perf tools: Fix find tids routine by excluding "." and ".."
[cris-mirror.git] / block / blk-core.c
blob3bc5579d6f543fa57783e09268707178de26c4b7
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
76 part_stat_unlock();
79 void blk_queue_congestion_threshold(struct request_queue *q)
81 int nr;
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
132 EXPORT_SYMBOL(blk_rq_init);
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
137 struct request_queue *q = rq->q;
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
165 * Okay, this is the barrier request in progress, just
166 * record the error;
168 if (error && !q->orderr)
169 q->orderr = error;
173 void blk_dump_rq_flags(struct request *rq, char *msg)
175 int bit;
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
187 if (blk_pc_request(rq)) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
194 EXPORT_SYMBOL(blk_dump_rq_flags);
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
204 void blk_plug_device(struct request_queue *q)
206 WARN_ON(!irqs_disabled());
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
212 if (blk_queue_stopped(q))
213 return;
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
217 trace_block_plug(q);
220 EXPORT_SYMBOL(blk_plug_device);
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
230 void blk_plug_device_unlocked(struct request_queue *q)
232 unsigned long flags;
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
244 int blk_remove_plug(struct request_queue *q)
246 WARN_ON(!irqs_disabled());
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
249 return 0;
251 del_timer(&q->unplug_timer);
252 return 1;
254 EXPORT_SYMBOL(blk_remove_plug);
257 * remove the plug and let it rip..
259 void __generic_unplug_device(struct request_queue *q)
261 if (unlikely(blk_queue_stopped(q)))
262 return;
263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
264 return;
266 q->request_fn(q);
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
280 void generic_unplug_device(struct request_queue *q)
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
288 EXPORT_SYMBOL(generic_unplug_device);
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
293 struct request_queue *q = bdi->unplug_io_data;
295 blk_unplug(q);
298 void blk_unplug_work(struct work_struct *work)
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
303 trace_block_unplug_io(q);
304 q->unplug_fn(q);
307 void blk_unplug_timeout(unsigned long data)
309 struct request_queue *q = (struct request_queue *)data;
311 trace_block_unplug_timer(q);
312 kblockd_schedule_work(q, &q->unplug_work);
315 void blk_unplug(struct request_queue *q)
318 * devices don't necessarily have an ->unplug_fn defined
320 if (q->unplug_fn) {
321 trace_block_unplug_io(q);
322 q->unplug_fn(q);
325 EXPORT_SYMBOL(blk_unplug);
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 void blk_start_queue(struct request_queue *q)
338 WARN_ON(!irqs_disabled());
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 __blk_run_queue(q);
343 EXPORT_SYMBOL(blk_start_queue);
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
359 void blk_stop_queue(struct request_queue *q)
361 blk_remove_plug(q);
362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
364 EXPORT_SYMBOL(blk_stop_queue);
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
380 void blk_sync_queue(struct request_queue *q)
382 del_timer_sync(&q->unplug_timer);
383 del_timer_sync(&q->timeout);
384 cancel_work_sync(&q->unplug_work);
386 EXPORT_SYMBOL(blk_sync_queue);
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
397 void __blk_run_queue(struct request_queue *q)
399 blk_remove_plug(q);
401 if (unlikely(blk_queue_stopped(q)))
402 return;
404 if (elv_queue_empty(q))
405 return;
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
419 EXPORT_SYMBOL(__blk_run_queue);
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
429 void blk_run_queue(struct request_queue *q)
431 unsigned long flags;
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
435 spin_unlock_irqrestore(q->queue_lock, flags);
437 EXPORT_SYMBOL(blk_run_queue);
439 void blk_put_queue(struct request_queue *q)
441 kobject_put(&q->kobj);
444 void blk_cleanup_queue(struct request_queue *q)
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
452 blk_sync_queue(q);
454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 mutex_lock(&q->sysfs_lock);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 mutex_unlock(&q->sysfs_lock);
459 if (q->elevator)
460 elevator_exit(q->elevator);
462 blk_put_queue(q);
464 EXPORT_SYMBOL(blk_cleanup_queue);
466 static int blk_init_free_list(struct request_queue *q)
468 struct request_list *rl = &q->rq;
470 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
471 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
472 rl->elvpriv = 0;
473 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
474 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
476 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
477 mempool_free_slab, request_cachep, q->node);
479 if (!rl->rq_pool)
480 return -ENOMEM;
482 return 0;
485 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
487 return blk_alloc_queue_node(gfp_mask, -1);
489 EXPORT_SYMBOL(blk_alloc_queue);
491 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
493 struct request_queue *q;
494 int err;
496 q = kmem_cache_alloc_node(blk_requestq_cachep,
497 gfp_mask | __GFP_ZERO, node_id);
498 if (!q)
499 return NULL;
501 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
502 q->backing_dev_info.unplug_io_data = q;
503 q->backing_dev_info.ra_pages =
504 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
505 q->backing_dev_info.state = 0;
506 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
507 q->backing_dev_info.name = "block";
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
511 kmem_cache_free(blk_requestq_cachep, q);
512 return NULL;
515 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
516 laptop_mode_timer_fn, (unsigned long) q);
517 init_timer(&q->unplug_timer);
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list);
520 INIT_WORK(&q->unplug_work, blk_unplug_work);
522 kobject_init(&q->kobj, &blk_queue_ktype);
524 mutex_init(&q->sysfs_lock);
525 spin_lock_init(&q->__queue_lock);
527 return q;
529 EXPORT_SYMBOL(blk_alloc_queue_node);
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
537 * Description:
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
556 * Function returns a pointer to the initialized request queue, or %NULL if
557 * it didn't succeed.
559 * Note:
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
566 return blk_init_queue_node(rfn, lock, -1);
568 EXPORT_SYMBOL(blk_init_queue);
570 struct request_queue *
571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
575 return blk_init_allocated_queue_node(q, rfn, lock, node_id);
577 EXPORT_SYMBOL(blk_init_queue_node);
579 struct request_queue *
580 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
581 spinlock_t *lock)
583 return blk_init_allocated_queue_node(q, rfn, lock, -1);
585 EXPORT_SYMBOL(blk_init_allocated_queue);
587 struct request_queue *
588 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
589 spinlock_t *lock, int node_id)
591 if (!q)
592 return NULL;
594 q->node = node_id;
595 if (blk_init_free_list(q)) {
596 kmem_cache_free(blk_requestq_cachep, q);
597 return NULL;
600 q->request_fn = rfn;
601 q->prep_rq_fn = NULL;
602 q->unplug_fn = generic_unplug_device;
603 q->queue_flags = QUEUE_FLAG_DEFAULT;
604 q->queue_lock = lock;
607 * This also sets hw/phys segments, boundary and size
609 blk_queue_make_request(q, __make_request);
611 q->sg_reserved_size = INT_MAX;
614 * all done
616 if (!elevator_init(q, NULL)) {
617 blk_queue_congestion_threshold(q);
618 return q;
621 blk_put_queue(q);
622 return NULL;
624 EXPORT_SYMBOL(blk_init_allocated_queue_node);
626 int blk_get_queue(struct request_queue *q)
628 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
629 kobject_get(&q->kobj);
630 return 0;
633 return 1;
636 static inline void blk_free_request(struct request_queue *q, struct request *rq)
638 if (rq->cmd_flags & REQ_ELVPRIV)
639 elv_put_request(q, rq);
640 mempool_free(rq, q->rq.rq_pool);
643 static struct request *
644 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
646 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
648 if (!rq)
649 return NULL;
651 blk_rq_init(q, rq);
653 rq->cmd_flags = flags | REQ_ALLOCED;
655 if (priv) {
656 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
657 mempool_free(rq, q->rq.rq_pool);
658 return NULL;
660 rq->cmd_flags |= REQ_ELVPRIV;
663 return rq;
667 * ioc_batching returns true if the ioc is a valid batching request and
668 * should be given priority access to a request.
