2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
51 static int __init
init_dax_wait_table(void)
55 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
56 init_waitqueue_head(wait_table
+ i
);
59 fs_initcall(init_dax_wait_table
);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_sector(void *entry
)
78 return (unsigned long)entry
>> RADIX_DAX_SHIFT
;
81 static void *dax_radix_locked_entry(sector_t sector
, unsigned long flags
)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
| flags
|
84 ((unsigned long)sector
<< RADIX_DAX_SHIFT
) |
85 RADIX_DAX_ENTRY_LOCK
);
88 static unsigned int dax_radix_order(void *entry
)
90 if ((unsigned long)entry
& RADIX_DAX_PMD
)
91 return PMD_SHIFT
- PAGE_SHIFT
;
95 static int dax_is_pmd_entry(void *entry
)
97 return (unsigned long)entry
& RADIX_DAX_PMD
;
100 static int dax_is_pte_entry(void *entry
)
102 return !((unsigned long)entry
& RADIX_DAX_PMD
);
105 static int dax_is_zero_entry(void *entry
)
107 return (unsigned long)entry
& RADIX_DAX_ZERO_PAGE
;
110 static int dax_is_empty_entry(void *entry
)
112 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
116 * DAX radix tree locking
118 struct exceptional_entry_key
{
119 struct address_space
*mapping
;
123 struct wait_exceptional_entry_queue
{
124 wait_queue_entry_t wait
;
125 struct exceptional_entry_key key
;
128 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
129 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
134 * If 'entry' is a PMD, align the 'index' that we use for the wait
135 * queue to the start of that PMD. This ensures that all offsets in
136 * the range covered by the PMD map to the same bit lock.
138 if (dax_is_pmd_entry(entry
))
139 index
&= ~PG_PMD_COLOUR
;
141 key
->mapping
= mapping
;
142 key
->entry_start
= index
;
144 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
145 return wait_table
+ hash
;
148 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
149 int sync
, void *keyp
)
151 struct exceptional_entry_key
*key
= keyp
;
152 struct wait_exceptional_entry_queue
*ewait
=
153 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
155 if (key
->mapping
!= ewait
->key
.mapping
||
156 key
->entry_start
!= ewait
->key
.entry_start
)
158 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
162 * We do not necessarily hold the mapping->tree_lock when we call this
163 * function so it is possible that 'entry' is no longer a valid item in the
164 * radix tree. This is okay because all we really need to do is to find the
165 * correct waitqueue where tasks might be waiting for that old 'entry' and
168 static void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
169 pgoff_t index
, void *entry
, bool wake_all
)
171 struct exceptional_entry_key key
;
172 wait_queue_head_t
*wq
;
174 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
177 * Checking for locked entry and prepare_to_wait_exclusive() happens
178 * under mapping->tree_lock, ditto for entry handling in our callers.
179 * So at this point all tasks that could have seen our entry locked
180 * must be in the waitqueue and the following check will see them.
182 if (waitqueue_active(wq
))
183 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
187 * Check whether the given slot is locked. The function must be called with
188 * mapping->tree_lock held
190 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
192 unsigned long entry
= (unsigned long)
193 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
194 return entry
& RADIX_DAX_ENTRY_LOCK
;
198 * Mark the given slot is locked. The function must be called with
199 * mapping->tree_lock held
201 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
203 unsigned long entry
= (unsigned long)
204 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
206 entry
|= RADIX_DAX_ENTRY_LOCK
;
207 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
208 return (void *)entry
;
212 * Mark the given slot is unlocked. The function must be called with
213 * mapping->tree_lock held
215 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
217 unsigned long entry
= (unsigned long)
218 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
220 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
221 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
222 return (void *)entry
;
226 * Lookup entry in radix tree, wait for it to become unlocked if it is
227 * exceptional entry and return it. The caller must call
228 * put_unlocked_mapping_entry() when he decided not to lock the entry or
229 * put_locked_mapping_entry() when he locked the entry and now wants to
232 * The function must be called with mapping->tree_lock held.
