4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
24 #include <asm/local.h>
28 * The ring buffer header is special. We must manually up keep it.
30 int ring_buffer_print_entry_header(struct trace_seq
*s
)
34 ret
= trace_seq_printf(s
, "# compressed entry header\n");
35 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
36 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
37 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
38 ret
= trace_seq_printf(s
, "\n");
39 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING
);
41 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND
);
43 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
63 * Here's some silly ASCII art.
66 * |reader| RING BUFFER
68 * +------+ +---+ +---+ +---+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
95 * +------------------------------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
103 * | New +---+ +---+ +---+
106 * +------------------------------+
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
113 * We will be using cmpxchg soon to make all this lockless.
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
147 RB_BUFFERS_ON_BIT
= 0,
148 RB_BUFFERS_DISABLED_BIT
= 1,
152 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
153 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
156 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 * tracing_on - enable all tracing buffers
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
166 void tracing_on(void)
168 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
170 EXPORT_SYMBOL_GPL(tracing_on
);
173 * tracing_off - turn off all tracing buffers
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
180 void tracing_off(void)
182 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
184 EXPORT_SYMBOL_GPL(tracing_off
);
187 * tracing_off_permanent - permanently disable ring buffers
189 * This function, once called, will disable all ring buffers
192 void tracing_off_permanent(void)
194 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
198 * tracing_is_on - show state of ring buffers enabled
200 int tracing_is_on(void)
202 return ring_buffer_flags
== RB_BUFFERS_ON
;
204 EXPORT_SYMBOL_GPL(tracing_is_on
);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
223 RB_LEN_TIME_EXTEND
= 8,
224 RB_LEN_TIME_STAMP
= 16,
227 static inline int rb_null_event(struct ring_buffer_event
*event
)
229 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
232 static void rb_event_set_padding(struct ring_buffer_event
*event
)
234 /* padding has a NULL time_delta */
235 event
->type_len
= RINGBUF_TYPE_PADDING
;
236 event
->time_delta
= 0;
240 rb_event_data_length(struct ring_buffer_event
*event
)
245 length
= event
->type_len
* RB_ALIGNMENT
;
247 length
= event
->array
[0];
248 return length
+ RB_EVNT_HDR_SIZE
;
251 /* inline for ring buffer fast paths */
253 rb_event_length(struct ring_buffer_event
*event
)
255 switch (event
->type_len
) {
256 case RINGBUF_TYPE_PADDING
:
257 if (rb_null_event(event
))
260 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
262 case RINGBUF_TYPE_TIME_EXTEND
:
263 return RB_LEN_TIME_EXTEND
;
265 case RINGBUF_TYPE_TIME_STAMP
:
266 return RB_LEN_TIME_STAMP
;
268 case RINGBUF_TYPE_DATA
:
269 return rb_event_data_length(event
);
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
281 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
283 unsigned length
= rb_event_length(event
);
284 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
286 length
-= RB_EVNT_HDR_SIZE
;
287 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
288 length
-= sizeof(event
->array
[0]);
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
293 /* inline for ring buffer fast paths */
295 rb_event_data(struct ring_buffer_event
*event
)
297 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
298 /* If length is in len field, then array[0] has the data */
300 return (void *)&event
->array
[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event
->array
[1];
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
309 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
311 return rb_event_data(event
);
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
315 #define for_each_buffer_cpu(buffer, cpu) \
316 for_each_cpu(cpu, buffer->cpumask)
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
322 /* Flag when events were overwritten */
323 #define RB_MISSED_EVENTS (1 << 31)
324 /* Missed count stored at end */
325 #define RB_MISSED_STORED (1 << 30)
327 struct buffer_data_page
{
328 u64 time_stamp
; /* page time stamp */
329 local_t commit
; /* write committed index */
330 unsigned char data
[]; /* data of buffer page */
334 * Note, the buffer_page list must be first. The buffer pages
335 * are allocated in cache lines, which means that each buffer
336 * page will be at the beginning of a cache line, and thus
337 * the least significant bits will be zero. We use this to
338 * add flags in the list struct pointers, to make the ring buffer
342 struct list_head list
; /* list of buffer pages */
343 local_t write
; /* index for next write */
344 unsigned read
; /* index for next read */
345 local_t entries
; /* entries on this page */
346 unsigned long real_end
; /* real end of data */
347 struct buffer_data_page
*page
; /* Actual data page */
351 * The buffer page counters, write and entries, must be reset
352 * atomically when crossing page boundaries. To synchronize this
353 * update, two counters are inserted into the number. One is
354 * the actual counter for the write position or count on the page.
356 * The other is a counter of updaters. Before an update happens
357 * the update partition of the counter is incremented. This will
358 * allow the updater to update the counter atomically.
360 * The counter is 20 bits, and the state data is 12.
362 #define RB_WRITE_MASK 0xfffff
363 #define RB_WRITE_INTCNT (1 << 20)
365 static void rb_init_page(struct buffer_data_page
*bpage
)
367 local_set(&bpage
->commit
, 0);
371 * ring_buffer_page_len - the size of data on the page.
372 * @page: The page to read
374 * Returns the amount of data on the page, including buffer page header.
376 size_t ring_buffer_page_len(void *page
)
378 return local_read(&((struct buffer_data_page
*)page
)->commit
)
383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
386 static void free_buffer_page(struct buffer_page
*bpage
)
388 free_page((unsigned long)bpage
->page
);
393 * We need to fit the time_stamp delta into 27 bits.
395 static inline int test_time_stamp(u64 delta
)
397 if (delta
& TS_DELTA_TEST
)
402 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
404 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
407 /* Max number of timestamps that can fit on a page */
408 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
410 int ring_buffer_print_page_header(struct trace_seq
*s
)
412 struct buffer_data_page field
;
415 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
416 "offset:0;\tsize:%u;\tsigned:%u;\n",
417 (unsigned int)sizeof(field
.time_stamp
),
418 (unsigned int)is_signed_type(u64
));
420 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field
), commit
),
423 (unsigned int)sizeof(field
.commit
),
424 (unsigned int)is_signed_type(long));
426 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field
), commit
),
430 (unsigned int)is_signed_type(long));
432 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 (unsigned int)offsetof(typeof(field
), data
),
435 (unsigned int)BUF_PAGE_SIZE
,
436 (unsigned int)is_signed_type(char));
442 * head_page == tail_page && head == tail then buffer is empty.
444 struct ring_buffer_per_cpu
{
446 struct ring_buffer
*buffer
;
447 spinlock_t reader_lock
; /* serialize readers */
448 arch_spinlock_t lock
;
449 struct lock_class_key lock_key
;
450 struct list_head
*pages
;
451 struct buffer_page
*head_page
; /* read from head */
452 struct buffer_page
*tail_page
; /* write to tail */
453 struct buffer_page
*commit_page
; /* committed pages */
454 struct buffer_page
*reader_page
;
455 unsigned long lost_events
;
456 unsigned long last_overrun
;
457 local_t commit_overrun
;
465 atomic_t record_disabled
;
472 atomic_t record_disabled
;
473 cpumask_var_t cpumask
;
475 struct lock_class_key
*reader_lock_key
;
479 struct ring_buffer_per_cpu
**buffers
;
481 #ifdef CONFIG_HOTPLUG_CPU
482 struct notifier_block cpu_notify
;
487 struct ring_buffer_iter
{
488 struct ring_buffer_per_cpu
*cpu_buffer
;
490 struct buffer_page
*head_page
;
491 struct buffer_page
*cache_reader_page
;
492 unsigned long cache_read
;
496 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
497 #define RB_WARN_ON(b, cond) \
499 int _____ret = unlikely(cond); \
501 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502 struct ring_buffer_per_cpu *__b = \
504 atomic_inc(&__b->buffer->record_disabled); \
506 atomic_inc(&b->record_disabled); \
512 /* Up this if you want to test the TIME_EXTENTS and normalization */
513 #define DEBUG_SHIFT 0
515 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
517 /* shift to debug/test normalization and TIME_EXTENTS */
518 return buffer
->clock() << DEBUG_SHIFT
;
521 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
525 preempt_disable_notrace();
526 time
= rb_time_stamp(buffer
);
527 preempt_enable_no_resched_notrace();
531 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
533 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
536 /* Just stupid testing the normalize function and deltas */
539 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
542 * Making the ring buffer lockless makes things tricky.
543 * Although writes only happen on the CPU that they are on,
544 * and they only need to worry about interrupts. Reads can
547 * The reader page is always off the ring buffer, but when the
548 * reader finishes with a page, it needs to swap its page with
549 * a new one from the buffer. The reader needs to take from
550 * the head (writes go to the tail). But if a writer is in overwrite
551 * mode and wraps, it must push the head page forward.
553 * Here lies the problem.
555 * The reader must be careful to replace only the head page, and
556 * not another one. As described at the top of the file in the
557 * ASCII art, the reader sets its old page to point to the next
558 * page after head. It then sets the page after head to point to
559 * the old reader page. But if the writer moves the head page
560 * during this operation, the reader could end up with the tail.
562 * We use cmpxchg to help prevent this race. We also do something
563 * special with the page before head. We set the LSB to 1.
565 * When the writer must push the page forward, it will clear the
566 * bit that points to the head page, move the head, and then set
567 * the bit that points to the new head page.
569 * We also don't want an interrupt coming in and moving the head
570 * page on another writer. Thus we use the second LSB to catch
573 * head->list->prev->next bit 1 bit 0
576 * Points to head page 0 1
579 * Note we can not trust the prev pointer of the head page, because:
581 * +----+ +-----+ +-----+
582 * | |------>| T |---X--->| N |
584 * +----+ +-----+ +-----+
587 * +----------| R |----------+ |
591 * Key: ---X--> HEAD flag set in pointer
596 * (see __rb_reserve_next() to see where this happens)
598 * What the above shows is that the reader just swapped out
599 * the reader page with a page in the buffer, but before it
600 * could make the new header point back to the new page added
601 * it was preempted by a writer. The writer moved forward onto
602 * the new page added by the reader and is about to move forward
605 * You can see, it is legitimate for the previous pointer of
606 * the head (or any page) not to point back to itself. But only
610 #define RB_PAGE_NORMAL 0UL
611 #define RB_PAGE_HEAD 1UL
612 #define RB_PAGE_UPDATE 2UL
615 #define RB_FLAG_MASK 3UL
617 /* PAGE_MOVED is not part of the mask */
618 #define RB_PAGE_MOVED 4UL
621 * rb_list_head - remove any bit
623 static struct list_head
*rb_list_head(struct list_head
*list
)
625 unsigned long val
= (unsigned long)list
;
627 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
631 * rb_is_head_page - test if the given page is the head page
633 * Because the reader may move the head_page pointer, we can
634 * not trust what the head page is (it may be pointing to
635 * the reader page). But if the next page is a header page,
636 * its flags will be non zero.