670 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
672 if (!ioc)
673 return 0;
676 * Make sure the process is able to allocate at least 1 request
677 * even if the batch times out, otherwise we could theoretically
678 * lose wakeups.
680 return ioc->nr_batch_requests == q->nr_batching ||
681 (ioc->nr_batch_requests > 0
682 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
686 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
687 * will cause the process to be a "batcher" on all queues in the system. This
688 * is the behaviour we want though - once it gets a wakeup it should be given
689 * a nice run.
691 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
693 if (!ioc || ioc_batching(q, ioc))
694 return;
696 ioc->nr_batch_requests = q->nr_batching;
697 ioc->last_waited = jiffies;
700 static void __freed_request(struct request_queue *q, int sync)
702 struct request_list *rl = &q->rq;
704 if (rl->count[sync] < queue_congestion_off_threshold(q))
705 blk_clear_queue_congested(q, sync);
707 if (rl->count[sync] + 1 <= q->nr_requests) {
708 if (waitqueue_active(&rl->wait[sync]))
709 wake_up(&rl->wait[sync]);
711 blk_clear_queue_full(q, sync);
716 * A request has just been released. Account for it, update the full and
717 * congestion status, wake up any waiters. Called under q->queue_lock.
719 static void freed_request(struct request_queue *q, int sync, int priv)
721 struct request_list *rl = &q->rq;
723 rl->count[sync]--;
724 if (priv)
725 rl->elvpriv--;
727 __freed_request(q, sync);
729 if (unlikely(rl->starved[sync ^ 1]))
730 __freed_request(q, sync ^ 1);
734 * Get a free request, queue_lock must be held.
735 * Returns NULL on failure, with queue_lock held.
736 * Returns !NULL on success, with queue_lock *not held*.
738 static struct request *get_request(struct request_queue *q, int rw_flags,
739 struct bio *bio, gfp_t gfp_mask)
741 struct request *rq = NULL;
742 struct request_list *rl = &q->rq;
743 struct io_context *ioc = NULL;
744 const bool is_sync = rw_is_sync(rw_flags) != 0;
745 int may_queue, priv;
747 may_queue = elv_may_queue(q, rw_flags);
748 if (may_queue == ELV_MQUEUE_NO)
749 goto rq_starved;
751 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
752 if (rl->count[is_sync]+1 >= q->nr_requests) {
753 ioc = current_io_context(GFP_ATOMIC, q->node);
755 * The queue will fill after this allocation, so set
756 * it as full, and mark this process as "batching".
757 * This process will be allowed to complete a batch of
758 * requests, others will be blocked.
760 if (!blk_queue_full(q, is_sync)) {
761 ioc_set_batching(q, ioc);
762 blk_set_queue_full(q, is_sync);
763 } else {
764 if (may_queue != ELV_MQUEUE_MUST
765 && !ioc_batching(q, ioc)) {
767 * The queue is full and the allocating
768 * process is not a "batcher", and not
769 * exempted by the IO scheduler
771 goto out;
775 blk_set_queue_congested(q, is_sync);
779 * Only allow batching queuers to allocate up to 50% over the defined
780 * limit of requests, otherwise we could have thousands of requests
781 * allocated with any setting of ->nr_requests
783 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
784 goto out;
786 rl->count[is_sync]++;
787 rl->starved[is_sync] = 0;
789 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
790 if (priv)
791 rl->elvpriv++;
793 if (blk_queue_io_stat(q))
794 rw_flags |= REQ_IO_STAT;
795 spin_unlock_irq(q->queue_lock);
797 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
798 if (unlikely(!rq)) {
800 * Allocation failed presumably due to memory. Undo anything
801 * we might have messed up.
803 * Allocating task should really be put onto the front of the
804 * wait queue, but this is pretty rare.
806 spin_lock_irq(q->queue_lock);
807 freed_request(q, is_sync, priv);
810 * in the very unlikely event that allocation failed and no
811 * requests for this direction was pending, mark us starved
812 * so that freeing of a request in the other direction will
813 * notice us. another possible fix would be to split the
814 * rq mempool into READ and WRITE
816 rq_starved:
817 if (unlikely(rl->count[is_sync] == 0))
818 rl->starved[is_sync] = 1;
820 goto out;
824 * ioc may be NULL here, and ioc_batching will be false. That's
825 * OK, if the queue is under the request limit then requests need
826 * not count toward the nr_batch_requests limit. There will always
827 * be some limit enforced by BLK_BATCH_TIME.
829 if (ioc_batching(q, ioc))
830 ioc->nr_batch_requests--;
832 trace_block_getrq(q, bio, rw_flags & 1);
833 out:
834 return rq;
838 * No available requests for this queue, unplug the device and wait for some
839 * requests to become available.
841 * Called with q->queue_lock held, and returns with it unlocked.
843 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
844 struct bio *bio)
846 const bool is_sync = rw_is_sync(rw_flags) != 0;
847 struct request *rq;
849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
850 while (!rq) {
851 DEFINE_WAIT(wait);
852 struct io_context *ioc;
853 struct request_list *rl = &q->rq;
855 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
856 TASK_UNINTERRUPTIBLE);
858 trace_block_sleeprq(q, bio, rw_flags & 1);
860 __generic_unplug_device(q);
861 spin_unlock_irq(q->queue_lock);
862 io_schedule();
865 * After sleeping, we become a "batching" process and
866 * will be able to allocate at least one request, and
867 * up to a big batch of them for a small period time.
868 * See ioc_batching, ioc_set_batching
870 ioc = current_io_context(GFP_NOIO, q->node);
871 ioc_set_batching(q, ioc);
873 spin_lock_irq(q->queue_lock);
874 finish_wait(&rl->wait[is_sync], &wait);
876 rq = get_request(q, rw_flags, bio, GFP_NOIO);
879 return rq;
882 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
884 struct request *rq;
886 BUG_ON(rw != READ && rw != WRITE);
888 spin_lock_irq(q->queue_lock);
889 if (gfp_mask & __GFP_WAIT) {
890 rq = get_request_wait(q, rw, NULL);
891 } else {
892 rq = get_request(q, rw, NULL, gfp_mask);
893 if (!rq)
894 spin_unlock_irq(q->queue_lock);
896 /* q->queue_lock is unlocked at this point */
898 return rq;
900 EXPORT_SYMBOL(blk_get_request);
903 * blk_make_request - given a bio, allocate a corresponding struct request.
904 * @q: target request queue
905 * @bio: The bio describing the memory mappings that will be submitted for IO.
906 * It may be a chained-bio properly constructed by block/bio layer.
907 * @gfp_mask: gfp flags to be used for memory allocation
909 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
910 * type commands. Where the struct request needs to be farther initialized by
911 * the caller. It is passed a &struct bio, which describes the memory info of
912 * the I/O transfer.
914 * The caller of blk_make_request must make sure that bi_io_vec
915 * are set to describe the memory buffers. That bio_data_dir() will return
916 * the needed direction of the request. (And all bio's in the passed bio-chain
917 * are properly set accordingly)
919 * If called under none-sleepable conditions, mapped bio buffers must not
920 * need bouncing, by calling the appropriate masked or flagged allocator,
921 * suitable for the target device. Otherwise the call to blk_queue_bounce will
922 * BUG.
