Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / arch / powerpc / mm / pgtable-radix.c
blob2e10a964e29080149fe60b5d9a2220fdc710bb79
1 /*
2 * Page table handling routines for radix page table.
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #define pr_fmt(fmt) "radix-mmu: " fmt
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
18 #include <linux/mm.h>
19 #include <linux/string_helpers.h>
20 #include <linux/stop_machine.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/mmu_context.h>
25 #include <asm/dma.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu.h>
28 #include <asm/firmware.h>
29 #include <asm/powernv.h>
30 #include <asm/sections.h>
31 #include <asm/trace.h>
33 #include <trace/events/thp.h>
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
38 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
39 unsigned long table_size)
41 unsigned long patb0, patb1;
43 patb0 = be64_to_cpu(partition_tb[0].patb0);
44 patb1 = base | table_size | PATB_GR;
46 mmu_partition_table_set_entry(0, patb0, patb1);
48 return 0;
51 static __ref void *early_alloc_pgtable(unsigned long size)
53 void *pt;
55 pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE));
56 memset(pt, 0, size);
58 return pt;
61 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
62 pgprot_t flags,
63 unsigned int map_page_size)
65 pgd_t *pgdp;
66 pud_t *pudp;
67 pmd_t *pmdp;
68 pte_t *ptep;
70 * Make sure task size is correct as per the max adddr
72 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
73 if (slab_is_available()) {
74 pgdp = pgd_offset_k(ea);
75 pudp = pud_alloc(&init_mm, pgdp, ea);
76 if (!pudp)
77 return -ENOMEM;
78 if (map_page_size == PUD_SIZE) {
79 ptep = (pte_t *)pudp;
80 goto set_the_pte;
82 pmdp = pmd_alloc(&init_mm, pudp, ea);
83 if (!pmdp)
84 return -ENOMEM;
85 if (map_page_size == PMD_SIZE) {
86 ptep = pmdp_ptep(pmdp);
87 goto set_the_pte;
89 ptep = pte_alloc_kernel(pmdp, ea);
90 if (!ptep)
91 return -ENOMEM;
92 } else {
93 pgdp = pgd_offset_k(ea);
94 if (pgd_none(*pgdp)) {
95 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
96 BUG_ON(pudp == NULL);
97 pgd_populate(&init_mm, pgdp, pudp);
99 pudp = pud_offset(pgdp, ea);
100 if (map_page_size == PUD_SIZE) {
101 ptep = (pte_t *)pudp;
102 goto set_the_pte;
104 if (pud_none(*pudp)) {
105 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
106 BUG_ON(pmdp == NULL);
107 pud_populate(&init_mm, pudp, pmdp);
109 pmdp = pmd_offset(pudp, ea);
110 if (map_page_size == PMD_SIZE) {
111 ptep = pmdp_ptep(pmdp);
112 goto set_the_pte;
114 if (!pmd_present(*pmdp)) {
115 ptep = early_alloc_pgtable(PAGE_SIZE);
116 BUG_ON(ptep == NULL);
117 pmd_populate_kernel(&init_mm, pmdp, ptep);
119 ptep = pte_offset_kernel(pmdp, ea);
122 set_the_pte:
123 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags));
124 smp_wmb();
125 return 0;
128 #ifdef CONFIG_STRICT_KERNEL_RWX
129 void radix__change_memory_range(unsigned long start, unsigned long end,
130 unsigned long clear)
132 unsigned long idx;
133 pgd_t *pgdp;
134 pud_t *pudp;
135 pmd_t *pmdp;
136 pte_t *ptep;
138 start = ALIGN_DOWN(start, PAGE_SIZE);
139 end = PAGE_ALIGN(end); // aligns up
141 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
142 start, end, clear);
144 for (idx = start; idx < end; idx += PAGE_SIZE) {
145 pgdp = pgd_offset_k(idx);
146 pudp = pud_alloc(&init_mm, pgdp, idx);
147 if (!pudp)
148 continue;
149 if (pud_huge(*pudp)) {
150 ptep = (pte_t *)pudp;
151 goto update_the_pte;
153 pmdp = pmd_alloc(&init_mm, pudp, idx);
154 if (!pmdp)
155 continue;
156 if (pmd_huge(*pmdp)) {
157 ptep = pmdp_ptep(pmdp);
158 goto update_the_pte;
160 ptep = pte_alloc_kernel(pmdp, idx);
161 if (!ptep)
162 continue;
163 update_the_pte:
164 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
167 radix__flush_tlb_kernel_range(start, end);
170 void radix__mark_rodata_ro(void)
172 unsigned long start, end;
175 * mark_rodata_ro() will mark itself as !writable at some point.
