4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
69 struct userfaultfd_fork_ctx
{
70 struct userfaultfd_ctx
*orig
;
71 struct userfaultfd_ctx
*new;
72 struct list_head list
;
75 struct userfaultfd_unmap_ctx
{
76 struct userfaultfd_ctx
*ctx
;
79 struct list_head list
;
82 struct userfaultfd_wait_queue
{
84 wait_queue_entry_t wq
;
85 struct userfaultfd_ctx
*ctx
;
89 struct userfaultfd_wake_range
{
94 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
95 int wake_flags
, void *key
)
97 struct userfaultfd_wake_range
*range
= key
;
99 struct userfaultfd_wait_queue
*uwq
;
100 unsigned long start
, len
;
102 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
104 /* len == 0 means wake all */
105 start
= range
->start
;
107 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
108 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
110 WRITE_ONCE(uwq
->waken
, true);
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
115 ret
= wake_up_state(wq
->private, mode
);
118 * Wake only once, autoremove behavior.
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
128 list_del_init(&wq
->entry
);
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
137 * @ctx: [in] Pointer to the userfaultfd context.
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
141 if (!atomic_inc_not_zero(&ctx
->refcount
))
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148 * @ctx: [in] Pointer to userfaultfd context.
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
155 if (atomic_dec_and_test(&ctx
->refcount
)) {
156 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
157 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
158 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
159 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
160 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
161 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
162 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
163 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
165 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
169 static inline void msg_init(struct uffd_msg
*msg
)
171 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
176 memset(msg
, 0, sizeof(struct uffd_msg
));
179 static inline struct uffd_msg
userfault_msg(unsigned long address
,
181 unsigned long reason
,
182 unsigned int features
)
186 msg
.event
= UFFD_EVENT_PAGEFAULT
;
187 msg
.arg
.pagefault
.address
= address
;
188 if (flags
& FAULT_FLAG_WRITE
)
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
196 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
197 if (reason
& VM_UFFD_WP
)
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
205 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
206 if (features
& UFFD_FEATURE_THREAD_ID
)
207 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
211 #ifdef CONFIG_HUGETLB_PAGE
213 * Same functionality as userfaultfd_must_wait below with modifications for
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
217 struct vm_area_struct
*vma
,
218 unsigned long address
,
220 unsigned long reason
)
222 struct mm_struct
*mm
= ctx
->mm
;
226 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
228 pte
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
235 * Lockless access: we're in a wait_event so it's ok if it
238 if (huge_pte_none(*pte
))
240 if (!huge_pte_write(*pte
) && (reason
& VM_UFFD_WP
))
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
247 struct vm_area_struct
*vma
,
248 unsigned long address
,
250 unsigned long reason
)
252 return false; /* should never get here */
254 #endif /* CONFIG_HUGETLB_PAGE */
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
264 unsigned long address
,
266 unsigned long reason
)
268 struct mm_struct
*mm
= ctx
->mm
;
276 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
278 pgd
= pgd_offset(mm
, address
);
279 if (!pgd_present(*pgd
))
281 p4d
= p4d_offset(pgd
, address
);
282 if (!p4d_present(*p4d
))
284 pud
= pud_offset(p4d
, address
);
285 if (!pud_present(*pud
))
287 pmd
= pmd_offset(pud
, address
);
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
296 _pmd
= READ_ONCE(*pmd
);
301 if (!pmd_present(_pmd
))
304 if (pmd_trans_huge(_pmd
))
308 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
309 * and use the standard pte_offset_map() instead of parsing _pmd.
311 pte
= pte_offset_map(pmd
, address
);
313 * Lockless access: we're in a wait_event so it's ok if it
325 * The locking rules involved in returning VM_FAULT_RETRY depending on
326 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
327 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
328 * recommendation in __lock_page_or_retry is not an understatement.
330 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
331 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
334 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
335 * set, VM_FAULT_RETRY can still be returned if and only if there are
336 * fatal_signal_pending()s, and the mmap_sem must be released before
339 int handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
341 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
342 struct userfaultfd_ctx
*ctx
;
343 struct userfaultfd_wait_queue uwq
;
345 bool must_wait
, return_to_userland
;
348 ret
= VM_FAULT_SIGBUS
;
351 * We don't do userfault handling for the final child pid update.
353 * We also don't do userfault handling during
354 * coredumping. hugetlbfs has the special
355 * follow_hugetlb_page() to skip missing pages in the
356 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
357 * the no_page_table() helper in follow_page_mask(), but the
358 * shmem_vm_ops->fault method is invoked even during
359 * coredumping without mmap_sem and it ends up here.