924 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
925 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
926 * anything but the first bio in the chain. Otherwise you risk waiting for IO
927 * completion of a bio that hasn't been submitted yet, thus resulting in a
928 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
929 * of bio_alloc(), as that avoids the mempool deadlock.
930 * If possible a big IO should be split into smaller parts when allocation
931 * fails. Partial allocation should not be an error, or you risk a live-lock.
933 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
934 gfp_t gfp_mask)
936 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
938 if (unlikely(!rq))
939 return ERR_PTR(-ENOMEM);
941 for_each_bio(bio) {
942 struct bio *bounce_bio = bio;
943 int ret;
945 blk_queue_bounce(q, &bounce_bio);
946 ret = blk_rq_append_bio(q, rq, bounce_bio);
947 if (unlikely(ret)) {
948 blk_put_request(rq);
949 return ERR_PTR(ret);
953 return rq;
955 EXPORT_SYMBOL(blk_make_request);
958 * blk_requeue_request - put a request back on queue
959 * @q: request queue where request should be inserted
960 * @rq: request to be inserted
962 * Description:
963 * Drivers often keep queueing requests until the hardware cannot accept
964 * more, when that condition happens we need to put the request back
965 * on the queue. Must be called with queue lock held.
967 void blk_requeue_request(struct request_queue *q, struct request *rq)
969 blk_delete_timer(rq);
970 blk_clear_rq_complete(rq);
971 trace_block_rq_requeue(q, rq);
973 if (blk_rq_tagged(rq))
974 blk_queue_end_tag(q, rq);
976 BUG_ON(blk_queued_rq(rq));
978 elv_requeue_request(q, rq);
980 EXPORT_SYMBOL(blk_requeue_request);
983 * blk_insert_request - insert a special request into a request queue
984 * @q: request queue where request should be inserted
985 * @rq: request to be inserted
986 * @at_head: insert request at head or tail of queue
987 * @data: private data
989 * Description:
990 * Many block devices need to execute commands asynchronously, so they don't
991 * block the whole kernel from preemption during request execution. This is
992 * accomplished normally by inserting aritficial requests tagged as
993 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
994 * be scheduled for actual execution by the request queue.
996 * We have the option of inserting the head or the tail of the queue.
997 * Typically we use the tail for new ioctls and so forth. We use the head
998 * of the queue for things like a QUEUE_FULL message from a device, or a
999 * host that is unable to accept a particular command.
1001 void blk_insert_request(struct request_queue *q, struct request *rq,
1002 int at_head, void *data)
1004 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1005 unsigned long flags;
1008 * tell I/O scheduler that this isn't a regular read/write (ie it
1009 * must not attempt merges on this) and that it acts as a soft
1010 * barrier
1012 rq->cmd_type = REQ_TYPE_SPECIAL;
1014 rq->special = data;
1016 spin_lock_irqsave(q->queue_lock, flags);
1019 * If command is tagged, release the tag
1021 if (blk_rq_tagged(rq))
1022 blk_queue_end_tag(q, rq);
1024 drive_stat_acct(rq, 1);
1025 __elv_add_request(q, rq, where, 0);
1026 __blk_run_queue(q);
1027 spin_unlock_irqrestore(q->queue_lock, flags);
1029 EXPORT_SYMBOL(blk_insert_request);
1032 * add-request adds a request to the linked list.
1033 * queue lock is held and interrupts disabled, as we muck with the
1034 * request queue list.
1036 static inline void add_request(struct request_queue *q, struct request *req)
1038 drive_stat_acct(req, 1);
1041 * elevator indicated where it wants this request to be
1042 * inserted at elevator_merge time
1044 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1047 static void part_round_stats_single(int cpu, struct hd_struct *part,
1048 unsigned long now)
1050 if (now == part->stamp)
1051 return;
1053 if (part_in_flight(part)) {
1054 __part_stat_add(cpu, part, time_in_queue,
1055 part_in_flight(part) * (now - part->stamp));
1056 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1058 part->stamp = now;
1062 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1063 * @cpu: cpu number for stats access
1064 * @part: target partition
1066 * The average IO queue length and utilisation statistics are maintained
1067 * by observing the current state of the queue length and the amount of
1068 * time it has been in this state for.
1070 * Normally, that accounting is done on IO completion, but that can result
1071 * in more than a second's worth of IO being accounted for within any one
1072 * second, leading to >100% utilisation. To deal with that, we call this
1073 * function to do a round-off before returning the results when reading
1074 * /proc/diskstats. This accounts immediately for all queue usage up to
1075 * the current jiffies and restarts the counters again.
1077 void part_round_stats(int cpu, struct hd_struct *part)
1079 unsigned long now = jiffies;
1081 if (part->partno)
1082 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1083 part_round_stats_single(cpu, part, now);
1085 EXPORT_SYMBOL_GPL(part_round_stats);
1088 * queue lock must be held
1090 void __blk_put_request(struct request_queue *q, struct request *req)
1092 if (unlikely(!q))
1093 return;
1094 if (unlikely(--req->ref_count))
1095 return;
1097 elv_completed_request(q, req);
1099 /* this is a bio leak */
1100 WARN_ON(req->bio != NULL);
1103 * Request may not have originated from ll_rw_blk. if not,
1104 * it didn't come out of our reserved rq pools
1106 if (req->cmd_flags & REQ_ALLOCED) {
1107 int is_sync = rq_is_sync(req) != 0;
1108 int priv = req->cmd_flags & REQ_ELVPRIV;
1110 BUG_ON(!list_empty(&req->queuelist));
1111 BUG_ON(!hlist_unhashed(&req->hash));
1113 blk_free_request(q, req);
1114 freed_request(q, is_sync, priv);
1117 EXPORT_SYMBOL_GPL(__blk_put_request);
1119 void blk_put_request(struct request *req)
1121 unsigned long flags;
1122 struct request_queue *q = req->q;
1124 spin_lock_irqsave(q->queue_lock, flags);
1125 __blk_put_request(q, req);
1126 spin_unlock_irqrestore(q->queue_lock, flags);
1128 EXPORT_SYMBOL(blk_put_request);
1130 void init_request_from_bio(struct request *req, struct bio *bio)
1132 req->cpu = bio->bi_comp_cpu;
1133 req->cmd_type = REQ_TYPE_FS;
1136 * Inherit FAILFAST from bio (for read-ahead, and explicit
1137 * FAILFAST). FAILFAST flags are identical for req and bio.
