3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47 #include <linux/memremap.h>
49 #include <asm/pgalloc.h>
54 #include <asm/mmu_context.h>
55 #include <asm/pgtable.h>
57 #include <linux/uaccess.h>
59 #include <asm/machdep.h>
62 #include <asm/processor.h>
63 #include <asm/mmzone.h>
64 #include <asm/cputable.h>
65 #include <asm/sections.h>
66 #include <asm/iommu.h>
71 #ifdef CONFIG_PPC_BOOK3S_64
72 #if H_PGTABLE_RANGE > USER_VSID_RANGE
73 #warning Limited user VSID range means pagetable space is wasted
75 #endif /* CONFIG_PPC_BOOK3S_64 */
77 phys_addr_t memstart_addr
= ~0;
78 EXPORT_SYMBOL_GPL(memstart_addr
);
79 phys_addr_t kernstart_addr
;
80 EXPORT_SYMBOL_GPL(kernstart_addr
);
82 #ifdef CONFIG_SPARSEMEM_VMEMMAP
84 * Given an address within the vmemmap, determine the pfn of the page that
85 * represents the start of the section it is within. Note that we have to
86 * do this by hand as the proffered address may not be correctly aligned.
87 * Subtraction of non-aligned pointers produces undefined results.
89 static unsigned long __meminit
vmemmap_section_start(unsigned long page
)
91 unsigned long offset
= page
- ((unsigned long)(vmemmap
));
93 /* Return the pfn of the start of the section. */
94 return (offset
/ sizeof(struct page
)) & PAGE_SECTION_MASK
;
98 * Check if this vmemmap page is already initialised. If any section
99 * which overlaps this vmemmap page is initialised then this page is
100 * initialised already.
102 static int __meminit
vmemmap_populated(unsigned long start
, int page_size
)
104 unsigned long end
= start
+ page_size
;
105 start
= (unsigned long)(pfn_to_page(vmemmap_section_start(start
)));
107 for (; start
< end
; start
+= (PAGES_PER_SECTION
* sizeof(struct page
)))
108 if (pfn_valid(page_to_pfn((struct page
*)start
)))
115 * vmemmap virtual address space management does not have a traditonal page
116 * table to track which virtual struct pages are backed by physical mapping.
117 * The virtual to physical mappings are tracked in a simple linked list
118 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
119 * all times where as the 'next' list maintains the available
120 * vmemmap_backing structures which have been deleted from the
121 * 'vmemmap_global' list during system runtime (memory hotplug remove
122 * operation). The freed 'vmemmap_backing' structures are reused later when
123 * new requests come in without allocating fresh memory. This pointer also
124 * tracks the allocated 'vmemmap_backing' structures as we allocate one
125 * full page memory at a time when we dont have any.
127 struct vmemmap_backing
*vmemmap_list
;
128 static struct vmemmap_backing
*next
;
131 * The same pointer 'next' tracks individual chunks inside the allocated
132 * full page during the boot time and again tracks the freeed nodes during
133 * runtime. It is racy but it does not happen as they are separated by the
134 * boot process. Will create problem if some how we have memory hotplug
135 * operation during boot !!
138 static int num_freed
;
140 static __meminit
struct vmemmap_backing
* vmemmap_list_alloc(int node
)
142 struct vmemmap_backing
*vmem_back
;
143 /* get from freed entries first */
152 /* allocate a page when required and hand out chunks */
154 next
= vmemmap_alloc_block(PAGE_SIZE
, node
);
155 if (unlikely(!next
)) {
159 num_left
= PAGE_SIZE
/ sizeof(struct vmemmap_backing
);
167 static __meminit
void vmemmap_list_populate(unsigned long phys
,
171 struct vmemmap_backing
*vmem_back
;
173 vmem_back
= vmemmap_list_alloc(node
);
174 if (unlikely(!vmem_back
)) {
179 vmem_back
->phys
= phys
;
180 vmem_back
->virt_addr
= start
;
181 vmem_back
->list
= vmemmap_list
;
183 vmemmap_list
= vmem_back
;
186 int __meminit
vmemmap_populate(unsigned long start
, unsigned long end
, int node
,
187 struct vmem_altmap
*altmap
)
189 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
191 /* Align to the page size of the linear mapping. */
192 start
= _ALIGN_DOWN(start
, page_size
);
194 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start
, end
, node
);
196 for (; start
< end
; start
+= page_size
) {
200 if (vmemmap_populated(start
, page_size
))
204 p
= altmap_alloc_block_buf(page_size
, altmap
);
206 p
= vmemmap_alloc_block_buf(page_size
, node
);
210 vmemmap_list_populate(__pa(p
), start
, node
);
212 pr_debug(" * %016lx..%016lx allocated at %p\n",
213 start
, start
+ page_size
, p
);
215 rc
= vmemmap_create_mapping(start
, page_size
, __pa(p
));
217 pr_warn("%s: Unable to create vmemmap mapping: %d\n",
226 #ifdef CONFIG_MEMORY_HOTPLUG
227 static unsigned long vmemmap_list_free(unsigned long start
)
229 struct vmemmap_backing
*vmem_back
, *vmem_back_prev
;
231 vmem_back_prev
= vmem_back
= vmemmap_list
;
233 /* look for it with prev pointer recorded */
234 for (; vmem_back
; vmem_back
= vmem_back
->list
) {
235 if (vmem_back
->virt_addr
== start
)
237 vmem_back_prev
= vmem_back
;
240 if (unlikely(!vmem_back
)) {
245 /* remove it from vmemmap_list */
246 if (vmem_back
== vmemmap_list
) /* remove head */
247 vmemmap_list
= vmem_back
->list
;
249 vmem_back_prev
->list
= vmem_back
->list
;
251 /* next point to this freed entry */
252 vmem_back
->list
= next
;
256 return vmem_back
->phys
;
259 void __ref
vmemmap_free(unsigned long start
, unsigned long end
,
260 struct vmem_altmap
*altmap
)
262 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
263 unsigned long page_order
= get_order(page_size
);
265 start
= _ALIGN_DOWN(start
, page_size
);
267 pr_debug("vmemmap_free %lx...%lx\n", start
, end
);
269 for (; start
< end
; start
+= page_size
) {
270 unsigned long nr_pages
, addr
;
271 struct page
*section_base
;
275 * the section has already be marked as invalid, so
276 * vmemmap_populated() true means some other sections still
277 * in this page, so skip it.
279 if (vmemmap_populated(start
, page_size
))
282 addr
= vmemmap_list_free(start
);
286 page
= pfn_to_page(addr
>> PAGE_SHIFT
);
287 section_base
= pfn_to_page(vmemmap_section_start(start
));
288 nr_pages
= 1 << page_order
;
291 vmem_altmap_free(altmap
, nr_pages
);
292 } else if (PageReserved(page
)) {
293 /* allocated from bootmem */
294 if (page_size
< PAGE_SIZE
) {
296 * this shouldn't happen, but if it is
297 * the case, leave the memory there
302 free_reserved_page(page
++);
305 free_pages((unsigned long)(__va(addr
)), page_order
);
308 vmemmap_remove_mapping(start
, page_size
);
312 void register_page_bootmem_memmap(unsigned long section_nr
,
313 struct page
*start_page
, unsigned long size
)
318 * We do not have access to the sparsemem vmemmap, so we fallback to
319 * walking the list of sparsemem blocks which we already maintain for
320 * the sake of crashdump. In the long run, we might want to maintain
321 * a tree if performance of that linear walk becomes a problem.
323 * realmode_pfn_to_page functions can fail due to:
324 * 1) As real sparsemem blocks do not lay in RAM continously (they
325 * are in virtual address space which is not available in the real mode),
326 * the requested page struct can be split between blocks so get_page/put_page
328 * 2) When huge pages are used, the get_page/put_page API will fail
329 * in real mode as the linked addresses in the page struct are virtual
332 struct page
*realmode_pfn_to_page(unsigned long pfn
)
334 struct vmemmap_backing
*vmem_back
;
336 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
337 unsigned long pg_va
= (unsigned long) pfn_to_page(pfn
);
339 for (vmem_back
= vmemmap_list
; vmem_back
; vmem_back
= vmem_back
->list
) {
340 if (pg_va
< vmem_back
->virt_addr
)
343 /* After vmemmap_list entry free is possible, need check all */
344 if ((pg_va
+ sizeof(struct page
)) <=
345 (vmem_back
->virt_addr
+ page_size
)) {
346 page
= (struct page
*) (vmem_back
->phys
+ pg_va
-
347 vmem_back
->virt_addr
);
352 /* Probably that page struct is split between real pages */
355 EXPORT_SYMBOL_GPL(realmode_pfn_to_page
);
359 struct page
*realmode_pfn_to_page(unsigned long pfn
)
361 struct page
*page
= pfn_to_page(pfn
);
364 EXPORT_SYMBOL_GPL(realmode_pfn_to_page
);
366 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
368 #ifdef CONFIG_PPC_BOOK3S_64
369 static bool disable_radix
= !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT
);
371 static int __init
parse_disable_radix(char *p
)
377 else if (kstrtobool(p
, &val
))
384 early_param("disable_radix", parse_disable_radix
);
387 * If we're running under a hypervisor, we need to check the contents of
388 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
389 * radix. If not, we clear the radix feature bit so we fall back to hash.
391 static void __init
early_check_vec5(void)
393 unsigned long root
, chosen
;
398 root
= of_get_flat_dt_root();
399 chosen
= of_get_flat_dt_subnode_by_name(root
, "chosen");
400 if (chosen
== -FDT_ERR_NOTFOUND
) {
401 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_TYPE_RADIX
;
404 vec5
= of_get_flat_dt_prop(chosen
, "ibm,architecture-vec-5", &size
);
406 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_TYPE_RADIX
;
409 if (size
<= OV5_INDX(OV5_MMU_SUPPORT
)) {
410 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_TYPE_RADIX
;
414 /* Check for supported configuration */
415 mmu_supported
= vec5
[OV5_INDX(OV5_MMU_SUPPORT
)] &
416 OV5_FEAT(OV5_MMU_SUPPORT
);
417 if (mmu_supported
== OV5_FEAT(OV5_MMU_RADIX
)) {
418 /* Hypervisor only supports radix - check enabled && GTSE */
419 if (!early_radix_enabled()) {
420 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
422 if (!(vec5
[OV5_INDX(OV5_RADIX_GTSE
)] &
423 OV5_FEAT(OV5_RADIX_GTSE
))) {
424 pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
426 /* Do radix anyway - the hypervisor said we had to */
427 cur_cpu_spec
->mmu_features
|= MMU_FTR_TYPE_RADIX
;
428 } else if (mmu_supported
== OV5_FEAT(OV5_MMU_HASH
)) {
429 /* Hypervisor only supports hash - disable radix */
430 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_TYPE_RADIX
;
434 void __init
mmu_early_init_devtree(void)
436 /* Disable radix mode based on kernel command line. */
438 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_TYPE_RADIX
;
441 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
442 * When running bare-metal, we can use radix if we like
443 * even though the ibm,architecture-vec-5 property created by
444 * skiboot doesn't have the necessary bits set.
446 if (!(mfmsr() & MSR_HV
))
449 if (early_radix_enabled())
450 radix__early_init_devtree();
452 hash__early_init_devtree();
454 #endif /* CONFIG_PPC_BOOK3S_64 */