639 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
640 struct buffer_page
*page
, struct list_head
*list
)
644 val
= (unsigned long)list
->next
;
646 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
647 return RB_PAGE_MOVED
;
649 return val
& RB_FLAG_MASK
;
655 * The unique thing about the reader page, is that, if the
656 * writer is ever on it, the previous pointer never points
657 * back to the reader page.
659 static int rb_is_reader_page(struct buffer_page
*page
)
661 struct list_head
*list
= page
->list
.prev
;
663 return rb_list_head(list
->next
) != &page
->list
;
667 * rb_set_list_to_head - set a list_head to be pointing to head.
669 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
670 struct list_head
*list
)
674 ptr
= (unsigned long *)&list
->next
;
675 *ptr
|= RB_PAGE_HEAD
;
676 *ptr
&= ~RB_PAGE_UPDATE
;
680 * rb_head_page_activate - sets up head page
682 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
684 struct buffer_page
*head
;
686 head
= cpu_buffer
->head_page
;
691 * Set the previous list pointer to have the HEAD flag.
693 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
696 static void rb_list_head_clear(struct list_head
*list
)
698 unsigned long *ptr
= (unsigned long *)&list
->next
;
700 *ptr
&= ~RB_FLAG_MASK
;
704 * rb_head_page_dactivate - clears head page ptr (for free list)
707 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
709 struct list_head
*hd
;
711 /* Go through the whole list and clear any pointers found. */
712 rb_list_head_clear(cpu_buffer
->pages
);
714 list_for_each(hd
, cpu_buffer
->pages
)
715 rb_list_head_clear(hd
);
718 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
719 struct buffer_page
*head
,
720 struct buffer_page
*prev
,
721 int old_flag
, int new_flag
)
723 struct list_head
*list
;
724 unsigned long val
= (unsigned long)&head
->list
;
729 val
&= ~RB_FLAG_MASK
;
731 ret
= cmpxchg((unsigned long *)&list
->next
,
732 val
| old_flag
, val
| new_flag
);
734 /* check if the reader took the page */
735 if ((ret
& ~RB_FLAG_MASK
) != val
)
736 return RB_PAGE_MOVED
;
738 return ret
& RB_FLAG_MASK
;
741 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
742 struct buffer_page
*head
,
743 struct buffer_page
*prev
,
746 return rb_head_page_set(cpu_buffer
, head
, prev
,
747 old_flag
, RB_PAGE_UPDATE
);
750 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
751 struct buffer_page
*head
,
752 struct buffer_page
*prev
,
755 return rb_head_page_set(cpu_buffer
, head
, prev
,
756 old_flag
, RB_PAGE_HEAD
);
759 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
760 struct buffer_page
*head
,
761 struct buffer_page
*prev
,
764 return rb_head_page_set(cpu_buffer
, head
, prev
,
765 old_flag
, RB_PAGE_NORMAL
);
768 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
769 struct buffer_page
**bpage
)
771 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
773 *bpage
= list_entry(p
, struct buffer_page
, list
);
776 static struct buffer_page
*
777 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
779 struct buffer_page
*head
;
780 struct buffer_page
*page
;
781 struct list_head
*list
;
784 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
788 list
= cpu_buffer
->pages
;
789 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
792 page
= head
= cpu_buffer
->head_page
;
794 * It is possible that the writer moves the header behind
795 * where we started, and we miss in one loop.
796 * A second loop should grab the header, but we'll do
797 * three loops just because I'm paranoid.
799 for (i
= 0; i
< 3; i
++) {
801 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
802 cpu_buffer
->head_page
= page
;
805 rb_inc_page(cpu_buffer
, &page
);
806 } while (page
!= head
);
809 RB_WARN_ON(cpu_buffer
, 1);
814 static int rb_head_page_replace(struct buffer_page
*old
,
815 struct buffer_page
*new)
817 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
821 val
= *ptr
& ~RB_FLAG_MASK
;
824 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
830 * rb_tail_page_update - move the tail page forward
832 * Returns 1 if moved tail page, 0 if someone else did.
834 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
835 struct buffer_page
*tail_page
,
836 struct buffer_page
*next_page
)
838 struct buffer_page
*old_tail
;
839 unsigned long old_entries
;
840 unsigned long old_write
;
844 * The tail page now needs to be moved forward.
846 * We need to reset the tail page, but without messing
847 * with possible erasing of data brought in by interrupts
848 * that have moved the tail page and are currently on it.
850 * We add a counter to the write field to denote this.
852 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
853 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
856 * Just make sure we have seen our old_write and synchronize
857 * with any interrupts that come in.
862 * If the tail page is still the same as what we think
863 * it is, then it is up to us to update the tail
866 if (tail_page
== cpu_buffer
->tail_page
) {
867 /* Zero the write counter */
868 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
869 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
872 * This will only succeed if an interrupt did
873 * not come in and change it. In which case, we
874 * do not want to modify it.
876 * We add (void) to let the compiler know that we do not care
877 * about the return value of these functions. We use the
878 * cmpxchg to only update if an interrupt did not already
879 * do it for us. If the cmpxchg fails, we don't care.
881 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
882 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
885 * No need to worry about races with clearing out the commit.
886 * it only can increment when a commit takes place. But that
887 * only happens in the outer most nested commit.
889 local_set(&next_page
->page
->commit
, 0);
891 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
892 tail_page
, next_page
);
894 if (old_tail
== tail_page
)
901 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
902 struct buffer_page
*bpage
)
904 unsigned long val
= (unsigned long)bpage
;
906 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
913 * rb_check_list - make sure a pointer to a list has the last bits zero
915 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
916 struct list_head
*list
)
918 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
920 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
926 * check_pages - integrity check of buffer pages
927 * @cpu_buffer: CPU buffer with pages to test
929 * As a safety measure we check to make sure the data pages have not
932 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
934 struct list_head
*head
= cpu_buffer
->pages
;
935 struct buffer_page
*bpage
, *tmp
;
937 rb_head_page_deactivate(cpu_buffer
);
939 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
941 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
944 if (rb_check_list(cpu_buffer
, head
))
947 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
948 if (RB_WARN_ON(cpu_buffer
,
949 bpage
->list
.next
->prev
!= &bpage
->list
))
951 if (RB_WARN_ON(cpu_buffer
,
952 bpage
->list
.prev
->next
!= &bpage
->list
))
954 if (rb_check_list(cpu_buffer
, &bpage
->list
))
958 rb_head_page_activate(cpu_buffer
);
963 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
966 struct buffer_page
*bpage
, *tmp
;
973 for (i
= 0; i
< nr_pages
; i
++) {
974 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
975 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
979 rb_check_bpage(cpu_buffer
, bpage
);
981 list_add(&bpage
->list
, &pages
);
983 addr
= __get_free_page(GFP_KERNEL
);
986 bpage
->page
= (void *)addr
;
987 rb_init_page(bpage
->page
);
991 * The ring buffer page list is a circular list that does not
992 * start and end with a list head. All page list items point to
995 cpu_buffer
->pages
= pages
.next
;
998 rb_check_pages(cpu_buffer
);
1003 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1004 list_del_init(&bpage
->list
);
1005 free_buffer_page(bpage
);
1010 static struct ring_buffer_per_cpu
*
1011 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
1013 struct ring_buffer_per_cpu
*cpu_buffer
;
1014 struct buffer_page
*bpage
;
1018 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1019 GFP_KERNEL
, cpu_to_node(cpu
));
1023 cpu_buffer
->cpu
= cpu
;
1024 cpu_buffer
->buffer
= buffer
;
1025 spin_lock_init(&cpu_buffer
->reader_lock
);
1026 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1027 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1029 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1030 GFP_KERNEL
, cpu_to_node(cpu
));
1032 goto fail_free_buffer
;
1034 rb_check_bpage(cpu_buffer
, bpage
);
1036 cpu_buffer
->reader_page
= bpage
;
1037 addr
= __get_free_page(GFP_KERNEL
);
1039 goto fail_free_reader
;
1040 bpage
->page
= (void *)addr
;
1041 rb_init_page(bpage
->page
);
1043 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1045 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1047 goto fail_free_reader
;
1049 cpu_buffer
->head_page
1050 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1051 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1053 rb_head_page_activate(cpu_buffer
);
1058 free_buffer_page(cpu_buffer
->reader_page
);
1065 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1067 struct list_head
*head
= cpu_buffer
->pages
;
1068 struct buffer_page
*bpage
, *tmp
;
1070 free_buffer_page(cpu_buffer
->reader_page
);
1072 rb_head_page_deactivate(cpu_buffer
);
1075 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1076 list_del_init(&bpage
->list
);
1077 free_buffer_page(bpage
);
1079 bpage
= list_entry(head
, struct buffer_page
, list
);
1080 free_buffer_page(bpage
);
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 static int rb_cpu_notify(struct notifier_block
*self
,
1088 unsigned long action
, void *hcpu
);
1092 * ring_buffer_alloc - allocate a new ring_buffer
1093 * @size: the size in bytes per cpu that is needed.
1094 * @flags: attributes to set for the ring buffer.
1096 * Currently the only flag that is available is the RB_FL_OVERWRITE
1097 * flag. This flag means that the buffer will overwrite old data
1098 * when the buffer wraps. If this flag is not set, the buffer will
1099 * drop data when the tail hits the head.
1101 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1102 struct lock_class_key
*key
)
1104 struct ring_buffer
*buffer
;
1108 /* keep it in its own cache line */
1109 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1114 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1115 goto fail_free_buffer
;
1117 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1118 buffer
->flags
= flags
;
1119 buffer
->clock
= trace_clock_local
;
1120 buffer
->reader_lock_key
= key
;
1122 /* need at least two pages */
1123 if (buffer
->pages
< 2)
1127 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128 * in early initcall, it will not be notified of secondary cpus.
1129 * In that off case, we need to allocate for all possible cpus.