1139 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1140 req->cmd_flags |= REQ_FAILFAST_MASK;
1141 else
1142 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1144 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1145 req->cmd_flags |= REQ_DISCARD;
1146 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1147 req->cmd_flags |= REQ_SOFTBARRIER;
1148 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1149 req->cmd_flags |= REQ_HARDBARRIER;
1151 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1152 req->cmd_flags |= REQ_RW_SYNC;
1153 if (bio_rw_flagged(bio, BIO_RW_META))
1154 req->cmd_flags |= REQ_RW_META;
1155 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1156 req->cmd_flags |= REQ_NOIDLE;
1158 req->errors = 0;
1159 req->__sector = bio->bi_sector;
1160 req->ioprio = bio_prio(bio);
1161 blk_rq_bio_prep(req->q, req, bio);
1165 * Only disabling plugging for non-rotational devices if it does tagging
1166 * as well, otherwise we do need the proper merging
1168 static inline bool queue_should_plug(struct request_queue *q)
1170 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1173 static int __make_request(struct request_queue *q, struct bio *bio)
1175 struct request *req;
1176 int el_ret;
1177 unsigned int bytes = bio->bi_size;
1178 const unsigned short prio = bio_prio(bio);
1179 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1180 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1181 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1182 int rw_flags;
1184 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
1185 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1186 bio_endio(bio, -EOPNOTSUPP);
1187 return 0;
1190 * low level driver can indicate that it wants pages above a
1191 * certain limit bounced to low memory (ie for highmem, or even
1192 * ISA dma in theory)
1194 blk_queue_bounce(q, &bio);
1196 spin_lock_irq(q->queue_lock);
1198 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1199 goto get_rq;
1201 el_ret = elv_merge(q, &req, bio);
1202 switch (el_ret) {
1203 case ELEVATOR_BACK_MERGE:
1204 BUG_ON(!rq_mergeable(req));
1206 if (!ll_back_merge_fn(q, req, bio))
1207 break;
1209 trace_block_bio_backmerge(q, bio);
1211 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1212 blk_rq_set_mixed_merge(req);
1214 req->biotail->bi_next = bio;
1215 req->biotail = bio;
1216 req->__data_len += bytes;
1217 req->ioprio = ioprio_best(req->ioprio, prio);
1218 if (!blk_rq_cpu_valid(req))
1219 req->cpu = bio->bi_comp_cpu;
1220 drive_stat_acct(req, 0);
1221 elv_bio_merged(q, req, bio);
1222 if (!attempt_back_merge(q, req))
1223 elv_merged_request(q, req, el_ret);
1224 goto out;
1226 case ELEVATOR_FRONT_MERGE:
1227 BUG_ON(!rq_mergeable(req));
1229 if (!ll_front_merge_fn(q, req, bio))
1230 break;
1232 trace_block_bio_frontmerge(q, bio);
1234 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1235 blk_rq_set_mixed_merge(req);
1236 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1237 req->cmd_flags |= ff;
1240 bio->bi_next = req->bio;
1241 req->bio = bio;
1244 * may not be valid. if the low level driver said
1245 * it didn't need a bounce buffer then it better
1246 * not touch req->buffer either...
1248 req->buffer = bio_data(bio);
1249 req->__sector = bio->bi_sector;
1250 req->__data_len += bytes;
1251 req->ioprio = ioprio_best(req->ioprio, prio);
1252 if (!blk_rq_cpu_valid(req))
1253 req->cpu = bio->bi_comp_cpu;
1254 drive_stat_acct(req, 0);
1255 elv_bio_merged(q, req, bio);
1256 if (!attempt_front_merge(q, req))
1257 elv_merged_request(q, req, el_ret);
1258 goto out;
1260 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1261 default:
1265 get_rq:
1267 * This sync check and mask will be re-done in init_request_from_bio(),
1268 * but we need to set it earlier to expose the sync flag to the
1269 * rq allocator and io schedulers.
1271 rw_flags = bio_data_dir(bio);
1272 if (sync)
1273 rw_flags |= REQ_RW_SYNC;
1276 * Grab a free request. This is might sleep but can not fail.
1277 * Returns with the queue unlocked.
1279 req = get_request_wait(q, rw_flags, bio);
1282 * After dropping the lock and possibly sleeping here, our request
1283 * may now be mergeable after it had proven unmergeable (above).
1284 * We don't worry about that case for efficiency. It won't happen
1285 * often, and the elevators are able to handle it.
1287 init_request_from_bio(req, bio);
1289 spin_lock_irq(q->queue_lock);
1290 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1291 bio_flagged(bio, BIO_CPU_AFFINE))
1292 req->cpu = blk_cpu_to_group(smp_processor_id());
1293 if (queue_should_plug(q) && elv_queue_empty(q))
1294 blk_plug_device(q);
1295 add_request(q, req);
1296 out:
1297 if (unplug || !queue_should_plug(q))
1298 __generic_unplug_device(q);
1299 spin_unlock_irq(q->queue_lock);
1300 return 0;
1304 * If bio->bi_dev is a partition, remap the location
1306 static inline void blk_partition_remap(struct bio *bio)
1308 struct block_device *bdev = bio->bi_bdev;
1310 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1311 struct hd_struct *p = bdev->bd_part;
1313 bio->bi_sector += p->start_sect;
1314 bio->bi_bdev = bdev->bd_contains;
1316 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1317 bdev->bd_dev,
1318 bio->bi_sector - p->start_sect);
1322 static void handle_bad_sector(struct bio *bio)
1324 char b[BDEVNAME_SIZE];
1326 printk(KERN_INFO "attempt to access beyond end of device\n");
1327 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1328 bdevname(bio->bi_bdev, b),
1329 bio->bi_rw,
1330 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1331 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1333 set_bit(BIO_EOF, &bio->bi_flags);
1336 #ifdef CONFIG_FAIL_MAKE_REQUEST
1338 static DECLARE_FAULT_ATTR(fail_make_request);
1340 static int __init setup_fail_make_request(char *str)
1342 return setup_fault_attr(&fail_make_request, str);
1344 __setup("fail_make_request=", setup_fail_make_request);
1346 static int should_fail_request(struct bio *bio)
1348 struct hd_struct *part = bio->bi_bdev->bd_part;
1350 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1351 return should_fail(&fail_make_request, bio->bi_size);
1353 return 0;
1356 static int __init fail_make_request_debugfs(void)
1358 return init_fault_attr_dentries(&fail_make_request,
1359 "fail_make_request");
1362 late_initcall(fail_make_request_debugfs);
1364 #else /* CONFIG_FAIL_MAKE_REQUEST */
1366 static inline int should_fail_request(struct bio *bio)
1368 return 0;
1371 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1374 * Check whether this bio extends beyond the end of the device.
1376 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1378 sector_t maxsector;
1380 if (!nr_sectors)
1381 return 0;
1383 /* Test device or partition size, when known. */
1384 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1385 if (maxsector) {
1386 sector_t sector = bio->bi_sector;
1388 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1390 * This may well happen - the kernel calls bread()
1391 * without checking the size of the device, e.g., when
1392 * mounting a device.
1394 handle_bad_sector(bio);
1395 return 1;
1399 return 0;
1403 * generic_make_request - hand a buffer to its device driver for I/O
1404 * @bio: The bio describing the location in memory and on the device.
1406 * generic_make_request() is used to make I/O requests of block
1407 * devices. It is passed a &struct bio, which describes the I/O that needs
1408 * to be done.
1410 * generic_make_request() does not return any status. The
1411 * success/failure status of the request, along with notification of
1412 * completion, is delivered asynchronously through the bio->bi_end_io
1413 * function described (one day) else where.
1415 * The caller of generic_make_request must make sure that bi_io_vec
1416 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1417 * set to describe the device address, and the
1418 * bi_end_io and optionally bi_private are set to describe how
1419 * completion notification should be signaled.
1421 * generic_make_request and the drivers it calls may use bi_next if this
1422 * bio happens to be merged with someone else, and may change bi_dev and
1423 * bi_sector for remaps as it sees fit. So the values of these fields
1424 * should NOT be depended on after the call to generic_make_request.
1426 static inline void __generic_make_request(struct bio *bio)
1428 struct request_queue *q;
1429 sector_t old_sector;
1430 int ret, nr_sectors = bio_sectors(bio);
1431 dev_t old_dev;
1432 int err = -EIO;
1434 might_sleep();
1436 if (bio_check_eod(bio, nr_sectors))
1437 goto end_io;
1440 * Resolve the mapping until finished. (drivers are
1441 * still free to implement/resolve their own stacking
1442 * by explicitly returning 0)
1444 * NOTE: we don't repeat the blk_size check for each new device.
