perf tools: Fix find tids routine by excluding "." and ".."
[cris-mirror.git] / arch / x86 / kernel / kprobes.c
blob345a4b1fe1446812d65e25fd424886d05aeb1fe4
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
54 #include <asm/cacheflush.h>
55 #include <asm/desc.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
59 #include <asm/insn.h>
60 #include <asm/debugreg.h>
62 void jprobe_return_end(void);
64 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
74 << (row % 32))
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
79 static const u32 twobyte_is_boostable[256 / 32] = {
80 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
81 /* ---------------------------------------------- */
82 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
83 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
84 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
85 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
86 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
87 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
88 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
89 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
90 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
91 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
92 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
93 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
94 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
95 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
96 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
97 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
98 /* ----------------------------------------------- */
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 #undef W
103 struct kretprobe_blackpoint kretprobe_blacklist[] = {
104 {"__switch_to", }, /* This function switches only current task, but
105 doesn't switch kernel stack.*/
106 {NULL, NULL} /* Terminator */
108 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
110 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
112 struct __arch_relative_insn {
113 u8 op;
114 s32 raddr;
115 } __attribute__((packed)) *insn;
117 insn = (struct __arch_relative_insn *)from;
118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 insn->op = op;
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 static void __kprobes synthesize_reljump(void *from, void *to)
125 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
129 * Check for the REX prefix which can only exist on X86_64
130 * X86_32 always returns 0
132 static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
134 #ifdef CONFIG_X86_64
135 if ((*insn & 0xf0) == 0x40)
136 return 1;
137 #endif
138 return 0;
142 * Returns non-zero if opcode is boostable.
143 * RIP relative instructions are adjusted at copying time in 64 bits mode
145 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
147 kprobe_opcode_t opcode;
148 kprobe_opcode_t *orig_opcodes = opcodes;
150 if (search_exception_tables((unsigned long)opcodes))
151 return 0; /* Page fault may occur on this address. */
153 retry:
154 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
155 return 0;
156 opcode = *(opcodes++);
158 /* 2nd-byte opcode */
159 if (opcode == 0x0f) {
160 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
161 return 0;
162 return test_bit(*opcodes,
163 (unsigned long *)twobyte_is_boostable);
166 switch (opcode & 0xf0) {
167 #ifdef CONFIG_X86_64
168 case 0x40:
169 goto retry; /* REX prefix is boostable */
170 #endif
171 case 0x60:
172 if (0x63 < opcode && opcode < 0x67)
173 goto retry; /* prefixes */
174 /* can't boost Address-size override and bound */
175 return (opcode != 0x62 && opcode != 0x67);
176 case 0x70:
177 return 0; /* can't boost conditional jump */
178 case 0xc0:
179 /* can't boost software-interruptions */
180 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
181 case 0xd0:
182 /* can boost AA* and XLAT */
183 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
184 case 0xe0:
185 /* can boost in/out and absolute jmps */
186 return ((opcode & 0x04) || opcode == 0xea);
187 case 0xf0:
188 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
189 goto retry; /* lock/rep(ne) prefix */
190 /* clear and set flags are boostable */
191 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
192 default:
193 /* segment override prefixes are boostable */
194 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
195 goto retry; /* prefixes */
196 /* CS override prefix and call are not boostable */
197 return (opcode != 0x2e && opcode != 0x9a);
201 /* Recover the probed instruction at addr for further analysis. */
202 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
204 struct kprobe *kp;
205 kp = get_kprobe((void *)addr);
206 if (!kp)
207 return -EINVAL;
210 * Basically, kp->ainsn.insn has an original instruction.
211 * However, RIP-relative instruction can not do single-stepping
212 * at different place, __copy_instruction() tweaks the displacement of
213 * that instruction. In that case, we can't recover the instruction
214 * from the kp->ainsn.insn.
216 * On the other hand, kp->opcode has a copy of the first byte of
217 * the probed instruction, which is overwritten by int3. And
218 * the instruction at kp->addr is not modified by kprobes except
219 * for the first byte, we can recover the original instruction
220 * from it and kp->opcode.
222 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
223 buf[0] = kp->opcode;
224 return 0;
227 /* Dummy buffers for kallsyms_lookup */
228 static char __dummy_buf[KSYM_NAME_LEN];
230 /* Check if paddr is at an instruction boundary */
231 static int __kprobes can_probe(unsigned long paddr)
233 int ret;
234 unsigned long addr, offset = 0;
235 struct insn insn;
236 kprobe_opcode_t buf[MAX_INSN_SIZE];
238 if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
239 return 0;
241 /* Decode instructions */
242 addr = paddr - offset;
243 while (addr < paddr) {
244 kernel_insn_init(&insn, (void *)addr);
245 insn_get_opcode(&insn);
248 * Check if the instruction has been modified by another
249 * kprobe, in which case we replace the breakpoint by the
250 * original instruction in our buffer.
252 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
253 ret = recover_probed_instruction(buf, addr);
254 if (ret)
256 * Another debugging subsystem might insert
257 * this breakpoint. In that case, we can't
258 * recover it.