176 * Due to DD1 workaround in radix__pte_update(), we'll end up with
177 * an invalid pte and the system will crash quite severly.
179 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
180 pr_warn("Warning: Unable to mark rodata read only on P9 DD1\n");
181 return;
184 start = (unsigned long)_stext;
185 end = (unsigned long)__init_begin;
187 radix__change_memory_range(start, end, _PAGE_WRITE);
190 void radix__mark_initmem_nx(void)
192 unsigned long start = (unsigned long)__init_begin;
193 unsigned long end = (unsigned long)__init_end;
195 radix__change_memory_range(start, end, _PAGE_EXEC);
197 #endif /* CONFIG_STRICT_KERNEL_RWX */
199 static inline void __meminit print_mapping(unsigned long start,
200 unsigned long end,
201 unsigned long size)
203 char buf[10];
205 if (end <= start)
206 return;
208 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
210 pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
213 static int __meminit create_physical_mapping(unsigned long start,
214 unsigned long end)
216 unsigned long vaddr, addr, mapping_size = 0;
217 pgprot_t prot;
218 unsigned long max_mapping_size;
219 #ifdef CONFIG_STRICT_KERNEL_RWX
220 int split_text_mapping = 1;
221 #else
222 int split_text_mapping = 0;
223 #endif
225 start = _ALIGN_UP(start, PAGE_SIZE);
226 for (addr = start; addr < end; addr += mapping_size) {
227 unsigned long gap, previous_size;
228 int rc;
230 gap = end - addr;
231 previous_size = mapping_size;
232 max_mapping_size = PUD_SIZE;
234 retry:
235 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
236 mmu_psize_defs[MMU_PAGE_1G].shift &&
237 PUD_SIZE <= max_mapping_size)
238 mapping_size = PUD_SIZE;
239 else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
240 mmu_psize_defs[MMU_PAGE_2M].shift)
241 mapping_size = PMD_SIZE;
242 else
243 mapping_size = PAGE_SIZE;
245 if (split_text_mapping && (mapping_size == PUD_SIZE) &&
246 (addr <= __pa_symbol(__init_begin)) &&
247 (addr + mapping_size) >= __pa_symbol(_stext)) {
248 max_mapping_size = PMD_SIZE;
249 goto retry;
252 if (split_text_mapping && (mapping_size == PMD_SIZE) &&
253 (addr <= __pa_symbol(__init_begin)) &&
254 (addr + mapping_size) >= __pa_symbol(_stext))
255 mapping_size = PAGE_SIZE;
257 if (mapping_size != previous_size) {
258 print_mapping(start, addr, previous_size);
259 start = addr;
262 vaddr = (unsigned long)__va(addr);
264 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
265 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
266 prot = PAGE_KERNEL_X;
267 else
268 prot = PAGE_KERNEL;
270 rc = radix__map_kernel_page(vaddr, addr, prot, mapping_size);
271 if (rc)
272 return rc;
275 print_mapping(start, addr, mapping_size);
276 return 0;
279 static void __init radix_init_pgtable(void)
281 unsigned long rts_field;
282 struct memblock_region *reg;
284 /* We don't support slb for radix */
285 mmu_slb_size = 0;
287 * Create the linear mapping, using standard page size for now
289 for_each_memblock(memory, reg)
290 WARN_ON(create_physical_mapping(reg->base,
291 reg->base + reg->size));
293 /* Find out how many PID bits are supported */
294 if (cpu_has_feature(CPU_FTR_HVMODE)) {
295 if (!mmu_pid_bits)
296 mmu_pid_bits = 20;
297 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
299 * When KVM is possible, we only use the top half of the
300 * PID space to avoid collisions between host and guest PIDs
301 * which can cause problems due to prefetch when exiting the
302 * guest with AIL=3
304 mmu_base_pid = 1 << (mmu_pid_bits - 1);
305 #else
306 mmu_base_pid = 1;
307 #endif
308 } else {
309 /* The guest uses the bottom half of the PID space */
310 if (!mmu_pid_bits)
311 mmu_pid_bits = 19;
312 mmu_base_pid = 1;
316 * Allocate Partition table and process table for the
317 * host.