1445 * Stacking drivers are expected to know what they are doing.
1447 old_sector = -1;
1448 old_dev = 0;
1449 do {
1450 char b[BDEVNAME_SIZE];
1452 q = bdev_get_queue(bio->bi_bdev);
1453 if (unlikely(!q)) {
1454 printk(KERN_ERR
1455 "generic_make_request: Trying to access "
1456 "nonexistent block-device %s (%Lu)\n",
1457 bdevname(bio->bi_bdev, b),
1458 (long long) bio->bi_sector);
1459 goto end_io;
1462 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1463 nr_sectors > queue_max_hw_sectors(q))) {
1464 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1465 bdevname(bio->bi_bdev, b),
1466 bio_sectors(bio),
1467 queue_max_hw_sectors(q));
1468 goto end_io;
1471 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1472 goto end_io;
1474 if (should_fail_request(bio))
1475 goto end_io;
1478 * If this device has partitions, remap block n
1479 * of partition p to block n+start(p) of the disk.
1481 blk_partition_remap(bio);
1483 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1484 goto end_io;
1486 if (old_sector != -1)
1487 trace_block_remap(q, bio, old_dev, old_sector);
1489 old_sector = bio->bi_sector;
1490 old_dev = bio->bi_bdev->bd_dev;
1492 if (bio_check_eod(bio, nr_sectors))
1493 goto end_io;
1495 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1496 !blk_queue_discard(q)) {
1497 err = -EOPNOTSUPP;
1498 goto end_io;
1501 trace_block_bio_queue(q, bio);
1503 ret = q->make_request_fn(q, bio);
1504 } while (ret);
1506 return;
1508 end_io:
1509 bio_endio(bio, err);
1513 * We only want one ->make_request_fn to be active at a time,
1514 * else stack usage with stacked devices could be a problem.
1515 * So use current->bio_list to keep a list of requests
1516 * submited by a make_request_fn function.
1517 * current->bio_list is also used as a flag to say if
1518 * generic_make_request is currently active in this task or not.
1519 * If it is NULL, then no make_request is active. If it is non-NULL,
1520 * then a make_request is active, and new requests should be added
1521 * at the tail
1523 void generic_make_request(struct bio *bio)
1525 struct bio_list bio_list_on_stack;
1527 if (current->bio_list) {
1528 /* make_request is active */
1529 bio_list_add(current->bio_list, bio);
1530 return;
1532 /* following loop may be a bit non-obvious, and so deserves some
1533 * explanation.
1534 * Before entering the loop, bio->bi_next is NULL (as all callers
1535 * ensure that) so we have a list with a single bio.
1536 * We pretend that we have just taken it off a longer list, so
1537 * we assign bio_list to a pointer to the bio_list_on_stack,
1538 * thus initialising the bio_list of new bios to be
1539 * added. __generic_make_request may indeed add some more bios
1540 * through a recursive call to generic_make_request. If it
1541 * did, we find a non-NULL value in bio_list and re-enter the loop
1542 * from the top. In this case we really did just take the bio
1543 * of the top of the list (no pretending) and so remove it from
1544 * bio_list, and call into __generic_make_request again.
1546 * The loop was structured like this to make only one call to
1547 * __generic_make_request (which is important as it is large and
1548 * inlined) and to keep the structure simple.
1550 BUG_ON(bio->bi_next);
1551 bio_list_init(&bio_list_on_stack);
1552 current->bio_list = &bio_list_on_stack;
1553 do {
1554 __generic_make_request(bio);
1555 bio = bio_list_pop(current->bio_list);
1556 } while (bio);
1557 current->bio_list = NULL; /* deactivate */
1559 EXPORT_SYMBOL(generic_make_request);
1562 * submit_bio - submit a bio to the block device layer for I/O
1563 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1564 * @bio: The &struct bio which describes the I/O
1566 * submit_bio() is very similar in purpose to generic_make_request(), and
1567 * uses that function to do most of the work. Both are fairly rough
1568 * interfaces; @bio must be presetup and ready for I/O.
1571 void submit_bio(int rw, struct bio *bio)
1573 int count = bio_sectors(bio);
1575 bio->bi_rw |= rw;
1578 * If it's a regular read/write or a barrier with data attached,
1579 * go through the normal accounting stuff before submission.
1581 if (bio_has_data(bio)) {
1582 if (rw & WRITE) {
1583 count_vm_events(PGPGOUT, count);
1584 } else {
1585 task_io_account_read(bio->bi_size);
1586 count_vm_events(PGPGIN, count);
1589 if (unlikely(block_dump)) {
1590 char b[BDEVNAME_SIZE];
1591 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1592 current->comm, task_pid_nr(current),
1593 (rw & WRITE) ? "WRITE" : "READ",
1594 (unsigned long long)bio->bi_sector,
1595 bdevname(bio->bi_bdev, b));
1599 generic_make_request(bio);
1601 EXPORT_SYMBOL(submit_bio);
1604 * blk_rq_check_limits - Helper function to check a request for the queue limit
1605 * @q: the queue
1606 * @rq: the request being checked
1608 * Description:
1609 * @rq may have been made based on weaker limitations of upper-level queues
1610 * in request stacking drivers, and it may violate the limitation of @q.
1611 * Since the block layer and the underlying device driver trust @rq
1612 * after it is inserted to @q, it should be checked against @q before
1613 * the insertion using this generic function.
1615 * This function should also be useful for request stacking drivers
1616 * in some cases below, so export this fuction.
1617 * Request stacking drivers like request-based dm may change the queue
1618 * limits while requests are in the queue (e.g. dm's table swapping).
1619 * Such request stacking drivers should check those requests agaist
1620 * the new queue limits again when they dispatch those requests,
1621 * although such checkings are also done against the old queue limits
1622 * when submitting requests.
1624 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1626 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1627 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1628 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1629 return -EIO;
1633 * queue's settings related to segment counting like q->bounce_pfn
1634 * may differ from that of other stacking queues.
1635 * Recalculate it to check the request correctly on this queue's
1636 * limitation.
1638 blk_recalc_rq_segments(rq);
1639 if (rq->nr_phys_segments > queue_max_segments(q)) {
1640 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1641 return -EIO;
1644 return 0;
1646 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1649 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1650 * @q: the queue to submit the request
1651 * @rq: the request being queued
1653 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1655 unsigned long flags;
1657 if (blk_rq_check_limits(q, rq))
1658 return -EIO;
1660 #ifdef CONFIG_FAIL_MAKE_REQUEST
1661 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1662 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1663 return -EIO;
1664 #endif
1666 spin_lock_irqsave(q->queue_lock, flags);
1669 * Submitting request must be dequeued before calling this function
1670 * because it will be linked to another request_queue
1672 BUG_ON(blk_queued_rq(rq));
1674 drive_stat_acct(rq, 1);
1675 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1677 spin_unlock_irqrestore(q->queue_lock, flags);
1679 return 0;
1681 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1684 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1685 * @rq: request to examine
1687 * Description:
1688 * A request could be merge of IOs which require different failure
1689 * handling. This function determines the number of bytes which
1690 * can be failed from the beginning of the request without
1691 * crossing into area which need to be retried further.
1693 * Return:
1694 * The number of bytes to fail.
1696 * Context:
1697 * queue_lock must be held.