234 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
235 pgoff_t index
, void ***slotp
)
238 struct wait_exceptional_entry_queue ewait
;
239 wait_queue_head_t
*wq
;
241 init_wait(&ewait
.wait
);
242 ewait
.wait
.func
= wake_exceptional_entry_func
;
245 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
,
248 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)) ||
249 !slot_locked(mapping
, slot
)) {
255 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
256 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
257 TASK_UNINTERRUPTIBLE
);
258 spin_unlock_irq(&mapping
->tree_lock
);
260 finish_wait(wq
, &ewait
.wait
);
261 spin_lock_irq(&mapping
->tree_lock
);
265 static void dax_unlock_mapping_entry(struct address_space
*mapping
,
270 spin_lock_irq(&mapping
->tree_lock
);
271 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
, &slot
);
272 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
273 !slot_locked(mapping
, slot
))) {
274 spin_unlock_irq(&mapping
->tree_lock
);
277 unlock_slot(mapping
, slot
);
278 spin_unlock_irq(&mapping
->tree_lock
);
279 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
282 static void put_locked_mapping_entry(struct address_space
*mapping
,
285 dax_unlock_mapping_entry(mapping
, index
);
289 * Called when we are done with radix tree entry we looked up via
290 * get_unlocked_mapping_entry() and which we didn't lock in the end.
292 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
293 pgoff_t index
, void *entry
)
298 /* We have to wake up next waiter for the radix tree entry lock */
299 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
303 * Find radix tree entry at given index. If it points to an exceptional entry,
304 * return it with the radix tree entry locked. If the radix tree doesn't
305 * contain given index, create an empty exceptional entry for the index and
306 * return with it locked.
308 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
309 * either return that locked entry or will return an error. This error will
310 * happen if there are any 4k entries within the 2MiB range that we are
313 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
314 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
315 * insertion will fail if it finds any 4k entries already in the tree, and a
316 * 4k insertion will cause an existing 2MiB entry to be unmapped and
317 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
318 * well as 2MiB empty entries.
320 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
321 * real storage backing them. We will leave these real 2MiB DAX entries in
322 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
324 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
325 * persistent memory the benefit is doubtful. We can add that later if we can
328 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
329 unsigned long size_flag
)
331 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
335 spin_lock_irq(&mapping
->tree_lock
);
336 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
338 if (WARN_ON_ONCE(entry
&& !radix_tree_exceptional_entry(entry
))) {
339 entry
= ERR_PTR(-EIO
);
344 if (size_flag
& RADIX_DAX_PMD
) {
345 if (dax_is_pte_entry(entry
)) {
346 put_unlocked_mapping_entry(mapping
, index
,
348 entry
= ERR_PTR(-EEXIST
);
351 } else { /* trying to grab a PTE entry */
352 if (dax_is_pmd_entry(entry
) &&
353 (dax_is_zero_entry(entry
) ||
354 dax_is_empty_entry(entry
))) {
355 pmd_downgrade
= true;
360 /* No entry for given index? Make sure radix tree is big enough. */
361 if (!entry
|| pmd_downgrade
) {
366 * Make sure 'entry' remains valid while we drop
367 * mapping->tree_lock.
369 entry
= lock_slot(mapping
, slot
);
372 spin_unlock_irq(&mapping
->tree_lock
);
374 * Besides huge zero pages the only other thing that gets
375 * downgraded are empty entries which don't need to be
378 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
379 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
382 err
= radix_tree_preload(
383 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
386 put_locked_mapping_entry(mapping
, index
);
389 spin_lock_irq(&mapping
->tree_lock
);
393 * We needed to drop the page_tree lock while calling
394 * radix_tree_preload() and we didn't have an entry to
395 * lock. See if another thread inserted an entry at
396 * our index during this time.
398 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
,
401 radix_tree_preload_end();
402 spin_unlock_irq(&mapping
->tree_lock
);
408 radix_tree_delete(&mapping
->page_tree
, index
);
409 mapping
->nrexceptional
--;
410 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
414 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
416 err
= __radix_tree_insert(&mapping
->page_tree
, index
,
417 dax_radix_order(entry
), entry
);
418 radix_tree_preload_end();
420 spin_unlock_irq(&mapping
->tree_lock
);
422 * Our insertion of a DAX entry failed, most likely
423 * because we were inserting a PMD entry and it
424 * collided with a PTE sized entry at a different
425 * index in the PMD range. We haven't inserted
426 * anything into the radix tree and have no waiters to
431 /* Good, we have inserted empty locked entry into the tree. */
432 mapping
->nrexceptional
++;
433 spin_unlock_irq(&mapping
->tree_lock
);
436 entry
= lock_slot(mapping
, slot
);
438 spin_unlock_irq(&mapping
->tree_lock
);
442 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
443 pgoff_t index
, bool trunc
)
447 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
449 spin_lock_irq(&mapping
->tree_lock
);
450 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
451 if (!entry
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)))
454 (radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_DIRTY
) ||
455 radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
)))
457 radix_tree_delete(page_tree
, index
);
458 mapping
->nrexceptional
--;
461 put_unlocked_mapping_entry(mapping
, index
, entry
);
462 spin_unlock_irq(&mapping
->tree_lock
);
466 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
467 * entry to get unlocked before deleting it.
469 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
471 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
474 * This gets called from truncate / punch_hole path. As such, the caller
475 * must hold locks protecting against concurrent modifications of the
476 * radix tree (usually fs-private i_mmap_sem for writing). Since the
477 * caller has seen exceptional entry for this index, we better find it
478 * at that index as well...
485 * Invalidate exceptional DAX entry if it is clean.
487 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
490 return __dax_invalidate_mapping_entry(mapping
, index
, false);
493 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
494 sector_t sector
, size_t size
, struct page
*to
,
503 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
507 id
= dax_read_lock();
508 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
513 vto
= kmap_atomic(to
);
514 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
521 * By this point grab_mapping_entry() has ensured that we have a locked entry
522 * of the appropriate size so we don't have to worry about downgrading PMDs to
523 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
524 * already in the tree, we will skip the insertion and just dirty the PMD as
527 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
528 struct vm_fault
*vmf
,
529 void *entry
, sector_t sector
,
530 unsigned long flags
, bool dirty
)
532 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
534 pgoff_t index
= vmf
->pgoff
;
537 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
539 if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_ZERO_PAGE
)) {
540 /* we are replacing a zero page with block mapping */
541 if (dax_is_pmd_entry(entry
))
542 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
545 unmap_mapping_pages(mapping
, vmf
->pgoff
, 1, false);
548 spin_lock_irq(&mapping
->tree_lock
);
549 new_entry
= dax_radix_locked_entry(sector
, flags
);
551 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
553 * Only swap our new entry into the radix tree if the current
554 * entry is a zero page or an empty entry. If a normal PTE or
555 * PMD entry is already in the tree, we leave it alone. This
556 * means that if we are trying to insert a PTE and the
557 * existing entry is a PMD, we will just leave the PMD in the
558 * tree and dirty it if necessary.
560 struct radix_tree_node
*node
;
564 ret
= __radix_tree_lookup(page_tree
, index
, &node
, &slot
);
565 WARN_ON_ONCE(ret
!= entry
);
566 __radix_tree_replace(page_tree
, node
, slot
,
572 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
574 spin_unlock_irq(&mapping
->tree_lock
);
578 static inline unsigned long
579 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
581 unsigned long address
;
583 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
584 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
588 /* Walk all mappings of a given index of a file and writeprotect them */
589 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
590 pgoff_t index
, unsigned long pfn
)
592 struct vm_area_struct
*vma
;
593 pte_t pte
, *ptep
= NULL
;
597 i_mmap_lock_read(mapping
);
598 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
599 unsigned long address
, start
, end
;
603 if (!(vma
->vm_flags
& VM_SHARED
))
606 address
= pgoff_address(index
, vma
);
609 * Note because we provide start/end to follow_pte_pmd it will
610 * call mmu_notifier_invalidate_range_start() on our behalf
611 * before taking any lock.
613 if (follow_pte_pmd(vma
->vm_mm
, address
, &start
, &end
, &ptep
, &pmdp
, &ptl
))
617 * No need to call mmu_notifier_invalidate_range() as we are
618 * downgrading page table protection not changing it to point
621 * See Documentation/vm/mmu_notifier.txt
624 #ifdef CONFIG_FS_DAX_PMD
627 if (pfn
!= pmd_pfn(*pmdp
))
629 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
632 flush_cache_page(vma
, address
, pfn
);
633 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
634 pmd
= pmd_wrprotect(pmd
);
635 pmd
= pmd_mkclean(pmd
);
636 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
641 if (pfn
!= pte_pfn(*ptep
))
643 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
646 flush_cache_page(vma
, address
, pfn
);
647 pte
= ptep_clear_flush(vma
, address
, ptep
);
648 pte
= pte_wrprotect(pte
);
649 pte
= pte_mkclean(pte
);
650 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
652 pte_unmap_unlock(ptep
, ptl
);
655 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
657 i_mmap_unlock_read(mapping
);
660 static int dax_writeback_one(struct block_device
*bdev
,
661 struct dax_device
*dax_dev
, struct address_space
*mapping
,
662 pgoff_t index
, void *entry
)
664 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
665 void *entry2
, **slot
, *kaddr
;
673 * A page got tagged dirty in DAX mapping? Something is seriously
676 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
679 spin_lock_irq(&mapping
->tree_lock
);
680 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
681 /* Entry got punched out / reallocated? */
682 if (!entry2
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2
)))
685 * Entry got reallocated elsewhere? No need to writeback. We have to
686 * compare sectors as we must not bail out due to difference in lockbit
689 if (dax_radix_sector(entry2
) != dax_radix_sector(entry
))
691 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
692 dax_is_zero_entry(entry
))) {
697 /* Another fsync thread may have already written back this entry */
698 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
700 /* Lock the entry to serialize with page faults */
701 entry
= lock_slot(mapping
, slot
);
703 * We can clear the tag now but we have to be careful so that concurrent
704 * dax_writeback_one() calls for the same index cannot finish before we
705 * actually flush the caches. This is achieved as the calls will look
706 * at the entry only under tree_lock and once they do that they will
707 * see the entry locked and wait for it to unlock.
709 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
710 spin_unlock_irq(&mapping
->tree_lock
);
713 * Even if dax_writeback_mapping_range() was given a wbc->range_start
714 * in the middle of a PMD, the 'index' we are given will be aligned to
715 * the start index of the PMD, as will the sector we pull from
716 * 'entry'. This allows us to flush for PMD_SIZE and not have to
717 * worry about partial PMD writebacks.
719 sector
= dax_radix_sector(entry
);
720 size
= PAGE_SIZE
<< dax_radix_order(entry
);
722 id
= dax_read_lock();
723 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
728 * dax_direct_access() may sleep, so cannot hold tree_lock over
731 ret
= dax_direct_access(dax_dev
, pgoff
, size
/ PAGE_SIZE
, &kaddr
, &pfn
);
735 if (WARN_ON_ONCE(ret
< size
/ PAGE_SIZE
)) {
740 dax_mapping_entry_mkclean(mapping
, index
, pfn_t_to_pfn(pfn
));
741 dax_flush(dax_dev
, kaddr
, size
);
743 * After we have flushed the cache, we can clear the dirty tag. There
744 * cannot be new dirty data in the pfn after the flush has completed as
745 * the pfn mappings are writeprotected and fault waits for mapping
748 spin_lock_irq(&mapping
->tree_lock
);
749 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
750 spin_unlock_irq(&mapping
->tree_lock
);
751 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
754 put_locked_mapping_entry(mapping
, index
);
758 put_unlocked_mapping_entry(mapping
, index
, entry2
);
759 spin_unlock_irq(&mapping
->tree_lock
);
764 * Flush the mapping to the persistent domain within the byte range of [start,
765 * end]. This is required by data integrity operations to ensure file data is
766 * on persistent storage prior to completion of the operation.
768 int dax_writeback_mapping_range(struct address_space
*mapping
,
769 struct block_device
*bdev
, struct writeback_control
*wbc
)
771 struct inode
*inode
= mapping
->host
;
772 pgoff_t start_index
, end_index
;
773 pgoff_t indices
[PAGEVEC_SIZE
];
774 struct dax_device
*dax_dev
;
779 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
782 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
785 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
789 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
790 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
792 trace_dax_writeback_range(inode
, start_index
, end_index
);
794 tag_pages_for_writeback(mapping
, start_index
, end_index
);
798 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
799 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
800 pvec
.pages
, indices
);
805 for (i
= 0; i
< pvec
.nr
; i
++) {
806 if (indices
[i
] > end_index
) {
811 ret
= dax_writeback_one(bdev
, dax_dev
, mapping
,
812 indices
[i
], pvec
.pages
[i
]);
814 mapping_set_error(mapping
, ret
);
818 start_index
= indices
[pvec
.nr
- 1] + 1;
822 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
823 return (ret
< 0 ? ret
: 0);
825 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
827 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
829 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
832 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
835 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
841 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
844 id
= dax_read_lock();
845 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
852 if (PFN_PHYS(length
) < size
)
854 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
856 /* For larger pages we need devmap */
857 if (length
> 1 && !pfn_t_devmap(*pfnp
))
866 * The user has performed a load from a hole in the file. Allocating a new
867 * page in the file would cause excessive storage usage for workloads with
868 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
869 * If this page is ever written to we will re-fault and change the mapping to
870 * point to real DAX storage instead.
872 static int dax_load_hole(struct address_space
*mapping
, void *entry
,
873 struct vm_fault
*vmf
)
875 struct inode
*inode
= mapping
->host
;
876 unsigned long vaddr
= vmf
->address
;
877 int ret
= VM_FAULT_NOPAGE
;
878 struct page
*zero_page
;
881 zero_page
= ZERO_PAGE(0);
882 if (unlikely(!zero_page
)) {
887 entry2
= dax_insert_mapping_entry(mapping
, vmf
, entry
, 0,
888 RADIX_DAX_ZERO_PAGE
, false);
889 if (IS_ERR(entry2
)) {
890 ret
= VM_FAULT_SIGBUS
;
894 vm_insert_mixed(vmf
->vma
, vaddr
, page_to_pfn_t(zero_page
));
896 trace_dax_load_hole(inode
, vmf
, ret
);
900 static bool dax_range_is_aligned(struct block_device
*bdev
,
901 unsigned int offset
, unsigned int length
)
903 unsigned short sector_size
= bdev_logical_block_size(bdev
);
905 if (!IS_ALIGNED(offset
, sector_size
))
907 if (!IS_ALIGNED(length
, sector_size
))
913 int __dax_zero_page_range(struct block_device
*bdev
,
914 struct dax_device
*dax_dev
, sector_t sector
,
915 unsigned int offset
, unsigned int size
)
917 if (dax_range_is_aligned(bdev
, offset
, size
)) {
918 sector_t start_sector
= sector
+ (offset
>> 9);
920 return blkdev_issue_zeroout(bdev
, start_sector
,
921 size
>> 9, GFP_NOFS
, 0);
928 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
932 id
= dax_read_lock();
933 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
,
939 memset(kaddr
+ offset
, 0, size
);
940 dax_flush(dax_dev
, kaddr
+ offset
, size
);
945 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
948 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
951 struct block_device
*bdev
= iomap
->bdev
;
952 struct dax_device
*dax_dev
= iomap
->dax_dev
;
953 struct iov_iter
*iter
= data
;
954 loff_t end
= pos
+ length
, done
= 0;
958 if (iov_iter_rw(iter
) == READ
) {
959 end
= min(end
, i_size_read(inode
));
963 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
964 return iov_iter_zero(min(length
, end
- pos
), iter
);
967 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
971 * Write can allocate block for an area which has a hole page mapped
972 * into page tables. We have to tear down these mappings so that data
973 * written by write(2) is visible in mmap.
975 if (iomap
->flags
& IOMAP_F_NEW
) {
976 invalidate_inode_pages2_range(inode
->i_mapping
,
978 (end
- 1) >> PAGE_SHIFT
);
981 id
= dax_read_lock();
983 unsigned offset
= pos
& (PAGE_SIZE
- 1);
984 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
985 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
991 if (fatal_signal_pending(current
)) {
996 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1000 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1007 map_len
= PFN_PHYS(map_len
);
1010 if (map_len
> end
- pos
)
1011 map_len
= end
- pos
;
1014 * The userspace address for the memory copy has already been
1015 * validated via access_ok() in either vfs_read() or
1016 * vfs_write(), depending on which operation we are doing.
1018 if (iov_iter_rw(iter
) == WRITE
)
1019 map_len
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1022 map_len
= copy_to_iter(kaddr
, map_len
, iter
);
1024 ret
= map_len
? map_len
: -EFAULT
;
1032 dax_read_unlock(id
);
1034 return done
? done
: ret
;
1038 * dax_iomap_rw - Perform I/O to a DAX file
1039 * @iocb: The control block for this I/O
1040 * @iter: The addresses to do I/O from or to
1041 * @ops: iomap ops passed from the file system
1043 * This function performs read and write operations to directly mapped
1044 * persistent memory. The callers needs to take care of read/write exclusion
1045 * and evicting any page cache pages in the region under I/O.
1048 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1049 const struct iomap_ops
*ops
)
1051 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1052 struct inode
*inode
= mapping
->host
;
1053 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1056 if (iov_iter_rw(iter
) == WRITE
) {
1057 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1058 flags
|= IOMAP_WRITE
;
1060 lockdep_assert_held(&inode
->i_rwsem
);
1063 while (iov_iter_count(iter
)) {
1064 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1065 iter
, dax_iomap_actor
);
1072 iocb
->ki_pos
+= done
;
1073 return done
? done
: ret
;
1075 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1077 static int dax_fault_return(int error
)
1080 return VM_FAULT_NOPAGE
;
1081 if (error
== -ENOMEM
)
1082 return VM_FAULT_OOM
;
1083 return VM_FAULT_SIGBUS
;
1087 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1088 * flushed on write-faults (non-cow), but not read-faults.
1090 static bool dax_fault_is_synchronous(unsigned long flags
,
1091 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1093 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1094 && (iomap
->flags
& IOMAP_F_DIRTY
);
1097 static int dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1098 int *iomap_errp
, const struct iomap_ops
*ops
)
1100 struct vm_area_struct
*vma
= vmf
->vma
;
1101 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1102 struct inode
*inode
= mapping
->host
;
1103 unsigned long vaddr
= vmf
->address
;
1104 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1105 struct iomap iomap
= { 0 };
1106 unsigned flags
= IOMAP_FAULT
;
1107 int error
, major
= 0;
1108 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1114 trace_dax_pte_fault(inode
, vmf
, vmf_ret
);
1116 * Check whether offset isn't beyond end of file now. Caller is supposed
1117 * to hold locks serializing us with truncate / punch hole so this is
1120 if (pos
>= i_size_read(inode
)) {
1121 vmf_ret
= VM_FAULT_SIGBUS
;
1125 if (write
&& !vmf
->cow_page
)
1126 flags
|= IOMAP_WRITE
;
1128 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1129 if (IS_ERR(entry
)) {
1130 vmf_ret
= dax_fault_return(PTR_ERR(entry
));
1135 * It is possible, particularly with mixed reads & writes to private
1136 * mappings, that we have raced with a PMD fault that overlaps with
1137 * the PTE we need to set up. If so just return and the fault will be
1140 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1141 vmf_ret
= VM_FAULT_NOPAGE
;
1146 * Note that we don't bother to use iomap_apply here: DAX required
1147 * the file system block size to be equal the page size, which means
1148 * that we never have to deal with more than a single extent here.
1150 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1152 *iomap_errp
= error
;
1154 vmf_ret
= dax_fault_return(error
);
1157 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1158 error
= -EIO
; /* fs corruption? */
1159 goto error_finish_iomap
;
1162 if (vmf
->cow_page
) {
1163 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1165 switch (iomap
.type
) {
1167 case IOMAP_UNWRITTEN
:
1168 clear_user_highpage(vmf
->cow_page
, vaddr
);
1171 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1172 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1181 goto error_finish_iomap
;
1183 __SetPageUptodate(vmf
->cow_page
);
1184 vmf_ret
= finish_fault(vmf
);
1186 vmf_ret
= VM_FAULT_DONE_COW
;
1190 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1192 switch (iomap
.type
) {
1194 if (iomap
.flags
& IOMAP_F_NEW
) {
1195 count_vm_event(PGMAJFAULT
);
1196 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1197 major
= VM_FAULT_MAJOR
;
1199 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1201 goto error_finish_iomap
;
1203 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
,
1204 dax_iomap_sector(&iomap
, pos
),
1206 if (IS_ERR(entry
)) {
1207 error
= PTR_ERR(entry
);
1208 goto error_finish_iomap
;
1212 * If we are doing synchronous page fault and inode needs fsync,
1213 * we can insert PTE into page tables only after that happens.
1214 * Skip insertion for now and return the pfn so that caller can
1215 * insert it after fsync is done.
1218 if (WARN_ON_ONCE(!pfnp
)) {
1220 goto error_finish_iomap
;
1223 vmf_ret
= VM_FAULT_NEEDDSYNC
| major
;
1226 trace_dax_insert_mapping(inode
, vmf
, entry
);
1228 error
= vm_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1230 error
= vm_insert_mixed(vma
, vaddr
, pfn
);
1232 /* -EBUSY is fine, somebody else faulted on the same PTE */
1233 if (error
== -EBUSY
)
1236 case IOMAP_UNWRITTEN
:
1239 vmf_ret
= dax_load_hole(mapping
, entry
, vmf
);
1250 vmf_ret
= dax_fault_return(error
) | major
;
1252 if (ops
->iomap_end
) {
1253 int copied
= PAGE_SIZE
;
1255 if (vmf_ret
& VM_FAULT_ERROR
)
1258 * The fault is done by now and there's no way back (other
1259 * thread may be already happily using PTE we have installed).
1260 * Just ignore error from ->iomap_end since we cannot do much
1263 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1266 put_locked_mapping_entry(mapping
, vmf
->pgoff
);
1268 trace_dax_pte_fault_done(inode
, vmf
, vmf_ret
);
1272 #ifdef CONFIG_FS_DAX_PMD
1273 static int dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1276 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1277 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1278 struct inode
*inode
= mapping
->host
;
1279 struct page
*zero_page
;
1284 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1286 if (unlikely(!zero_page
))
1289 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, 0,
1290 RADIX_DAX_PMD
| RADIX_DAX_ZERO_PAGE
, false);
1294 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1295 if (!pmd_none(*(vmf
->pmd
))) {
1300 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1301 pmd_entry
= pmd_mkhuge(pmd_entry
);
1302 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1304 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1305 return VM_FAULT_NOPAGE
;
1308 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1309 return VM_FAULT_FALLBACK
;
1312 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1313 const struct iomap_ops
*ops
)
1315 struct vm_area_struct
*vma
= vmf
->vma
;
1316 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1317 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1318 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1320 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1321 struct inode
*inode
= mapping
->host
;
1322 int result
= VM_FAULT_FALLBACK
;
1323 struct iomap iomap
= { 0 };
1324 pgoff_t max_pgoff
, pgoff
;
1331 * Check whether offset isn't beyond end of file now. Caller is
1332 * supposed to hold locks serializing us with truncate / punch hole so
1333 * this is a reliable test.
1335 pgoff
= linear_page_index(vma
, pmd_addr
);
1336 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1338 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1341 * Make sure that the faulting address's PMD offset (color) matches
1342 * the PMD offset from the start of the file. This is necessary so
1343 * that a PMD range in the page table overlaps exactly with a PMD
1344 * range in the radix tree.
1346 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1347 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1350 /* Fall back to PTEs if we're going to COW */
1351 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1354 /* If the PMD would extend outside the VMA */
1355 if (pmd_addr
< vma
->vm_start
)
1357 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1360 if (pgoff
>= max_pgoff
) {
1361 result
= VM_FAULT_SIGBUS
;
1365 /* If the PMD would extend beyond the file size */
1366 if ((pgoff
| PG_PMD_COLOUR
) >= max_pgoff
)
1370 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1371 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1372 * is already in the tree, for instance), it will return -EEXIST and
1373 * we just fall back to 4k entries.
1375 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1380 * It is possible, particularly with mixed reads & writes to private
1381 * mappings, that we have raced with a PTE fault that overlaps with
1382 * the PMD we need to set up. If so just return and the fault will be
1385 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1386 !pmd_devmap(*vmf
->pmd
)) {
1392 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1393 * setting up a mapping, so really we're using iomap_begin() as a way
1394 * to look up our filesystem block.
1396 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1397 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1401 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1404 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1406 switch (iomap
.type
) {
1408 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1412 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
,
1413 dax_iomap_sector(&iomap
, pos
),
1414 RADIX_DAX_PMD
, write
&& !sync
);
1419 * If we are doing synchronous page fault and inode needs fsync,
1420 * we can insert PMD into page tables only after that happens.
1421 * Skip insertion for now and return the pfn so that caller can
1422 * insert it after fsync is done.
1425 if (WARN_ON_ONCE(!pfnp
))
1428 result
= VM_FAULT_NEEDDSYNC
;
1432 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1433 result
= vmf_insert_pfn_pmd(vma
, vmf
->address
, vmf
->pmd
, pfn
,
1436 case IOMAP_UNWRITTEN
:
1438 if (WARN_ON_ONCE(write
))
1440 result
= dax_pmd_load_hole(vmf
, &iomap
, entry
);
1448 if (ops
->iomap_end
) {
1449 int copied
= PMD_SIZE
;
1451 if (result
== VM_FAULT_FALLBACK
)
1454 * The fault is done by now and there's no way back (other
1455 * thread may be already happily using PMD we have installed).
1456 * Just ignore error from ->iomap_end since we cannot do much
1459 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1463 put_locked_mapping_entry(mapping
, pgoff
);
1465 if (result
== VM_FAULT_FALLBACK
) {
1466 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1467 count_vm_event(THP_FAULT_FALLBACK
);
1470 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1474 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1475 const struct iomap_ops
*ops
)
1477 return VM_FAULT_FALLBACK
;
1479 #endif /* CONFIG_FS_DAX_PMD */
1482 * dax_iomap_fault - handle a page fault on a DAX file
1483 * @vmf: The description of the fault
1484 * @pe_size: Size of the page to fault in
1485 * @pfnp: PFN to insert for synchronous faults if fsync is required
1486 * @iomap_errp: Storage for detailed error code in case of error
1487 * @ops: Iomap ops passed from the file system
1489 * When a page fault occurs, filesystems may call this helper in
1490 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1491 * has done all the necessary locking for page fault to proceed
1494 int dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1495 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1499 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1501 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1503 return VM_FAULT_FALLBACK
;
1506 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1509 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1510 * @vmf: The description of the fault
1511 * @pe_size: Size of entry to be inserted
1512 * @pfn: PFN to insert
1514 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1515 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1518 static int dax_insert_pfn_mkwrite(struct vm_fault
*vmf
,
1519 enum page_entry_size pe_size
,
1522 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1523 void *entry
, **slot
;
1524 pgoff_t index
= vmf
->pgoff
;
1527 spin_lock_irq(&mapping
->tree_lock
);
1528 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
1529 /* Did we race with someone splitting entry or so? */
1531 (pe_size
== PE_SIZE_PTE
&& !dax_is_pte_entry(entry
)) ||
1532 (pe_size
== PE_SIZE_PMD
&& !dax_is_pmd_entry(entry
))) {
1533 put_unlocked_mapping_entry(mapping
, index
, entry
);
1534 spin_unlock_irq(&mapping
->tree_lock
);
1535 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1537 return VM_FAULT_NOPAGE
;
1539 radix_tree_tag_set(&mapping
->page_tree
, index
, PAGECACHE_TAG_DIRTY
);
1540 entry
= lock_slot(mapping
, slot
);
1541 spin_unlock_irq(&mapping
->tree_lock
);
1544 error
= vm_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1545 vmf_ret
= dax_fault_return(error
);
1547 #ifdef CONFIG_FS_DAX_PMD
1549 vmf_ret
= vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1554 vmf_ret
= VM_FAULT_FALLBACK
;
1556 put_locked_mapping_entry(mapping
, index
);
1557 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, vmf_ret
);
1562 * dax_finish_sync_fault - finish synchronous page fault
1563 * @vmf: The description of the fault
1564 * @pe_size: Size of entry to be inserted
1565 * @pfn: PFN to insert
1567 * This function ensures that the file range touched by the page fault is
1568 * stored persistently on the media and handles inserting of appropriate page
1571 int dax_finish_sync_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1575 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1578 if (pe_size
== PE_SIZE_PTE
)
1580 else if (pe_size
== PE_SIZE_PMD
)
1584 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1586 return VM_FAULT_SIGBUS
;
1587 return dax_insert_pfn_mkwrite(vmf
, pe_size
, pfn
);
1589 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);