
;
994 /* allocate our information */
996 size
= nr_sets
* sizeof(*info
->mtds
);
997 info
->mtds
= kmalloc(size
, GFP_KERNEL
);
998 if (info
->mtds
== NULL
) {
999 dev_err(&pdev
->dev
, "failed to allocate mtd storage\n");
1004 memset(info
->mtds
, 0, size
);
1006 /* initialise all possible chips */
1010 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
1011 pr_debug("initialising set %d (%p, info %p)\n", setno
, nmtd
, info
);
1013 s3c2410_nand_init_chip(info
, nmtd
, sets
);
1015 nmtd
->scan_res
= nand_scan_ident(&nmtd
->mtd
,
1016 (sets
) ? sets
->nr_chips
: 1);
1018 if (nmtd
->scan_res
== 0) {
1019 s3c2410_nand_update_chip(info
, nmtd
);
1020 nand_scan_tail(&nmtd
->mtd
);
1021 s3c2410_nand_add_partition(info
, nmtd
, sets
);
1028 err
= s3c2410_nand_cpufreq_register(info
);
1030 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
1034 if (allow_clk_stop(info
)) {
1035 dev_info(&pdev
->dev
, "clock idle support enabled\n");
1036 clk_disable(info
->clk
);
1039 pr_debug("initialised ok\n");
1043 s3c24xx_nand_remove(pdev
);
1053 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
1055 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1058 info
->save_sel
= readl(info
->sel_reg
);
1060 /* For the moment, we must ensure nFCE is high during
1061 * the time we are suspended. This really should be
1062 * handled by suspending the MTDs we are using, but
1063 * that is currently not the case. */
1065 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
1067 if (!allow_clk_stop(info
))
1068 clk_disable(info
->clk
);
1074 static int s3c24xx_nand_resume(struct platform_device
*dev
)
1076 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1080 clk_enable(info
->clk
);
1081 s3c2410_nand_inithw(info
);
1083 /* Restore the state of the nFCE line. */
1085 sel
= readl(info
->sel_reg
);
1086 sel
&= ~info
->sel_bit
;
1087 sel
|= info
->save_sel
& info
->sel_bit
;
1088 writel(sel
, info
->sel_reg
);
1090 if (allow_clk_stop(info
))
1091 clk_disable(info
->clk
);
1098 #define s3c24xx_nand_suspend NULL
1099 #define s3c24xx_nand_resume NULL
1102 /* driver device registration */
1104 static struct platform_device_id s3c24xx_driver_ids
[] = {
1106 .name
= "s3c2410-nand",
1107 .driver_data
= TYPE_S3C2410
,
1109 .name
= "s3c2440-nand",
1110 .driver_data
= TYPE_S3C2440
,
1112 .name
= "s3c2412-nand",
1113 .driver_data
= TYPE_S3C2412
,
1115 .name
= "s3c6400-nand",
1116 .driver_data
= TYPE_S3C2412
, /* compatible with 2412 */
1121 MODULE_DEVICE_TABLE(platform
, s3c24xx_driver_ids
);
1123 static struct platform_driver s3c24xx_nand_driver
= {
1124 .probe
= s3c24xx_nand_probe
,
1125 .remove
= s3c24xx_nand_remove
,
1126 .suspend
= s3c24xx_nand_suspend
,
1127 .resume
= s3c24xx_nand_resume
,
1128 .id_table
= s3c24xx_driver_ids
,
1130 .name
= "s3c24xx-nand",
1131 .owner
= THIS_MODULE
,
1135 static int __init
s3c2410_nand_init(void)
1137 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1139 return platform_driver_register(&s3c24xx_nand_driver
);
1142 static void __exit
s3c2410_nand_exit(void)
1144 platform_driver_unregister(&s3c24xx_nand_driver
);
1147 module_init(s3c2410_nand_init
);
1148 module_exit(s3c2410_nand_exit
);
1150 MODULE_LICENSE("GPL");
1151 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1152 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");