1699 unsigned int blk_rq_err_bytes(const struct request *rq)
1701 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1702 unsigned int bytes = 0;
1703 struct bio *bio;
1705 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1706 return blk_rq_bytes(rq);
1709 * Currently the only 'mixing' which can happen is between
1710 * different fastfail types. We can safely fail portions
1711 * which have all the failfast bits that the first one has -
1712 * the ones which are at least as eager to fail as the first
1713 * one.
1715 for (bio = rq->bio; bio; bio = bio->bi_next) {
1716 if ((bio->bi_rw & ff) != ff)
1717 break;
1718 bytes += bio->bi_size;
1721 /* this could lead to infinite loop */
1722 BUG_ON(blk_rq_bytes(rq) && !bytes);
1723 return bytes;
1725 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1727 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1729 if (blk_do_io_stat(req)) {
1730 const int rw = rq_data_dir(req);
1731 struct hd_struct *part;
1732 int cpu;
1734 cpu = part_stat_lock();
1735 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1736 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1737 part_stat_unlock();
1741 static void blk_account_io_done(struct request *req)
1744 * Account IO completion. bar_rq isn't accounted as a normal
1745 * IO on queueing nor completion. Accounting the containing
1746 * request is enough.
1748 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1749 unsigned long duration = jiffies - req->start_time;
1750 const int rw = rq_data_dir(req);
1751 struct hd_struct *part;
1752 int cpu;
1754 cpu = part_stat_lock();
1755 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1757 part_stat_inc(cpu, part, ios[rw]);
1758 part_stat_add(cpu, part, ticks[rw], duration);
1759 part_round_stats(cpu, part);
1760 part_dec_in_flight(part, rw);
1762 part_stat_unlock();
1767 * blk_peek_request - peek at the top of a request queue
1768 * @q: request queue to peek at
1770 * Description:
1771 * Return the request at the top of @q. The returned request
1772 * should be started using blk_start_request() before LLD starts
1773 * processing it.
1775 * Return:
1776 * Pointer to the request at the top of @q if available. Null
1777 * otherwise.
1779 * Context:
1780 * queue_lock must be held.
1782 struct request *blk_peek_request(struct request_queue *q)
1784 struct request *rq;
1785 int ret;
1787 while ((rq = __elv_next_request(q)) != NULL) {
1788 if (!(rq->cmd_flags & REQ_STARTED)) {
1790 * This is the first time the device driver
1791 * sees this request (possibly after
1792 * requeueing). Notify IO scheduler.
1794 if (blk_sorted_rq(rq))
1795 elv_activate_rq(q, rq);
1798 * just mark as started even if we don't start
1799 * it, a request that has been delayed should
1800 * not be passed by new incoming requests
1802 rq->cmd_flags |= REQ_STARTED;
1803 trace_block_rq_issue(q, rq);
1806 if (!q->boundary_rq || q->boundary_rq == rq) {
1807 q->end_sector = rq_end_sector(rq);
1808 q->boundary_rq = NULL;
1811 if (rq->cmd_flags & REQ_DONTPREP)
1812 break;
1814 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1816 * make sure space for the drain appears we
1817 * know we can do this because max_hw_segments
1818 * has been adjusted to be one fewer than the
1819 * device can handle
1821 rq->nr_phys_segments++;
1824 if (!q->prep_rq_fn)
1825 break;
1827 ret = q->prep_rq_fn(q, rq);
1828 if (ret == BLKPREP_OK) {
1829 break;
1830 } else if (ret == BLKPREP_DEFER) {
1832 * the request may have been (partially) prepped.
1833 * we need to keep this request in the front to
1834 * avoid resource deadlock. REQ_STARTED will
1835 * prevent other fs requests from passing this one.
1837 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1838 !(rq->cmd_flags & REQ_DONTPREP)) {
1840 * remove the space for the drain we added
1841 * so that we don't add it again
1843 --rq->nr_phys_segments;
1846 rq = NULL;
1847 break;
1848 } else if (ret == BLKPREP_KILL) {
1849 rq->cmd_flags |= REQ_QUIET;
1851 * Mark this request as started so we don't trigger
1852 * any debug logic in the end I/O path.
1854 blk_start_request(rq);
1855 __blk_end_request_all(rq, -EIO);
1856 } else {
1857 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1858 break;
1862 return rq;
1864 EXPORT_SYMBOL(blk_peek_request);
1866 void blk_dequeue_request(struct request *rq)
1868 struct request_queue *q = rq->q;
1870 BUG_ON(list_empty(&rq->queuelist));
1871 BUG_ON(ELV_ON_HASH(rq));
1873 list_del_init(&rq->queuelist);
1876 * the time frame between a request being removed from the lists
1877 * and to it is freed is accounted as io that is in progress at
1878 * the driver side.
1880 if (blk_account_rq(rq)) {
1881 q->in_flight[rq_is_sync(rq)]++;
1882 set_io_start_time_ns(rq);
1887 * blk_start_request - start request processing on the driver
1888 * @req: request to dequeue
1890 * Description:
1891 * Dequeue @req and start timeout timer on it. This hands off the
1892 * request to the driver.
1894 * Block internal functions which don't want to start timer should
1895 * call blk_dequeue_request().
1897 * Context:
1898 * queue_lock must be held.
1900 void blk_start_request(struct request *req)
1902 blk_dequeue_request(req);
1905 * We are now handing the request to the hardware, initialize
1906 * resid_len to full count and add the timeout handler.
1908 req->resid_len = blk_rq_bytes(req);
1909 if (unlikely(blk_bidi_rq(req)))
1910 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1912 blk_add_timer(req);
1914 EXPORT_SYMBOL(blk_start_request);
1917 * blk_fetch_request - fetch a request from a request queue
1918 * @q: request queue to fetch a request from
1920 * Description:
1921 * Return the request at the top of @q. The request is started on
1922 * return and LLD can start processing it immediately.
1924 * Return:
1925 * Pointer to the request at the top of @q if available. Null
1926 * otherwise.
1928 * Context:
1929 * queue_lock must be held.
1931 struct request *blk_fetch_request(struct request_queue *q)
1933 struct request *rq;
1935 rq = blk_peek_request(q);
1936 if (rq)
1937 blk_start_request(rq);
1938 return rq;
1940 EXPORT_SYMBOL(blk_fetch_request);
1943 * blk_update_request - Special helper function for request stacking drivers
1944 * @req: the request being processed
1945 * @error: %0 for success, < %0 for error
1946 * @nr_bytes: number of bytes to complete @req
1948 * Description:
1949 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1950 * the request structure even if @req doesn't have leftover.
1951 * If @req has leftover, sets it up for the next range of segments.
1953 * This special helper function is only for request stacking drivers
1954 * (e.g. request-based dm) so that they can handle partial completion.
1955 * Actual device drivers should use blk_end_request instead.
1957 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1958 * %false return from this function.
1960 * Return:
1961 * %false - this request doesn't have any more data
1962 * %true - this request has more data
1964 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1966 int total_bytes, bio_nbytes, next_idx = 0;
1967 struct bio *bio;
1969 if (!req->bio)
1970 return false;
1972 trace_block_rq_complete(req->q, req);
1975 * For fs requests, rq is just carrier of independent bio's
1976 * and each partial completion should be handled separately.
1977 * Reset per-request error on each partial completion.
1979 * TODO: tj: This is too subtle. It would be better to let
1980 * low level drivers do what they see fit.
1982 if (blk_fs_request(req))
1983 req->errors = 0;
1985 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1986 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1987 req->rq_disk ? req->rq_disk->disk_name : "?",
1988 (unsigned long long)blk_rq_pos(req));
1991 blk_account_io_completion(req, nr_bytes);
1993 total_bytes = bio_nbytes = 0;
1994 while ((bio = req->bio) != NULL) {
1995 int nbytes;
1997 if (nr_bytes >= bio->bi_size) {
1998 req->bio = bio->bi_next;
1999 nbytes = bio->bi_size;
2000 req_bio_endio(req, bio, nbytes, error);
2001 next_idx = 0;
2002 bio_nbytes = 0;
2003 } else {
2004 int idx = bio->bi_idx + next_idx;
2006 if (unlikely(idx >= bio->bi_vcnt)) {
2007 blk_dump_rq_flags(req, "__end_that");
2008 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2009 __func__, idx, bio->bi_vcnt);
2010 break;
2013 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2014 BIO_BUG_ON(nbytes > bio->bi_size);
2017 * not a complete bvec done
2019 if (unlikely(nbytes > nr_bytes)) {
2020 bio_nbytes += nr_bytes;
2021 total_bytes += nr_bytes;
2022 break;
2026 * advance to the next vector
2028 next_idx++;
2029 bio_nbytes += nbytes;
2032 total_bytes += nbytes;
2033 nr_bytes -= nbytes;
2035 bio = req->bio;
2036 if (bio) {
2038 * end more in this run, or just return 'not-done'
2040 if (unlikely(nr_bytes <= 0))
2041 break;
2046 * completely done
2048 if (!req->bio) {
2050 * Reset counters so that the request stacking driver
2051 * can find how many bytes remain in the request
2052 * later.
2054 req->__data_len = 0;
2055 return false;
2059 * if the request wasn't completed, update state
2061 if (bio_nbytes) {
2062 req_bio_endio(req, bio, bio_nbytes, error);
2063 bio->bi_idx += next_idx;
2064 bio_iovec(bio)->bv_offset += nr_bytes;
2065 bio_iovec(bio)->bv_len -= nr_bytes;
2068 req->__data_len -= total_bytes;
2069 req->buffer = bio_data(req->bio);
2071 /* update sector only for requests with clear definition of sector */
2072 if (blk_fs_request(req) || blk_discard_rq(req))
2073 req->__sector += total_bytes >> 9;
2075 /* mixed attributes always follow the first bio */
2076 if (req->cmd_flags & REQ_MIXED_MERGE) {
2077 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2078 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2082 * If total number of sectors is less than the first segment
2083 * size, something has gone terribly wrong.
2085 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2086 printk(KERN_ERR "blk: request botched\n");
2087 req->__data_len = blk_rq_cur_bytes(req);
2090 /* recalculate the number of segments */
2091 blk_recalc_rq_segments(req);
2093 return true;
2095 EXPORT_SYMBOL_GPL(blk_update_request);
2097 static bool blk_update_bidi_request(struct request *rq, int error,
2098 unsigned int nr_bytes,
2099 unsigned int bidi_bytes)
2101 if (blk_update_request(rq, error, nr_bytes))
2102 return true;
2104 /* Bidi request must be completed as a whole */
2105 if (unlikely(blk_bidi_rq(rq)) &&
2106 blk_update_request(rq->next_rq, error, bidi_bytes))
2107 return true;
2109 add_disk_randomness(rq->rq_disk);
2111 return false;
2115 * queue lock must be held
2117 static void blk_finish_request(struct request *req, int error)
2119 if (blk_rq_tagged(req))
2120 blk_queue_end_tag(req->q, req);
2122 BUG_ON(blk_queued_rq(req));
2124 if (unlikely(laptop_mode) && blk_fs_request(req))
2125 laptop_io_completion(&req->q->backing_dev_info);
2127 blk_delete_timer(req);
2129 blk_account_io_done(req);
2131 if (req->end_io)
2132 req->end_io(req, error);
2133 else {
2134 if (blk_bidi_rq(req))
2135 __blk_put_request(req->next_rq->q, req->next_rq);
2137 __blk_put_request(req->q, req);
2142 * blk_end_bidi_request - Complete a bidi request
2143 * @rq: the request to complete
2144 * @error: %0 for success, < %0 for error
2145 * @nr_bytes: number of bytes to complete @rq
2146 * @bidi_bytes: number of bytes to complete @rq->next_rq
2148 * Description:
2149 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2150 * Drivers that supports bidi can safely call this member for any
2151 * type of request, bidi or uni. In the later case @bidi_bytes is
2152 * just ignored.
2154 * Return:
2155 * %false - we are done with this request
2156 * %true - still buffers pending for this request
2158 static bool blk_end_bidi_request(struct request *rq, int error,
2159 unsigned int nr_bytes, unsigned int bidi_bytes)
2161 struct request_queue *q = rq->q;
2162 unsigned long flags;
2164 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2165 return true;
2167 spin_lock_irqsave(q->queue_lock, flags);
2168 blk_finish_request(rq, error);
2169 spin_unlock_irqrestore(q->queue_lock, flags);
2171 return false;
2175 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2176 * @rq: the request to complete
2177 * @error: %0 for success, < %0 for error
2178 * @nr_bytes: number of bytes to complete @rq
2179 * @bidi_bytes: number of bytes to complete @rq->next_rq
2181 * Description:
2182 * Identical to blk_end_bidi_request() except that queue lock is
2183 * assumed to be locked on entry and remains so on return.
2185 * Return:
2186 * %false - we are done with this request
2187 * %true - still buffers pending for this request
2189 static bool __blk_end_bidi_request(struct request *rq, int error,
2190 unsigned int nr_bytes, unsigned int bidi_bytes)
2192 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2193 return true;
2195 blk_finish_request(rq, error);
2197 return false;
2201 * blk_end_request - Helper function for drivers to complete the request.
2202 * @rq: the request being processed
2203 * @error: %0 for success, < %0 for error
2204 * @nr_bytes: number of bytes to complete
2206 * Description:
2207 * Ends I/O on a number of bytes attached to @rq.
2208 * If @rq has leftover, sets it up for the next range of segments.
2210 * Return:
2211 * %false - we are done with this request
2212 * %true - still buffers pending for this request
2214 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2216 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2218 EXPORT_SYMBOL(blk_end_request);
2221 * blk_end_request_all - Helper function for drives to finish the request.
2222 * @rq: the request to finish
2223 * @error: %0 for success, < %0 for error
2225 * Description:
2226 * Completely finish @rq.
2228 void blk_end_request_all(struct request *rq, int error)
2230 bool pending;
2231 unsigned int bidi_bytes = 0;
2233 if (unlikely(blk_bidi_rq(rq)))
2234 bidi_bytes = blk_rq_bytes(rq->next_rq);
2236 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2237 BUG_ON(pending);
2239 EXPORT_SYMBOL(blk_end_request_all);
2242 * blk_end_request_cur - Helper function to finish the current request chunk.
2243 * @rq: the request to finish the current chunk for
2244 * @error: %0 for success, < %0 for error
2246 * Description:
2247 * Complete the current consecutively mapped chunk from @rq.
2249 * Return:
2250 * %false - we are done with this request
2251 * %true - still buffers pending for this request
2253 bool blk_end_request_cur(struct request *rq, int error)
2255 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2257 EXPORT_SYMBOL(blk_end_request_cur);
2260 * blk_end_request_err - Finish a request till the next failure boundary.
2261 * @rq: the request to finish till the next failure boundary for
2262 * @error: must be negative errno
2264 * Description:
2265 * Complete @rq till the next failure boundary.