361 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
365 * Coredumping runs without mmap_sem so we can only check that
366 * the mmap_sem is held, if PF_DUMPCORE was not set.
368 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
370 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
374 BUG_ON(ctx
->mm
!= mm
);
376 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
377 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
379 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
383 * If it's already released don't get it. This avoids to loop
384 * in __get_user_pages if userfaultfd_release waits on the
385 * caller of handle_userfault to release the mmap_sem.
387 if (unlikely(READ_ONCE(ctx
->released
))) {
389 * Don't return VM_FAULT_SIGBUS in this case, so a non
390 * cooperative manager can close the uffd after the
391 * last UFFDIO_COPY, without risking to trigger an
392 * involuntary SIGBUS if the process was starting the
393 * userfaultfd while the userfaultfd was still armed
394 * (but after the last UFFDIO_COPY). If the uffd
395 * wasn't already closed when the userfault reached
396 * this point, that would normally be solved by
397 * userfaultfd_must_wait returning 'false'.
399 * If we were to return VM_FAULT_SIGBUS here, the non
400 * cooperative manager would be instead forced to
401 * always call UFFDIO_UNREGISTER before it can safely
404 ret
= VM_FAULT_NOPAGE
;
409 * Check that we can return VM_FAULT_RETRY.
411 * NOTE: it should become possible to return VM_FAULT_RETRY
412 * even if FAULT_FLAG_TRIED is set without leading to gup()
413 * -EBUSY failures, if the userfaultfd is to be extended for
414 * VM_UFFD_WP tracking and we intend to arm the userfault
415 * without first stopping userland access to the memory. For
416 * VM_UFFD_MISSING userfaults this is enough for now.
418 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
420 * Validate the invariant that nowait must allow retry
421 * to be sure not to return SIGBUS erroneously on
422 * nowait invocations.
424 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
425 #ifdef CONFIG_DEBUG_VM
426 if (printk_ratelimit()) {
428 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
437 * Handle nowait, not much to do other than tell it to retry
440 ret
= VM_FAULT_RETRY
;
441 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
444 /* take the reference before dropping the mmap_sem */
445 userfaultfd_ctx_get(ctx
);
447 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
448 uwq
.wq
.private = current
;
449 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
455 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
456 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
457 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
460 spin_lock(&ctx
->fault_pending_wqh
.lock
);
462 * After the __add_wait_queue the uwq is visible to userland
463 * through poll/read().
465 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
467 * The smp_mb() after __set_current_state prevents the reads
468 * following the spin_unlock to happen before the list_add in
471 set_current_state(blocking_state
);
472 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
474 if (!is_vm_hugetlb_page(vmf
->vma
))
475 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
478 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
481 up_read(&mm
->mmap_sem
);
483 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
484 (return_to_userland
? !signal_pending(current
) :
485 !fatal_signal_pending(current
)))) {
486 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
488 ret
|= VM_FAULT_MAJOR
;
491 * False wakeups can orginate even from rwsem before
492 * up_read() however userfaults will wait either for a
493 * targeted wakeup on the specific uwq waitqueue from
494 * wake_userfault() or for signals or for uffd
497 while (!READ_ONCE(uwq
.waken
)) {
499 * This needs the full smp_store_mb()
500 * guarantee as the state write must be
501 * visible to other CPUs before reading
502 * uwq.waken from other CPUs.
504 set_current_state(blocking_state
);
505 if (READ_ONCE(uwq
.waken
) ||
506 READ_ONCE(ctx
->released
) ||
507 (return_to_userland
? signal_pending(current
) :
508 fatal_signal_pending(current
)))
514 __set_current_state(TASK_RUNNING
);
516 if (return_to_userland
) {
517 if (signal_pending(current
) &&
518 !fatal_signal_pending(current
)) {
520 * If we got a SIGSTOP or SIGCONT and this is
521 * a normal userland page fault, just let
522 * userland return so the signal will be
523 * handled and gdb debugging works. The page
524 * fault code immediately after we return from
525 * this function is going to release the
526 * mmap_sem and it's not depending on it
527 * (unlike gup would if we were not to return
530 * If a fatal signal is pending we still take
531 * the streamlined VM_FAULT_RETRY failure path
532 * and there's no need to retake the mmap_sem
535 down_read(&mm
->mmap_sem
);
536 ret
= VM_FAULT_NOPAGE
;
541 * Here we race with the list_del; list_add in
542 * userfaultfd_ctx_read(), however because we don't ever run
543 * list_del_init() to refile across the two lists, the prev
544 * and next pointers will never point to self. list_add also
545 * would never let any of the two pointers to point to
546 * self. So list_empty_careful won't risk to see both pointers
547 * pointing to self at any time during the list refile. The
548 * only case where list_del_init() is called is the full
549 * removal in the wake function and there we don't re-list_add
550 * and it's fine not to block on the spinlock. The uwq on this
551 * kernel stack can be released after the list_del_init.
553 if (!list_empty_careful(&uwq
.wq
.entry
)) {
554 spin_lock(&ctx
->fault_pending_wqh
.lock
);
556 * No need of list_del_init(), the uwq on the stack
557 * will be freed shortly anyway.
559 list_del(&uwq
.wq
.entry
);
560 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
564 * ctx may go away after this if the userfault pseudo fd is
567 userfaultfd_ctx_put(ctx
);
573 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
574 struct userfaultfd_wait_queue
*ewq
)
576 struct userfaultfd_ctx
*release_new_ctx
;
578 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
582 init_waitqueue_entry(&ewq
->wq
, current
);
583 release_new_ctx
= NULL
;
585 spin_lock(&ctx
->event_wqh
.lock
);
587 * After the __add_wait_queue the uwq is visible to userland
588 * through poll/read().
590 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
592 set_current_state(TASK_KILLABLE
);
593 if (ewq
->msg
.event
== 0)
595 if (READ_ONCE(ctx
->released
) ||
596 fatal_signal_pending(current
)) {
598 * &ewq->wq may be queued in fork_event, but
599 * __remove_wait_queue ignores the head
600 * parameter. It would be a problem if it
603 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
604 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
605 struct userfaultfd_ctx
*new;
607 new = (struct userfaultfd_ctx
*)
609 ewq
->msg
.arg
.reserved
.reserved1
;
610 release_new_ctx
= new;
615 spin_unlock(&ctx
->event_wqh
.lock
);
617 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
620 spin_lock(&ctx
->event_wqh
.lock
);
622 __set_current_state(TASK_RUNNING
);
623 spin_unlock(&ctx
->event_wqh
.lock
);
625 if (release_new_ctx
) {
626 struct vm_area_struct
*vma
;
627 struct mm_struct
*mm
= release_new_ctx
->mm
;
629 /* the various vma->vm_userfaultfd_ctx still points to it */
630 down_write(&mm
->mmap_sem
);
631 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
632 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
)
633 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
634 up_write(&mm
->mmap_sem
);
636 userfaultfd_ctx_put(release_new_ctx
);
640 * ctx may go away after this if the userfault pseudo fd is
644 userfaultfd_ctx_put(ctx
);
647 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
648 struct userfaultfd_wait_queue
*ewq
)
651 wake_up_locked(&ctx
->event_wqh
);
652 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
655 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
657 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
658 struct userfaultfd_fork_ctx
*fctx
;
660 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
661 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
662 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
663 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
667 list_for_each_entry(fctx
, fcs
, list
)
668 if (fctx
->orig
== octx
) {
674 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
678 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
684 atomic_set(&ctx
->refcount
, 1);
685 ctx
->flags
= octx
->flags
;
686 ctx
->state
= UFFD_STATE_RUNNING
;
687 ctx
->features
= octx
->features
;
688 ctx
->released
= false;
689 ctx
->mm
= vma
->vm_mm
;
692 userfaultfd_ctx_get(octx
);
695 list_add_tail(&fctx
->list
, fcs
);
698 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
702 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
704 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
705 struct userfaultfd_wait_queue ewq
;
709 ewq
.msg
.event
= UFFD_EVENT_FORK
;
710 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
712 userfaultfd_event_wait_completion(ctx
, &ewq
);
715 void dup_userfaultfd_complete(struct list_head
*fcs
)
717 struct userfaultfd_fork_ctx
*fctx
, *n
;
719 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
721 list_del(&fctx
->list
);
726 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
727 struct vm_userfaultfd_ctx
*vm_ctx
)
729 struct userfaultfd_ctx
*ctx
;
731 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
732 if (ctx
&& (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
)) {
734 userfaultfd_ctx_get(ctx
);
738 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
739 unsigned long from
, unsigned long to
,
742 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
743 struct userfaultfd_wait_queue ewq
;
748 if (to
& ~PAGE_MASK
) {
749 userfaultfd_ctx_put(ctx
);
755 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
756 ewq
.msg
.arg
.remap
.from
= from
;
757 ewq
.msg
.arg
.remap
.to
= to
;
758 ewq
.msg
.arg
.remap
.len
= len
;
760 userfaultfd_event_wait_completion(ctx
, &ewq
);
763 bool userfaultfd_remove(struct vm_area_struct
*vma
,
764 unsigned long start
, unsigned long end
)
766 struct mm_struct
*mm
= vma
->vm_mm
;
767 struct userfaultfd_ctx
*ctx
;
768 struct userfaultfd_wait_queue ewq