1131 #ifdef CONFIG_HOTPLUG_CPU
1133 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1135 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1137 buffer
->cpus
= nr_cpu_ids
;
1139 bsize
= sizeof(void *) * nr_cpu_ids
;
1140 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1142 if (!buffer
->buffers
)
1143 goto fail_free_cpumask
;
1145 for_each_buffer_cpu(buffer
, cpu
) {
1146 buffer
->buffers
[cpu
] =
1147 rb_allocate_cpu_buffer(buffer
, cpu
);
1148 if (!buffer
->buffers
[cpu
])
1149 goto fail_free_buffers
;
1152 #ifdef CONFIG_HOTPLUG_CPU
1153 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1154 buffer
->cpu_notify
.priority
= 0;
1155 register_cpu_notifier(&buffer
->cpu_notify
);
1159 mutex_init(&buffer
->mutex
);
1164 for_each_buffer_cpu(buffer
, cpu
) {
1165 if (buffer
->buffers
[cpu
])
1166 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1168 kfree(buffer
->buffers
);
1171 free_cpumask_var(buffer
->cpumask
);
1178 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1181 * ring_buffer_free - free a ring buffer.
1182 * @buffer: the buffer to free.
1185 ring_buffer_free(struct ring_buffer
*buffer
)
1191 #ifdef CONFIG_HOTPLUG_CPU
1192 unregister_cpu_notifier(&buffer
->cpu_notify
);
1195 for_each_buffer_cpu(buffer
, cpu
)
1196 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1200 kfree(buffer
->buffers
);
1201 free_cpumask_var(buffer
->cpumask
);
1205 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1207 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1210 buffer
->clock
= clock
;
1213 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1216 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1218 struct buffer_page
*bpage
;
1219 struct list_head
*p
;
1222 spin_lock_irq(&cpu_buffer
->reader_lock
);
1223 rb_head_page_deactivate(cpu_buffer
);
1225 for (i
= 0; i
< nr_pages
; i
++) {
1226 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1228 p
= cpu_buffer
->pages
->next
;
1229 bpage
= list_entry(p
, struct buffer_page
, list
);
1230 list_del_init(&bpage
->list
);
1231 free_buffer_page(bpage
);
1233 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1236 rb_reset_cpu(cpu_buffer
);
1237 rb_check_pages(cpu_buffer
);
1240 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1244 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1245 struct list_head
*pages
, unsigned nr_pages
)
1247 struct buffer_page
*bpage
;
1248 struct list_head
*p
;
1251 spin_lock_irq(&cpu_buffer
->reader_lock
);
1252 rb_head_page_deactivate(cpu_buffer
);
1254 for (i
= 0; i
< nr_pages
; i
++) {
1255 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1258 bpage
= list_entry(p
, struct buffer_page
, list
);
1259 list_del_init(&bpage
->list
);
1260 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1262 rb_reset_cpu(cpu_buffer
);
1263 rb_check_pages(cpu_buffer
);
1266 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1270 * ring_buffer_resize - resize the ring buffer
1271 * @buffer: the buffer to resize.
1272 * @size: the new size.
1274 * Minimum size is 2 * BUF_PAGE_SIZE.
1276 * Returns -1 on failure.
1278 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1280 struct ring_buffer_per_cpu
*cpu_buffer
;
1281 unsigned nr_pages
, rm_pages
, new_pages
;
1282 struct buffer_page
*bpage
, *tmp
;
1283 unsigned long buffer_size
;
1289 * Always succeed at resizing a non-existent buffer:
1294 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1295 size
*= BUF_PAGE_SIZE
;
1296 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1298 /* we need a minimum of two pages */
1299 if (size
< BUF_PAGE_SIZE
* 2)
1300 size
= BUF_PAGE_SIZE
* 2;
1302 if (size
== buffer_size
)
1305 atomic_inc(&buffer
->record_disabled
);
1307 /* Make sure all writers are done with this buffer. */
1308 synchronize_sched();
1310 mutex_lock(&buffer
->mutex
);
1313 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1315 if (size
< buffer_size
) {
1317 /* easy case, just free pages */
1318 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1321 rm_pages
= buffer
->pages
- nr_pages
;
1323 for_each_buffer_cpu(buffer
, cpu
) {
1324 cpu_buffer
= buffer
->buffers
[cpu
];
1325 rb_remove_pages(cpu_buffer
, rm_pages
);
1331 * This is a bit more difficult. We only want to add pages
1332 * when we can allocate enough for all CPUs. We do this
1333 * by allocating all the pages and storing them on a local
1334 * link list. If we succeed in our allocation, then we
1335 * add these pages to the cpu_buffers. Otherwise we just free
1336 * them all and return -ENOMEM;
1338 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1341 new_pages
= nr_pages
- buffer
->pages
;
1343 for_each_buffer_cpu(buffer
, cpu
) {
1344 for (i
= 0; i
< new_pages
; i
++) {
1345 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1347 GFP_KERNEL
, cpu_to_node(cpu
));
1350 list_add(&bpage
->list
, &pages
);
1351 addr
= __get_free_page(GFP_KERNEL
);
1354 bpage
->page
= (void *)addr
;
1355 rb_init_page(bpage
->page
);
1359 for_each_buffer_cpu(buffer
, cpu
) {
1360 cpu_buffer
= buffer
->buffers
[cpu
];
1361 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1364 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1368 buffer
->pages
= nr_pages
;
1370 mutex_unlock(&buffer
->mutex
);
1372 atomic_dec(&buffer
->record_disabled
);
1377 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1378 list_del_init(&bpage
->list
);
1379 free_buffer_page(bpage
);
1382 mutex_unlock(&buffer
->mutex
);
1383 atomic_dec(&buffer
->record_disabled
);
1387 * Something went totally wrong, and we are too paranoid
1388 * to even clean up the mess.
1392 mutex_unlock(&buffer
->mutex
);
1393 atomic_dec(&buffer
->record_disabled
);
1396 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1398 static inline void *
1399 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1401 return bpage
->data
+ index
;
1404 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1406 return bpage
->page
->data
+ index
;
1409 static inline struct ring_buffer_event
*
1410 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1412 return __rb_page_index(cpu_buffer
->reader_page
,
1413 cpu_buffer
->reader_page
->read
);
1416 static inline struct ring_buffer_event
*
1417 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1419 return __rb_page_index(iter
->head_page
, iter
->head
);
1422 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1424 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1427 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1429 return local_read(&bpage
->page
->commit
);
1432 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1434 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1437 /* Size is determined by what has been commited */
1438 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1440 return rb_page_commit(bpage
);
1443 static inline unsigned
1444 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1446 return rb_page_commit(cpu_buffer
->commit_page
);
1449 static inline unsigned
1450 rb_event_index(struct ring_buffer_event
*event
)
1452 unsigned long addr
= (unsigned long)event
;
1454 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1458 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1459 struct ring_buffer_event
*event
)
1461 unsigned long addr
= (unsigned long)event
;
1462 unsigned long index
;
1464 index
= rb_event_index(event
);
1467 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1468 rb_commit_index(cpu_buffer
) == index
;
1472 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1474 unsigned long max_count
;
1477 * We only race with interrupts and NMIs on this CPU.
1478 * If we own the commit event, then we can commit
1479 * all others that interrupted us, since the interruptions
1480 * are in stack format (they finish before they come
1481 * back to us). This allows us to do a simple loop to
1482 * assign the commit to the tail.
1485 max_count
= cpu_buffer
->buffer
->pages
* 100;
1487 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1488 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1490 if (RB_WARN_ON(cpu_buffer
,
1491 rb_is_reader_page(cpu_buffer
->tail_page
)))
1493 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1494 rb_page_write(cpu_buffer
->commit_page
));
1495 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1496 cpu_buffer
->write_stamp
=
1497 cpu_buffer
->commit_page
->page
->time_stamp
;
1498 /* add barrier to keep gcc from optimizing too much */
1501 while (rb_commit_index(cpu_buffer
) !=
1502 rb_page_write(cpu_buffer
->commit_page
)) {
1504 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1505 rb_page_write(cpu_buffer
->commit_page
));
1506 RB_WARN_ON(cpu_buffer
,
1507 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1512 /* again, keep gcc from optimizing */
1516 * If an interrupt came in just after the first while loop
1517 * and pushed the tail page forward, we will be left with
1518 * a dangling commit that will never go forward.
1520 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1524 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1526 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1527 cpu_buffer
->reader_page
->read
= 0;
1530 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1532 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1535 * The iterator could be on the reader page (it starts there).
1536 * But the head could have moved, since the reader was
1537 * found. Check for this case and assign the iterator
1538 * to the head page instead of next.
1540 if (iter
->head_page
== cpu_buffer
->reader_page
)
1541 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1543 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1545 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1550 * ring_buffer_update_event - update event type and data
1551 * @event: the even to update
1552 * @type: the type of event
1553 * @length: the size of the event field in the ring buffer
1555 * Update the type and data fields of the event. The length
1556 * is the actual size that is written to the ring buffer,
1557 * and with this, we can determine what to place into the
1561 rb_update_event(struct ring_buffer_event
*event
,
1562 unsigned type
, unsigned length
)
1564 event
->type_len
= type
;
1568 case RINGBUF_TYPE_PADDING
:
1569 case RINGBUF_TYPE_TIME_EXTEND
:
1570 case RINGBUF_TYPE_TIME_STAMP
:
1574 length
-= RB_EVNT_HDR_SIZE
;
1575 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1576 event
->array
[0] = length
;
1578 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1586 * rb_handle_head_page - writer hit the head page
1588 * Returns: +1 to retry page
1593 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1594 struct buffer_page
*tail_page
,
1595 struct buffer_page
*next_page
)
1597 struct buffer_page
*new_head
;
1602 entries
= rb_page_entries(next_page
);
1605 * The hard part is here. We need to move the head
1606 * forward, and protect against both readers on
1607 * other CPUs and writers coming in via interrupts.
1609 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1613 * type can be one of four:
1614 * NORMAL - an interrupt already moved it for us
1615 * HEAD - we are the first to get here.
1616 * UPDATE - we are the interrupt interrupting
1618 * MOVED - a reader on another CPU moved the next
1619 * pointer to its reader page. Give up
1626 * We changed the head to UPDATE, thus
1627 * it is our responsibility to update
1630 local_add(entries
, &cpu_buffer
->overrun
);
1633 * The entries will be zeroed out when we move the
1637 /* still more to do */
1640 case RB_PAGE_UPDATE
:
1642 * This is an interrupt that interrupt the
1643 * previous update. Still more to do.
1646 case RB_PAGE_NORMAL
:
1648 * An interrupt came in before the update
1649 * and processed this for us.
1650 * Nothing left to do.
1655 * The reader is on another CPU and just did
1656 * a swap with our next_page.
1661 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1666 * Now that we are here, the old head pointer is
1667 * set to UPDATE. This will keep the reader from
1668 * swapping the head page with the reader page.