2267 * Return:
2268 * %false - we are done with this request
2269 * %true - still buffers pending for this request
2271 bool blk_end_request_err(struct request *rq, int error)
2273 WARN_ON(error >= 0);
2274 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2276 EXPORT_SYMBOL_GPL(blk_end_request_err);
2279 * __blk_end_request - Helper function for drivers to complete the request.
2280 * @rq: the request being processed
2281 * @error: %0 for success, < %0 for error
2282 * @nr_bytes: number of bytes to complete
2284 * Description:
2285 * Must be called with queue lock held unlike blk_end_request().
2287 * Return:
2288 * %false - we are done with this request
2289 * %true - still buffers pending for this request
2291 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2293 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2295 EXPORT_SYMBOL(__blk_end_request);
2298 * __blk_end_request_all - Helper function for drives to finish the request.
2299 * @rq: the request to finish
2300 * @error: %0 for success, < %0 for error
2302 * Description:
2303 * Completely finish @rq. Must be called with queue lock held.
2305 void __blk_end_request_all(struct request *rq, int error)
2307 bool pending;
2308 unsigned int bidi_bytes = 0;
2310 if (unlikely(blk_bidi_rq(rq)))
2311 bidi_bytes = blk_rq_bytes(rq->next_rq);
2313 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2314 BUG_ON(pending);
2316 EXPORT_SYMBOL(__blk_end_request_all);
2319 * __blk_end_request_cur - Helper function to finish the current request chunk.
2320 * @rq: the request to finish the current chunk for
2321 * @error: %0 for success, < %0 for error
2323 * Description:
2324 * Complete the current consecutively mapped chunk from @rq. Must
2325 * be called with queue lock held.
2327 * Return:
2328 * %false - we are done with this request
2329 * %true - still buffers pending for this request
2331 bool __blk_end_request_cur(struct request *rq, int error)
2333 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2335 EXPORT_SYMBOL(__blk_end_request_cur);
2338 * __blk_end_request_err - Finish a request till the next failure boundary.
2339 * @rq: the request to finish till the next failure boundary for
2340 * @error: must be negative errno
2342 * Description:
2343 * Complete @rq till the next failure boundary. Must be called
2344 * with queue lock held.
2346 * Return:
2347 * %false - we are done with this request
2348 * %true - still buffers pending for this request
2350 bool __blk_end_request_err(struct request *rq, int error)
2352 WARN_ON(error >= 0);
2353 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2355 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2357 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2358 struct bio *bio)
2360 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2361 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2363 if (bio_has_data(bio)) {
2364 rq->nr_phys_segments = bio_phys_segments(q, bio);
2365 rq->buffer = bio_data(bio);
2367 rq->__data_len = bio->bi_size;
2368 rq->bio = rq->biotail = bio;
2370 if (bio->bi_bdev)
2371 rq->rq_disk = bio->bi_bdev->bd_disk;
2374 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2376 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2377 * @rq: the request to be flushed
2379 * Description:
2380 * Flush all pages in @rq.
2382 void rq_flush_dcache_pages(struct request *rq)
2384 struct req_iterator iter;
2385 struct bio_vec *bvec;
2387 rq_for_each_segment(bvec, rq, iter)
2388 flush_dcache_page(bvec->bv_page);
2390 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2391 #endif
2394 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2395 * @q : the queue of the device being checked
2397 * Description:
2398 * Check if underlying low-level drivers of a device are busy.
2399 * If the drivers want to export their busy state, they must set own
2400 * exporting function using blk_queue_lld_busy() first.
2402 * Basically, this function is used only by request stacking drivers
2403 * to stop dispatching requests to underlying devices when underlying
2404 * devices are busy. This behavior helps more I/O merging on the queue
2405 * of the request stacking driver and prevents I/O throughput regression
2406 * on burst I/O load.
2408 * Return:
2409 * 0 - Not busy (The request stacking driver should dispatch request)
2410 * 1 - Busy (The request stacking driver should stop dispatching request)
2412 int blk_lld_busy(struct request_queue *q)
2414 if (q->lld_busy_fn)
2415 return q->lld_busy_fn(q);
2417 return 0;
2419 EXPORT_SYMBOL_GPL(blk_lld_busy);
2422 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2423 * @rq: the clone request to be cleaned up
2425 * Description:
2426 * Free all bios in @rq for a cloned request.
2428 void blk_rq_unprep_clone(struct request *rq)
2430 struct bio *bio;
2432 while ((bio = rq->bio) != NULL) {
2433 rq->bio = bio->bi_next;
2435 bio_put(bio);
2438 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2441 * Copy attributes of the original request to the clone request.
2442 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2444 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2446 dst->cpu = src->cpu;
2447 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2448 dst->cmd_type = src->cmd_type;
2449 dst->__sector = blk_rq_pos(src);
2450 dst->__data_len = blk_rq_bytes(src);
2451 dst->nr_phys_segments = src->nr_phys_segments;
2452 dst->ioprio = src->ioprio;
2453 dst->extra_len = src->extra_len;
2457 * blk_rq_prep_clone - Helper function to setup clone request
2458 * @rq: the request to be setup
2459 * @rq_src: original request to be cloned
2460 * @bs: bio_set that bios for clone are allocated from
2461 * @gfp_mask: memory allocation mask for bio
2462 * @bio_ctr: setup function to be called for each clone bio.
2463 * Returns %0 for success, non %0 for failure.
2464 * @data: private data to be passed to @bio_ctr
2466 * Description:
2467 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2468 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2469 * are not copied, and copying such parts is the caller's responsibility.
2470 * Also, pages which the original bios are pointing to are not copied
2471 * and the cloned bios just point same pages.
2472 * So cloned bios must be completed before original bios, which means
2473 * the caller must complete @rq before @rq_src.
2475 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2476 struct bio_set *bs, gfp_t gfp_mask,
2477 int (*bio_ctr)(struct bio *, struct bio *, void *),
2478 void *data)
2480 struct bio *bio, *bio_src;
2482 if (!bs)
2483 bs = fs_bio_set;
2485 blk_rq_init(NULL, rq);
2487 __rq_for_each_bio(bio_src, rq_src) {
2488 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2489 if (!bio)
2490 goto free_and_out;
2492 __bio_clone(bio, bio_src);
2494 if (bio_integrity(bio_src) &&
2495 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2496 goto free_and_out;
2498 if (bio_ctr && bio_ctr(bio, bio_src, data))
2499 goto free_and_out;
2501 if (rq->bio) {
2502 rq->biotail->bi_next = bio;
2503 rq->biotail = bio;
2504 } else
2505 rq->bio = rq->biotail = bio;
2508 __blk_rq_prep_clone(rq, rq_src);
2510 return 0;
2512 free_and_out:
2513 if (bio)
2514 bio_free(bio, bs);
2515 blk_rq_unprep_clone(rq);
2517 return -ENOMEM;
2519 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2521 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2523 return queue_work(kblockd_workqueue, work);
2525 EXPORT_SYMBOL(kblockd_schedule_work);
2527 int __init blk_dev_init(void)
2529 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2530 sizeof(((struct request *)0)->cmd_flags));
2532 kblockd_workqueue = create_workqueue("kblockd");
2533 if (!kblockd_workqueue)
2534 panic("Failed to create kblockd\n");
2536 request_cachep = kmem_cache_create("blkdev_requests",
2537 sizeof(struct request), 0, SLAB_PANIC, NULL);
2539 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2540 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2542 return 0;