319 BUG_ON(PRTB_SIZE_SHIFT > 36);
320 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
322 * Fill in the process table.
324 rts_field = radix__get_tree_size();
325 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
327 * Fill in the partition table. We are suppose to use effective address
328 * of process table here. But our linear mapping also enable us to use
329 * physical address here.
331 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
332 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
333 asm volatile("ptesync" : : : "memory");
334 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
335 "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
336 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
337 trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
340 * The init_mm context is given the first available (non-zero) PID,
341 * which is the "guard PID" and contains no page table. PIDR should
342 * never be set to zero because that duplicates the kernel address
343 * space at the 0x0... offset (quadrant 0)!
345 * An arbitrary PID that may later be allocated by the PID allocator
346 * for userspace processes must not be used either, because that
347 * would cause stale user mappings for that PID on CPUs outside of
348 * the TLB invalidation scheme (because it won't be in mm_cpumask).
350 * So permanently carve out one PID for the purpose of a guard PID.
352 init_mm.context.id = mmu_base_pid;
353 mmu_base_pid++;
356 static void __init radix_init_partition_table(void)
358 unsigned long rts_field, dw0;
360 mmu_partition_table_init();
361 rts_field = radix__get_tree_size();
362 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
363 mmu_partition_table_set_entry(0, dw0, 0);
365 pr_info("Initializing Radix MMU\n");
366 pr_info("Partition table %p\n", partition_tb);
369 void __init radix_init_native(void)
371 register_process_table = native_register_process_table;
374 static int __init get_idx_from_shift(unsigned int shift)
376 int idx = -1;
378 switch (shift) {
379 case 0xc:
380 idx = MMU_PAGE_4K;
381 break;
382 case 0x10:
383 idx = MMU_PAGE_64K;
384 break;
385 case 0x15:
386 idx = MMU_PAGE_2M;
387 break;
388 case 0x1e:
389 idx = MMU_PAGE_1G;
390 break;
392 return idx;
395 static int __init radix_dt_scan_page_sizes(unsigned long node,
396 const char *uname, int depth,
397 void *data)
399 int size = 0;
400 int shift, idx;
401 unsigned int ap;
402 const __be32 *prop;
403 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
405 /* We are scanning "cpu" nodes only */
406 if (type == NULL || strcmp(type, "cpu") != 0)
407 return 0;
409 /* Find MMU PID size */
410 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
411 if (prop && size == 4)
412 mmu_pid_bits = be32_to_cpup(prop);
414 /* Grab page size encodings */
415 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
416 if (!prop)
417 return 0;
419 pr_info("Page sizes from device-tree:\n");
420 for (; size >= 4; size -= 4, ++prop) {
422 struct mmu_psize_def *def;
424 /* top 3 bit is AP encoding */
425 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
426 ap = be32_to_cpu(prop[0]) >> 29;
427 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
429 idx = get_idx_from_shift(shift);
430 if (idx < 0)
431 continue;
433 def = &mmu_psize_defs[idx];
434 def->shift = shift;
435 def->ap = ap;
438 /* needed ? */
439 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
440 return 1;
443 void __init radix__early_init_devtree(void)
445 int rc;
448 * Try to find the available page sizes in the device-tree
450 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
451 if (rc != 0) /* Found */
452 goto found;
454 * let's assume we have page 4k and 64k support
456 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
457 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
459 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
460 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
461 found:
462 #ifdef CONFIG_SPARSEMEM_VMEMMAP
463 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
465 * map vmemmap using 2M if available
467 mmu_vmemmap_psize = MMU_PAGE_2M;
469 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
470 return;
473 static void update_hid_for_radix(void)
475 unsigned long hid0;
476 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
478 asm volatile("ptesync": : :"memory");
479 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
480 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
481 : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
482 /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
483 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
484 : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
485 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
486 trace_tlbie(0, 0, rb, 0, 2, 0, 1);
487 trace_tlbie(0, 0, rb, 0, 2, 1, 1);
490 * now switch the HID
492 hid0 = mfspr(SPRN_HID0);
493 hid0 |= HID0_POWER9_RADIX;
494 mtspr(SPRN_HID0, hid0);
495 asm volatile("isync": : :"memory");
497 /* Wait for it to happen */
498 while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
499 cpu_relax();
502 static void radix_init_amor(void)
505 * In HV mode, we init AMOR (Authority Mask Override Register) so that
506 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
507 * Register), enable key 0 and set it to 1.