;
770 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
771 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
774 userfaultfd_ctx_get(ctx
);
775 up_read(&mm
->mmap_sem
);
779 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
780 ewq
.msg
.arg
.remove
.start
= start
;
781 ewq
.msg
.arg
.remove
.end
= end
;
783 userfaultfd_event_wait_completion(ctx
, &ewq
);
788 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
789 unsigned long start
, unsigned long end
)
791 struct userfaultfd_unmap_ctx
*unmap_ctx
;
793 list_for_each_entry(unmap_ctx
, unmaps
, list
)
794 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
795 unmap_ctx
->end
== end
)
801 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
802 unsigned long start
, unsigned long end
,
803 struct list_head
*unmaps
)
805 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
806 struct userfaultfd_unmap_ctx
*unmap_ctx
;
807 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
809 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
810 has_unmap_ctx(ctx
, unmaps
, start
, end
))
813 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
817 userfaultfd_ctx_get(ctx
);
818 unmap_ctx
->ctx
= ctx
;
819 unmap_ctx
->start
= start
;
820 unmap_ctx
->end
= end
;
821 list_add_tail(&unmap_ctx
->list
, unmaps
);
827 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
829 struct userfaultfd_unmap_ctx
*ctx
, *n
;
830 struct userfaultfd_wait_queue ewq
;
832 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
835 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
836 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
837 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
839 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
841 list_del(&ctx
->list
);
846 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
848 struct userfaultfd_ctx
*ctx
= file
->private_data
;
849 struct mm_struct
*mm
= ctx
->mm
;
850 struct vm_area_struct
*vma
, *prev
;
851 /* len == 0 means wake all */
852 struct userfaultfd_wake_range range
= { .len
= 0, };
853 unsigned long new_flags
;
855 WRITE_ONCE(ctx
->released
, true);
857 if (!mmget_not_zero(mm
))
861 * Flush page faults out of all CPUs. NOTE: all page faults
862 * must be retried without returning VM_FAULT_SIGBUS if
863 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
864 * changes while handle_userfault released the mmap_sem. So
865 * it's critical that released is set to true (above), before
866 * taking the mmap_sem for writing.
868 down_write(&mm
->mmap_sem
);
870 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
872 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
873 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
874 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
878 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
879 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
880 new_flags
, vma
->anon_vma
,
881 vma
->vm_file
, vma
->vm_pgoff
,
888 vma
->vm_flags
= new_flags
;
889 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
891 up_write(&mm
->mmap_sem
);
895 * After no new page faults can wait on this fault_*wqh, flush
896 * the last page faults that may have been already waiting on
899 spin_lock(&ctx
->fault_pending_wqh
.lock
);
900 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
901 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, &range
);
902 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
904 /* Flush pending events that may still wait on event_wqh */
905 wake_up_all(&ctx
->event_wqh
);
907 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
908 userfaultfd_ctx_put(ctx
);
912 /* fault_pending_wqh.lock must be hold by the caller */
913 static inline struct userfaultfd_wait_queue
*find_userfault_in(
914 wait_queue_head_t
*wqh
)
916 wait_queue_entry_t
*wq
;
917 struct userfaultfd_wait_queue
*uwq
;
919 VM_BUG_ON(!spin_is_locked(&wqh
->lock
));
922 if (!waitqueue_active(wqh
))
924 /* walk in reverse to provide FIFO behavior to read userfaults */
925 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
926 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
931 static inline struct userfaultfd_wait_queue
*find_userfault(
932 struct userfaultfd_ctx
*ctx
)
934 return find_userfault_in(&ctx
->fault_pending_wqh
);
937 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
938 struct userfaultfd_ctx
*ctx
)
940 return find_userfault_in(&ctx
->event_wqh
);
943 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
945 struct userfaultfd_ctx
*ctx
= file
->private_data
;
948 poll_wait(file
, &ctx
->fd_wqh
, wait
);
950 switch (ctx
->state
) {
951 case UFFD_STATE_WAIT_API
:
953 case UFFD_STATE_RUNNING
:
955 * poll() never guarantees that read won't block.
956 * userfaults can be waken before they're read().
958 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
961 * lockless access to see if there are pending faults
962 * __pollwait last action is the add_wait_queue but
963 * the spin_unlock would allow the waitqueue_active to
964 * pass above the actual list_add inside
965 * add_wait_queue critical section. So use a full
966 * memory barrier to serialize the list_add write of
967 * add_wait_queue() with the waitqueue_active read
972 if (waitqueue_active(&ctx
->fault_pending_wqh
))
974 else if (waitqueue_active(&ctx
->event_wqh
))
984 static const struct file_operations userfaultfd_fops
;
986 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
987 struct userfaultfd_ctx
*new,
988 struct uffd_msg
*msg
)
992 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
993 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
997 msg
->arg
.reserved
.reserved1
= 0;
998 msg
->arg
.fork
.ufd
= fd
;
1002 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1003 struct uffd_msg
*msg
)
1006 DECLARE_WAITQUEUE(wait
, current
);
1007 struct userfaultfd_wait_queue
*uwq
;
1009 * Handling fork event requires sleeping operations, so
1010 * we drop the event_wqh lock, then do these ops, then
1011 * lock it back and wake up the waiter. While the lock is
1012 * dropped the ewq may go away so we keep track of it
1015 LIST_HEAD(fork_event
);
1016 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1018 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1019 spin_lock(&ctx
->fd_wqh
.lock
);
1020 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1022 set_current_state(TASK_INTERRUPTIBLE
);
1023 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1024 uwq
= find_userfault(ctx
);
1027 * Use a seqcount to repeat the lockless check
1028 * in wake_userfault() to avoid missing
1029 * wakeups because during the refile both
1030 * waitqueue could become empty if this is the
1033 write_seqcount_begin(&ctx
->refile_seq
);
1036 * The fault_pending_wqh.lock prevents the uwq
1037 * to disappear from under us.
1039 * Refile this userfault from
1040 * fault_pending_wqh to fault_wqh, it's not
1041 * pending anymore after we read it.
1043 * Use list_del() by hand (as
1044 * userfaultfd_wake_function also uses
1045 * list_del_init() by hand) to be sure nobody
1046 * changes __remove_wait_queue() to use
1047 * list_del_init() in turn breaking the
1048 * !list_empty_careful() check in
1049 * handle_userfault(). The uwq->wq.head list
1050 * must never be empty at any time during the
1051 * refile, or the waitqueue could disappear
1052 * from under us. The "wait_queue_head_t"
1053 * parameter of __remove_wait_queue() is unused
1056 list_del(&uwq
->wq
.entry
);
1057 __add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1059 write_seqcount_end(&ctx
->refile_seq
);
1061 /* careful to always initialize msg if ret == 0 */
1063 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1067 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1069 spin_lock(&ctx
->event_wqh
.lock
);
1070 uwq
= find_userfault_evt(ctx
);
1074 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1075 fork_nctx
= (struct userfaultfd_ctx
*)
1077 uwq
->msg
.arg
.reserved
.reserved1
;
1078 list_move(&uwq
->wq
.entry
, &fork_event
);
1080 * fork_nctx can be freed as soon as
1081 * we drop the lock, unless we take a
1084 userfaultfd_ctx_get(fork_nctx
);
1085 spin_unlock(&ctx
->event_wqh
.lock
);
1090 userfaultfd_event_complete(ctx
, uwq
);
1091 spin_unlock(&ctx
->event_wqh
.lock
);
1095 spin_unlock(&ctx
->event_wqh
.lock
);
1097 if (signal_pending(current
)) {
1105 spin_unlock(&ctx
->fd_wqh
.lock
);
1107 spin_lock(&ctx
->fd_wqh
.lock
);
1109 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1110 __set_current_state(TASK_RUNNING
);
1111 spin_unlock(&ctx
->fd_wqh
.lock
);
1113 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1114 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1115 spin_lock(&ctx
->event_wqh
.lock
);
1116 if (!list_empty(&fork_event
)) {
1118 * The fork thread didn't abort, so we can
1119 * drop the temporary refcount.
1121 userfaultfd_ctx_put(fork_nctx
);
1123 uwq
= list_first_entry(&fork_event
,
1127 * If fork_event list wasn't empty and in turn
1128 * the event wasn't already released by fork
1129 * (the event is allocated on fork kernel
1130 * stack), put the event back to its place in
1131 * the event_wq. fork_event head will be freed
1132 * as soon as we return so the event cannot
1133 * stay queued there no matter the current
1136 list_del(&uwq
->wq
.entry
);
1137 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1140 * Leave the event in the waitqueue and report
1141 * error to userland if we failed to resolve
1142 * the userfault fork.
1145 userfaultfd_event_complete(ctx
, uwq
);
1148 * Here the fork thread aborted and the
1149 * refcount from the fork thread on fork_nctx
1150 * has already been released. We still hold
1151 * the reference we took before releasing the
1152 * lock above. If resolve_userfault_fork
1153 * failed we've to drop it because the
1154 * fork_nctx has to be freed in such case. If
1155 * it succeeded we'll hold it because the new
1156 * uffd references it.
1159 userfaultfd_ctx_put(fork_nctx
);
1161 spin_unlock(&ctx
->event_wqh
.lock
);
1167 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1168 size_t count
, loff_t
*ppos
)
1170 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1171 ssize_t _ret
, ret
= 0;
1172 struct uffd_msg msg
;
1173 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1175 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1179 if (count
< sizeof(msg
))
1180 return ret
? ret
: -EINVAL
;
1181 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1183 return ret
? ret
: _ret
;
1184 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1185 return ret
? ret
: -EFAULT
;
1188 count
-= sizeof(msg
);
1190 * Allow to read more than one fault at time but only
1191 * block if waiting for the very first one.
1193 no_wait
= O_NONBLOCK
;
1197 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1198 struct userfaultfd_wake_range
*range
)
1200 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1201 /* wake all in the range and autoremove */
1202 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1203 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1205 if (waitqueue_active(&ctx
->fault_wqh
))
1206 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, range
);
1207 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1210 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1211 struct userfaultfd_wake_range
*range
)
1217 * To be sure waitqueue_active() is not reordered by the CPU
1218 * before the pagetable update, use an explicit SMP memory
1219 * barrier here. PT lock release or up_read(mmap_sem) still
1220 * have release semantics that can allow the
1221 * waitqueue_active() to be reordered before the pte update.
1226 * Use waitqueue_active because it's very frequent to
1227 * change the address space atomically even if there are no
1228 * userfaults yet. So we take the spinlock only when we're
1229 * sure we've userfaults to wake.
1232 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1233 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1234 waitqueue_active(&ctx
->fault_wqh
);
1236 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1238 __wake_userfault(ctx
, range
);
1241 static __always_inline
int validate_range(struct mm_struct
*mm
,
1242 __u64 start
, __u64 len
)
1244 __u64 task_size
= mm
->task_size
;
1246 if (start
& ~PAGE_MASK
)
1248 if (len
& ~PAGE_MASK
)
1252 if (start
< mmap_min_addr
)
1254 if (start
>= task_size
)
1256 if (len
> task_size
- start
)
1261 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1263 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1267 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1270 struct mm_struct
*mm
= ctx
->mm
;
1271 struct vm_area_struct
*vma
, *prev
, *cur
;
1273 struct uffdio_register uffdio_register
;
1274 struct uffdio_register __user
*user_uffdio_register
;
1275 unsigned long vm_flags
, new_flags
;
1278 unsigned long start
, end
, vma_end
;
1280 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1283 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1284 sizeof(uffdio_register
)-sizeof(__u64
)))
1288 if (!uffdio_register
.mode
)
1290 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1291 UFFDIO_REGISTER_MODE_WP
))
1294 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1295 vm_flags
|= VM_UFFD_MISSING
;
1296 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1297 vm_flags
|= VM_UFFD_WP
;
1299 * FIXME: remove the below error constraint by
1300 * implementing the wprotect tracking mode.
1306 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1307 uffdio_register
.range
.len
);
1311 start
= uffdio_register
.range
.start
;
1312 end
= start
+ uffdio_register
.range
.len
;
1315 if (!mmget_not_zero(mm
))
1318 down_write(&mm
->mmap_sem
);
1319 vma
= find_vma_prev(mm
, start
, &prev
);
1323 /* check that there's at least one vma in the range */
1325 if (vma
->vm_start
>= end
)
1329 * If the first vma contains huge pages, make sure start address
1330 * is aligned to huge page size.
1332 if (is_vm_hugetlb_page(vma
)) {
1333 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1335 if (start
& (vma_hpagesize
- 1))
1340 * Search for not compatible vmas.
1343 basic_ioctls
= false;
1344 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1347 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1348 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1350 /* check not compatible vmas */
1352 if (!vma_can_userfault(cur
))
1355 * If this vma contains ending address, and huge pages
1358 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1359 end
> cur
->vm_start
) {
1360 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1364 if (end
& (vma_hpagesize
- 1))
1369 * Check that this vma isn't already owned by a
1370 * different userfaultfd. We can't allow more than one
1371 * userfaultfd to own a single vma simultaneously or we
1372 * wouldn't know which one to deliver the userfaults to.
1375 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1376 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1380 * Note vmas containing huge pages
1382 if (is_vm_hugetlb_page(cur
))
1383 basic_ioctls
= true;
1389 if (vma
->vm_start
< start
)
1396 BUG_ON(!vma_can_userfault(vma
));
1397 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1398 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1401 * Nothing to do: this vma is already registered into this
1402 * userfaultfd and with the right tracking mode too.
1404 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1405 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1408 if (vma
->vm_start
> start
)
1409 start
= vma
->vm_start
;
1410 vma_end
= min(end
, vma
->vm_end
);
1412 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1413 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1414 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1416 ((struct vm_userfaultfd_ctx
){ ctx
}));
1421 if (vma
->vm_start
< start
) {
1422 ret
= split_vma(mm
, vma
, start
, 1);
1426 if (vma
->vm_end
> end
) {
1427 ret
= split_vma(mm
, vma
, end
, 0);
1433 * In the vma_merge() successful mprotect-like case 8:
1434 * the next vma was merged into the current one and
1435 * the current one has not been updated yet.
1437 vma
->vm_flags
= new_flags
;
1438 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1442 start
= vma
->vm_end
;
1444 } while (vma
&& vma
->vm_start
< end
);
1446 up_write(&mm
->mmap_sem
);
1450 * Now that we scanned all vmas we can already tell
1451 * userland which ioctls methods are guaranteed to
1452 * succeed on this range.
1454 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1455 UFFD_API_RANGE_IOCTLS
,
1456 &user_uffdio_register
->ioctls
))
1463 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1466 struct mm_struct
*mm
= ctx
->mm
;
1467 struct vm_area_struct
*vma
, *prev
, *cur
;
1469 struct uffdio_range uffdio_unregister
;
1470 unsigned long new_flags
;
1472 unsigned long start
, end
, vma_end
;
1473 const void __user
*buf
= (void __user
*)arg
;
1476 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1479 ret
= validate_range(mm
, uffdio_unregister
.start
,
1480 uffdio_unregister
.len
);
1484 start
= uffdio_unregister
.start
;
1485 end
= start
+ uffdio_unregister
.len
;
1488 if (!mmget_not_zero(mm
))
1491 down_write(&mm
->mmap_sem
);
1492 vma
= find_vma_prev(mm
, start
, &prev
);
1496 /* check that there's at least one vma in the range */
1498 if (vma
->vm_start
>= end
)
1502 * If the first vma contains huge pages, make sure start address
1503 * is aligned to huge page size.
1505 if (is_vm_hugetlb_page(vma
)) {
1506 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1508 if (start
& (vma_hpagesize
- 1))
1513 * Search for not compatible vmas.
1517 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1520 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1521 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1524 * Check not compatible vmas, not strictly required
1525 * here as not compatible vmas cannot have an
1526 * userfaultfd_ctx registered on them, but this
1527 * provides for more strict behavior to notice
1528 * unregistration errors.
1530 if (!vma_can_userfault(cur
))
1537 if (vma
->vm_start
< start
)
1544 BUG_ON(!vma_can_userfault(vma
));
1547 * Nothing to do: this vma is already registered into this
1548 * userfaultfd and with the right tracking mode too.
1550 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1553 if (vma
->vm_start
> start
)
1554 start
= vma
->vm_start
;
1555 vma_end
= min(end
, vma
->vm_end
);
1557 if (userfaultfd_missing(vma
)) {
1559 * Wake any concurrent pending userfault while
1560 * we unregister, so they will not hang
1561 * permanently and it avoids userland to call
1562 * UFFDIO_WAKE explicitly.
1564 struct userfaultfd_wake_range range
;
1565 range
.start
= start
;
1566 range
.len
= vma_end
- start
;
1567 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1570 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1571 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1572 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1579 if (vma
->vm_start
< start
) {
1580 ret
= split_vma(mm
, vma
, start
, 1);
1584 if (vma
->vm_end
> end
) {
1585 ret
= split_vma(mm
, vma
, end
, 0);
1591 * In the vma_merge() successful mprotect-like case 8:
1592 * the next vma was merged into the current one and
1593 * the current one has not been updated yet.
1595 vma
->vm_flags
= new_flags
;
1596 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1600 start
= vma
->vm_end
;
1602 } while (vma
&& vma
->vm_start
< end
);
1604 up_write(&mm
->mmap_sem
);
1611 * userfaultfd_wake may be used in combination with the
1612 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1614 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1618 struct uffdio_range uffdio_wake
;
1619 struct userfaultfd_wake_range range
;
1620 const void __user
*buf
= (void __user
*)arg
;
1623 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1626 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1630 range
.start
= uffdio_wake
.start
;
1631 range
.len
= uffdio_wake
.len
;
1634 * len == 0 means wake all and we don't want to wake all here,
1635 * so check it again to be sure.
1637 VM_BUG_ON(!range
.len
);
1639 wake_userfault(ctx
, &range
);
1646 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1650 struct uffdio_copy uffdio_copy
;
1651 struct uffdio_copy __user
*user_uffdio_copy
;
1652 struct userfaultfd_wake_range range
;
1654 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1657 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1658 /* don't copy "copy" last field */
1659 sizeof(uffdio_copy
)-sizeof(__s64
)))
1662 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1666 * double check for wraparound just in case. copy_from_user()
1667 * will later check uffdio_copy.src + uffdio_copy.len to fit
1668 * in the userland range.
1671 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1673 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1675 if (mmget_not_zero(ctx
->mm
)) {
1676 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1682 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1687 /* len == 0 would wake all */
1689 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1690 range
.start
= uffdio_copy
.dst
;
1691 wake_userfault(ctx
, &range
);
1693 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1698 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1702 struct uffdio_zeropage uffdio_zeropage
;
1703 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1704 struct userfaultfd_wake_range range
;
1706 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1709 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1710 /* don't copy "zeropage" last field */
1711 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1714 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1715 uffdio_zeropage
.range
.len
);
1719 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1722 if (mmget_not_zero(ctx
->mm
)) {
1723 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1724 uffdio_zeropage
.range
.len
);
1729 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1733 /* len == 0 would wake all */
1736 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1737 range
.start
= uffdio_zeropage
.range
.start
;
1738 wake_userfault(ctx
, &range
);
1740 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1745 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1748 * For the current set of features the bits just coincide
1750 return (unsigned int)user_features
;
1754 * userland asks for a certain API version and we return which bits
1755 * and ioctl commands are implemented in this kernel for such API
1756 * version or -EINVAL if unknown.
1758 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1761 struct uffdio_api uffdio_api
;
1762 void __user
*buf
= (void __user
*)arg
;
1767 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1770 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1772 features
= uffdio_api
.features
;
1773 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1774 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1775 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1780 /* report all available features and ioctls to userland */
1781 uffdio_api
.features
= UFFD_API_FEATURES
;
1782 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1784 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1786 ctx
->state
= UFFD_STATE_RUNNING
;
1787 /* only enable the requested features for this uffd context */
1788 ctx
->features
= uffd_ctx_features(features
);
1794 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1798 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1800 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1805 ret
= userfaultfd_api(ctx
, arg
);
1807 case UFFDIO_REGISTER
:
1808 ret
= userfaultfd_register(ctx
, arg
);
1810 case UFFDIO_UNREGISTER
:
1811 ret
= userfaultfd_unregister(ctx
, arg
);
1814 ret
= userfaultfd_wake(ctx
, arg
);
1817 ret
= userfaultfd_copy(ctx
, arg
);
1819 case UFFDIO_ZEROPAGE
:
1820 ret
= userfaultfd_zeropage(ctx
, arg
);
1826 #ifdef CONFIG_PROC_FS
1827 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1829 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1830 wait_queue_entry_t
*wq
;
1831 struct userfaultfd_wait_queue
*uwq
;
1832 unsigned long pending
= 0, total
= 0;
1834 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1835 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1836 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1840 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1841 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1844 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1847 * If more protocols will be added, there will be all shown
1848 * separated by a space. Like this:
1849 * protocols: aa:... bb:...
1851 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1852 pending
, total
, UFFD_API
, ctx
->features
,
1853 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1857 static const struct file_operations userfaultfd_fops
= {
1858 #ifdef CONFIG_PROC_FS
1859 .show_fdinfo
= userfaultfd_show_fdinfo
,
1861 .release
= userfaultfd_release
,
1862 .poll
= userfaultfd_poll
,
1863 .read
= userfaultfd_read
,
1864 .unlocked_ioctl
= userfaultfd_ioctl
,
1865 .compat_ioctl
= userfaultfd_ioctl
,
1866 .llseek
= noop_llseek
,
1869 static void init_once_userfaultfd_ctx(void *mem
)
1871 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1873 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1874 init_waitqueue_head(&ctx
->fault_wqh
);
1875 init_waitqueue_head(&ctx
->event_wqh
);
1876 init_waitqueue_head(&ctx
->fd_wqh
);
1877 seqcount_init(&ctx
->refile_seq
);
1880 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1882 struct userfaultfd_ctx
*ctx
;
1885 BUG_ON(!current
->mm
);
1887 /* Check the UFFD_* constants for consistency. */
1888 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1889 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1891 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1894 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1898 atomic_set(&ctx
->refcount
, 1);
1901 ctx
->state
= UFFD_STATE_WAIT_API
;
1902 ctx
->released
= false;
1903 ctx
->mm
= current
->mm
;
1904 /* prevent the mm struct to be freed */
1907 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1908 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1911 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1916 static int __init
userfaultfd_init(void)
1918 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1919 sizeof(struct userfaultfd_ctx
),
1921 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1922 init_once_userfaultfd_ctx
);
1925 __initcall(userfaultfd_init
);