260 return 0;
261 kernel_insn_init(&insn, buf);
263 insn_get_length(&insn);
264 addr += insn.length;
267 return (addr == paddr);
271 * Returns non-zero if opcode modifies the interrupt flag.
273 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
275 switch (*insn) {
276 case 0xfa: /* cli */
277 case 0xfb: /* sti */
278 case 0xcf: /* iret/iretd */
279 case 0x9d: /* popf/popfd */
280 return 1;
284 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
285 * at the next byte instead.. but of course not recurse infinitely
287 if (is_REX_prefix(insn))
288 return is_IF_modifier(++insn);
290 return 0;
294 * Copy an instruction and adjust the displacement if the instruction
295 * uses the %rip-relative addressing mode.
296 * If it does, Return the address of the 32-bit displacement word.
297 * If not, return null.
298 * Only applicable to 64-bit x86.
300 static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
302 struct insn insn;
303 int ret;
304 kprobe_opcode_t buf[MAX_INSN_SIZE];
306 kernel_insn_init(&insn, src);
307 if (recover) {
308 insn_get_opcode(&insn);
309 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
310 ret = recover_probed_instruction(buf,
311 (unsigned long)src);
312 if (ret)
313 return 0;
314 kernel_insn_init(&insn, buf);
317 insn_get_length(&insn);
318 memcpy(dest, insn.kaddr, insn.length);
320 #ifdef CONFIG_X86_64
321 if (insn_rip_relative(&insn)) {
322 s64 newdisp;
323 u8 *disp;
324 kernel_insn_init(&insn, dest);
325 insn_get_displacement(&insn);
327 * The copied instruction uses the %rip-relative addressing
328 * mode. Adjust the displacement for the difference between
329 * the original location of this instruction and the location
330 * of the copy that will actually be run. The tricky bit here
331 * is making sure that the sign extension happens correctly in
332 * this calculation, since we need a signed 32-bit result to
333 * be sign-extended to 64 bits when it's added to the %rip
334 * value and yield the same 64-bit result that the sign-
335 * extension of the original signed 32-bit displacement would
336 * have given.
338 newdisp = (u8 *) src + (s64) insn.displacement.value -
339 (u8 *) dest;
340 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
341 disp = (u8 *) dest + insn_offset_displacement(&insn);
342 *(s32 *) disp = (s32) newdisp;
344 #endif
345 return insn.length;
348 static void __kprobes arch_copy_kprobe(struct kprobe *p)
351 * Copy an instruction without recovering int3, because it will be
352 * put by another subsystem.
354 __copy_instruction(p->ainsn.insn, p->addr, 0);
356 if (can_boost(p->addr))
357 p->ainsn.boostable = 0;
358 else
359 p->ainsn.boostable = -1;
361 p->opcode = *p->addr;
364 int __kprobes arch_prepare_kprobe(struct kprobe *p)
366 if (alternatives_text_reserved(p->addr, p->addr))
367 return -EINVAL;
369 if (!can_probe((unsigned long)p->addr))
370 return -EILSEQ;
371 /* insn: must be on special executable page on x86. */
372 p->ainsn.insn = get_insn_slot();
373 if (!p->ainsn.insn)
374 return -ENOMEM;
375 arch_copy_kprobe(p);
376 return 0;
379 void __kprobes arch_arm_kprobe(struct kprobe *p)
381 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
384 void __kprobes arch_disarm_kprobe(struct kprobe *p)
386 text_poke(p->addr, &p->opcode, 1);
389 void __kprobes arch_remove_kprobe(struct kprobe *p)
391 if (p->ainsn.insn) {
392 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
393 p->ainsn.insn = NULL;
397 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
399 kcb->prev_kprobe.kp = kprobe_running();
400 kcb->prev_kprobe.status = kcb->kprobe_status;
401 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
402 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
405 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
407 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
408 kcb->kprobe_status = kcb->prev_kprobe.status;
409 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
410 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
413 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
414 struct kprobe_ctlblk *kcb)
416 __get_cpu_var(current_kprobe) = p;
417 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
418 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
419 if (is_IF_modifier(p->ainsn.insn))
420 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
423 static void __kprobes clear_btf(void)
425 if (test_thread_flag(TIF_BLOCKSTEP)) {
426 unsigned long debugctl = get_debugctlmsr();
428 debugctl &= ~DEBUGCTLMSR_BTF;
429 update_debugctlmsr(debugctl);
433 static void __kprobes restore_btf(void)
435 if (test_thread_flag(TIF_BLOCKSTEP)) {
436 unsigned long debugctl = get_debugctlmsr();
438 debugctl |= DEBUGCTLMSR_BTF;
439 update_debugctlmsr(debugctl);
443 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
444 struct pt_regs *regs)
446 unsigned long *sara = stack_addr(regs);
448 ri->ret_addr = (kprobe_opcode_t *) *sara;
450 /* Replace the return addr with trampoline addr */
451 *sara = (unsigned long) &kretprobe_trampoline;
454 #ifdef CONFIG_OPTPROBES
455 static int __kprobes setup_detour_execution(struct kprobe *p,
456 struct pt_regs *regs,
457 int reenter);
458 #else
459 #define setup_detour_execution(p, regs, reenter) (0)
460 #endif
462 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
463 struct kprobe_ctlblk *kcb, int reenter)
465 if (setup_detour_execution(p, regs, reenter))
466 return;
468 #if !defined(CONFIG_PREEMPT)
469 if (p->ainsn.boostable == 1 && !p->post_handler) {
470 /* Boost up -- we can execute copied instructions directly */
471 if (!reenter)
472 reset_current_kprobe();
474 * Reentering boosted probe doesn't reset current_kprobe,
475 * nor set current_kprobe, because it doesn't use single
476 * stepping.
478 regs->ip = (unsigned long)p->ainsn.insn;
479 preempt_enable_no_resched();
480 return;
482 #endif
483 if (reenter) {
484 save_previous_kprobe(kcb);
485 set_current_kprobe(p, regs, kcb);
486 kcb->kprobe_status = KPROBE_REENTER;
487 } else
488 kcb->kprobe_status = KPROBE_HIT_SS;
489 /* Prepare real single stepping */
490 clear_btf();
491 regs->flags |= X86_EFLAGS_TF;
492 regs->flags &= ~X86_EFLAGS_IF;
493 /* single step inline if the instruction is an int3 */
494 if (p->opcode == BREAKPOINT_INSTRUCTION)
495 regs->ip = (unsigned long)p->addr;
496 else
497 regs->ip = (unsigned long)p->ainsn.insn;
501 * We have reentered the kprobe_handler(), since another probe was hit while
502 * within the handler. We save the original kprobes variables and just single
503 * step on the instruction of the new probe without calling any user handlers.
505 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
506 struct kprobe_ctlblk *kcb)
508 switch (kcb->kprobe_status) {
509 case KPROBE_HIT_SSDONE:
510 case KPROBE_HIT_ACTIVE:
511 kprobes_inc_nmissed_count(p);
512 setup_singlestep(p, regs, kcb, 1);
513 break;
514 case KPROBE_HIT_SS:
515 /* A probe has been hit in the codepath leading up to, or just
516 * after, single-stepping of a probed instruction. This entire
517 * codepath should strictly reside in .kprobes.text section.
518 * Raise a BUG or we'll continue in an endless reentering loop
519 * and eventually a stack overflow.
521 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
522 p->addr);
523 dump_kprobe(p);
524 BUG();
525 default:
526 /* impossible cases */
527 WARN_ON(1);
528 return 0;
531 return 1;
535 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
536 * remain disabled throughout this function.
538 static int __kprobes kprobe_handler(struct pt_regs *regs)
540 kprobe_opcode_t *addr;
541 struct kprobe *p;
542 struct kprobe_ctlblk *kcb;
544 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
546 * We don't want to be preempted for the entire
547 * duration of kprobe processing. We conditionally
548 * re-enable preemption at the end of this function,
549 * and also in reenter_kprobe() and setup_singlestep().
551 preempt_disable();
553 kcb = get_kprobe_ctlblk();
554 p = get_kprobe(addr);
556 if (p) {
557 if (kprobe_running()) {
558 if (reenter_kprobe(p, regs, kcb))
559 return 1;
560 } else {
561 set_current_kprobe(p, regs, kcb);
562 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
565 * If we have no pre-handler or it returned 0, we
566 * continue with normal processing. If we have a
567 * pre-handler and it returned non-zero, it prepped
568 * for calling the break_handler below on re-entry
569 * for jprobe processing, so get out doing nothing
570 * more here.
572 if (!p->pre_handler || !p->pre_handler(p, regs))
573 setup_singlestep(p, regs, kcb, 0);
574 return 1;
576 } else if (*addr != BREAKPOINT_INSTRUCTION) {
578 * The breakpoint instruction was removed right
579 * after we hit it. Another cpu has removed
580 * either a probepoint or a debugger breakpoint
581 * at this address. In either case, no further
582 * handling of this interrupt is appropriate.
583 * Back up over the (now missing) int3 and run
584 * the original instruction.
586 regs->ip = (unsigned long)addr;
587 preempt_enable_no_resched();
588 return 1;
589 } else if (kprobe_running()) {
590 p = __get_cpu_var(current_kprobe);
591 if (p->break_handler && p->break_handler(p, regs)) {
592 setup_singlestep(p, regs, kcb, 0);
593 return 1;
595 } /* else: not a kprobe fault; let the kernel handle it */
597 preempt_enable_no_resched();
598 return 0;
601 #ifdef CONFIG_X86_64
602 #define SAVE_REGS_STRING \
603 /* Skip cs, ip, orig_ax. */ \
604 " subq $24, %rsp\n" \
605 " pushq %rdi\n" \
606 " pushq %rsi\n" \
607 " pushq %rdx\n" \
608 " pushq %rcx\n" \
609 " pushq %rax\n" \
610 " pushq %r8\n" \
611 " pushq %r9\n" \
612 " pushq %r10\n" \
613 " pushq %r11\n" \
614 " pushq %rbx\n" \
615 " pushq %rbp\n" \
616 " pushq %r12\n" \
617 " pushq %r13\n" \
618 " pushq %r14\n" \
619 " pushq %r15\n"
620 #define RESTORE_REGS_STRING \
621 " popq %r15\n" \
622 " popq %r14\n" \
623 " popq %r13\n" \
624 " popq %r12\n" \
625 " popq %rbp\n" \
626 " popq %rbx\n" \
627 " popq %r11\n" \
628 " popq %r10\n" \
629 " popq %r9\n" \
630 " popq %r8\n" \
631 " popq %rax\n" \
632 " popq %rcx\n" \
633 " popq %rdx\n" \
634 " popq %rsi\n" \
635 " popq %rdi\n" \
636 /* Skip orig_ax, ip, cs */ \
637 " addq $24, %rsp\n"
638 #else
639 #define SAVE_REGS_STRING \
640 /* Skip cs, ip, orig_ax and gs. */ \
641 " subl $16, %esp\n" \
642 " pushl %fs\n" \
643 " pushl %ds\n" \
644 " pushl %es\n" \
645 " pushl %eax\n" \
646 " pushl %ebp\n" \
647 " pushl %edi\n" \
648 " pushl %esi\n" \
649 " pushl %edx\n" \
650 " pushl %ecx\n" \
651 " pushl %ebx\n"
652 #define RESTORE_REGS_STRING \
653 " popl %ebx\n" \
654 " popl %ecx\n" \
655 " popl %edx\n" \
656 " popl %esi\n" \
657 " popl %edi\n" \
658 " popl %ebp\n" \
659 " popl %eax\n" \
660 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
661 " addl $24, %esp\n"
662 #endif
665 * When a retprobed function returns, this code saves registers and
666 * calls trampoline_handler() runs, which calls the kretprobe's handler.
668 static void __used __kprobes kretprobe_trampoline_holder(void)
670 asm volatile (
671 ".global kretprobe_trampoline\n"
672 "kretprobe_trampoline: \n"
673 #ifdef CONFIG_X86_64
674 /* We don't bother saving the ss register */
675 " pushq %rsp\n"
676 " pushfq\n"
677 SAVE_REGS_STRING
678 " movq %rsp, %rdi\n"
679 " call trampoline_handler\n"
680 /* Replace saved sp with true return address. */
681 " movq %rax, 152(%rsp)\n"
682 RESTORE_REGS_STRING
683 " popfq\n"
684 #else
685 " pushf\n"
686 SAVE_REGS_STRING
687 " movl %esp, %eax\n"
688 " call trampoline_handler\n"
689 /* Move flags to cs */
690 " movl 56(%esp), %edx\n"
691 " movl %edx, 52(%esp)\n"
692 /* Replace saved flags with true return address. */
693 " movl %eax, 56(%esp)\n"
694 RESTORE_REGS_STRING
695 " popf\n"
696 #endif
697 " ret\n");
701 * Called from kretprobe_trampoline
703 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
705 struct kretprobe_instance *ri = NULL;
706 struct hlist_head *head, empty_rp;
707 struct hlist_node *node, *tmp;
708 unsigned long flags, orig_ret_address = 0;
709 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
711 INIT_HLIST_HEAD(&empty_rp);
712 kretprobe_hash_lock(current, &head, &flags);
713 /* fixup registers */
714 #ifdef CONFIG_X86_64
715 regs->cs = __KERNEL_CS;
716 #else
717 regs->cs = __KERNEL_CS | get_kernel_rpl();
718 regs->gs = 0;
719 #endif
720 regs->ip = trampoline_address;
721 regs->orig_ax = ~0UL;
724 * It is possible to have multiple instances associated with a given
725 * task either because multiple functions in the call path have
726 * return probes installed on them, and/or more than one
727 * return probe was registered for a target function.
729 * We can handle this because:
730 * - instances are always pushed into the head of the list
731 * - when multiple return probes are registered for the same
732 * function, the (chronologically) first instance's ret_addr
733 * will be the real return address, and all the rest will
734 * point to kretprobe_trampoline.
736 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
737 if (ri->task != current)
738 /* another task is sharing our hash bucket */
739 continue;
741 if (ri->rp && ri->rp->handler) {
742 __get_cpu_var(current_kprobe) = &ri->rp->kp;
743 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
744 ri->rp->handler(ri, regs);
745 __get_cpu_var(current_kprobe) = NULL;
748 orig_ret_address = (unsigned long)ri->ret_addr;
749 recycle_rp_inst(ri, &empty_rp);
751 if (orig_ret_address != trampoline_address)
753 * This is the real return address. Any other
754 * instances associated with this task are for
755 * other calls deeper on the call stack
757 break;
760 kretprobe_assert(ri, orig_ret_address, trampoline_address);
762 kretprobe_hash_unlock(current, &flags);
764 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
765 hlist_del(&ri->hlist);
766 kfree(ri);
768 return (void *)orig_ret_address;
772 * Called after single-stepping. p->addr is the address of the
773 * instruction whose first byte has been replaced by the "int 3"
774 * instruction. To avoid the SMP problems that can occur when we
775 * temporarily put back the original opcode to single-step, we
776 * single-stepped a copy of the instruction. The address of this
777 * copy is p->ainsn.insn.
