2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/gfp.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cachetype.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
29 static unsigned long shared_pte_mask
= L_PTE_MT_BUFFERABLE
;
32 * We take the easy way out of this problem - we make the
33 * PTE uncacheable. However, we leave the write buffer on.
35 * Note that the pte lock held when calling update_mmu_cache must also
36 * guard the pte (somewhere else in the same mm) that we modify here.
37 * Therefore those configurations which might call adjust_pte (those
38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
40 static int do_adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
41 unsigned long pfn
, pte_t
*ptep
)
47 * If this page is present, it's actually being shared.
49 ret
= pte_present(entry
);
52 * If this page isn't present, or is already setup to
53 * fault (ie, is old), we can safely ignore any issues.
55 if (ret
&& (pte_val(entry
) & L_PTE_MT_MASK
) != shared_pte_mask
) {
56 flush_cache_page(vma
, address
, pfn
);
57 outer_flush_range((pfn
<< PAGE_SHIFT
),
58 (pfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
59 pte_val(entry
) &= ~L_PTE_MT_MASK
;
60 pte_val(entry
) |= shared_pte_mask
;
61 set_pte_at(vma
->vm_mm
, address
, ptep
, entry
);
62 flush_tlb_page(vma
, address
);
68 static int adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
77 pgd
= pgd_offset(vma
->vm_mm
, address
);
78 if (pgd_none_or_clear_bad(pgd
))
81 pmd
= pmd_offset(pgd
, address
);
82 if (pmd_none_or_clear_bad(pmd
))
86 * This is called while another page table is mapped, so we
87 * must use the nested version. This also means we need to
88 * open-code the spin-locking.
90 ptl
= pte_lockptr(vma
->vm_mm
, pmd
);
91 pte
= pte_offset_map_nested(pmd
, address
);
94 ret
= do_adjust_pte(vma
, address
, pfn
, pte
);
97 pte_unmap_nested(pte
);
103 make_coherent(struct address_space
*mapping
, struct vm_area_struct
*vma
,
104 unsigned long addr
, pte_t
*ptep
, unsigned long pfn
)
106 struct mm_struct
*mm
= vma
->vm_mm
;
107 struct vm_area_struct
*mpnt
;
108 struct prio_tree_iter iter
;
109 unsigned long offset
;
113 pgoff
= vma
->vm_pgoff
+ ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
116 * If we have any shared mappings that are in the same mm
117 * space, then we need to handle them specially to maintain
120 flush_dcache_mmap_lock(mapping
);
121 vma_prio_tree_foreach(mpnt
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
123 * If this VMA is not in our MM, we can ignore it.
124 * Note that we intentionally mask out the VMA
125 * that we are fixing up.
127 if (mpnt
->vm_mm
!= mm
|| mpnt
== vma
)
129 if (!(mpnt
->vm_flags
& VM_MAYSHARE
))
131 offset
= (pgoff
- mpnt
->vm_pgoff
) << PAGE_SHIFT
;
132 aliases
+= adjust_pte(mpnt
, mpnt
->vm_start
+ offset
, pfn
);
134 flush_dcache_mmap_unlock(mapping
);
136 do_adjust_pte(vma
, addr
, pfn
, ptep
);
140 * Take care of architecture specific things when placing a new PTE into
141 * a page table, or changing an existing PTE. Basically, there are two
142 * things that we need to take care of:
144 * 1. If PG_dcache_dirty is set for the page, we need to ensure
145 * that any cache entries for the kernels virtual memory
146 * range are written back to the page.
147 * 2. If we have multiple shared mappings of the same space in
148 * an object, we need to deal with the cache aliasing issues.
150 * Note that the pte lock will be held.
152 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
,
155 unsigned long pfn
= pte_pfn(*ptep
);
156 struct address_space
*mapping
;
163 * The zero page is never written to, so never has any dirty
164 * cache lines, and therefore never needs to be flushed.
166 page
= pfn_to_page(pfn
);
167 if (page
== ZERO_PAGE(0))
170 mapping
= page_mapping(page
);
172 if (test_and_clear_bit(PG_dcache_dirty
, &page
->flags
))
173 __flush_dcache_page(mapping
, page
);
177 make_coherent(mapping
, vma
, addr
, ptep
, pfn
);
178 else if (vma
->vm_flags
& VM_EXEC
)
179 __flush_icache_all();
184 * Check whether the write buffer has physical address aliasing
185 * issues. If it has, we need to avoid them for the case where
186 * we have several shared mappings of the same object in user
189 static int __init
check_writebuffer(unsigned long *p1
, unsigned long *p2
)
191 register unsigned long zero
= 0, one
= 1, val
;
205 void __init
check_writebuffer_bugs(void)
211 printk(KERN_INFO
"CPU: Testing write buffer coherency: ");
213 page
= alloc_page(GFP_KERNEL
);
215 unsigned long *p1
, *p2
;
216 pgprot_t prot
= __pgprot_modify(PAGE_KERNEL
,
217 L_PTE_MT_MASK
, L_PTE_MT_BUFFERABLE
);
219 p1
= vmap(&page
, 1, VM_IOREMAP
, prot
);
220 p2
= vmap(&page
, 1, VM_IOREMAP
, prot
);
223 v
= check_writebuffer(p1
, p2
);
224 reason
= "enabling work-around";
226 reason
= "unable to map memory\n";
233 reason
= "unable to grab page\n";
237 printk("failed, %s\n", reason
);
238 shared_pte_mask
= L_PTE_MT_UNCACHED
;