1 /* bpf_jit_comp.c: BPF JIT compiler
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; version 2
13 #include <linux/moduleloader.h>
14 #include <asm/cacheflush.h>
15 #include <linux/netdevice.h>
16 #include <linux/filter.h>
17 #include <linux/if_vlan.h>
19 #include "bpf_jit32.h"
21 static inline void bpf_flush_icache(void *start
, void *end
)
24 flush_icache_range((unsigned long)start
, (unsigned long)end
);
27 static void bpf_jit_build_prologue(struct bpf_prog
*fp
, u32
*image
,
28 struct codegen_context
*ctx
)
31 const struct sock_filter
*filter
= fp
->insns
;
33 if (ctx
->seen
& (SEEN_MEM
| SEEN_DATAREF
)) {
35 if (ctx
->seen
& SEEN_DATAREF
) {
36 /* If we call any helpers (for loads), save LR */
37 EMIT(PPC_INST_MFLR
| __PPC_RT(R0
));
38 PPC_BPF_STL(0, 1, PPC_LR_STKOFF
);
40 /* Back up non-volatile regs. */
41 PPC_BPF_STL(r_D
, 1, -(REG_SZ
*(32-r_D
)));
42 PPC_BPF_STL(r_HL
, 1, -(REG_SZ
*(32-r_HL
)));
44 if (ctx
->seen
& SEEN_MEM
) {
46 * Conditionally save regs r15-r31 as some will be used
49 for (i
= r_M
; i
< (r_M
+16); i
++) {
50 if (ctx
->seen
& (1 << (i
-r_M
)))
51 PPC_BPF_STL(i
, 1, -(REG_SZ
*(32-i
)));
54 PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME
);
57 if (ctx
->seen
& SEEN_DATAREF
) {
59 * If this filter needs to access skb data,
60 * prepare r_D and r_HL:
61 * r_HL = skb->len - skb->data_len
64 PPC_LWZ_OFFS(r_scratch1
, r_skb
, offsetof(struct sk_buff
,
66 PPC_LWZ_OFFS(r_HL
, r_skb
, offsetof(struct sk_buff
, len
));
67 PPC_SUB(r_HL
, r_HL
, r_scratch1
);
68 PPC_LL_OFFS(r_D
, r_skb
, offsetof(struct sk_buff
, data
));
71 if (ctx
->seen
& SEEN_XREG
) {
73 * TODO: Could also detect whether first instr. sets X and
74 * avoid this (as below, with A).
79 /* make sure we dont leak kernel information to user */
80 if (bpf_needs_clear_a(&filter
[0]))
84 static void bpf_jit_build_epilogue(u32
*image
, struct codegen_context
*ctx
)
88 if (ctx
->seen
& (SEEN_MEM
| SEEN_DATAREF
)) {
89 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME
);
90 if (ctx
->seen
& SEEN_DATAREF
) {
91 PPC_BPF_LL(0, 1, PPC_LR_STKOFF
);
93 PPC_BPF_LL(r_D
, 1, -(REG_SZ
*(32-r_D
)));
94 PPC_BPF_LL(r_HL
, 1, -(REG_SZ
*(32-r_HL
)));
96 if (ctx
->seen
& SEEN_MEM
) {
97 /* Restore any saved non-vol registers */
98 for (i
= r_M
; i
< (r_M
+16); i
++) {
99 if (ctx
->seen
& (1 << (i
-r_M
)))
100 PPC_BPF_LL(i
, 1, -(REG_SZ
*(32-i
)));
104 /* The RETs have left a return value in R3. */
109 #define CHOOSE_LOAD_FUNC(K, func) \
110 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
112 /* Assemble the body code between the prologue & epilogue. */
113 static int bpf_jit_build_body(struct bpf_prog
*fp
, u32
*image
,
114 struct codegen_context
*ctx
,
117 const struct sock_filter
*filter
= fp
->insns
;
120 unsigned int true_cond
;
123 /* Start of epilogue code */
124 unsigned int exit_addr
= addrs
[flen
];
126 for (i
= 0; i
< flen
; i
++) {
127 unsigned int K
= filter
[i
].k
;
128 u16 code
= bpf_anc_helper(&filter
[i
]);
131 * addrs[] maps a BPF bytecode address into a real offset from
132 * the start of the body code.
134 addrs
[i
] = ctx
->idx
* 4;
138 case BPF_ALU
| BPF_ADD
| BPF_X
: /* A += X; */
139 ctx
->seen
|= SEEN_XREG
;
140 PPC_ADD(r_A
, r_A
, r_X
);
142 case BPF_ALU
| BPF_ADD
| BPF_K
: /* A += K; */
145 PPC_ADDI(r_A
, r_A
, IMM_L(K
));
147 PPC_ADDIS(r_A
, r_A
, IMM_HA(K
));
149 case BPF_ALU
| BPF_SUB
| BPF_X
: /* A -= X; */
150 ctx
->seen
|= SEEN_XREG
;
151 PPC_SUB(r_A
, r_A
, r_X
);
153 case BPF_ALU
| BPF_SUB
| BPF_K
: /* A -= K */
156 PPC_ADDI(r_A
, r_A
, IMM_L(-K
));
158 PPC_ADDIS(r_A
, r_A
, IMM_HA(-K
));
160 case BPF_ALU
| BPF_MUL
| BPF_X
: /* A *= X; */
161 ctx
->seen
|= SEEN_XREG
;
162 PPC_MULW(r_A
, r_A
, r_X
);
164 case BPF_ALU
| BPF_MUL
| BPF_K
: /* A *= K */
166 PPC_MULI(r_A
, r_A
, K
);
168 PPC_LI32(r_scratch1
, K
);
169 PPC_MULW(r_A
, r_A
, r_scratch1
);
172 case BPF_ALU
| BPF_MOD
| BPF_X
: /* A %= X; */
173 case BPF_ALU
| BPF_DIV
| BPF_X
: /* A /= X; */
174 ctx
->seen
|= SEEN_XREG
;
176 if (ctx
->pc_ret0
!= -1) {
177 PPC_BCC(COND_EQ
, addrs
[ctx
->pc_ret0
]);
179 PPC_BCC_SHORT(COND_NE
, (ctx
->idx
*4)+12);
183 if (code
== (BPF_ALU
| BPF_MOD
| BPF_X
)) {
184 PPC_DIVWU(r_scratch1
, r_A
, r_X
);
185 PPC_MULW(r_scratch1
, r_X
, r_scratch1
);
186 PPC_SUB(r_A
, r_A
, r_scratch1
);
188 PPC_DIVWU(r_A
, r_A
, r_X
);
191 case BPF_ALU
| BPF_MOD
| BPF_K
: /* A %= K; */
192 PPC_LI32(r_scratch2
, K
);
193 PPC_DIVWU(r_scratch1
, r_A
, r_scratch2
);
194 PPC_MULW(r_scratch1
, r_scratch2
, r_scratch1
);
195 PPC_SUB(r_A
, r_A
, r_scratch1
);
197 case BPF_ALU
| BPF_DIV
| BPF_K
: /* A /= K */
200 PPC_LI32(r_scratch1
, K
);
201 PPC_DIVWU(r_A
, r_A
, r_scratch1
);
203 case BPF_ALU
| BPF_AND
| BPF_X
:
204 ctx
->seen
|= SEEN_XREG
;
205 PPC_AND(r_A
, r_A
, r_X
);
207 case BPF_ALU
| BPF_AND
| BPF_K
:
209 PPC_ANDI(r_A
, r_A
, K
);
211 PPC_LI32(r_scratch1
, K
);
212 PPC_AND(r_A
, r_A
, r_scratch1
);
215 case BPF_ALU
| BPF_OR
| BPF_X
:
216 ctx
->seen
|= SEEN_XREG
;
217 PPC_OR(r_A
, r_A
, r_X
);
219 case BPF_ALU
| BPF_OR
| BPF_K
:
221 PPC_ORI(r_A
, r_A
, IMM_L(K
));
223 PPC_ORIS(r_A
, r_A
, IMM_H(K
));
225 case BPF_ANC
| SKF_AD_ALU_XOR_X
:
226 case BPF_ALU
| BPF_XOR
| BPF_X
: /* A ^= X */
227 ctx
->seen
|= SEEN_XREG
;
228 PPC_XOR(r_A
, r_A
, r_X
);
230 case BPF_ALU
| BPF_XOR
| BPF_K
: /* A ^= K */
232 PPC_XORI(r_A
, r_A
, IMM_L(K
));
234 PPC_XORIS(r_A
, r_A
, IMM_H(K
));
236 case BPF_ALU
| BPF_LSH
| BPF_X
: /* A <<= X; */
237 ctx
->seen
|= SEEN_XREG
;
238 PPC_SLW(r_A
, r_A
, r_X
);
240 case BPF_ALU
| BPF_LSH
| BPF_K
:
244 PPC_SLWI(r_A
, r_A
, K
);
246 case BPF_ALU
| BPF_RSH
| BPF_X
: /* A >>= X; */
247 ctx
->seen
|= SEEN_XREG
;
248 PPC_SRW(r_A
, r_A
, r_X
);
250 case BPF_ALU
| BPF_RSH
| BPF_K
: /* A >>= K; */
254 PPC_SRWI(r_A
, r_A
, K
);
256 case BPF_ALU
| BPF_NEG
:
259 case BPF_RET
| BPF_K
:
262 if (ctx
->pc_ret0
== -1)
266 * If this isn't the very last instruction, branch to
267 * the epilogue if we've stuff to clean up. Otherwise,
268 * if there's nothing to tidy, just return. If we /are/
269 * the last instruction, we're about to fall through to
270 * the epilogue to return.
274 * Note: 'seen' is properly valid only on pass
275 * #2. Both parts of this conditional are the
276 * same instruction size though, meaning the
277 * first pass will still correctly determine the
278 * code size/addresses.
286 case BPF_RET
| BPF_A
:
295 case BPF_MISC
| BPF_TAX
: /* X = A */
298 case BPF_MISC
| BPF_TXA
: /* A = X */
299 ctx
->seen
|= SEEN_XREG
;
303 /*** Constant loads/M[] access ***/
304 case BPF_LD
| BPF_IMM
: /* A = K */
307 case BPF_LDX
| BPF_IMM
: /* X = K */
310 case BPF_LD
| BPF_MEM
: /* A = mem[K] */
311 PPC_MR(r_A
, r_M
+ (K
& 0xf));
312 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
314 case BPF_LDX
| BPF_MEM
: /* X = mem[K] */
315 PPC_MR(r_X
, r_M
+ (K
& 0xf));
316 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
318 case BPF_ST
: /* mem[K] = A */
319 PPC_MR(r_M
+ (K
& 0xf), r_A
);
320 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
322 case BPF_STX
: /* mem[K] = X */
323 PPC_MR(r_M
+ (K
& 0xf), r_X
);
324 ctx
->seen
|= SEEN_XREG
| SEEN_MEM
| (1<<(K
& 0xf));
326 case BPF_LD
| BPF_W
| BPF_LEN
: /* A = skb->len; */
327 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, len
) != 4);
328 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
, len
));
330 case BPF_LDX
| BPF_W
| BPF_ABS
: /* A = *((u32 *)(seccomp_data + K)); */
331 PPC_LWZ_OFFS(r_A
, r_skb
, K
);
333 case BPF_LDX
| BPF_W
| BPF_LEN
: /* X = skb->len; */
334 PPC_LWZ_OFFS(r_X
, r_skb
, offsetof(struct sk_buff
, len
));
337 /*** Ancillary info loads ***/
338 case BPF_ANC
| SKF_AD_PROTOCOL
: /* A = ntohs(skb->protocol); */
339 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
,
341 PPC_NTOHS_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
344 case BPF_ANC
| SKF_AD_IFINDEX
:
345 case BPF_ANC
| SKF_AD_HATYPE
:
346 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device
,
348 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device
,
350 PPC_LL_OFFS(r_scratch1
, r_skb
, offsetof(struct sk_buff
,
352 PPC_CMPDI(r_scratch1
, 0);
353 if (ctx
->pc_ret0
!= -1) {
354 PPC_BCC(COND_EQ
, addrs
[ctx
->pc_ret0
]);
356 /* Exit, returning 0; first pass hits here. */
357 PPC_BCC_SHORT(COND_NE
, ctx
->idx
* 4 + 12);
361 if (code
== (BPF_ANC
| SKF_AD_IFINDEX
)) {
362 PPC_LWZ_OFFS(r_A
, r_scratch1
,
363 offsetof(struct net_device
, ifindex
));
365 PPC_LHZ_OFFS(r_A
, r_scratch1
,
366 offsetof(struct net_device
, type
));
370 case BPF_ANC
| SKF_AD_MARK
:
371 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, mark
) != 4);
372 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
375 case BPF_ANC
| SKF_AD_RXHASH
:
376 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, hash
) != 4);
377 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
380 case BPF_ANC
| SKF_AD_VLAN_TAG
:
381 case BPF_ANC
| SKF_AD_VLAN_TAG_PRESENT
:
382 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, vlan_tci
) != 2);
383 BUILD_BUG_ON(VLAN_TAG_PRESENT
!= 0x1000);
385 PPC_LHZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
387 if (code
== (BPF_ANC
| SKF_AD_VLAN_TAG
)) {
388 PPC_ANDI(r_A
, r_A
, ~VLAN_TAG_PRESENT
);
390 PPC_ANDI(r_A
, r_A
, VLAN_TAG_PRESENT
);
391 PPC_SRWI(r_A
, r_A
, 12);
394 case BPF_ANC
| SKF_AD_QUEUE
:
395 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
,
396 queue_mapping
) != 2);
397 PPC_LHZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
400 case BPF_ANC
| SKF_AD_PKTTYPE
:
401 PPC_LBZ_OFFS(r_A
, r_skb
, PKT_TYPE_OFFSET());
402 PPC_ANDI(r_A
, r_A
, PKT_TYPE_MAX
);
403 PPC_SRWI(r_A
, r_A
, 5);
405 case BPF_ANC
| SKF_AD_CPU
:
406 PPC_BPF_LOAD_CPU(r_A
);
408 /*** Absolute loads from packet header/data ***/
409 case BPF_LD
| BPF_W
| BPF_ABS
:
410 func
= CHOOSE_LOAD_FUNC(K
, sk_load_word
);
412 case BPF_LD
| BPF_H
| BPF_ABS
:
413 func
= CHOOSE_LOAD_FUNC(K
, sk_load_half
);
415 case BPF_LD
| BPF_B
| BPF_ABS
:
416 func
= CHOOSE_LOAD_FUNC(K
, sk_load_byte
);
419 ctx
->seen
|= SEEN_DATAREF
;
420 PPC_FUNC_ADDR(r_scratch1
, func
);
421 PPC_MTLR(r_scratch1
);
425 * Helper returns 'lt' condition on error, and an
426 * appropriate return value in r3
428 PPC_BCC(COND_LT
, exit_addr
);
431 /*** Indirect loads from packet header/data ***/
432 case BPF_LD
| BPF_W
| BPF_IND
:
434 goto common_load_ind
;
435 case BPF_LD
| BPF_H
| BPF_IND
:
437 goto common_load_ind
;
438 case BPF_LD
| BPF_B
| BPF_IND
:
442 * Load from [X + K]. Negative offsets are tested for
443 * in the helper functions.
445 ctx
->seen
|= SEEN_DATAREF
| SEEN_XREG
;
446 PPC_FUNC_ADDR(r_scratch1
, func
);
447 PPC_MTLR(r_scratch1
);
448 PPC_ADDI(r_addr
, r_X
, IMM_L(K
));
450 PPC_ADDIS(r_addr
, r_addr
, IMM_HA(K
));
452 /* If error, cr0.LT set */
453 PPC_BCC(COND_LT
, exit_addr
);
456 case BPF_LDX
| BPF_B
| BPF_MSH
:
457 func
= CHOOSE_LOAD_FUNC(K
, sk_load_byte_msh
);
461 /*** Jump and branches ***/
462 case BPF_JMP
| BPF_JA
:
464 PPC_JMP(addrs
[i
+ 1 + K
]);
467 case BPF_JMP
| BPF_JGT
| BPF_K
:
468 case BPF_JMP
| BPF_JGT
| BPF_X
:
471 case BPF_JMP
| BPF_JGE
| BPF_K
:
472 case BPF_JMP
| BPF_JGE
| BPF_X
:
475 case BPF_JMP
| BPF_JEQ
| BPF_K
:
476 case BPF_JMP
| BPF_JEQ
| BPF_X
:
479 case BPF_JMP
| BPF_JSET
| BPF_K
:
480 case BPF_JMP
| BPF_JSET
| BPF_X
:
484 /* same targets, can avoid doing the test :) */
485 if (filter
[i
].jt
== filter
[i
].jf
) {
486 if (filter
[i
].jt
> 0)
487 PPC_JMP(addrs
[i
+ 1 + filter
[i
].jt
]);
492 case BPF_JMP
| BPF_JGT
| BPF_X
:
493 case BPF_JMP
| BPF_JGE
| BPF_X
:
494 case BPF_JMP
| BPF_JEQ
| BPF_X
:
495 ctx
->seen
|= SEEN_XREG
;
498 case BPF_JMP
| BPF_JSET
| BPF_X
:
499 ctx
->seen
|= SEEN_XREG
;
500 PPC_AND_DOT(r_scratch1
, r_A
, r_X
);
502 case BPF_JMP
| BPF_JEQ
| BPF_K
:
503 case BPF_JMP
| BPF_JGT
| BPF_K
:
504 case BPF_JMP
| BPF_JGE
| BPF_K
:
508 PPC_LI32(r_scratch1
, K
);
509 PPC_CMPLW(r_A
, r_scratch1
);
512 case BPF_JMP
| BPF_JSET
| BPF_K
:
514 /* PPC_ANDI is /only/ dot-form */
515 PPC_ANDI(r_scratch1
, r_A
, K
);
517 PPC_LI32(r_scratch1
, K
);
518 PPC_AND_DOT(r_scratch1
, r_A
,
523 /* Sometimes branches are constructed "backward", with
524 * the false path being the branch and true path being
525 * a fallthrough to the next instruction.
527 if (filter
[i
].jt
== 0)
528 /* Swap the sense of the branch */
529 PPC_BCC(true_cond
^ COND_CMP_TRUE
,
530 addrs
[i
+ 1 + filter
[i
].jf
]);
532 PPC_BCC(true_cond
, addrs
[i
+ 1 + filter
[i
].jt
]);
533 if (filter
[i
].jf
!= 0)
534 PPC_JMP(addrs
[i
+ 1 + filter
[i
].jf
]);
538 /* The filter contains something cruel & unusual.
539 * We don't handle it, but also there shouldn't be
540 * anything missing from our list.
542 if (printk_ratelimit())
543 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
549 /* Set end-of-body-code address for exit. */
550 addrs
[i
] = ctx
->idx
* 4;
555 void bpf_jit_compile(struct bpf_prog
*fp
)
557 unsigned int proglen
;
558 unsigned int alloclen
;
562 struct codegen_context cgctx
;
569 addrs
= kzalloc((flen
+1) * sizeof(*addrs
), GFP_KERNEL
);
574 * There are multiple assembly passes as the generated code will change
575 * size as it settles down, figuring out the max branch offsets/exit
578 * The range of standard conditional branches is +/- 32Kbytes. Since
579 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580 * finish with 8 bytes/instruction. Not feasible, so long jumps are
581 * used, distinct from short branches.
585 * For now, both branch types assemble to 2 words (short branches padded
586 * with a NOP); this is less efficient, but assembly will always complete
587 * after exactly 3 passes:
589 * First pass: No code buffer; Program is "faux-generated" -- no code
590 * emitted but maximum size of output determined (and addrs[] filled
591 * in). Also, we note whether we use M[], whether we use skb data, etc.
592 * All generation choices assumed to be 'worst-case', e.g. branches all
593 * far (2 instructions), return path code reduction not available, etc.
595 * Second pass: Code buffer allocated with size determined previously.
596 * Prologue generated to support features we have seen used. Exit paths
597 * determined and addrs[] is filled in again, as code may be slightly
598 * smaller as a result.
600 * Third pass: Code generated 'for real', and branch destinations
601 * determined from now-accurate addrs[] map.
605 * If we optimise this, near branches will be shorter. On the
606 * first assembly pass, we should err on the side of caution and
607 * generate the biggest code. On subsequent passes, branches will be
608 * generated short or long and code size will reduce. With smaller
609 * code, more branches may fall into the short category, and code will
612 * Finally, if we see one pass generate code the same size as the
613 * previous pass we have converged and should now generate code for
614 * real. Allocating at the end will also save the memory that would
615 * otherwise be wasted by the (small) current code shrinkage.
616 * Preferably, we should do a small number of passes (e.g. 5) and if we
617 * haven't converged by then, get impatient and force code to generate
618 * as-is, even if the odd branch would be left long. The chances of a
619 * long jump are tiny with all but the most enormous of BPF filter
620 * inputs, so we should usually converge on the third pass.
626 /* Scouting faux-generate pass 0 */
627 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
))
628 /* We hit something illegal or unsupported. */
632 * Pretend to build prologue, given the features we've seen. This will
633 * update ctgtx.idx as it pretends to output instructions, then we can
634 * calculate total size from idx.
636 bpf_jit_build_prologue(fp
, 0, &cgctx
);
637 bpf_jit_build_epilogue(0, &cgctx
);
639 proglen
= cgctx
.idx
* 4;
640 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
641 image
= module_alloc(alloclen
);
645 code_base
= image
+ (FUNCTION_DESCR_SIZE
/4);
647 /* Code generation passes 1-2 */
648 for (pass
= 1; pass
< 3; pass
++) {
649 /* Now build the prologue, body code & epilogue for real. */
651 bpf_jit_build_prologue(fp
, code_base
, &cgctx
);
652 bpf_jit_build_body(fp
, code_base
, &cgctx
, addrs
);
653 bpf_jit_build_epilogue(code_base
, &cgctx
);
655 if (bpf_jit_enable
> 1)
656 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass
,
657 proglen
- (cgctx
.idx
* 4), cgctx
.seen
);
660 if (bpf_jit_enable
> 1)
661 /* Note that we output the base address of the code_base
662 * rather than image, since opcodes are in code_base.
664 bpf_jit_dump(flen
, proglen
, pass
, code_base
);
666 bpf_flush_icache(code_base
, code_base
+ (proglen
/4));
669 /* Function descriptor nastiness: Address + TOC */
670 ((u64
*)image
)[0] = (u64
)code_base
;
671 ((u64
*)image
)[1] = local_paca
->kernel_toc
;
674 fp
->bpf_func
= (void *)image
;
682 void bpf_jit_free(struct bpf_prog
*fp
)
685 module_memfree(fp
->bpf_func
);
687 bpf_prog_unlock_free(fp
);