779 * This function prepares to return from the post-single-step
780 * interrupt. We have to fix up the stack as follows:
782 * 0) Except in the case of absolute or indirect jump or call instructions,
783 * the new ip is relative to the copied instruction. We need to make
784 * it relative to the original instruction.
786 * 1) If the single-stepped instruction was pushfl, then the TF and IF
787 * flags are set in the just-pushed flags, and may need to be cleared.
789 * 2) If the single-stepped instruction was a call, the return address
790 * that is atop the stack is the address following the copied instruction.
791 * We need to make it the address following the original instruction.
793 * If this is the first time we've single-stepped the instruction at
794 * this probepoint, and the instruction is boostable, boost it: add a
795 * jump instruction after the copied instruction, that jumps to the next
796 * instruction after the probepoint.
798 static void __kprobes resume_execution(struct kprobe *p,
799 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
801 unsigned long *tos = stack_addr(regs);
802 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
803 unsigned long orig_ip = (unsigned long)p->addr;
804 kprobe_opcode_t *insn = p->ainsn.insn;
806 /*skip the REX prefix*/
807 if (is_REX_prefix(insn))
808 insn++;
810 regs->flags &= ~X86_EFLAGS_TF;
811 switch (*insn) {
812 case 0x9c: /* pushfl */
813 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
814 *tos |= kcb->kprobe_old_flags;
815 break;
816 case 0xc2: /* iret/ret/lret */
817 case 0xc3:
818 case 0xca:
819 case 0xcb:
820 case 0xcf:
821 case 0xea: /* jmp absolute -- ip is correct */
822 /* ip is already adjusted, no more changes required */
823 p->ainsn.boostable = 1;
824 goto no_change;
825 case 0xe8: /* call relative - Fix return addr */
826 *tos = orig_ip + (*tos - copy_ip);
827 break;
828 #ifdef CONFIG_X86_32
829 case 0x9a: /* call absolute -- same as call absolute, indirect */
830 *tos = orig_ip + (*tos - copy_ip);
831 goto no_change;
832 #endif
833 case 0xff:
834 if ((insn[1] & 0x30) == 0x10) {
836 * call absolute, indirect
837 * Fix return addr; ip is correct.
838 * But this is not boostable
840 *tos = orig_ip + (*tos - copy_ip);
841 goto no_change;
842 } else if (((insn[1] & 0x31) == 0x20) ||
843 ((insn[1] & 0x31) == 0x21)) {
845 * jmp near and far, absolute indirect
846 * ip is correct. And this is boostable
848 p->ainsn.boostable = 1;
849 goto no_change;
851 default:
852 break;
855 if (p->ainsn.boostable == 0) {
856 if ((regs->ip > copy_ip) &&
857 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
859 * These instructions can be executed directly if it
860 * jumps back to correct address.
862 synthesize_reljump((void *)regs->ip,
863 (void *)orig_ip + (regs->ip - copy_ip));
864 p->ainsn.boostable = 1;
865 } else {
866 p->ainsn.boostable = -1;
870 regs->ip += orig_ip - copy_ip;
872 no_change:
873 restore_btf();
877 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
878 * remain disabled throughout this function.
880 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
882 struct kprobe *cur = kprobe_running();
883 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
885 if (!cur)
886 return 0;
888 resume_execution(cur, regs, kcb);
889 regs->flags |= kcb->kprobe_saved_flags;
891 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
892 kcb->kprobe_status = KPROBE_HIT_SSDONE;
893 cur->post_handler(cur, regs, 0);
896 /* Restore back the original saved kprobes variables and continue. */
897 if (kcb->kprobe_status == KPROBE_REENTER) {
898 restore_previous_kprobe(kcb);
899 goto out;
901 reset_current_kprobe();
902 out:
903 preempt_enable_no_resched();
906 * if somebody else is singlestepping across a probe point, flags
907 * will have TF set, in which case, continue the remaining processing
908 * of do_debug, as if this is not a probe hit.
910 if (regs->flags & X86_EFLAGS_TF)
911 return 0;
913 return 1;
916 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
918 struct kprobe *cur = kprobe_running();
919 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
921 switch (kcb->kprobe_status) {
922 case KPROBE_HIT_SS:
923 case KPROBE_REENTER:
925 * We are here because the instruction being single
926 * stepped caused a page fault. We reset the current
927 * kprobe and the ip points back to the probe address
928 * and allow the page fault handler to continue as a
929 * normal page fault.
931 regs->ip = (unsigned long)cur->addr;
932 regs->flags |= kcb->kprobe_old_flags;
933 if (kcb->kprobe_status == KPROBE_REENTER)
934 restore_previous_kprobe(kcb);
935 else
936 reset_current_kprobe();
937 preempt_enable_no_resched();
938 break;
939 case KPROBE_HIT_ACTIVE:
940 case KPROBE_HIT_SSDONE:
942 * We increment the nmissed count for accounting,
943 * we can also use npre/npostfault count for accounting
944 * these specific fault cases.
946 kprobes_inc_nmissed_count(cur);
949 * We come here because instructions in the pre/post
950 * handler caused the page_fault, this could happen
951 * if handler tries to access user space by
952 * copy_from_user(), get_user() etc. Let the
953 * user-specified handler try to fix it first.
955 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
956 return 1;
959 * In case the user-specified fault handler returned
960 * zero, try to fix up.
962 if (fixup_exception(regs))
963 return 1;
966 * fixup routine could not handle it,
967 * Let do_page_fault() fix it.
969 break;
970 default:
971 break;
973 return 0;
977 * Wrapper routine for handling exceptions.
979 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
980 unsigned long val, void *data)
982 struct die_args *args = data;
983 int ret = NOTIFY_DONE;
985 if (args->regs && user_mode_vm(args->regs))
986 return ret;
988 switch (val) {
989 case DIE_INT3:
990 if (kprobe_handler(args->regs))
991 ret = NOTIFY_STOP;
992 break;
993 case DIE_DEBUG:
994 if (post_kprobe_handler(args->regs)) {
996 * Reset the BS bit in dr6 (pointed by args->err) to
997 * denote completion of processing
999 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1000 ret = NOTIFY_STOP;
1002 break;
1003 case DIE_GPF:
1005 * To be potentially processing a kprobe fault and to
1006 * trust the result from kprobe_running(), we have
1007 * be non-preemptible.
1009 if (!preemptible() && kprobe_running() &&
1010 kprobe_fault_handler(args->regs, args->trapnr))
1011 ret = NOTIFY_STOP;
1012 break;
1013 default:
1014 break;
1016 return ret;
1019 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1021 struct jprobe *jp = container_of(p, struct jprobe, kp);
1022 unsigned long addr;
1023 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1025 kcb->jprobe_saved_regs = *regs;
1026 kcb->jprobe_saved_sp = stack_addr(regs);
1027 addr = (unsigned long)(kcb->jprobe_saved_sp);
1030 * As Linus pointed out, gcc assumes that the callee
1031 * owns the argument space and could overwrite it, e.g.
1032 * tailcall optimization. So, to be absolutely safe
1033 * we also save and restore enough stack bytes to cover
1034 * the argument area.
1036 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1037 MIN_STACK_SIZE(addr));
1038 regs->flags &= ~X86_EFLAGS_IF;
1039 trace_hardirqs_off();
1040 regs->ip = (unsigned long)(jp->entry);
1041 return 1;
1044 void __kprobes jprobe_return(void)
1046 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1048 asm volatile (
1049 #ifdef CONFIG_X86_64
1050 " xchg %%rbx,%%rsp \n"
1051 #else
1052 " xchgl %%ebx,%%esp \n"
1053 #endif
1054 " int3 \n"
1055 " .globl jprobe_return_end\n"
1056 " jprobe_return_end: \n"
1057 " nop \n"::"b"
1058 (kcb->jprobe_saved_sp):"memory");
1061 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1063 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1064 u8 *addr = (u8 *) (regs->ip - 1);
1065 struct jprobe *jp = container_of(p, struct jprobe, kp);
1067 if ((addr > (u8 *) jprobe_return) &&
1068 (addr < (u8 *) jprobe_return_end)) {
1069 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1070 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1071 printk(KERN_ERR
1072 "current sp %p does not match saved sp %p\n",
1073 stack_addr(regs), kcb->jprobe_saved_sp);
1074 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1075 show_registers(saved_regs);
1076 printk(KERN_ERR "Current registers\n");
1077 show_registers(regs);
1078 BUG();
1080 *regs = kcb->jprobe_saved_regs;
1081 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1082 kcb->jprobes_stack,
1083 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1084 preempt_enable_no_resched();
1085 return 1;
1087 return 0;
1091 #ifdef CONFIG_OPTPROBES
1093 /* Insert a call instruction at address 'from', which calls address 'to'.*/
1094 static void __kprobes synthesize_relcall(void *from, void *to)
1096 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1099 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1100 static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1101 unsigned long val)
1103 #ifdef CONFIG_X86_64
1104 *addr++ = 0x48;
1105 *addr++ = 0xbf;
1106 #else
1107 *addr++ = 0xb8;
1108 #endif
1109 *(unsigned long *)addr = val;
1112 void __kprobes kprobes_optinsn_template_holder(void)
1114 asm volatile (
1115 ".global optprobe_template_entry\n"
1116 "optprobe_template_entry: \n"
1117 #ifdef CONFIG_X86_64
1118 /* We don't bother saving the ss register */
1119 " pushq %rsp\n"
1120 " pushfq\n"
1121 SAVE_REGS_STRING
1122 " movq %rsp, %rsi\n"
1123 ".global optprobe_template_val\n"
1124 "optprobe_template_val: \n"
1125 ASM_NOP5
1126 ASM_NOP5
1127 ".global optprobe_template_call\n"
1128 "optprobe_template_call: \n"
1129 ASM_NOP5
1130 /* Move flags to rsp */
1131 " movq 144(%rsp), %rdx\n"
1132 " movq %rdx, 152(%rsp)\n"
1133 RESTORE_REGS_STRING
1134 /* Skip flags entry */
1135 " addq $8, %rsp\n"
1136 " popfq\n"
1137 #else /* CONFIG_X86_32 */
1138 " pushf\n"
1139 SAVE_REGS_STRING
1140 " movl %esp, %edx\n"
1141 ".global optprobe_template_val\n"
1142 "optprobe_template_val: \n"
1143 ASM_NOP5
1144 ".global optprobe_template_call\n"
1145 "optprobe_template_call: \n"
1146 ASM_NOP5
1147 RESTORE_REGS_STRING
1148 " addl $4, %esp\n" /* skip cs */
1149 " popf\n"
1150 #endif
1151 ".global optprobe_template_end\n"
1152 "optprobe_template_end: \n");
1155 #define TMPL_MOVE_IDX \
1156 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1157 #define TMPL_CALL_IDX \
1158 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1159 #define TMPL_END_IDX \
1160 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1162 #define INT3_SIZE sizeof(kprobe_opcode_t)
1164 /* Optimized kprobe call back function: called from optinsn */
1165 static void __kprobes optimized_callback(struct optimized_kprobe *op,
1166 struct pt_regs *regs)
1168 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1170 preempt_disable();
1171 if (kprobe_running()) {
1172 kprobes_inc_nmissed_count(&op->kp);
1173 } else {
1174 /* Save skipped registers */
1175 #ifdef CONFIG_X86_64
1176 regs->cs = __KERNEL_CS;
1177 #else
1178 regs->cs = __KERNEL_CS | get_kernel_rpl();
1179 regs->gs = 0;
1180 #endif
1181 regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1182 regs->orig_ax = ~0UL;
1184 __get_cpu_var(current_kprobe) = &op->kp;
1185 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1186 opt_pre_handler(&op->kp, regs);
1187 __get_cpu_var(current_kprobe) = NULL;
1189 preempt_enable_no_resched();
1192 static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1194 int len = 0, ret;
1196 while (len < RELATIVEJUMP_SIZE) {
1197 ret = __copy_instruction(dest + len, src + len, 1);
1198 if (!ret || !can_boost(dest + len))
1199 return -EINVAL;
1200 len += ret;
1202 /* Check whether the address range is reserved */
1203 if (ftrace_text_reserved(src, src + len - 1) ||
1204 alternatives_text_reserved(src, src + len - 1))
1205 return -EBUSY;
1207 return len;
1210 /* Check whether insn is indirect jump */
1211 static int __kprobes insn_is_indirect_jump(struct insn *insn)
1213 return ((insn->opcode.bytes[0] == 0xff &&
1214 (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1215 insn->opcode.bytes[0] == 0xea); /* Segment based jump */
1218 /* Check whether insn jumps into specified address range */
1219 static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1221 unsigned long target = 0;
1223 switch (insn->opcode.bytes[0]) {
1224 case 0xe0: /* loopne */
1225 case 0xe1: /* loope */
1226 case 0xe2: /* loop */
1227 case 0xe3: /* jcxz */
1228 case 0xe9: /* near relative jump */
1229 case 0xeb: /* short relative jump */
1230 break;
1231 case 0x0f:
1232 if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1233 break;
1234 return 0;
1235 default:
1236 if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1237 break;
1238 return 0;
1240 target = (unsigned long)insn->next_byte + insn->immediate.value;
1242 return (start <= target && target <= start + len);
1245 /* Decode whole function to ensure any instructions don't jump into target */
1246 static int __kprobes can_optimize(unsigned long paddr)
1248 int ret;
1249 unsigned long addr, size = 0, offset = 0;
1250 struct insn insn;
1251 kprobe_opcode_t buf[MAX_INSN_SIZE];
1252 /* Dummy buffers for lookup_symbol_attrs */
1253 static char __dummy_buf[KSYM_NAME_LEN];
1255 /* Lookup symbol including addr */
1256 if (!kallsyms_lookup(paddr, &size, &offset, NULL, __dummy_buf))
1257 return 0;
1259 /* Check there is enough space for a relative jump. */
1260 if (size - offset < RELATIVEJUMP_SIZE)
1261 return 0;
1263 /* Decode instructions */
1264 addr = paddr - offset;
1265 while (addr < paddr - offset + size) { /* Decode until function end */
1266 if (search_exception_tables(addr))
1268 * Since some fixup code will jumps into this function,
1269 * we can't optimize kprobe in this function.
1271 return 0;
1272 kernel_insn_init(&insn, (void *)addr);
1273 insn_get_opcode(&insn);
1274 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1275 ret = recover_probed_instruction(buf, addr);
1276 if (ret)
1277 return 0;
1278 kernel_insn_init(&insn, buf);
1280 insn_get_length(&insn);
1281 /* Recover address */
1282 insn.kaddr = (void *)addr;
1283 insn.next_byte = (void *)(addr + insn.length);
1284 /* Check any instructions don't jump into target */
1285 if (insn_is_indirect_jump(&insn) ||
1286 insn_jump_into_range(&insn, paddr + INT3_SIZE,
1287 RELATIVE_ADDR_SIZE))
1288 return 0;
1289 addr += insn.length;
1292 return 1;
1295 /* Check optimized_kprobe can actually be optimized. */
1296 int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1298 int i;
1299 struct kprobe *p;
1301 for (i = 1; i < op->optinsn.size; i++) {
1302 p = get_kprobe(op->kp.addr + i);
1303 if (p && !kprobe_disabled(p))
1304 return -EEXIST;
1307 return 0;
1310 /* Check the addr is within the optimized instructions. */
1311 int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1312 unsigned long addr)
1314 return ((unsigned long)op->kp.addr <= addr &&
1315 (unsigned long)op->kp.addr + op->optinsn.size > addr);
1318 /* Free optimized instruction slot */
1319 static __kprobes
1320 void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1322 if (op->optinsn.insn) {
1323 free_optinsn_slot(op->optinsn.insn, dirty);
1324 op->optinsn.insn = NULL;
1325 op->optinsn.size = 0;
1329 void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1331 __arch_remove_optimized_kprobe(op, 1);
1335 * Copy replacing target instructions
1336 * Target instructions MUST be relocatable (checked inside)
1338 int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1340 u8 *buf;
1341 int ret;
1342 long rel;
1344 if (!can_optimize((unsigned long)op->kp.addr))
1345 return -EILSEQ;
1347 op->optinsn.insn = get_optinsn_slot();
1348 if (!op->optinsn.insn)
1349 return -ENOMEM;
1352 * Verify if the address gap is in 2GB range, because this uses
1353 * a relative jump.
1355 rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1356 if (abs(rel) > 0x7fffffff)
1357 return -ERANGE;
1359 buf = (u8 *)op->optinsn.insn;
1361 /* Copy instructions into the out-of-line buffer */
1362 ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1363 if (ret < 0) {
1364 __arch_remove_optimized_kprobe(op, 0);
1365 return ret;
1367 op->optinsn.size = ret;
1369 /* Copy arch-dep-instance from template */
1370 memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1372 /* Set probe information */
1373 synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1375 /* Set probe function call */
1376 synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1378 /* Set returning jmp instruction at the tail of out-of-line buffer */
1379 synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1380 (u8 *)op->kp.addr + op->optinsn.size);
1382 flush_icache_range((unsigned long) buf,
1383 (unsigned long) buf + TMPL_END_IDX +
1384 op->optinsn.size + RELATIVEJUMP_SIZE);
1385 return 0;
1388 /* Replace a breakpoint (int3) with a relative jump. */
1389 int __kprobes arch_optimize_kprobe(struct optimized_kprobe *op)
1391 unsigned char jmp_code[RELATIVEJUMP_SIZE];
1392 s32 rel = (s32)((long)op->optinsn.insn -
1393 ((long)op->kp.addr + RELATIVEJUMP_SIZE));
1395 /* Backup instructions which will be replaced by jump address */
1396 memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1397 RELATIVE_ADDR_SIZE);
1399 jmp_code[0] = RELATIVEJUMP_OPCODE;
1400 *(s32 *)(&jmp_code[1]) = rel;
1403 * text_poke_smp doesn't support NMI/MCE code modifying.
1404 * However, since kprobes itself also doesn't support NMI/MCE
1405 * code probing, it's not a problem.
1407 text_poke_smp(op->kp.addr, jmp_code, RELATIVEJUMP_SIZE);
1408 return 0;
1411 /* Replace a relative jump with a breakpoint (int3). */
1412 void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1414 u8 buf[RELATIVEJUMP_SIZE];
1416 /* Set int3 to first byte for kprobes */
1417 buf[0] = BREAKPOINT_INSTRUCTION;
1418 memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1419 text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1422 static int __kprobes setup_detour_execution(struct kprobe *p,
1423 struct pt_regs *regs,
1424 int reenter)
1426 struct optimized_kprobe *op;
1428 if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1429 /* This kprobe is really able to run optimized path. */
1430 op = container_of(p, struct optimized_kprobe, kp);
1431 /* Detour through copied instructions */
1432 regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1433 if (!reenter)
1434 reset_current_kprobe();
1435 preempt_enable_no_resched();
1436 return 1;
1438 return 0;
1440 #endif
1442 int __init arch_init_kprobes(void)
1444 return 0;
1447 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1449 return 0;