1669 * The reader (on another CPU) will spin till
1672 * We just need to protect against interrupts
1673 * doing the job. We will set the next pointer
1674 * to HEAD. After that, we set the old pointer
1675 * to NORMAL, but only if it was HEAD before.
1676 * otherwise we are an interrupt, and only
1677 * want the outer most commit to reset it.
1679 new_head
= next_page
;
1680 rb_inc_page(cpu_buffer
, &new_head
);
1682 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1686 * Valid returns are:
1687 * HEAD - an interrupt came in and already set it.
1688 * NORMAL - One of two things:
1689 * 1) We really set it.
1690 * 2) A bunch of interrupts came in and moved
1691 * the page forward again.
1695 case RB_PAGE_NORMAL
:
1699 RB_WARN_ON(cpu_buffer
, 1);
1704 * It is possible that an interrupt came in,
1705 * set the head up, then more interrupts came in
1706 * and moved it again. When we get back here,
1707 * the page would have been set to NORMAL but we
1708 * just set it back to HEAD.
1710 * How do you detect this? Well, if that happened
1711 * the tail page would have moved.
1713 if (ret
== RB_PAGE_NORMAL
) {
1715 * If the tail had moved passed next, then we need
1716 * to reset the pointer.
1718 if (cpu_buffer
->tail_page
!= tail_page
&&
1719 cpu_buffer
->tail_page
!= next_page
)
1720 rb_head_page_set_normal(cpu_buffer
, new_head
,
1726 * If this was the outer most commit (the one that
1727 * changed the original pointer from HEAD to UPDATE),
1728 * then it is up to us to reset it to NORMAL.
1730 if (type
== RB_PAGE_HEAD
) {
1731 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1734 if (RB_WARN_ON(cpu_buffer
,
1735 ret
!= RB_PAGE_UPDATE
))
1742 static unsigned rb_calculate_event_length(unsigned length
)
1744 struct ring_buffer_event event
; /* Used only for sizeof array */
1746 /* zero length can cause confusions */
1750 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1751 length
+= sizeof(event
.array
[0]);
1753 length
+= RB_EVNT_HDR_SIZE
;
1754 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
1760 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1761 struct buffer_page
*tail_page
,
1762 unsigned long tail
, unsigned long length
)
1764 struct ring_buffer_event
*event
;
1767 * Only the event that crossed the page boundary
1768 * must fill the old tail_page with padding.
1770 if (tail
>= BUF_PAGE_SIZE
) {
1772 * If the page was filled, then we still need
1773 * to update the real_end. Reset it to zero
1774 * and the reader will ignore it.
1776 if (tail
== BUF_PAGE_SIZE
)
1777 tail_page
->real_end
= 0;
1779 local_sub(length
, &tail_page
->write
);
1783 event
= __rb_page_index(tail_page
, tail
);
1784 kmemcheck_annotate_bitfield(event
, bitfield
);
1787 * Save the original length to the meta data.
1788 * This will be used by the reader to add lost event
1791 tail_page
->real_end
= tail
;
1794 * If this event is bigger than the minimum size, then
1795 * we need to be careful that we don't subtract the
1796 * write counter enough to allow another writer to slip
1798 * We put in a discarded commit instead, to make sure
1799 * that this space is not used again.
1801 * If we are less than the minimum size, we don't need to
1804 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1805 /* No room for any events */
1807 /* Mark the rest of the page with padding */
1808 rb_event_set_padding(event
);
1810 /* Set the write back to the previous setting */
1811 local_sub(length
, &tail_page
->write
);
1815 /* Put in a discarded event */
1816 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1817 event
->type_len
= RINGBUF_TYPE_PADDING
;
1818 /* time delta must be non zero */
1819 event
->time_delta
= 1;
1821 /* Set write to end of buffer */
1822 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1823 local_sub(length
, &tail_page
->write
);
1826 static struct ring_buffer_event
*
1827 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1828 unsigned long length
, unsigned long tail
,
1829 struct buffer_page
*tail_page
, u64
*ts
)
1831 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1832 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1833 struct buffer_page
*next_page
;
1836 next_page
= tail_page
;
1838 rb_inc_page(cpu_buffer
, &next_page
);
1841 * If for some reason, we had an interrupt storm that made
1842 * it all the way around the buffer, bail, and warn
1845 if (unlikely(next_page
== commit_page
)) {
1846 local_inc(&cpu_buffer
->commit_overrun
);
1851 * This is where the fun begins!
1853 * We are fighting against races between a reader that
1854 * could be on another CPU trying to swap its reader
1855 * page with the buffer head.
1857 * We are also fighting against interrupts coming in and
1858 * moving the head or tail on us as well.
1860 * If the next page is the head page then we have filled
1861 * the buffer, unless the commit page is still on the
1864 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1867 * If the commit is not on the reader page, then
1868 * move the header page.
1870 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1872 * If we are not in overwrite mode,
1873 * this is easy, just stop here.
1875 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1878 ret
= rb_handle_head_page(cpu_buffer
,
1887 * We need to be careful here too. The
1888 * commit page could still be on the reader
1889 * page. We could have a small buffer, and
1890 * have filled up the buffer with events
1891 * from interrupts and such, and wrapped.
1893 * Note, if the tail page is also the on the
1894 * reader_page, we let it move out.
1896 if (unlikely((cpu_buffer
->commit_page
!=
1897 cpu_buffer
->tail_page
) &&
1898 (cpu_buffer
->commit_page
==
1899 cpu_buffer
->reader_page
))) {
1900 local_inc(&cpu_buffer
->commit_overrun
);
1906 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1909 * Nested commits always have zero deltas, so
1910 * just reread the time stamp
1912 *ts
= rb_time_stamp(buffer
);
1913 next_page
->page
->time_stamp
= *ts
;
1918 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1920 /* fail and let the caller try again */
1921 return ERR_PTR(-EAGAIN
);
1925 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1930 static struct ring_buffer_event
*
1931 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1932 unsigned type
, unsigned long length
, u64
*ts
)
1934 struct buffer_page
*tail_page
;
1935 struct ring_buffer_event
*event
;
1936 unsigned long tail
, write
;
1938 tail_page
= cpu_buffer
->tail_page
;
1939 write
= local_add_return(length
, &tail_page
->write
);
1941 /* set write to only the index of the write */
1942 write
&= RB_WRITE_MASK
;
1943 tail
= write
- length
;
1945 /* See if we shot pass the end of this buffer page */
1946 if (write
> BUF_PAGE_SIZE
)
1947 return rb_move_tail(cpu_buffer
, length
, tail
,
1950 /* We reserved something on the buffer */
1952 event
= __rb_page_index(tail_page
, tail
);
1953 kmemcheck_annotate_bitfield(event
, bitfield
);
1954 rb_update_event(event
, type
, length
);
1956 /* The passed in type is zero for DATA */
1958 local_inc(&tail_page
->entries
);
1961 * If this is the first commit on the page, then update
1965 tail_page
->page
->time_stamp
= *ts
;
1971 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
1972 struct ring_buffer_event
*event
)
1974 unsigned long new_index
, old_index
;
1975 struct buffer_page
*bpage
;
1976 unsigned long index
;
1979 new_index
= rb_event_index(event
);
1980 old_index
= new_index
+ rb_event_length(event
);
1981 addr
= (unsigned long)event
;
1984 bpage
= cpu_buffer
->tail_page
;
1986 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
1987 unsigned long write_mask
=
1988 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
1990 * This is on the tail page. It is possible that
1991 * a write could come in and move the tail page
1992 * and write to the next page. That is fine
1993 * because we just shorten what is on this page.
1995 old_index
+= write_mask
;
1996 new_index
+= write_mask
;
1997 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
1998 if (index
== old_index
)
2002 /* could not discard */
2007 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2008 u64
*ts
, u64
*delta
)
2010 struct ring_buffer_event
*event
;
2013 WARN_ONCE(*delta
> (1ULL << 59),
2014 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n",
2015 (unsigned long long)*delta
,
2016 (unsigned long long)*ts
,
2017 (unsigned long long)cpu_buffer
->write_stamp
);
2020 * The delta is too big, we to add a
2023 event
= __rb_reserve_next(cpu_buffer
,
2024 RINGBUF_TYPE_TIME_EXTEND
,
2030 if (PTR_ERR(event
) == -EAGAIN
)
2033 /* Only a commited time event can update the write stamp */
2034 if (rb_event_is_commit(cpu_buffer
, event
)) {
2036 * If this is the first on the page, then it was
2037 * updated with the page itself. Try to discard it
2038 * and if we can't just make it zero.
2040 if (rb_event_index(event
)) {
2041 event
->time_delta
= *delta
& TS_MASK
;
2042 event
->array
[0] = *delta
>> TS_SHIFT
;
2044 /* try to discard, since we do not need this */
2045 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2046 /* nope, just zero it */
2047 event
->time_delta
= 0;
2048 event
->array
[0] = 0;
2051 cpu_buffer
->write_stamp
= *ts
;
2052 /* let the caller know this was the commit */
2055 /* Try to discard the event */
2056 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2057 /* Darn, this is just wasted space */
2058 event
->time_delta
= 0;
2059 event
->array
[0] = 0;
2069 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2071 local_inc(&cpu_buffer
->committing
);
2072 local_inc(&cpu_buffer
->commits
);
2075 static void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2077 unsigned long commits
;
2079 if (RB_WARN_ON(cpu_buffer
,
2080 !local_read(&cpu_buffer
->committing
)))
2084 commits
= local_read(&cpu_buffer
->commits
);
2085 /* synchronize with interrupts */
2087 if (local_read(&cpu_buffer
->committing
) == 1)
2088 rb_set_commit_to_write(cpu_buffer
);
2090 local_dec(&cpu_buffer
->committing
);
2092 /* synchronize with interrupts */
2096 * Need to account for interrupts coming in between the
2097 * updating of the commit page and the clearing of the
2098 * committing counter.
2100 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2101 !local_read(&cpu_buffer
->committing
)) {
2102 local_inc(&cpu_buffer
->committing
);
2107 static struct ring_buffer_event
*
2108 rb_reserve_next_event(struct ring_buffer
*buffer
,
2109 struct ring_buffer_per_cpu
*cpu_buffer
,
2110 unsigned long length
)
2112 struct ring_buffer_event
*event
;
2117 rb_start_commit(cpu_buffer
);
2119 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2121 * Due to the ability to swap a cpu buffer from a buffer
2122 * it is possible it was swapped before we committed.
2123 * (committing stops a swap). We check for it here and
2124 * if it happened, we have to fail the write.