509 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
511 mtspr(SPRN_AMOR, (3ul << 62));
514 static void radix_init_iamr(void)
516 unsigned long iamr;
519 * The IAMR should set to 0 on DD1.
521 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
522 iamr = 0;
523 else
524 iamr = (1ul << 62);
527 * Radix always uses key0 of the IAMR to determine if an access is
528 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
529 * fetch.
531 mtspr(SPRN_IAMR, iamr);
534 void __init radix__early_init_mmu(void)
536 unsigned long lpcr;
538 #ifdef CONFIG_PPC_64K_PAGES
539 /* PAGE_SIZE mappings */
540 mmu_virtual_psize = MMU_PAGE_64K;
541 #else
542 mmu_virtual_psize = MMU_PAGE_4K;
543 #endif
545 #ifdef CONFIG_SPARSEMEM_VMEMMAP
546 /* vmemmap mapping */
547 mmu_vmemmap_psize = mmu_virtual_psize;
548 #endif
550 * initialize page table size
552 __pte_index_size = RADIX_PTE_INDEX_SIZE;
553 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
554 __pud_index_size = RADIX_PUD_INDEX_SIZE;
555 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
556 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
557 __pmd_cache_index = RADIX_PMD_INDEX_SIZE;
558 __pte_table_size = RADIX_PTE_TABLE_SIZE;
559 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
560 __pud_table_size = RADIX_PUD_TABLE_SIZE;
561 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
563 __pmd_val_bits = RADIX_PMD_VAL_BITS;
564 __pud_val_bits = RADIX_PUD_VAL_BITS;
565 __pgd_val_bits = RADIX_PGD_VAL_BITS;
567 __kernel_virt_start = RADIX_KERN_VIRT_START;
568 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
569 __vmalloc_start = RADIX_VMALLOC_START;
570 __vmalloc_end = RADIX_VMALLOC_END;
571 __kernel_io_start = RADIX_KERN_IO_START;
572 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
573 ioremap_bot = IOREMAP_BASE;
575 #ifdef CONFIG_PCI
576 pci_io_base = ISA_IO_BASE;
577 #endif
580 * For now radix also use the same frag size
582 __pte_frag_nr = H_PTE_FRAG_NR;
583 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
585 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
586 radix_init_native();
587 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
588 update_hid_for_radix();
589 lpcr = mfspr(SPRN_LPCR);
590 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
591 radix_init_partition_table();
592 radix_init_amor();
593 } else {
594 radix_init_pseries();
597 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
599 radix_init_iamr();
600 radix_init_pgtable();
601 /* Switch to the guard PID before turning on MMU */
602 radix__switch_mmu_context(NULL, &init_mm);
603 if (cpu_has_feature(CPU_FTR_HVMODE))
604 tlbiel_all();
607 void radix__early_init_mmu_secondary(void)
609 unsigned long lpcr;
611 * update partition table control register and UPRT
613 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
615 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
616 update_hid_for_radix();
618 lpcr = mfspr(SPRN_LPCR);
619 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
621 mtspr(SPRN_PTCR,
622 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
623 radix_init_amor();
625 radix_init_iamr();
627 radix__switch_mmu_context(NULL, &init_mm);
628 if (cpu_has_feature(CPU_FTR_HVMODE))
629 tlbiel_all();
632 void radix__mmu_cleanup_all(void)
634 unsigned long lpcr;
636 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
637 lpcr = mfspr(SPRN_LPCR);
638 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
639 mtspr(SPRN_PTCR, 0);
640 powernv_set_nmmu_ptcr(0);
641 radix__flush_tlb_all();
645 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
646 phys_addr_t first_memblock_size)
648 /* We don't currently support the first MEMBLOCK not mapping 0
649 * physical on those processors
651 BUG_ON(first_memblock_base != 0);
654 * Radix mode is not limited by RMA / VRMA addressing.
