2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
33 static unsigned int num_prealloc_crypto_pages
= 32;
34 static unsigned int num_prealloc_crypto_ctxs
= 128;
36 module_param(num_prealloc_crypto_pages
, uint
, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
41 "Number of crypto contexts to preallocate");
43 static mempool_t
*fscrypt_bounce_page_pool
= NULL
;
45 static LIST_HEAD(fscrypt_free_ctxs
);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock
);
48 struct workqueue_struct
*fscrypt_read_workqueue
;
49 static DEFINE_MUTEX(fscrypt_init_mutex
);
51 static struct kmem_cache
*fscrypt_ctx_cachep
;
52 struct kmem_cache
*fscrypt_info_cachep
;
55 * fscrypt_release_ctx() - Releases an encryption context
56 * @ctx: The encryption context to release.
58 * If the encryption context was allocated from the pre-allocated pool, returns
59 * it to that pool. Else, frees it.
61 * If there's a bounce page in the context, this frees that.
63 void fscrypt_release_ctx(struct fscrypt_ctx
*ctx
)
67 if (ctx
->flags
& FS_CTX_HAS_BOUNCE_BUFFER_FL
&& ctx
->w
.bounce_page
) {
68 mempool_free(ctx
->w
.bounce_page
, fscrypt_bounce_page_pool
);
69 ctx
->w
.bounce_page
= NULL
;
71 ctx
->w
.control_page
= NULL
;
72 if (ctx
->flags
& FS_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
73 kmem_cache_free(fscrypt_ctx_cachep
, ctx
);
75 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
76 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
77 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
80 EXPORT_SYMBOL(fscrypt_release_ctx
);
83 * fscrypt_get_ctx() - Gets an encryption context
84 * @inode: The inode for which we are doing the crypto
85 * @gfp_flags: The gfp flag for memory allocation
87 * Allocates and initializes an encryption context.
89 * Return: An allocated and initialized encryption context on success; error
90 * value or NULL otherwise.
92 struct fscrypt_ctx
*fscrypt_get_ctx(const struct inode
*inode
, gfp_t gfp_flags
)
94 struct fscrypt_ctx
*ctx
= NULL
;
95 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
99 return ERR_PTR(-ENOKEY
);
102 * We first try getting the ctx from a free list because in
103 * the common case the ctx will have an allocated and
104 * initialized crypto tfm, so it's probably a worthwhile
105 * optimization. For the bounce page, we first try getting it
106 * from the kernel allocator because that's just about as fast
107 * as getting it from a list and because a cache of free pages
108 * should generally be a "last resort" option for a filesystem
109 * to be able to do its job.
111 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
112 ctx
= list_first_entry_or_null(&fscrypt_free_ctxs
,
113 struct fscrypt_ctx
, free_list
);
115 list_del(&ctx
->free_list
);
116 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
118 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, gfp_flags
);
120 return ERR_PTR(-ENOMEM
);
121 ctx
->flags
|= FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
123 ctx
->flags
&= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
125 ctx
->flags
&= ~FS_CTX_HAS_BOUNCE_BUFFER_FL
;
128 EXPORT_SYMBOL(fscrypt_get_ctx
);
130 int fscrypt_do_page_crypto(const struct inode
*inode
, fscrypt_direction_t rw
,
131 u64 lblk_num
, struct page
*src_page
,
132 struct page
*dest_page
, unsigned int len
,
133 unsigned int offs
, gfp_t gfp_flags
)
137 u8 padding
[FS_IV_SIZE
- sizeof(__le64
)];
139 struct skcipher_request
*req
= NULL
;
140 DECLARE_CRYPTO_WAIT(wait
);
141 struct scatterlist dst
, src
;
142 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
143 struct crypto_skcipher
*tfm
= ci
->ci_ctfm
;
148 BUILD_BUG_ON(sizeof(iv
) != FS_IV_SIZE
);
149 BUILD_BUG_ON(AES_BLOCK_SIZE
!= FS_IV_SIZE
);
150 iv
.index
= cpu_to_le64(lblk_num
);
151 memset(iv
.padding
, 0, sizeof(iv
.padding
));
153 if (ci
->ci_essiv_tfm
!= NULL
) {
154 crypto_cipher_encrypt_one(ci
->ci_essiv_tfm
, (u8
*)&iv
,
158 req
= skcipher_request_alloc(tfm
, gfp_flags
);
160 printk_ratelimited(KERN_ERR
161 "%s: crypto_request_alloc() failed\n",
166 skcipher_request_set_callback(
167 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
168 crypto_req_done
, &wait
);
170 sg_init_table(&dst
, 1);
171 sg_set_page(&dst
, dest_page
, len
, offs
);
172 sg_init_table(&src
, 1);
173 sg_set_page(&src
, src_page
, len
, offs
);
174 skcipher_request_set_crypt(req
, &src
, &dst
, len
, &iv
);
175 if (rw
== FS_DECRYPT
)
176 res
= crypto_wait_req(crypto_skcipher_decrypt(req
), &wait
);
178 res
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
179 skcipher_request_free(req
);
181 printk_ratelimited(KERN_ERR
182 "%s: crypto_skcipher_encrypt() returned %d\n",
189 struct page
*fscrypt_alloc_bounce_page(struct fscrypt_ctx
*ctx
,
192 ctx
->w
.bounce_page
= mempool_alloc(fscrypt_bounce_page_pool
, gfp_flags
);
193 if (ctx
->w
.bounce_page
== NULL
)
194 return ERR_PTR(-ENOMEM
);
195 ctx
->flags
|= FS_CTX_HAS_BOUNCE_BUFFER_FL
;
196 return ctx
->w
.bounce_page
;
200 * fscypt_encrypt_page() - Encrypts a page
201 * @inode: The inode for which the encryption should take place
202 * @page: The page to encrypt. Must be locked for bounce-page
204 * @len: Length of data to encrypt in @page and encrypted
205 * data in returned page.
206 * @offs: Offset of data within @page and returned
207 * page holding encrypted data.
208 * @lblk_num: Logical block number. This must be unique for multiple
209 * calls with same inode, except when overwriting
210 * previously written data.
211 * @gfp_flags: The gfp flag for memory allocation
213 * Encrypts @page using the ctx encryption context. Performs encryption
214 * either in-place or into a newly allocated bounce page.
215 * Called on the page write path.
217 * Bounce page allocation is the default.
218 * In this case, the contents of @page are encrypted and stored in an
219 * allocated bounce page. @page has to be locked and the caller must call
220 * fscrypt_restore_control_page() on the returned ciphertext page to
221 * release the bounce buffer and the encryption context.
223 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
224 * fscrypt_operations. Here, the input-page is returned with its content
227 * Return: A page with the encrypted content on success. Else, an
228 * error value or NULL.
230 struct page
*fscrypt_encrypt_page(const struct inode
*inode
,
234 u64 lblk_num
, gfp_t gfp_flags
)
237 struct fscrypt_ctx
*ctx
;
238 struct page
*ciphertext_page
= page
;
241 BUG_ON(len
% FS_CRYPTO_BLOCK_SIZE
!= 0);
243 if (inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
) {
244 /* with inplace-encryption we just encrypt the page */
245 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
, page
,
246 ciphertext_page
, len
, offs
,
251 return ciphertext_page
;
254 BUG_ON(!PageLocked(page
));
256 ctx
= fscrypt_get_ctx(inode
, gfp_flags
);
258 return (struct page
*)ctx
;
260 /* The encryption operation will require a bounce page. */
261 ciphertext_page
= fscrypt_alloc_bounce_page(ctx
, gfp_flags
);
262 if (IS_ERR(ciphertext_page
))
265 ctx
->w
.control_page
= page
;
266 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
267 page
, ciphertext_page
, len
, offs
,
270 ciphertext_page
= ERR_PTR(err
);
273 SetPagePrivate(ciphertext_page
);
274 set_page_private(ciphertext_page
, (unsigned long)ctx
);
275 lock_page(ciphertext_page
);
276 return ciphertext_page
;
279 fscrypt_release_ctx(ctx
);
280 return ciphertext_page
;
282 EXPORT_SYMBOL(fscrypt_encrypt_page
);
285 * fscrypt_decrypt_page() - Decrypts a page in-place
286 * @inode: The corresponding inode for the page to decrypt.
287 * @page: The page to decrypt. Must be locked in case
288 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
289 * @len: Number of bytes in @page to be decrypted.
290 * @offs: Start of data in @page.
291 * @lblk_num: Logical block number.
293 * Decrypts page in-place using the ctx encryption context.
295 * Called from the read completion callback.
297 * Return: Zero on success, non-zero otherwise.
299 int fscrypt_decrypt_page(const struct inode
*inode
, struct page
*page
,
300 unsigned int len
, unsigned int offs
, u64 lblk_num
)
302 if (!(inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
))
303 BUG_ON(!PageLocked(page
));
305 return fscrypt_do_page_crypto(inode
, FS_DECRYPT
, lblk_num
, page
, page
,
306 len
, offs
, GFP_NOFS
);
308 EXPORT_SYMBOL(fscrypt_decrypt_page
);
311 * Validate dentries for encrypted directories to make sure we aren't
312 * potentially caching stale data after a key has been added or
315 static int fscrypt_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
318 int dir_has_key
, cached_with_key
;
320 if (flags
& LOOKUP_RCU
)
323 dir
= dget_parent(dentry
);
324 if (!IS_ENCRYPTED(d_inode(dir
))) {
329 /* this should eventually be an flag in d_flags */
330 spin_lock(&dentry
->d_lock
);
331 cached_with_key
= dentry
->d_flags
& DCACHE_ENCRYPTED_WITH_KEY
;
332 spin_unlock(&dentry
->d_lock
);
333 dir_has_key
= (d_inode(dir
)->i_crypt_info
!= NULL
);
337 * If the dentry was cached without the key, and it is a
338 * negative dentry, it might be a valid name. We can't check
339 * if the key has since been made available due to locking
340 * reasons, so we fail the validation so ext4_lookup() can do
343 * We also fail the validation if the dentry was created with
344 * the key present, but we no longer have the key, or vice versa.
346 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
347 (!cached_with_key
&& dir_has_key
) ||
348 (cached_with_key
&& !dir_has_key
))
353 const struct dentry_operations fscrypt_d_ops
= {
354 .d_revalidate
= fscrypt_d_revalidate
,
356 EXPORT_SYMBOL(fscrypt_d_ops
);
358 void fscrypt_restore_control_page(struct page
*page
)
360 struct fscrypt_ctx
*ctx
;
362 ctx
= (struct fscrypt_ctx
*)page_private(page
);
363 set_page_private(page
, (unsigned long)NULL
);
364 ClearPagePrivate(page
);
366 fscrypt_release_ctx(ctx
);
368 EXPORT_SYMBOL(fscrypt_restore_control_page
);
370 static void fscrypt_destroy(void)
372 struct fscrypt_ctx
*pos
, *n
;
374 list_for_each_entry_safe(pos
, n
, &fscrypt_free_ctxs
, free_list
)
375 kmem_cache_free(fscrypt_ctx_cachep
, pos
);
376 INIT_LIST_HEAD(&fscrypt_free_ctxs
);
377 mempool_destroy(fscrypt_bounce_page_pool
);
378 fscrypt_bounce_page_pool
= NULL
;
382 * fscrypt_initialize() - allocate major buffers for fs encryption.
383 * @cop_flags: fscrypt operations flags
385 * We only call this when we start accessing encrypted files, since it
386 * results in memory getting allocated that wouldn't otherwise be used.
388 * Return: Zero on success, non-zero otherwise.
390 int fscrypt_initialize(unsigned int cop_flags
)
392 int i
, res
= -ENOMEM
;
394 /* No need to allocate a bounce page pool if this FS won't use it. */
395 if (cop_flags
& FS_CFLG_OWN_PAGES
)
398 mutex_lock(&fscrypt_init_mutex
);
399 if (fscrypt_bounce_page_pool
)
400 goto already_initialized
;
402 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
403 struct fscrypt_ctx
*ctx
;
405 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, GFP_NOFS
);
408 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
411 fscrypt_bounce_page_pool
=
412 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
413 if (!fscrypt_bounce_page_pool
)
417 mutex_unlock(&fscrypt_init_mutex
);
421 mutex_unlock(&fscrypt_init_mutex
);
426 * fscrypt_init() - Set up for fs encryption.
428 static int __init
fscrypt_init(void)
430 fscrypt_read_workqueue
= alloc_workqueue("fscrypt_read_queue",
432 if (!fscrypt_read_workqueue
)
435 fscrypt_ctx_cachep
= KMEM_CACHE(fscrypt_ctx
, SLAB_RECLAIM_ACCOUNT
);
436 if (!fscrypt_ctx_cachep
)
437 goto fail_free_queue
;
439 fscrypt_info_cachep
= KMEM_CACHE(fscrypt_info
, SLAB_RECLAIM_ACCOUNT
);
440 if (!fscrypt_info_cachep
)
446 kmem_cache_destroy(fscrypt_ctx_cachep
);
448 destroy_workqueue(fscrypt_read_workqueue
);
452 module_init(fscrypt_init
)
455 * fscrypt_exit() - Shutdown the fs encryption system
457 static void __exit
fscrypt_exit(void)
461 if (fscrypt_read_workqueue
)
462 destroy_workqueue(fscrypt_read_workqueue
);
463 kmem_cache_destroy(fscrypt_ctx_cachep
);
464 kmem_cache_destroy(fscrypt_info_cachep
);
466 fscrypt_essiv_cleanup();
468 module_exit(fscrypt_exit
);
470 MODULE_LICENSE("GPL");