2127 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2128 local_dec(&cpu_buffer
->committing
);
2129 local_dec(&cpu_buffer
->commits
);
2134 length
= rb_calculate_event_length(length
);
2137 * We allow for interrupts to reenter here and do a trace.
2138 * If one does, it will cause this original code to loop
2139 * back here. Even with heavy interrupts happening, this
2140 * should only happen a few times in a row. If this happens
2141 * 1000 times in a row, there must be either an interrupt
2142 * storm or we have something buggy.
2145 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2148 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2151 * Only the first commit can update the timestamp.
2152 * Yes there is a race here. If an interrupt comes in
2153 * just after the conditional and it traces too, then it
2154 * will also check the deltas. More than one timestamp may
2155 * also be made. But only the entry that did the actual
2156 * commit will be something other than zero.
2158 if (likely(cpu_buffer
->tail_page
== cpu_buffer
->commit_page
&&
2159 rb_page_write(cpu_buffer
->tail_page
) ==
2160 rb_commit_index(cpu_buffer
))) {
2163 diff
= ts
- cpu_buffer
->write_stamp
;
2165 /* make sure this diff is calculated here */
2168 /* Did the write stamp get updated already? */
2169 if (unlikely(ts
< cpu_buffer
->write_stamp
))
2173 if (unlikely(test_time_stamp(delta
))) {
2175 commit
= rb_add_time_stamp(cpu_buffer
, &ts
, &delta
);
2176 if (commit
== -EBUSY
)
2179 if (commit
== -EAGAIN
)
2182 RB_WARN_ON(cpu_buffer
, commit
< 0);
2187 event
= __rb_reserve_next(cpu_buffer
, 0, length
, &ts
);
2188 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2194 if (!rb_event_is_commit(cpu_buffer
, event
))
2197 event
->time_delta
= delta
;
2202 rb_end_commit(cpu_buffer
);
2206 #ifdef CONFIG_TRACING
2208 #define TRACE_RECURSIVE_DEPTH 16
2210 static int trace_recursive_lock(void)
2212 current
->trace_recursion
++;
2214 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
2217 /* Disable all tracing before we do anything else */
2218 tracing_off_permanent();
2220 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2221 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2222 current
->trace_recursion
,
2223 hardirq_count() >> HARDIRQ_SHIFT
,
2224 softirq_count() >> SOFTIRQ_SHIFT
,
2231 static void trace_recursive_unlock(void)
2233 WARN_ON_ONCE(!current
->trace_recursion
);
2235 current
->trace_recursion
--;
2240 #define trace_recursive_lock() (0)
2241 #define trace_recursive_unlock() do { } while (0)
2245 static DEFINE_PER_CPU(int, rb_need_resched
);
2248 * ring_buffer_lock_reserve - reserve a part of the buffer
2249 * @buffer: the ring buffer to reserve from
2250 * @length: the length of the data to reserve (excluding event header)
2252 * Returns a reseverd event on the ring buffer to copy directly to.
2253 * The user of this interface will need to get the body to write into
2254 * and can use the ring_buffer_event_data() interface.
2256 * The length is the length of the data needed, not the event length
2257 * which also includes the event header.
2259 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2260 * If NULL is returned, then nothing has been allocated or locked.
2262 struct ring_buffer_event
*
2263 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2265 struct ring_buffer_per_cpu
*cpu_buffer
;
2266 struct ring_buffer_event
*event
;
2269 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2272 /* If we are tracing schedule, we don't want to recurse */
2273 resched
= ftrace_preempt_disable();
2275 if (atomic_read(&buffer
->record_disabled
))
2278 if (trace_recursive_lock())
2281 cpu
= raw_smp_processor_id();
2283 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2286 cpu_buffer
= buffer
->buffers
[cpu
];
2288 if (atomic_read(&cpu_buffer
->record_disabled
))
2291 if (length
> BUF_MAX_DATA_SIZE
)
2294 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2299 * Need to store resched state on this cpu.
2300 * Only the first needs to.
2303 if (preempt_count() == 1)
2304 per_cpu(rb_need_resched
, cpu
) = resched
;
2309 trace_recursive_unlock();
2312 ftrace_preempt_enable(resched
);
2315 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2318 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2319 struct ring_buffer_event
*event
)
2322 * The event first in the commit queue updates the
2325 if (rb_event_is_commit(cpu_buffer
, event
))
2326 cpu_buffer
->write_stamp
+= event
->time_delta
;
2329 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2330 struct ring_buffer_event
*event
)
2332 local_inc(&cpu_buffer
->entries
);
2333 rb_update_write_stamp(cpu_buffer
, event
);
2334 rb_end_commit(cpu_buffer
);
2338 * ring_buffer_unlock_commit - commit a reserved
2339 * @buffer: The buffer to commit to
2340 * @event: The event pointer to commit.
2342 * This commits the data to the ring buffer, and releases any locks held.
2344 * Must be paired with ring_buffer_lock_reserve.
2346 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2347 struct ring_buffer_event
*event
)
2349 struct ring_buffer_per_cpu
*cpu_buffer
;
2350 int cpu
= raw_smp_processor_id();
2352 cpu_buffer
= buffer
->buffers
[cpu
];
2354 rb_commit(cpu_buffer
, event
);
2356 trace_recursive_unlock();
2359 * Only the last preempt count needs to restore preemption.
2361 if (preempt_count() == 1)
2362 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2364 preempt_enable_no_resched_notrace();
2368 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2370 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2372 /* array[0] holds the actual length for the discarded event */
2373 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2374 event
->type_len
= RINGBUF_TYPE_PADDING
;
2375 /* time delta must be non zero */
2376 if (!event
->time_delta
)
2377 event
->time_delta
= 1;
2381 * Decrement the entries to the page that an event is on.
2382 * The event does not even need to exist, only the pointer
2383 * to the page it is on. This may only be called before the commit
2387 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2388 struct ring_buffer_event
*event
)
2390 unsigned long addr
= (unsigned long)event
;
2391 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2392 struct buffer_page
*start
;
2396 /* Do the likely case first */
2397 if (likely(bpage
->page
== (void *)addr
)) {
2398 local_dec(&bpage
->entries
);
2403 * Because the commit page may be on the reader page we
2404 * start with the next page and check the end loop there.
2406 rb_inc_page(cpu_buffer
, &bpage
);
2409 if (bpage
->page
== (void *)addr
) {
2410 local_dec(&bpage
->entries
);
2413 rb_inc_page(cpu_buffer
, &bpage
);
2414 } while (bpage
!= start
);
2416 /* commit not part of this buffer?? */
2417 RB_WARN_ON(cpu_buffer
, 1);
2421 * ring_buffer_commit_discard - discard an event that has not been committed
2422 * @buffer: the ring buffer
2423 * @event: non committed event to discard
2425 * Sometimes an event that is in the ring buffer needs to be ignored.
2426 * This function lets the user discard an event in the ring buffer
2427 * and then that event will not be read later.
2429 * This function only works if it is called before the the item has been
2430 * committed. It will try to free the event from the ring buffer
2431 * if another event has not been added behind it.
2433 * If another event has been added behind it, it will set the event
2434 * up as discarded, and perform the commit.
2436 * If this function is called, do not call ring_buffer_unlock_commit on
2439 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2440 struct ring_buffer_event
*event
)
2442 struct ring_buffer_per_cpu
*cpu_buffer
;
2445 /* The event is discarded regardless */
2446 rb_event_discard(event
);
2448 cpu
= smp_processor_id();
2449 cpu_buffer
= buffer
->buffers
[cpu
];
2452 * This must only be called if the event has not been
2453 * committed yet. Thus we can assume that preemption
2454 * is still disabled.
2456 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2458 rb_decrement_entry(cpu_buffer
, event
);
2459 if (rb_try_to_discard(cpu_buffer
, event
))
2463 * The commit is still visible by the reader, so we
2464 * must still update the timestamp.
2466 rb_update_write_stamp(cpu_buffer
, event
);
2468 rb_end_commit(cpu_buffer
);
2470 trace_recursive_unlock();
2473 * Only the last preempt count needs to restore preemption.
2475 if (preempt_count() == 1)
2476 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2478 preempt_enable_no_resched_notrace();
2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2484 * ring_buffer_write - write data to the buffer without reserving
2485 * @buffer: The ring buffer to write to.
2486 * @length: The length of the data being written (excluding the event header)
2487 * @data: The data to write to the buffer.
2489 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2490 * one function. If you already have the data to write to the buffer, it
2491 * may be easier to simply call this function.
2493 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2494 * and not the length of the event which would hold the header.
2496 int ring_buffer_write(struct ring_buffer
*buffer
,
2497 unsigned long length
,
2500 struct ring_buffer_per_cpu
*cpu_buffer
;
2501 struct ring_buffer_event
*event
;
2506 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2509 resched
= ftrace_preempt_disable();
2511 if (atomic_read(&buffer
->record_disabled
))
2514 cpu
= raw_smp_processor_id();
2516 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2519 cpu_buffer
= buffer
->buffers
[cpu
];
2521 if (atomic_read(&cpu_buffer
->record_disabled
))
2524 if (length
> BUF_MAX_DATA_SIZE
)
2527 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2531 body
= rb_event_data(event
);
2533 memcpy(body
, data
, length
);
2535 rb_commit(cpu_buffer
, event
);
2539 ftrace_preempt_enable(resched
);
2543 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2547 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2548 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2549 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2551 /* In case of error, head will be NULL */
2552 if (unlikely(!head
))
2555 return reader
->read
== rb_page_commit(reader
) &&
2556 (commit
== reader
||
2558 head
->read
== rb_page_commit(commit
)));
2562 * ring_buffer_record_disable - stop all writes into the buffer
2563 * @buffer: The ring buffer to stop writes to.
2565 * This prevents all writes to the buffer. Any attempt to write
2566 * to the buffer after this will fail and return NULL.
2568 * The caller should call synchronize_sched() after this.
2570 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2572 atomic_inc(&buffer
->record_disabled
);
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2577 * ring_buffer_record_enable - enable writes to the buffer
2578 * @buffer: The ring buffer to enable writes
2580 * Note, multiple disables will need the same number of enables
2581 * to truly enable the writing (much like preempt_disable).
2583 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2585 atomic_dec(&buffer
->record_disabled
);
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2590 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2591 * @buffer: The ring buffer to stop writes to.
2592 * @cpu: The CPU buffer to stop
2594 * This prevents all writes to the buffer. Any attempt to write
2595 * to the buffer after this will fail and return NULL.
2597 * The caller should call synchronize_sched() after this.
2599 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2601 struct ring_buffer_per_cpu
*cpu_buffer
;
2603 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2606 cpu_buffer
= buffer
->buffers
[cpu
];
2607 atomic_inc(&cpu_buffer
->record_disabled
);
2609 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2612 * ring_buffer_record_enable_cpu - enable writes to the buffer
2613 * @buffer: The ring buffer to enable writes
2614 * @cpu: The CPU to enable.
2616 * Note, multiple disables will need the same number of enables
2617 * to truly enable the writing (much like preempt_disable).
2619 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2621 struct ring_buffer_per_cpu
*cpu_buffer
;
2623 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2626 cpu_buffer
= buffer
->buffers
[cpu
];
2627 atomic_dec(&cpu_buffer
->record_disabled
);
2629 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2632 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633 * @buffer: The ring buffer
2634 * @cpu: The per CPU buffer to get the entries from.
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2638 struct ring_buffer_per_cpu
*cpu_buffer
;
2641 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2644 cpu_buffer
= buffer
->buffers
[cpu
];
2645 ret
= (local_read(&cpu_buffer
->entries
) - local_read(&cpu_buffer
->overrun
))
2650 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2653 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2654 * @buffer: The ring buffer
2655 * @cpu: The per CPU buffer to get the number of overruns from
2657 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2659 struct ring_buffer_per_cpu
*cpu_buffer
;
2662 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2665 cpu_buffer
= buffer
->buffers
[cpu
];
2666 ret
= local_read(&cpu_buffer
->overrun
);
2670 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2673 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2674 * @buffer: The ring buffer
2675 * @cpu: The per CPU buffer to get the number of overruns from
2678 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2680 struct ring_buffer_per_cpu
*cpu_buffer
;
2683 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2686 cpu_buffer
= buffer
->buffers
[cpu
];
2687 ret
= local_read(&cpu_buffer
->commit_overrun
);
2691 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2694 * ring_buffer_entries - get the number of entries in a buffer
2695 * @buffer: The ring buffer
2697 * Returns the total number of entries in the ring buffer
2700 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2702 struct ring_buffer_per_cpu
*cpu_buffer
;
2703 unsigned long entries
= 0;
2706 /* if you care about this being correct, lock the buffer */
2707 for_each_buffer_cpu(buffer
, cpu
) {
2708 cpu_buffer
= buffer
->buffers
[cpu
];
2709 entries
+= (local_read(&cpu_buffer
->entries
) -
2710 local_read(&cpu_buffer
->overrun
)) - cpu_buffer
->read
;
2715 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2718 * ring_buffer_overruns - get the number of overruns in buffer
2719 * @buffer: The ring buffer
2721 * Returns the total number of overruns in the ring buffer
2724 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2726 struct ring_buffer_per_cpu
*cpu_buffer
;
2727 unsigned long overruns
= 0;
2730 /* if you care about this being correct, lock the buffer */
2731 for_each_buffer_cpu(buffer
, cpu
) {
2732 cpu_buffer
= buffer
->buffers
[cpu
];
2733 overruns
+= local_read(&cpu_buffer
->overrun
);
2738 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2740 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2742 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2744 /* Iterator usage is expected to have record disabled */
2745 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2746 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2747 if (unlikely(!iter
->head_page
))
2749 iter
->head
= iter
->head_page
->read
;
2751 iter
->head_page
= cpu_buffer
->reader_page
;
2752 iter
->head
= cpu_buffer
->reader_page
->read
;
2755 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2757 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2758 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
2759 iter
->cache_read
= cpu_buffer
->read
;
2763 * ring_buffer_iter_reset - reset an iterator
2764 * @iter: The iterator to reset
2766 * Resets the iterator, so that it will start from the beginning
2769 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2771 struct ring_buffer_per_cpu
*cpu_buffer
;
2772 unsigned long flags
;
2777 cpu_buffer
= iter
->cpu_buffer
;
2779 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2780 rb_iter_reset(iter
);
2781 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2783 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2786 * ring_buffer_iter_empty - check if an iterator has no more to read
2787 * @iter: The iterator to check
2789 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2791 struct ring_buffer_per_cpu
*cpu_buffer
;
2793 cpu_buffer
= iter
->cpu_buffer
;
2795 return iter
->head_page
== cpu_buffer
->commit_page
&&
2796 iter
->head
== rb_commit_index(cpu_buffer
);
2798 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2801 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2802 struct ring_buffer_event
*event
)
2806 switch (event
->type_len
) {
2807 case RINGBUF_TYPE_PADDING
:
2810 case RINGBUF_TYPE_TIME_EXTEND
:
2811 delta
= event
->array
[0];
2813 delta
+= event
->time_delta
;
2814 cpu_buffer
->read_stamp
+= delta
;
2817 case RINGBUF_TYPE_TIME_STAMP
:
2818 /* FIXME: not implemented */
2821 case RINGBUF_TYPE_DATA
:
2822 cpu_buffer
->read_stamp
+= event
->time_delta
;
2832 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2833 struct ring_buffer_event
*event
)
2837 switch (event
->type_len
) {
2838 case RINGBUF_TYPE_PADDING
:
2841 case RINGBUF_TYPE_TIME_EXTEND
:
2842 delta
= event
->array
[0];
2844 delta
+= event
->time_delta
;
2845 iter
->read_stamp
+= delta
;
2848 case RINGBUF_TYPE_TIME_STAMP
:
2849 /* FIXME: not implemented */
2852 case RINGBUF_TYPE_DATA
:
2853 iter
->read_stamp
+= event
->time_delta
;
2862 static struct buffer_page
*
2863 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2865 struct buffer_page
*reader
= NULL
;
2866 unsigned long overwrite
;
2867 unsigned long flags
;
2871 local_irq_save(flags
);
2872 arch_spin_lock(&cpu_buffer
->lock
);
2876 * This should normally only loop twice. But because the
2877 * start of the reader inserts an empty page, it causes
2878 * a case where we will loop three times. There should be no
2879 * reason to loop four times (that I know of).
2881 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2886 reader
= cpu_buffer
->reader_page
;
2888 /* If there's more to read, return this page */
2889 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2892 /* Never should we have an index greater than the size */
2893 if (RB_WARN_ON(cpu_buffer
,
2894 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2897 /* check if we caught up to the tail */
2899 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2903 * Reset the reader page to size zero.
2905 local_set(&cpu_buffer
->reader_page
->write
, 0);
2906 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2907 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2908 cpu_buffer
->reader_page
->real_end
= 0;
2912 * Splice the empty reader page into the list around the head.
2914 reader
= rb_set_head_page(cpu_buffer
);
2915 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
2916 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2919 * cpu_buffer->pages just needs to point to the buffer, it
2920 * has no specific buffer page to point to. Lets move it out
2921 * of our way so we don't accidently swap it.
2923 cpu_buffer
->pages
= reader
->list
.prev
;
2925 /* The reader page will be pointing to the new head */
2926 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2929 * We want to make sure we read the overruns after we set up our
2930 * pointers to the next object. The writer side does a
2931 * cmpxchg to cross pages which acts as the mb on the writer
2932 * side. Note, the reader will constantly fail the swap
2933 * while the writer is updating the pointers, so this
2934 * guarantees that the overwrite recorded here is the one we
2935 * want to compare with the last_overrun.
2938 overwrite
= local_read(&(cpu_buffer
->overrun
));
2941 * Here's the tricky part.
2943 * We need to move the pointer past the header page.
2944 * But we can only do that if a writer is not currently
2945 * moving it. The page before the header page has the
2946 * flag bit '1' set if it is pointing to the page we want.
2947 * but if the writer is in the process of moving it
2948 * than it will be '2' or already moved '0'.
2951 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2954 * If we did not convert it, then we must try again.
2960 * Yeah! We succeeded in replacing the page.
2962 * Now make the new head point back to the reader page.
2964 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
2965 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2967 /* Finally update the reader page to the new head */
2968 cpu_buffer
->reader_page
= reader
;
2969 rb_reset_reader_page(cpu_buffer
);
2971 if (overwrite
!= cpu_buffer
->last_overrun
) {
2972 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
2973 cpu_buffer
->last_overrun
= overwrite
;
2979 arch_spin_unlock(&cpu_buffer
->lock
);
2980 local_irq_restore(flags
);
2985 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2987 struct ring_buffer_event
*event
;
2988 struct buffer_page
*reader
;
2991 reader
= rb_get_reader_page(cpu_buffer
);
2993 /* This function should not be called when buffer is empty */
2994 if (RB_WARN_ON(cpu_buffer
, !reader
))
2997 event
= rb_reader_event(cpu_buffer
);
2999 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3002 rb_update_read_stamp(cpu_buffer
, event
);
3004 length
= rb_event_length(event
);
3005 cpu_buffer
->reader_page
->read
+= length
;
3008 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3010 struct ring_buffer
*buffer
;
3011 struct ring_buffer_per_cpu
*cpu_buffer
;
3012 struct ring_buffer_event
*event
;
3015 cpu_buffer
= iter
->cpu_buffer
;
3016 buffer
= cpu_buffer
->buffer
;
3019 * Check if we are at the end of the buffer.
3021 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3022 /* discarded commits can make the page empty */
3023 if (iter
->head_page
== cpu_buffer
->commit_page
)
3029 event
= rb_iter_head_event(iter
);
3031 length
= rb_event_length(event
);
3034 * This should not be called to advance the header if we are
3035 * at the tail of the buffer.
3037 if (RB_WARN_ON(cpu_buffer
,
3038 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3039 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3042 rb_update_iter_read_stamp(iter
, event
);
3044 iter
->head
+= length
;
3046 /* check for end of page padding */
3047 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3048 (iter
->head_page
!= cpu_buffer
->commit_page
))
3049 rb_advance_iter(iter
);
3052 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3054 return cpu_buffer
->lost_events
;
3057 static struct ring_buffer_event
*
3058 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3059 unsigned long *lost_events
)
3061 struct ring_buffer_event
*event
;
3062 struct buffer_page
*reader
;
3067 * We repeat when a timestamp is encountered. It is possible
3068 * to get multiple timestamps from an interrupt entering just
3069 * as one timestamp is about to be written, or from discarded
3070 * commits. The most that we can have is the number on a single page.
3072 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3075 reader
= rb_get_reader_page(cpu_buffer
);
3079 event
= rb_reader_event(cpu_buffer
);
3081 switch (event
->type_len
) {
3082 case RINGBUF_TYPE_PADDING
:
3083 if (rb_null_event(event
))
3084 RB_WARN_ON(cpu_buffer
, 1);
3086 * Because the writer could be discarding every
3087 * event it creates (which would probably be bad)
3088 * if we were to go back to "again" then we may never
3089 * catch up, and will trigger the warn on, or lock
3090 * the box. Return the padding, and we will release
3091 * the current locks, and try again.
3095 case RINGBUF_TYPE_TIME_EXTEND
:
3096 /* Internal data, OK to advance */
3097 rb_advance_reader(cpu_buffer
);
3100 case RINGBUF_TYPE_TIME_STAMP
:
3101 /* FIXME: not implemented */
3102 rb_advance_reader(cpu_buffer
);
3105 case RINGBUF_TYPE_DATA
:
3107 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3108 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3109 cpu_buffer
->cpu
, ts
);
3112 *lost_events
= rb_lost_events(cpu_buffer
);
3121 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3123 static struct ring_buffer_event
*
3124 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3126 struct ring_buffer
*buffer
;
3127 struct ring_buffer_per_cpu
*cpu_buffer
;
3128 struct ring_buffer_event
*event
;
3131 cpu_buffer
= iter
->cpu_buffer
;
3132 buffer
= cpu_buffer
->buffer
;
3135 * Check if someone performed a consuming read to
3136 * the buffer. A consuming read invalidates the iterator
3137 * and we need to reset the iterator in this case.
3139 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3140 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3141 rb_iter_reset(iter
);
3144 if (ring_buffer_iter_empty(iter
))
3148 * We repeat when a timestamp is encountered.
3149 * We can get multiple timestamps by nested interrupts or also
3150 * if filtering is on (discarding commits). Since discarding
3151 * commits can be frequent we can get a lot of timestamps.
3152 * But we limit them by not adding timestamps if they begin
3153 * at the start of a page.
3155 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3158 if (rb_per_cpu_empty(cpu_buffer
))
3161 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3166 event
= rb_iter_head_event(iter
);
3168 switch (event
->type_len
) {
3169 case RINGBUF_TYPE_PADDING
:
3170 if (rb_null_event(event
)) {
3174 rb_advance_iter(iter
);
3177 case RINGBUF_TYPE_TIME_EXTEND
:
3178 /* Internal data, OK to advance */
3179 rb_advance_iter(iter
);
3182 case RINGBUF_TYPE_TIME_STAMP
:
3183 /* FIXME: not implemented */
3184 rb_advance_iter(iter
);
3187 case RINGBUF_TYPE_DATA
:
3189 *ts
= iter
->read_stamp
+ event
->time_delta
;
3190 ring_buffer_normalize_time_stamp(buffer
,
3191 cpu_buffer
->cpu
, ts
);
3201 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3203 static inline int rb_ok_to_lock(void)
3206 * If an NMI die dumps out the content of the ring buffer
3207 * do not grab locks. We also permanently disable the ring
3208 * buffer too. A one time deal is all you get from reading
3209 * the ring buffer from an NMI.
3211 if (likely(!in_nmi()))
3214 tracing_off_permanent();
3219 * ring_buffer_peek - peek at the next event to be read
3220 * @buffer: The ring buffer to read
3221 * @cpu: The cpu to peak at
3222 * @ts: The timestamp counter of this event.
3223 * @lost_events: a variable to store if events were lost (may be NULL)
3225 * This will return the event that will be read next, but does
3226 * not consume the data.
3228 struct ring_buffer_event
*
3229 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3230 unsigned long *lost_events
)
3232 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3233 struct ring_buffer_event
*event
;
3234 unsigned long flags
;
3237 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3240 dolock
= rb_ok_to_lock();
3242 local_irq_save(flags
);
3244 spin_lock(&cpu_buffer
->reader_lock
);
3245 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3246 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3247 rb_advance_reader(cpu_buffer
);
3249 spin_unlock(&cpu_buffer
->reader_lock
);
3250 local_irq_restore(flags
);
3252 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3259 * ring_buffer_iter_peek - peek at the next event to be read
3260 * @iter: The ring buffer iterator
3261 * @ts: The timestamp counter of this event.
3263 * This will return the event that will be read next, but does
3264 * not increment the iterator.
3266 struct ring_buffer_event
*
3267 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3269 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3270 struct ring_buffer_event
*event
;
3271 unsigned long flags
;
3274 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3275 event
= rb_iter_peek(iter
, ts
);
3276 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3278 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3285 * ring_buffer_consume - return an event and consume it
3286 * @buffer: The ring buffer to get the next event from
3287 * @cpu: the cpu to read the buffer from
3288 * @ts: a variable to store the timestamp (may be NULL)
3289 * @lost_events: a variable to store if events were lost (may be NULL)
3291 * Returns the next event in the ring buffer, and that event is consumed.
3292 * Meaning, that sequential reads will keep returning a different event,
3293 * and eventually empty the ring buffer if the producer is slower.
3295 struct ring_buffer_event
*
3296 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3297 unsigned long *lost_events
)
3299 struct ring_buffer_per_cpu
*cpu_buffer
;
3300 struct ring_buffer_event
*event
= NULL
;
3301 unsigned long flags
;
3304 dolock
= rb_ok_to_lock();
3307 /* might be called in atomic */
3310 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3313 cpu_buffer
= buffer
->buffers
[cpu
];
3314 local_irq_save(flags
);
3316 spin_lock(&cpu_buffer
->reader_lock
);
3318 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3320 cpu_buffer
->lost_events
= 0;
3321 rb_advance_reader(cpu_buffer
);
3325 spin_unlock(&cpu_buffer
->reader_lock
);
3326 local_irq_restore(flags
);
3331 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3336 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3339 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3340 * @buffer: The ring buffer to read from
3341 * @cpu: The cpu buffer to iterate over
3343 * This performs the initial preparations necessary to iterate
3344 * through the buffer. Memory is allocated, buffer recording
3345 * is disabled, and the iterator pointer is returned to the caller.
3347 * Disabling buffer recordng prevents the reading from being
3348 * corrupted. This is not a consuming read, so a producer is not
3351 * After a sequence of ring_buffer_read_prepare calls, the user is
3352 * expected to make at least one call to ring_buffer_prepare_sync.
3353 * Afterwards, ring_buffer_read_start is invoked to get things going
3356 * This overall must be paired with ring_buffer_finish.
3358 struct ring_buffer_iter
*
3359 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3361 struct ring_buffer_per_cpu
*cpu_buffer
;
3362 struct ring_buffer_iter
*iter
;
3364 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3367 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3371 cpu_buffer
= buffer
->buffers
[cpu
];
3373 iter
->cpu_buffer
= cpu_buffer
;
3375 atomic_inc(&cpu_buffer
->record_disabled
);
3379 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3382 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3384 * All previously invoked ring_buffer_read_prepare calls to prepare
3385 * iterators will be synchronized. Afterwards, read_buffer_read_start
3386 * calls on those iterators are allowed.
3389 ring_buffer_read_prepare_sync(void)
3391 synchronize_sched();
3393 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3396 * ring_buffer_read_start - start a non consuming read of the buffer
3397 * @iter: The iterator returned by ring_buffer_read_prepare
3399 * This finalizes the startup of an iteration through the buffer.
3400 * The iterator comes from a call to ring_buffer_read_prepare and
3401 * an intervening ring_buffer_read_prepare_sync must have been
3404 * Must be paired with ring_buffer_finish.
3407 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3409 struct ring_buffer_per_cpu
*cpu_buffer
;
3410 unsigned long flags
;
3415 cpu_buffer
= iter
->cpu_buffer
;
3417 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3418 arch_spin_lock(&cpu_buffer
->lock
);
3419 rb_iter_reset(iter
);
3420 arch_spin_unlock(&cpu_buffer
->lock
);
3421 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3423 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3426 * ring_buffer_finish - finish reading the iterator of the buffer
3427 * @iter: The iterator retrieved by ring_buffer_start
3429 * This re-enables the recording to the buffer, and frees the
3433 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3435 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3437 atomic_dec(&cpu_buffer
->record_disabled
);
3440 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3443 * ring_buffer_read - read the next item in the ring buffer by the iterator
3444 * @iter: The ring buffer iterator
3445 * @ts: The time stamp of the event read.
3447 * This reads the next event in the ring buffer and increments the iterator.
3449 struct ring_buffer_event
*
3450 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3452 struct ring_buffer_event
*event
;
3453 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3454 unsigned long flags
;
3456 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3458 event
= rb_iter_peek(iter
, ts
);
3462 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3465 rb_advance_iter(iter
);
3467 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3471 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3474 * ring_buffer_size - return the size of the ring buffer (in bytes)
3475 * @buffer: The ring buffer.
3477 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3479 return BUF_PAGE_SIZE
* buffer
->pages
;
3481 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3484 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3486 rb_head_page_deactivate(cpu_buffer
);
3488 cpu_buffer
->head_page
3489 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3490 local_set(&cpu_buffer
->head_page
->write
, 0);
3491 local_set(&cpu_buffer
->head_page
->entries
, 0);
3492 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3494 cpu_buffer
->head_page
->read
= 0;
3496 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3497 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3499 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3500 local_set(&cpu_buffer
->reader_page
->write
, 0);
3501 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3502 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3503 cpu_buffer
->reader_page
->read
= 0;
3505 local_set(&cpu_buffer
->commit_overrun
, 0);
3506 local_set(&cpu_buffer
->overrun
, 0);
3507 local_set(&cpu_buffer
->entries
, 0);
3508 local_set(&cpu_buffer
->committing
, 0);
3509 local_set(&cpu_buffer
->commits
, 0);
3510 cpu_buffer
->read
= 0;
3512 cpu_buffer
->write_stamp
= 0;
3513 cpu_buffer
->read_stamp
= 0;
3515 cpu_buffer
->lost_events
= 0;
3516 cpu_buffer
->last_overrun
= 0;
3518 rb_head_page_activate(cpu_buffer
);
3522 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3523 * @buffer: The ring buffer to reset a per cpu buffer of
3524 * @cpu: The CPU buffer to be reset
3526 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3528 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3529 unsigned long flags
;
3531 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3534 atomic_inc(&cpu_buffer
->record_disabled
);
3536 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3538 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3541 arch_spin_lock(&cpu_buffer
->lock
);
3543 rb_reset_cpu(cpu_buffer
);
3545 arch_spin_unlock(&cpu_buffer
->lock
);
3548 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3550 atomic_dec(&cpu_buffer
->record_disabled
);
3552 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3555 * ring_buffer_reset - reset a ring buffer
3556 * @buffer: The ring buffer to reset all cpu buffers
3558 void ring_buffer_reset(struct ring_buffer
*buffer
)
3562 for_each_buffer_cpu(buffer
, cpu
)
3563 ring_buffer_reset_cpu(buffer
, cpu
);
3565 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3568 * rind_buffer_empty - is the ring buffer empty?
3569 * @buffer: The ring buffer to test
3571 int ring_buffer_empty(struct ring_buffer
*buffer
)
3573 struct ring_buffer_per_cpu
*cpu_buffer
;
3574 unsigned long flags
;
3579 dolock
= rb_ok_to_lock();
3581 /* yes this is racy, but if you don't like the race, lock the buffer */
3582 for_each_buffer_cpu(buffer
, cpu
) {
3583 cpu_buffer
= buffer
->buffers
[cpu
];
3584 local_irq_save(flags
);
3586 spin_lock(&cpu_buffer
->reader_lock
);
3587 ret
= rb_per_cpu_empty(cpu_buffer
);
3589 spin_unlock(&cpu_buffer
->reader_lock
);
3590 local_irq_restore(flags
);
3598 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3601 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3602 * @buffer: The ring buffer
3603 * @cpu: The CPU buffer to test
3605 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3607 struct ring_buffer_per_cpu
*cpu_buffer
;
3608 unsigned long flags
;
3612 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3615 dolock
= rb_ok_to_lock();
3617 cpu_buffer
= buffer
->buffers
[cpu
];
3618 local_irq_save(flags
);
3620 spin_lock(&cpu_buffer
->reader_lock
);
3621 ret
= rb_per_cpu_empty(cpu_buffer
);
3623 spin_unlock(&cpu_buffer
->reader_lock
);
3624 local_irq_restore(flags
);
3628 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3630 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3632 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3633 * @buffer_a: One buffer to swap with
3634 * @buffer_b: The other buffer to swap with
3636 * This function is useful for tracers that want to take a "snapshot"
3637 * of a CPU buffer and has another back up buffer lying around.
3638 * it is expected that the tracer handles the cpu buffer not being
3639 * used at the moment.
3641 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3642 struct ring_buffer
*buffer_b
, int cpu
)
3644 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3645 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3648 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3649 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3652 /* At least make sure the two buffers are somewhat the same */
3653 if (buffer_a
->pages
!= buffer_b
->pages
)
3658 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3661 if (atomic_read(&buffer_a
->record_disabled
))
3664 if (atomic_read(&buffer_b
->record_disabled
))
3667 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3668 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3670 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3673 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3677 * We can't do a synchronize_sched here because this
3678 * function can be called in atomic context.
3679 * Normally this will be called from the same CPU as cpu.
3680 * If not it's up to the caller to protect this.
3682 atomic_inc(&cpu_buffer_a
->record_disabled
);
3683 atomic_inc(&cpu_buffer_b
->record_disabled
);
3686 if (local_read(&cpu_buffer_a
->committing
))
3688 if (local_read(&cpu_buffer_b
->committing
))
3691 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3692 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3694 cpu_buffer_b
->buffer
= buffer_a
;
3695 cpu_buffer_a
->buffer
= buffer_b
;
3700 atomic_dec(&cpu_buffer_a
->record_disabled
);
3701 atomic_dec(&cpu_buffer_b
->record_disabled
);
3705 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3706 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3709 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3710 * @buffer: the buffer to allocate for.
3712 * This function is used in conjunction with ring_buffer_read_page.
3713 * When reading a full page from the ring buffer, these functions
3714 * can be used to speed up the process. The calling function should
3715 * allocate a few pages first with this function. Then when it
3716 * needs to get pages from the ring buffer, it passes the result
3717 * of this function into ring_buffer_read_page, which will swap
3718 * the page that was allocated, with the read page of the buffer.
3721 * The page allocated, or NULL on error.
3723 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3725 struct buffer_data_page
*bpage
;
3728 addr
= __get_free_page(GFP_KERNEL
);
3732 bpage
= (void *)addr
;
3734 rb_init_page(bpage
);
3738 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3741 * ring_buffer_free_read_page - free an allocated read page
3742 * @buffer: the buffer the page was allocate for
3743 * @data: the page to free
3745 * Free a page allocated from ring_buffer_alloc_read_page.
3747 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3749 free_page((unsigned long)data
);
3751 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3754 * ring_buffer_read_page - extract a page from the ring buffer
3755 * @buffer: buffer to extract from
3756 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3757 * @len: amount to extract
3758 * @cpu: the cpu of the buffer to extract
3759 * @full: should the extraction only happen when the page is full.
3761 * This function will pull out a page from the ring buffer and consume it.
3762 * @data_page must be the address of the variable that was returned
3763 * from ring_buffer_alloc_read_page. This is because the page might be used
3764 * to swap with a page in the ring buffer.
3767 * rpage = ring_buffer_alloc_read_page(buffer);
3770 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3772 * process_page(rpage, ret);
3774 * When @full is set, the function will not return true unless
3775 * the writer is off the reader page.
3777 * Note: it is up to the calling functions to handle sleeps and wakeups.
3778 * The ring buffer can be used anywhere in the kernel and can not
3779 * blindly call wake_up. The layer that uses the ring buffer must be
3780 * responsible for that.
3783 * >=0 if data has been transferred, returns the offset of consumed data.
3784 * <0 if no data has been transferred.
3786 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3787 void **data_page
, size_t len
, int cpu
, int full
)
3789 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3790 struct ring_buffer_event
*event
;
3791 struct buffer_data_page
*bpage
;
3792 struct buffer_page
*reader
;
3793 unsigned long missed_events
;
3794 unsigned long flags
;
3795 unsigned int commit
;
3800 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3804 * If len is not big enough to hold the page header, then
3805 * we can not copy anything.
3807 if (len
<= BUF_PAGE_HDR_SIZE
)
3810 len
-= BUF_PAGE_HDR_SIZE
;
3819 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3821 reader
= rb_get_reader_page(cpu_buffer
);
3825 event
= rb_reader_event(cpu_buffer
);
3827 read
= reader
->read
;
3828 commit
= rb_page_commit(reader
);
3830 /* Check if any events were dropped */
3831 missed_events
= cpu_buffer
->lost_events
;
3834 * If this page has been partially read or
3835 * if len is not big enough to read the rest of the page or
3836 * a writer is still on the page, then
3837 * we must copy the data from the page to the buffer.
3838 * Otherwise, we can simply swap the page with the one passed in.
3840 if (read
|| (len
< (commit
- read
)) ||
3841 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3842 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3843 unsigned int rpos
= read
;
3844 unsigned int pos
= 0;
3850 if (len
> (commit
- read
))
3851 len
= (commit
- read
);
3853 size
= rb_event_length(event
);
3858 /* save the current timestamp, since the user will need it */
3859 save_timestamp
= cpu_buffer
->read_stamp
;
3861 /* Need to copy one event at a time */
3863 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3867 rb_advance_reader(cpu_buffer
);
3868 rpos
= reader
->read
;
3871 event
= rb_reader_event(cpu_buffer
);
3872 size
= rb_event_length(event
);
3873 } while (len
> size
);
3876 local_set(&bpage
->commit
, pos
);
3877 bpage
->time_stamp
= save_timestamp
;
3879 /* we copied everything to the beginning */
3882 /* update the entry counter */
3883 cpu_buffer
->read
+= rb_page_entries(reader
);
3885 /* swap the pages */
3886 rb_init_page(bpage
);
3887 bpage
= reader
->page
;
3888 reader
->page
= *data_page
;
3889 local_set(&reader
->write
, 0);
3890 local_set(&reader
->entries
, 0);
3895 * Use the real_end for the data size,
3896 * This gives us a chance to store the lost events
3899 if (reader
->real_end
)
3900 local_set(&bpage
->commit
, reader
->real_end
);
3904 cpu_buffer
->lost_events
= 0;
3906 commit
= local_read(&bpage
->commit
);
3908 * Set a flag in the commit field if we lost events
3910 if (missed_events
) {
3911 /* If there is room at the end of the page to save the
3912 * missed events, then record it there.
3914 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
3915 memcpy(&bpage
->data
[commit
], &missed_events
,
3916 sizeof(missed_events
));
3917 local_add(RB_MISSED_STORED
, &bpage
->commit
);
3918 commit
+= sizeof(missed_events
);
3920 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
3924 * This page may be off to user land. Zero it out here.
3926 if (commit
< BUF_PAGE_SIZE
)
3927 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
3930 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3935 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3937 #ifdef CONFIG_TRACING
3939 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3940 size_t cnt
, loff_t
*ppos
)
3942 unsigned long *p
= filp
->private_data
;
3946 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3947 r
= sprintf(buf
, "permanently disabled\n");
3949 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3951 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3955 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3956 size_t cnt
, loff_t
*ppos
)
3958 unsigned long *p
= filp
->private_data
;
3963 if (cnt
>= sizeof(buf
))
3966 if (copy_from_user(&buf
, ubuf
, cnt
))
3971 ret
= strict_strtoul(buf
, 10, &val
);
3976 set_bit(RB_BUFFERS_ON_BIT
, p
);
3978 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3985 static const struct file_operations rb_simple_fops
= {
3986 .open
= tracing_open_generic
,
3987 .read
= rb_simple_read
,
3988 .write
= rb_simple_write
,
3992 static __init
int rb_init_debugfs(void)
3994 struct dentry
*d_tracer
;
3996 d_tracer
= tracing_init_dentry();
3998 trace_create_file("tracing_on", 0644, d_tracer
,
3999 &ring_buffer_flags
, &rb_simple_fops
);
4004 fs_initcall(rb_init_debugfs
);
4007 #ifdef CONFIG_HOTPLUG_CPU
4008 static int rb_cpu_notify(struct notifier_block
*self
,
4009 unsigned long action
, void *hcpu
)
4011 struct ring_buffer
*buffer
=
4012 container_of(self
, struct ring_buffer
, cpu_notify
);
4013 long cpu
= (long)hcpu
;
4016 case CPU_UP_PREPARE
:
4017 case CPU_UP_PREPARE_FROZEN
:
4018 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4021 buffer
->buffers
[cpu
] =
4022 rb_allocate_cpu_buffer(buffer
, cpu
);
4023 if (!buffer
->buffers
[cpu
]) {
4024 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4029 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4031 case CPU_DOWN_PREPARE
:
4032 case CPU_DOWN_PREPARE_FROZEN
:
4035 * If we were to free the buffer, then the user would
4036 * lose any trace that was in the buffer.