656 ppc64_rma_size = ULONG_MAX;
659 #ifdef CONFIG_MEMORY_HOTPLUG
660 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
662 pte_t *pte;
663 int i;
665 for (i = 0; i < PTRS_PER_PTE; i++) {
666 pte = pte_start + i;
667 if (!pte_none(*pte))
668 return;
671 pte_free_kernel(&init_mm, pte_start);
672 pmd_clear(pmd);
675 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
677 pmd_t *pmd;
678 int i;
680 for (i = 0; i < PTRS_PER_PMD; i++) {
681 pmd = pmd_start + i;
682 if (!pmd_none(*pmd))
683 return;
686 pmd_free(&init_mm, pmd_start);
687 pud_clear(pud);
690 struct change_mapping_params {
691 pte_t *pte;
692 unsigned long start;
693 unsigned long end;
694 unsigned long aligned_start;
695 unsigned long aligned_end;
698 static int stop_machine_change_mapping(void *data)
700 struct change_mapping_params *params =
701 (struct change_mapping_params *)data;
703 if (!data)
704 return -1;
706 spin_unlock(&init_mm.page_table_lock);
707 pte_clear(&init_mm, params->aligned_start, params->pte);
708 create_physical_mapping(params->aligned_start, params->start);
709 create_physical_mapping(params->end, params->aligned_end);
710 spin_lock(&init_mm.page_table_lock);
711 return 0;
714 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
715 unsigned long end)
717 unsigned long next;
718 pte_t *pte;
720 pte = pte_start + pte_index(addr);
721 for (; addr < end; addr = next, pte++) {
722 next = (addr + PAGE_SIZE) & PAGE_MASK;
723 if (next > end)
724 next = end;
726 if (!pte_present(*pte))
727 continue;
729 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
731 * The vmemmap_free() and remove_section_mapping()
732 * codepaths call us with aligned addresses.
734 WARN_ONCE(1, "%s: unaligned range\n", __func__);
735 continue;
738 pte_clear(&init_mm, addr, pte);
743 * clear the pte and potentially split the mapping helper
745 static void split_kernel_mapping(unsigned long addr, unsigned long end,
746 unsigned long size, pte_t *pte)
748 unsigned long mask = ~(size - 1);
749 unsigned long aligned_start = addr & mask;
750 unsigned long aligned_end = addr + size;
751 struct change_mapping_params params;
752 bool split_region = false;
754 if ((end - addr) < size) {
756 * We're going to clear the PTE, but not flushed
757 * the mapping, time to remap and flush. The
758 * effects if visible outside the processor or
759 * if we are running in code close to the
760 * mapping we cleared, we are in trouble.
762 if (overlaps_kernel_text(aligned_start, addr) ||
763 overlaps_kernel_text(end, aligned_end)) {
765 * Hack, just return, don't pte_clear
767 WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
768 "text, not splitting\n", addr, end);
769 return;
771 split_region = true;
774 if (split_region) {
775 params.pte = pte;
776 params.start = addr;
777 params.end = end;
778 params.aligned_start = addr & ~(size - 1);
779 params.aligned_end = min_t(unsigned long, aligned_end,
780 (unsigned long)__va(memblock_end_of_DRAM()));
781 stop_machine(stop_machine_change_mapping, &params, NULL);
782 return;
785 pte_clear(&init_mm, addr, pte);
788 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
789 unsigned long end)
791 unsigned long next;
792 pte_t *pte_base;
793 pmd_t *pmd;
795 pmd = pmd_start + pmd_index(addr);
796 for (; addr < end; addr = next, pmd++) {
797 next = pmd_addr_end(addr, end);
799 if (!pmd_present(*pmd))
800 continue;
802 if (pmd_huge(*pmd)) {
803 split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
804 continue;
807 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
808 remove_pte_table(pte_base, addr, next);
809 free_pte_table(pte_base, pmd);
813 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
814 unsigned long end)
816 unsigned long next;
817 pmd_t *pmd_base;
818 pud_t *pud;
820 pud = pud_start + pud_index(addr);
821 for (; addr < end; addr = next, pud++) {
822 next = pud_addr_end(addr, end);
824 if (!pud_present(*pud))
825 continue;
827 if (pud_huge(*pud)) {
828 split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
829 continue;
832 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
833 remove_pmd_table(pmd_base, addr, next);
834 free_pmd_table(pmd_base, pud);
838 static void remove_pagetable(unsigned long start, unsigned long end)
840 unsigned long addr, next;
841 pud_t *pud_base;
842 pgd_t *pgd;
844 spin_lock(&init_mm.page_table_lock);
846 for (addr = start; addr < end; addr = next) {
847 next = pgd_addr_end(addr, end);
849 pgd = pgd_offset_k(addr);
850 if (!pgd_present(*pgd))
851 continue;
853 if (pgd_huge(*pgd)) {
854 split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
855 continue;
858 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
859 remove_pud_table(pud_base, addr, next);
862 spin_unlock(&init_mm.page_table_lock);
863 radix__flush_tlb_kernel_range(start, end);
866 int __ref radix__create_section_mapping(unsigned long start, unsigned long end)
868 return create_physical_mapping(start, end);
871 int radix__remove_section_mapping(unsigned long start, unsigned long end)
873 remove_pagetable(start, end);
874 return 0;
876 #endif /* CONFIG_MEMORY_HOTPLUG */
878 #ifdef CONFIG_SPARSEMEM_VMEMMAP
879 int __meminit radix__vmemmap_create_mapping(unsigned long start,
880 unsigned long page_size,
881 unsigned long phys)
883 /* Create a PTE encoding */
884 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
886 BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size));
887 return 0;
890 #ifdef CONFIG_MEMORY_HOTPLUG
891 void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
893 remove_pagetable(start, start + page_size);
895 #endif
896 #endif
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
901 pmd_t *pmdp, unsigned long clr,
902 unsigned long set)
904 unsigned long old;
906 #ifdef CONFIG_DEBUG_VM
907 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
908 assert_spin_locked(&mm->page_table_lock);
909 #endif
911 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
912 trace_hugepage_update(addr, old, clr, set);
914 return old;
917 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
918 pmd_t *pmdp)
921 pmd_t pmd;
923 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
924 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
925 VM_BUG_ON(pmd_devmap(*pmdp));
927 * khugepaged calls this for normal pmd
929 pmd = *pmdp;
930 pmd_clear(pmdp);
932 /*FIXME!! Verify whether we need this kick below */
933 serialize_against_pte_lookup(vma->vm_mm);
935 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
937 return pmd;
941 * For us pgtable_t is pte_t *. Inorder to save the deposisted
942 * page table, we consider the allocated page table as a list
943 * head. On withdraw we need to make sure we zero out the used
944 * list_head memory area.
946 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
947 pgtable_t pgtable)
949 struct list_head *lh = (struct list_head *) pgtable;
951 assert_spin_locked(pmd_lockptr(mm, pmdp));
953 /* FIFO */
954 if (!pmd_huge_pte(mm, pmdp))
955 INIT_LIST_HEAD(lh);
956 else
957 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
958 pmd_huge_pte(mm, pmdp) = pgtable;
961 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
963 pte_t *ptep;
964 pgtable_t pgtable;
965 struct list_head *lh;
967 assert_spin_locked(pmd_lockptr(mm, pmdp));
969 /* FIFO */
970 pgtable = pmd_huge_pte(mm, pmdp);
971 lh = (struct list_head *) pgtable;
972 if (list_empty(lh))
973 pmd_huge_pte(mm, pmdp) = NULL;
974 else {
975 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
976 list_del(lh);
978 ptep = (pte_t *) pgtable;
979 *ptep = __pte(0);
980 ptep++;
981 *ptep = __pte(0);
982 return pgtable;
986 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
987 unsigned long addr, pmd_t *pmdp)
989 pmd_t old_pmd;
990 unsigned long old;
992 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
993 old_pmd = __pmd(old);
995 * Serialize against find_current_mm_pte which does lock-less
996 * lookup in page tables with local interrupts disabled. For huge pages
997 * it casts pmd_t to pte_t. Since format of pte_t is different from
998 * pmd_t we want to prevent transit from pmd pointing to page table
999 * to pmd pointing to huge page (and back) while interrupts are disabled.
1000 * We clear pmd to possibly replace it with page table pointer in
1001 * different code paths. So make sure we wait for the parallel
1002 * find_current_mm_pte to finish.
1004 serialize_against_pte_lookup(mm);
1005 return old_pmd;
1008 int radix__has_transparent_hugepage(void)
1010 /* For radix 2M at PMD level means thp */
1011 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1012 return 1;
1013 return 0;
1015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */