Linux 2.6.33-rc6
[cris-mirror.git] / drivers / mtd / ubi / vtbl.c
blob40044028d6824e217a6e5f5cbe9e1ea232a291f8
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
56 * damaged.
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device *ubi);
66 #else
67 #define paranoid_vtbl_check(ubi)
68 #endif
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record;
73 /**
74 * ubi_change_vtbl_record - change volume table record.
75 * @ubi: UBI device description object
76 * @idx: table index to change
77 * @vtbl_rec: new volume table record
79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80 * volume table record is written. The caller does not have to calculate CRC of
81 * the record as it is done by this function. Returns zero in case of success
82 * and a negative error code in case of failure.
84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 struct ubi_vtbl_record *vtbl_rec)
87 int i, err;
88 uint32_t crc;
89 struct ubi_volume *layout_vol;
91 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
92 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
94 if (!vtbl_rec)
95 vtbl_rec = &empty_vtbl_record;
96 else {
97 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
98 vtbl_rec->crc = cpu_to_be32(crc);
101 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
102 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
103 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
104 if (err)
105 return err;
107 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
108 ubi->vtbl_size, UBI_LONGTERM);
109 if (err)
110 return err;
113 paranoid_vtbl_check(ubi);
114 return 0;
118 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
119 * @ubi: UBI device description object
120 * @rename_list: list of &struct ubi_rename_entry objects
122 * This function re-names multiple volumes specified in @req in the volume
123 * table. Returns zero in case of success and a negative error code in case of
124 * failure.
126 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
127 struct list_head *rename_list)
129 int i, err;
130 struct ubi_rename_entry *re;
131 struct ubi_volume *layout_vol;
133 list_for_each_entry(re, rename_list, list) {
134 uint32_t crc;
135 struct ubi_volume *vol = re->desc->vol;
136 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
138 if (re->remove) {
139 memcpy(vtbl_rec, &empty_vtbl_record,
140 sizeof(struct ubi_vtbl_record));
141 continue;
144 vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
145 memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
146 memset(vtbl_rec->name + re->new_name_len, 0,
147 UBI_VOL_NAME_MAX + 1 - re->new_name_len);
148 crc = crc32(UBI_CRC32_INIT, vtbl_rec,
149 UBI_VTBL_RECORD_SIZE_CRC);
150 vtbl_rec->crc = cpu_to_be32(crc);
153 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
154 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
155 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
156 if (err)
157 return err;
159 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
160 ubi->vtbl_size, UBI_LONGTERM);
161 if (err)
162 return err;
165 return 0;
169 * vtbl_check - check if volume table is not corrupted and sensible.
170 * @ubi: UBI device description object
171 * @vtbl: volume table
173 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
174 * and %-EINVAL if it contains inconsistent data.
176 static int vtbl_check(const struct ubi_device *ubi,
177 const struct ubi_vtbl_record *vtbl)
179 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
180 int upd_marker, err;
181 uint32_t crc;
182 const char *name;
184 for (i = 0; i < ubi->vtbl_slots; i++) {
185 cond_resched();
187 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
188 alignment = be32_to_cpu(vtbl[i].alignment);
189 data_pad = be32_to_cpu(vtbl[i].data_pad);
190 upd_marker = vtbl[i].upd_marker;
191 vol_type = vtbl[i].vol_type;
192 name_len = be16_to_cpu(vtbl[i].name_len);
193 name = &vtbl[i].name[0];
195 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
196 if (be32_to_cpu(vtbl[i].crc) != crc) {
197 ubi_err("bad CRC at record %u: %#08x, not %#08x",
198 i, crc, be32_to_cpu(vtbl[i].crc));
199 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
200 return 1;
203 if (reserved_pebs == 0) {
204 if (memcmp(&vtbl[i], &empty_vtbl_record,
205 UBI_VTBL_RECORD_SIZE)) {
206 err = 2;
207 goto bad;
209 continue;
212 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
213 name_len < 0) {
214 err = 3;
215 goto bad;
218 if (alignment > ubi->leb_size || alignment == 0) {
219 err = 4;
220 goto bad;
223 n = alignment & (ubi->min_io_size - 1);
224 if (alignment != 1 && n) {
225 err = 5;
226 goto bad;
229 n = ubi->leb_size % alignment;
230 if (data_pad != n) {
231 dbg_err("bad data_pad, has to be %d", n);
232 err = 6;
233 goto bad;
236 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
237 err = 7;
238 goto bad;
241 if (upd_marker != 0 && upd_marker != 1) {
242 err = 8;
243 goto bad;
246 if (reserved_pebs > ubi->good_peb_count) {
247 dbg_err("too large reserved_pebs %d, good PEBs %d",
248 reserved_pebs, ubi->good_peb_count);
249 err = 9;
250 goto bad;
253 if (name_len > UBI_VOL_NAME_MAX) {
254 err = 10;
255 goto bad;
258 if (name[0] == '\0') {
259 err = 11;
260 goto bad;
263 if (name_len != strnlen(name, name_len + 1)) {
264 err = 12;
265 goto bad;
269 /* Checks that all names are unique */
270 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
271 for (n = i + 1; n < ubi->vtbl_slots; n++) {
272 int len1 = be16_to_cpu(vtbl[i].name_len);
273 int len2 = be16_to_cpu(vtbl[n].name_len);
275 if (len1 > 0 && len1 == len2 &&
276 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
277 ubi_err("volumes %d and %d have the same name"
278 " \"%s\"", i, n, vtbl[i].name);
279 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
280 ubi_dbg_dump_vtbl_record(&vtbl[n], n);
281 return -EINVAL;
286 return 0;
288 bad:
289 ubi_err("volume table check failed: record %d, error %d", i, err);
290 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
291 return -EINVAL;
295 * create_vtbl - create a copy of volume table.
296 * @ubi: UBI device description object
297 * @si: scanning information
298 * @copy: number of the volume table copy
299 * @vtbl: contents of the volume table
301 * This function returns zero in case of success and a negative error code in
302 * case of failure.
304 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
305 int copy, void *vtbl)
307 int err, tries = 0;
308 static struct ubi_vid_hdr *vid_hdr;
309 struct ubi_scan_volume *sv;
310 struct ubi_scan_leb *new_seb, *old_seb = NULL;
312 ubi_msg("create volume table (copy #%d)", copy + 1);
314 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
315 if (!vid_hdr)
316 return -ENOMEM;
319 * Check if there is a logical eraseblock which would have to contain
320 * this volume table copy was found during scanning. It has to be wiped
321 * out.
323 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
324 if (sv)
325 old_seb = ubi_scan_find_seb(sv, copy);
327 retry:
328 new_seb = ubi_scan_get_free_peb(ubi, si);
329 if (IS_ERR(new_seb)) {
330 err = PTR_ERR(new_seb);
331 goto out_free;
334 vid_hdr->vol_type = UBI_VID_DYNAMIC;
335 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
336 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
337 vid_hdr->data_size = vid_hdr->used_ebs =
338 vid_hdr->data_pad = cpu_to_be32(0);
339 vid_hdr->lnum = cpu_to_be32(copy);
340 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
342 /* The EC header is already there, write the VID header */
343 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
344 if (err)
345 goto write_error;
347 /* Write the layout volume contents */
348 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
349 if (err)
350 goto write_error;
353 * And add it to the scanning information. Don't delete the old
354 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
356 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
357 vid_hdr, 0);
358 kfree(new_seb);
359 ubi_free_vid_hdr(ubi, vid_hdr);
360 return err;
362 write_error:
363 if (err == -EIO && ++tries <= 5) {
365 * Probably this physical eraseblock went bad, try to pick
366 * another one.
368 list_add_tail(&new_seb->u.list, &si->corr);
369 goto retry;
371 kfree(new_seb);
372 out_free:
373 ubi_free_vid_hdr(ubi, vid_hdr);
374 return err;
379 * process_lvol - process the layout volume.
380 * @ubi: UBI device description object
381 * @si: scanning information
382 * @sv: layout volume scanning information
384 * This function is responsible for reading the layout volume, ensuring it is
385 * not corrupted, and recovering from corruptions if needed. Returns volume
386 * table in case of success and a negative error code in case of failure.
388 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
389 struct ubi_scan_info *si,
390 struct ubi_scan_volume *sv)
392 int err;
393 struct rb_node *rb;
394 struct ubi_scan_leb *seb;
395 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
396 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
399 * UBI goes through the following steps when it changes the layout
400 * volume:
401 * a. erase LEB 0;
402 * b. write new data to LEB 0;
403 * c. erase LEB 1;
404 * d. write new data to LEB 1.
406 * Before the change, both LEBs contain the same data.
408 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
409 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
410 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
411 * finally, unclean reboots may result in a situation when neither LEB
412 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
413 * 0 contains more recent information.
415 * So the plan is to first check LEB 0. Then
416 * a. if LEB 0 is OK, it must be containing the most resent data; then
417 * we compare it with LEB 1, and if they are different, we copy LEB
418 * 0 to LEB 1;
419 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
420 * to LEB 0.
423 dbg_gen("check layout volume");
425 /* Read both LEB 0 and LEB 1 into memory */
426 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
427 leb[seb->lnum] = vmalloc(ubi->vtbl_size);
428 if (!leb[seb->lnum]) {
429 err = -ENOMEM;
430 goto out_free;
432 memset(leb[seb->lnum], 0, ubi->vtbl_size);
434 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
435 ubi->vtbl_size);
436 if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
438 * Scrub the PEB later. Note, -EBADMSG indicates an
439 * uncorrectable ECC error, but we have our own CRC and
440 * the data will be checked later. If the data is OK,
441 * the PEB will be scrubbed (because we set
442 * seb->scrub). If the data is not OK, the contents of
443 * the PEB will be recovered from the second copy, and
444 * seb->scrub will be cleared in
445 * 'ubi_scan_add_used()'.
447 seb->scrub = 1;
448 else if (err)
449 goto out_free;
452 err = -EINVAL;
453 if (leb[0]) {
454 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
455 if (leb_corrupted[0] < 0)
456 goto out_free;
459 if (!leb_corrupted[0]) {
460 /* LEB 0 is OK */
461 if (leb[1])
462 leb_corrupted[1] = memcmp(leb[0], leb[1],
463 ubi->vtbl_size);
464 if (leb_corrupted[1]) {
465 ubi_warn("volume table copy #2 is corrupted");
466 err = create_vtbl(ubi, si, 1, leb[0]);
467 if (err)
468 goto out_free;
469 ubi_msg("volume table was restored");
472 /* Both LEB 1 and LEB 2 are OK and consistent */
473 vfree(leb[1]);
474 return leb[0];
475 } else {
476 /* LEB 0 is corrupted or does not exist */
477 if (leb[1]) {
478 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
479 if (leb_corrupted[1] < 0)
480 goto out_free;
482 if (leb_corrupted[1]) {
483 /* Both LEB 0 and LEB 1 are corrupted */
484 ubi_err("both volume tables are corrupted");
485 goto out_free;
488 ubi_warn("volume table copy #1 is corrupted");
489 err = create_vtbl(ubi, si, 0, leb[1]);
490 if (err)
491 goto out_free;
492 ubi_msg("volume table was restored");
494 vfree(leb[0]);
495 return leb[1];
498 out_free:
499 vfree(leb[0]);
500 vfree(leb[1]);
501 return ERR_PTR(err);
505 * create_empty_lvol - create empty layout volume.
506 * @ubi: UBI device description object
507 * @si: scanning information
509 * This function returns volume table contents in case of success and a
510 * negative error code in case of failure.
512 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
513 struct ubi_scan_info *si)
515 int i;
516 struct ubi_vtbl_record *vtbl;
518 vtbl = vmalloc(ubi->vtbl_size);
519 if (!vtbl)
520 return ERR_PTR(-ENOMEM);
521 memset(vtbl, 0, ubi->vtbl_size);
523 for (i = 0; i < ubi->vtbl_slots; i++)
524 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
526 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
527 int err;
529 err = create_vtbl(ubi, si, i, vtbl);
530 if (err) {
531 vfree(vtbl);
532 return ERR_PTR(err);
536 return vtbl;
540 * init_volumes - initialize volume information for existing volumes.
541 * @ubi: UBI device description object
542 * @si: scanning information
543 * @vtbl: volume table
545 * This function allocates volume description objects for existing volumes.
546 * Returns zero in case of success and a negative error code in case of
547 * failure.
549 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
550 const struct ubi_vtbl_record *vtbl)
552 int i, reserved_pebs = 0;
553 struct ubi_scan_volume *sv;
554 struct ubi_volume *vol;
556 for (i = 0; i < ubi->vtbl_slots; i++) {
557 cond_resched();
559 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
560 continue; /* Empty record */
562 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
563 if (!vol)
564 return -ENOMEM;
566 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
567 vol->alignment = be32_to_cpu(vtbl[i].alignment);
568 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
569 vol->upd_marker = vtbl[i].upd_marker;
570 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
571 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
572 vol->name_len = be16_to_cpu(vtbl[i].name_len);
573 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
574 memcpy(vol->name, vtbl[i].name, vol->name_len);
575 vol->name[vol->name_len] = '\0';
576 vol->vol_id = i;
578 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
579 /* Auto re-size flag may be set only for one volume */
580 if (ubi->autoresize_vol_id != -1) {
581 ubi_err("more than one auto-resize volume (%d "
582 "and %d)", ubi->autoresize_vol_id, i);
583 kfree(vol);
584 return -EINVAL;
587 ubi->autoresize_vol_id = i;
590 ubi_assert(!ubi->volumes[i]);
591 ubi->volumes[i] = vol;
592 ubi->vol_count += 1;
593 vol->ubi = ubi;
594 reserved_pebs += vol->reserved_pebs;
597 * In case of dynamic volume UBI knows nothing about how many
598 * data is stored there. So assume the whole volume is used.
600 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
601 vol->used_ebs = vol->reserved_pebs;
602 vol->last_eb_bytes = vol->usable_leb_size;
603 vol->used_bytes =
604 (long long)vol->used_ebs * vol->usable_leb_size;
605 continue;
608 /* Static volumes only */
609 sv = ubi_scan_find_sv(si, i);
610 if (!sv) {
612 * No eraseblocks belonging to this volume found. We
613 * don't actually know whether this static volume is
614 * completely corrupted or just contains no data. And
615 * we cannot know this as long as data size is not
616 * stored on flash. So we just assume the volume is
617 * empty. FIXME: this should be handled.
619 continue;
622 if (sv->leb_count != sv->used_ebs) {
624 * We found a static volume which misses several
625 * eraseblocks. Treat it as corrupted.
627 ubi_warn("static volume %d misses %d LEBs - corrupted",
628 sv->vol_id, sv->used_ebs - sv->leb_count);
629 vol->corrupted = 1;
630 continue;
633 vol->used_ebs = sv->used_ebs;
634 vol->used_bytes =
635 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
636 vol->used_bytes += sv->last_data_size;
637 vol->last_eb_bytes = sv->last_data_size;
640 /* And add the layout volume */
641 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
642 if (!vol)
643 return -ENOMEM;
645 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
646 vol->alignment = 1;
647 vol->vol_type = UBI_DYNAMIC_VOLUME;
648 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
649 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
650 vol->usable_leb_size = ubi->leb_size;
651 vol->used_ebs = vol->reserved_pebs;
652 vol->last_eb_bytes = vol->reserved_pebs;
653 vol->used_bytes =
654 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
655 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
656 vol->ref_count = 1;
658 ubi_assert(!ubi->volumes[i]);
659 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
660 reserved_pebs += vol->reserved_pebs;
661 ubi->vol_count += 1;
662 vol->ubi = ubi;
664 if (reserved_pebs > ubi->avail_pebs)
665 ubi_err("not enough PEBs, required %d, available %d",
666 reserved_pebs, ubi->avail_pebs);
667 ubi->rsvd_pebs += reserved_pebs;
668 ubi->avail_pebs -= reserved_pebs;
670 return 0;
674 * check_sv - check volume scanning information.
675 * @vol: UBI volume description object
676 * @sv: volume scanning information
678 * This function returns zero if the volume scanning information is consistent
679 * to the data read from the volume tabla, and %-EINVAL if not.
681 static int check_sv(const struct ubi_volume *vol,
682 const struct ubi_scan_volume *sv)
684 int err;
686 if (sv->highest_lnum >= vol->reserved_pebs) {
687 err = 1;
688 goto bad;
690 if (sv->leb_count > vol->reserved_pebs) {
691 err = 2;
692 goto bad;
694 if (sv->vol_type != vol->vol_type) {
695 err = 3;
696 goto bad;
698 if (sv->used_ebs > vol->reserved_pebs) {
699 err = 4;
700 goto bad;
702 if (sv->data_pad != vol->data_pad) {
703 err = 5;
704 goto bad;
706 return 0;
708 bad:
709 ubi_err("bad scanning information, error %d", err);
710 ubi_dbg_dump_sv(sv);
711 ubi_dbg_dump_vol_info(vol);
712 return -EINVAL;
716 * check_scanning_info - check that scanning information.
717 * @ubi: UBI device description object
718 * @si: scanning information
720 * Even though we protect on-flash data by CRC checksums, we still don't trust
721 * the media. This function ensures that scanning information is consistent to
722 * the information read from the volume table. Returns zero if the scanning
723 * information is OK and %-EINVAL if it is not.
725 static int check_scanning_info(const struct ubi_device *ubi,
726 struct ubi_scan_info *si)
728 int err, i;
729 struct ubi_scan_volume *sv;
730 struct ubi_volume *vol;
732 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
733 ubi_err("scanning found %d volumes, maximum is %d + %d",
734 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
735 return -EINVAL;
738 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
739 si->highest_vol_id < UBI_INTERNAL_VOL_START) {
740 ubi_err("too large volume ID %d found by scanning",
741 si->highest_vol_id);
742 return -EINVAL;
745 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
746 cond_resched();
748 sv = ubi_scan_find_sv(si, i);
749 vol = ubi->volumes[i];
750 if (!vol) {
751 if (sv)
752 ubi_scan_rm_volume(si, sv);
753 continue;
756 if (vol->reserved_pebs == 0) {
757 ubi_assert(i < ubi->vtbl_slots);
759 if (!sv)
760 continue;
763 * During scanning we found a volume which does not
764 * exist according to the information in the volume
765 * table. This must have happened due to an unclean
766 * reboot while the volume was being removed. Discard
767 * these eraseblocks.
769 ubi_msg("finish volume %d removal", sv->vol_id);
770 ubi_scan_rm_volume(si, sv);
771 } else if (sv) {
772 err = check_sv(vol, sv);
773 if (err)
774 return err;
778 return 0;
782 * ubi_read_volume_table - read the volume table.
783 * @ubi: UBI device description object
784 * @si: scanning information
786 * This function reads volume table, checks it, recover from errors if needed,
787 * or creates it if needed. Returns zero in case of success and a negative
788 * error code in case of failure.
790 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
792 int i, err;
793 struct ubi_scan_volume *sv;
795 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
798 * The number of supported volumes is limited by the eraseblock size
799 * and by the UBI_MAX_VOLUMES constant.
801 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
802 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
803 ubi->vtbl_slots = UBI_MAX_VOLUMES;
805 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
806 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
808 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
809 if (!sv) {
811 * No logical eraseblocks belonging to the layout volume were
812 * found. This could mean that the flash is just empty. In
813 * this case we create empty layout volume.
815 * But if flash is not empty this must be a corruption or the
816 * MTD device just contains garbage.
818 if (si->is_empty) {
819 ubi->vtbl = create_empty_lvol(ubi, si);
820 if (IS_ERR(ubi->vtbl))
821 return PTR_ERR(ubi->vtbl);
822 } else {
823 ubi_err("the layout volume was not found");
824 return -EINVAL;
826 } else {
827 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
828 /* This must not happen with proper UBI images */
829 dbg_err("too many LEBs (%d) in layout volume",
830 sv->leb_count);
831 return -EINVAL;
834 ubi->vtbl = process_lvol(ubi, si, sv);
835 if (IS_ERR(ubi->vtbl))
836 return PTR_ERR(ubi->vtbl);
839 ubi->avail_pebs = ubi->good_peb_count;
842 * The layout volume is OK, initialize the corresponding in-RAM data
843 * structures.
845 err = init_volumes(ubi, si, ubi->vtbl);
846 if (err)
847 goto out_free;
850 * Get sure that the scanning information is consistent to the
851 * information stored in the volume table.
853 err = check_scanning_info(ubi, si);
854 if (err)
855 goto out_free;
857 return 0;
859 out_free:
860 vfree(ubi->vtbl);
861 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
862 kfree(ubi->volumes[i]);
863 ubi->volumes[i] = NULL;
865 return err;
868 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
871 * paranoid_vtbl_check - check volume table.
872 * @ubi: UBI device description object
874 static void paranoid_vtbl_check(const struct ubi_device *ubi)
876 if (vtbl_check(ubi, ubi->vtbl)) {
877 ubi_err("paranoid check failed");
878 BUG();
882 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */