2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
29 #include <linux/smp.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/tty.h>
33 #include <linux/vt_kern.h> /* For unblank_screen() */
34 #include <linux/highmem.h>
35 #include <linux/extable.h>
36 #include <linux/kprobes.h>
37 #include <linux/hugetlb.h>
38 #include <linux/syscalls.h>
39 #include <linux/uaccess.h>
40 #include <linux/kdebug.h>
42 #include <asm/pgalloc.h>
43 #include <asm/sections.h>
44 #include <asm/traps.h>
45 #include <asm/syscalls.h>
47 #include <arch/interrupts.h>
49 static noinline
void force_sig_info_fault(const char *type
, int si_signo
,
50 int si_code
, unsigned long address
,
52 struct task_struct
*tsk
,
57 if (unlikely(tsk
->pid
< 2)) {
58 panic("Signal %d (code %d) at %#lx sent to %s!",
59 si_signo
, si_code
& 0xffff, address
,
60 is_idle_task(tsk
) ? "the idle task" : "init");
63 info
.si_signo
= si_signo
;
65 info
.si_code
= si_code
;
66 info
.si_addr
= (void __user
*)address
;
67 info
.si_trapno
= fault_num
;
68 trace_unhandled_signal(type
, regs
, address
, si_signo
);
69 force_sig_info(si_signo
, &info
, tsk
);
74 * Synthesize the fault a PL0 process would get by doing a word-load of
75 * an unaligned address or a high kernel address.
77 SYSCALL_DEFINE1(cmpxchg_badaddr
, unsigned long, address
)
79 struct pt_regs
*regs
= current_pt_regs();
81 if (address
>= PAGE_OFFSET
)
82 force_sig_info_fault("atomic segfault", SIGSEGV
, SEGV_MAPERR
,
83 address
, INT_DTLB_MISS
, current
, regs
);
85 force_sig_info_fault("atomic alignment fault", SIGBUS
,
87 INT_UNALIGN_DATA
, current
, regs
);
90 * Adjust pc to point at the actual instruction, which is unusual
91 * for syscalls normally, but is appropriate when we are claiming
92 * that a syscall swint1 caused a page fault or bus error.
97 * Mark this as a caller-save interrupt, like a normal page fault,
98 * so that when we go through the signal handler path we will
99 * properly restore r0, r1, and r2 for the signal handler arguments.
101 regs
->flags
|= PT_FLAGS_CALLER_SAVES
;
107 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
109 unsigned index
= pgd_index(address
);
115 pgd_k
= init_mm
.pgd
+ index
;
117 if (!pgd_present(*pgd_k
))
120 pud
= pud_offset(pgd
, address
);
121 pud_k
= pud_offset(pgd_k
, address
);
122 if (!pud_present(*pud_k
))
125 pmd
= pmd_offset(pud
, address
);
126 pmd_k
= pmd_offset(pud_k
, address
);
127 if (!pmd_present(*pmd_k
))
129 if (!pmd_present(*pmd
))
130 set_pmd(pmd
, *pmd_k
);
132 BUG_ON(pmd_ptfn(*pmd
) != pmd_ptfn(*pmd_k
));
137 * Handle a fault on the vmalloc area.
139 static inline int vmalloc_fault(pgd_t
*pgd
, unsigned long address
)
144 /* Make sure we are in vmalloc area */
145 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
149 * Synchronize this task's top level page-table
150 * with the 'reference' page table.
152 pmd_k
= vmalloc_sync_one(pgd
, address
);
155 pte_k
= pte_offset_kernel(pmd_k
, address
);
156 if (!pte_present(*pte_k
))
161 /* Wait until this PTE has completed migration. */
162 static void wait_for_migration(pte_t
*pte
)
164 if (pte_migrating(*pte
)) {
166 * Wait until the migrater fixes up this pte.
167 * We scale the loop count by the clock rate so we'll wait for
168 * a few seconds here.
171 int bound
= get_clock_rate();
172 while (pte_migrating(*pte
)) {
174 if (++retries
> bound
)
175 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
176 pte
->val
, pte_pfn(*pte
));
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
186 static pgd_t
*get_current_pgd(void)
188 HV_Context ctx
= hv_inquire_context();
189 unsigned long pgd_pfn
= ctx
.page_table
>> PAGE_SHIFT
;
190 struct page
*pgd_page
= pfn_to_page(pgd_pfn
);
191 BUG_ON(PageHighMem(pgd_page
));
192 return (pgd_t
*) __va(ctx
.page_table
);
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
208 * If we find a migrating PTE while we're in an NMI context, and we're
209 * at a PC that has a registered exception handler, we don't wait,
210 * since this thread may (e.g.) have been interrupted while migrating
211 * its own stack, which would then cause us to self-deadlock.
213 static int handle_migrating_pte(pgd_t
*pgd
, int fault_num
,
214 unsigned long address
, unsigned long pc
,
215 int is_kernel_mode
, int write
)
222 if (pgd_addr_invalid(address
))
225 pgd
+= pgd_index(address
);
226 pud
= pud_offset(pgd
, address
);
227 if (!pud
|| !pud_present(*pud
))
229 pmd
= pmd_offset(pud
, address
);
230 if (!pmd
|| !pmd_present(*pmd
))
232 pte
= pmd_huge_page(*pmd
) ? ((pte_t
*)pmd
) :
233 pte_offset_kernel(pmd
, address
);
235 if (pte_migrating(pteval
)) {
236 if (in_nmi() && search_exception_tables(pc
))
238 wait_for_migration(pte
);
242 if (!is_kernel_mode
|| !pte_present(pteval
))
244 if (fault_num
== INT_ITLB_MISS
) {
245 if (pte_exec(pteval
))
248 if (pte_write(pteval
))
251 if (pte_read(pteval
))
259 * This routine is responsible for faulting in user pages.
260 * It passes the work off to one of the appropriate routines.
261 * It returns true if the fault was successfully handled.
263 static int handle_page_fault(struct pt_regs
*regs
,
266 unsigned long address
,
269 struct task_struct
*tsk
;
270 struct mm_struct
*mm
;
271 struct vm_area_struct
*vma
;
272 unsigned long stack_offset
;
279 /* on TILE, protection faults are always writes */
283 flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
285 is_kernel_mode
= !user_mode(regs
);
287 tsk
= validate_current();
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
295 stack_offset
= stack_pointer
& (THREAD_SIZE
-1);
296 if (stack_offset
< THREAD_SIZE
/ 8) {
297 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer
);
299 pr_alert("Killing current process %d/%s\n",
300 tsk
->pid
, tsk
->comm
);
301 do_group_exit(SIGKILL
);
305 * Early on, we need to check for migrating PTE entries;
306 * see homecache.c. If we find a migrating PTE, we wait until
307 * the backing page claims to be done migrating, then we proceed.
308 * For kernel PTEs, we rewrite the PTE and return and retry.
309 * Otherwise, we treat the fault like a normal "no PTE" fault,
310 * rather than trying to patch up the existing PTE.
312 pgd
= get_current_pgd();
313 if (handle_migrating_pte(pgd
, fault_num
, address
, regs
->pc
,
314 is_kernel_mode
, write
))
317 si_code
= SEGV_MAPERR
;
320 * We fault-in kernel-space virtual memory on-demand. The
321 * 'reference' page table is init_mm.pgd.
323 * NOTE! We MUST NOT take any locks for this case. We may
324 * be in an interrupt or a critical region, and should
325 * only copy the information from the master page table,
328 * This verifies that the fault happens in kernel space
329 * and that the fault was not a protection fault.
331 if (unlikely(address
>= TASK_SIZE
&&
332 !is_arch_mappable_range(address
, 0))) {
333 if (is_kernel_mode
&& is_page_fault
&&
334 vmalloc_fault(pgd
, address
) >= 0)
337 * Don't take the mm semaphore here. If we fixup a prefetch
338 * fault we could otherwise deadlock.
340 mm
= NULL
; /* happy compiler */
342 goto bad_area_nosemaphore
;
346 * If we're trying to touch user-space addresses, we must
347 * be either at PL0, or else with interrupts enabled in the
348 * kernel, so either way we can re-enable interrupts here
349 * unless we are doing atomic access to user space with
350 * interrupts disabled.
352 if (!(regs
->flags
& PT_FLAGS_DISABLE_IRQ
))
358 * If we're in an interrupt, have no user context or are running in an
359 * region with pagefaults disabled then we must not take the fault.
361 if (pagefault_disabled() || !mm
) {
362 vma
= NULL
; /* happy compiler */
363 goto bad_area_nosemaphore
;
367 flags
|= FAULT_FLAG_USER
;
370 * When running in the kernel we expect faults to occur only to
371 * addresses in user space. All other faults represent errors in the
372 * kernel and should generate an OOPS. Unfortunately, in the case of an
373 * erroneous fault occurring in a code path which already holds mmap_sem
374 * we will deadlock attempting to validate the fault against the
375 * address space. Luckily the kernel only validly references user
376 * space from well defined areas of code, which are listed in the
379 * As the vast majority of faults will be valid we will only perform
380 * the source reference check when there is a possibility of a deadlock.
381 * Attempt to lock the address space, if we cannot we then validate the
382 * source. If this is invalid we can skip the address space check,
383 * thus avoiding the deadlock.
385 if (!down_read_trylock(&mm
->mmap_sem
)) {
386 if (is_kernel_mode
&&
387 !search_exception_tables(regs
->pc
)) {
388 vma
= NULL
; /* happy compiler */
389 goto bad_area_nosemaphore
;
393 down_read(&mm
->mmap_sem
);
396 vma
= find_vma(mm
, address
);
399 if (vma
->vm_start
<= address
)
401 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
403 if (regs
->sp
< PAGE_OFFSET
) {
405 * accessing the stack below sp is always a bug.
407 if (address
< regs
->sp
)
410 if (expand_stack(vma
, address
))
414 * Ok, we have a good vm_area for this memory access, so
418 si_code
= SEGV_ACCERR
;
419 if (fault_num
== INT_ITLB_MISS
) {
420 if (!(vma
->vm_flags
& VM_EXEC
))
423 #ifdef TEST_VERIFY_AREA
424 if (!is_page_fault
&& regs
->cs
== KERNEL_CS
)
425 pr_err("WP fault at " REGFMT
"\n", regs
->eip
);
427 if (!(vma
->vm_flags
& VM_WRITE
))
429 flags
|= FAULT_FLAG_WRITE
;
431 if (!is_page_fault
|| !(vma
->vm_flags
& VM_READ
))
436 * If for any reason at all we couldn't handle the fault,
437 * make sure we exit gracefully rather than endlessly redo
440 fault
= handle_mm_fault(vma
, address
, flags
);
442 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
445 if (unlikely(fault
& VM_FAULT_ERROR
)) {
446 if (fault
& VM_FAULT_OOM
)
448 else if (fault
& VM_FAULT_SIGSEGV
)
450 else if (fault
& VM_FAULT_SIGBUS
)
454 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
455 if (fault
& VM_FAULT_MAJOR
)
459 if (fault
& VM_FAULT_RETRY
) {
460 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
461 flags
|= FAULT_FLAG_TRIED
;
464 * No need to up_read(&mm->mmap_sem) as we would
465 * have already released it in __lock_page_or_retry
472 #if CHIP_HAS_TILE_DMA()
473 /* If this was a DMA TLB fault, restart the DMA engine. */
475 case INT_DMATLB_MISS
:
476 case INT_DMATLB_MISS_DWNCL
:
477 case INT_DMATLB_ACCESS
:
478 case INT_DMATLB_ACCESS_DWNCL
:
479 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
484 up_read(&mm
->mmap_sem
);
488 * Something tried to access memory that isn't in our memory map..
489 * Fix it, but check if it's kernel or user first..
492 up_read(&mm
->mmap_sem
);
494 bad_area_nosemaphore
:
495 /* User mode accesses just cause a SIGSEGV */
496 if (!is_kernel_mode
) {
498 * It's possible to have interrupts off here.
502 force_sig_info_fault("segfault", SIGSEGV
, si_code
, address
,
503 fault_num
, tsk
, regs
);
508 /* Are we prepared to handle this kernel fault? */
509 if (fixup_exception(regs
))
513 * Oops. The kernel tried to access some bad page. We'll have to
514 * terminate things with extreme prejudice.
519 /* FIXME: no lookup_address() yet */
520 #ifdef SUPPORT_LOOKUP_ADDRESS
521 if (fault_num
== INT_ITLB_MISS
) {
522 pte_t
*pte
= lookup_address(address
);
524 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
525 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
529 if (address
< PAGE_SIZE
)
530 pr_alert("Unable to handle kernel NULL pointer dereference\n");
532 pr_alert("Unable to handle kernel paging request\n");
533 pr_alert(" at virtual address " REGFMT
", pc " REGFMT
"\n",
538 if (unlikely(tsk
->pid
< 2)) {
539 panic("Kernel page fault running %s!",
540 is_idle_task(tsk
) ? "the idle task" : "init");
544 * More FIXME: we should probably copy the i386 here and
545 * implement a generic die() routine. Not today.
552 do_group_exit(SIGKILL
);
555 * We ran out of memory, or some other thing happened to us that made
556 * us unable to handle the page fault gracefully.
559 up_read(&mm
->mmap_sem
);
562 pagefault_out_of_memory();
566 up_read(&mm
->mmap_sem
);
568 /* Kernel mode? Handle exceptions or die */
572 force_sig_info_fault("bus error", SIGBUS
, BUS_ADRERR
, address
,
573 fault_num
, tsk
, regs
);
579 /* We must release ICS before panicking or we won't get anywhere. */
580 #define ics_panic(fmt, ...) \
582 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
583 panic(fmt, ##__VA_ARGS__); \
587 * When we take an ITLB or DTLB fault or access violation in the
588 * supervisor while the critical section bit is set, the hypervisor is
589 * reluctant to write new values into the EX_CONTEXT_K_x registers,
590 * since that might indicate we have not yet squirreled the SPR
591 * contents away and can thus safely take a recursive interrupt.
592 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
594 * Note that this routine is called before homecache_tlb_defer_enter(),
595 * which means that we can properly unlock any atomics that might
596 * be used there (good), but also means we must be very sensitive
597 * to not touch any data structures that might be located in memory
598 * that could migrate, as we could be entering the kernel on a dataplane
599 * cpu that has been deferring kernel TLB updates. This means, for
600 * example, that we can't migrate init_mm or its pgd.
602 struct intvec_state
do_page_fault_ics(struct pt_regs
*regs
, int fault_num
,
603 unsigned long address
,
606 unsigned long pc
= info
& ~1;
607 int write
= info
& 1;
608 pgd_t
*pgd
= get_current_pgd();
610 /* Retval is 1 at first since we will handle the fault fully. */
611 struct intvec_state state
= {
612 do_page_fault
, fault_num
, address
, write
, 1
615 /* Validate that we are plausibly in the right routine. */
616 if ((pc
& 0x7) != 0 || pc
< PAGE_OFFSET
||
617 (fault_num
!= INT_DTLB_MISS
&&
618 fault_num
!= INT_DTLB_ACCESS
)) {
619 unsigned long old_pc
= regs
->pc
;
621 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
622 old_pc
, fault_num
, write
, address
);
625 /* We might be faulting on a vmalloc page, so check that first. */
626 if (fault_num
!= INT_DTLB_ACCESS
&& vmalloc_fault(pgd
, address
) >= 0)
630 * If we faulted with ICS set in sys_cmpxchg, we are providing
631 * a user syscall service that should generate a signal on
632 * fault. We didn't set up a kernel stack on initial entry to
633 * sys_cmpxchg, but instead had one set up by the fault, which
634 * (because sys_cmpxchg never releases ICS) came to us via the
635 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
636 * still referencing the original user code. We release the
637 * atomic lock and rewrite pt_regs so that it appears that we
638 * came from user-space directly, and after we finish the
639 * fault we'll go back to user space and re-issue the swint.
640 * This way the backtrace information is correct if we need to
641 * emit a stack dump at any point while handling this.
643 * Must match register use in sys_cmpxchg().
645 if (pc
>= (unsigned long) sys_cmpxchg
&&
646 pc
< (unsigned long) __sys_cmpxchg_end
) {
648 /* Don't unlock before we could have locked. */
649 if (pc
>= (unsigned long)__sys_cmpxchg_grab_lock
) {
650 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
651 __atomic_fault_unlock(lock_ptr
);
654 regs
->sp
= regs
->regs
[27];
658 * We can also fault in the atomic assembly, in which
659 * case we use the exception table to do the first-level fixup.
660 * We may re-fixup again in the real fault handler if it
661 * turns out the faulting address is just bad, and not,
662 * for example, migrating.
664 else if (pc
>= (unsigned long) __start_atomic_asm_code
&&
665 pc
< (unsigned long) __end_atomic_asm_code
) {
666 const struct exception_table_entry
*fixup
;
668 /* Unlock the atomic lock. */
669 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
670 __atomic_fault_unlock(lock_ptr
);
672 fixup
= search_exception_tables(pc
);
674 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
676 regs
->pc
= fixup
->fixup
;
677 regs
->ex1
= PL_ICS_EX1(KERNEL_PL
, 0);
681 * Now that we have released the atomic lock (if necessary),
682 * it's safe to spin if the PTE that caused the fault was migrating.
684 if (fault_num
== INT_DTLB_ACCESS
)
686 if (handle_migrating_pte(pgd
, fault_num
, address
, pc
, 1, write
))
689 /* Return zero so that we continue on with normal fault handling. */
694 #endif /* !__tilegx__ */
697 * This routine handles page faults. It determines the address, and the
698 * problem, and then passes it handle_page_fault() for normal DTLB and
699 * ITLB issues, and for DMA or SN processor faults when we are in user
700 * space. For the latter, if we're in kernel mode, we just save the
701 * interrupt away appropriately and return immediately. We can't do
702 * page faults for user code while in kernel mode.
704 static inline void __do_page_fault(struct pt_regs
*regs
, int fault_num
,
705 unsigned long address
, unsigned long write
)
709 #ifdef CONFIG_KPROBES
711 * This is to notify the fault handler of the kprobes. The
712 * exception code is redundant as it is also carried in REGS,
713 * but we pass it anyhow.
715 if (notify_die(DIE_PAGE_FAULT
, "page fault", regs
, -1,
716 regs
->faultnum
, SIGSEGV
) == NOTIFY_STOP
)
722 * We don't need early do_page_fault_ics() support, since unlike
723 * Pro we don't need to worry about unlocking the atomic locks.
724 * There is only one current case in GX where we touch any memory
725 * under ICS other than our own kernel stack, and we handle that
726 * here. (If we crash due to trying to touch our own stack,
727 * we're in too much trouble for C code to help out anyway.)
730 unsigned long pc
= write
& ~1;
731 if (pc
>= (unsigned long) __start_unalign_asm_code
&&
732 pc
< (unsigned long) __end_unalign_asm_code
) {
733 struct thread_info
*ti
= current_thread_info();
735 * Our EX_CONTEXT is still what it was from the
736 * initial unalign exception, but now we've faulted
737 * on the JIT page. We would like to complete the
738 * page fault however is appropriate, and then retry
739 * the instruction that caused the unalign exception.
740 * Our state has been "corrupted" by setting the low
741 * bit in "sp", and stashing r0..r3 in the
742 * thread_info area, so we revert all of that, then
743 * continue as if this were a normal page fault.
746 regs
->regs
[0] = ti
->unalign_jit_tmp
[0];
747 regs
->regs
[1] = ti
->unalign_jit_tmp
[1];
748 regs
->regs
[2] = ti
->unalign_jit_tmp
[2];
749 regs
->regs
[3] = ti
->unalign_jit_tmp
[3];
752 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
753 current
->comm
, current
->pid
, pc
, address
);
755 do_group_exit(SIGKILL
);
759 /* This case should have been handled by do_page_fault_ics(). */
763 #if CHIP_HAS_TILE_DMA()
765 * If it's a DMA fault, suspend the transfer while we're
766 * handling the miss; we'll restart after it's handled. If we
767 * don't suspend, it's possible that this process could swap
768 * out and back in, and restart the engine since the DMA is
771 if (fault_num
== INT_DMATLB_MISS
||
772 fault_num
== INT_DMATLB_ACCESS
||
773 fault_num
== INT_DMATLB_MISS_DWNCL
||
774 fault_num
== INT_DMATLB_ACCESS_DWNCL
) {
775 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
776 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
777 SPR_DMA_STATUS__BUSY_MASK
)
782 /* Validate fault num and decide if this is a first-time page fault. */
786 #if CHIP_HAS_TILE_DMA()
787 case INT_DMATLB_MISS
:
788 case INT_DMATLB_MISS_DWNCL
:
793 case INT_DTLB_ACCESS
:
794 #if CHIP_HAS_TILE_DMA()
795 case INT_DMATLB_ACCESS
:
796 case INT_DMATLB_ACCESS_DWNCL
:
802 panic("Bad fault number %d in do_page_fault", fault_num
);
805 #if CHIP_HAS_TILE_DMA()
806 if (!user_mode(regs
)) {
807 struct async_tlb
*async
;
809 #if CHIP_HAS_TILE_DMA()
810 case INT_DMATLB_MISS
:
811 case INT_DMATLB_ACCESS
:
812 case INT_DMATLB_MISS_DWNCL
:
813 case INT_DMATLB_ACCESS_DWNCL
:
814 async
= ¤t
->thread
.dma_async_tlb
;
823 * No vmalloc check required, so we can allow
824 * interrupts immediately at this point.
828 set_thread_flag(TIF_ASYNC_TLB
);
829 if (async
->fault_num
!= 0) {
830 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
831 fault_num
, async
->fault_num
,
834 BUG_ON(fault_num
== 0);
835 async
->fault_num
= fault_num
;
836 async
->is_fault
= is_page_fault
;
837 async
->is_write
= write
;
838 async
->address
= address
;
844 handle_page_fault(regs
, fault_num
, is_page_fault
, address
, write
);
847 void do_page_fault(struct pt_regs
*regs
, int fault_num
,
848 unsigned long address
, unsigned long write
)
850 __do_page_fault(regs
, fault_num
, address
, write
);
853 #if CHIP_HAS_TILE_DMA()
855 * This routine effectively re-issues asynchronous page faults
856 * when we are returning to user space.
858 void do_async_page_fault(struct pt_regs
*regs
)
860 struct async_tlb
*async
= ¤t
->thread
.dma_async_tlb
;
863 * Clear thread flag early. If we re-interrupt while processing
864 * code here, we will reset it and recall this routine before
865 * returning to user space.
867 clear_thread_flag(TIF_ASYNC_TLB
);
869 if (async
->fault_num
) {
871 * Clear async->fault_num before calling the page-fault
872 * handler so that if we re-interrupt before returning
873 * from the function we have somewhere to put the
874 * information from the new interrupt.
876 int fault_num
= async
->fault_num
;
877 async
->fault_num
= 0;
878 handle_page_fault(regs
, fault_num
, async
->is_fault
,
879 async
->address
, async
->is_write
);
882 #endif /* CHIP_HAS_TILE_DMA() */
885 void vmalloc_sync_all(void)
888 /* Currently all L1 kernel pmd's are static and shared. */
889 BUILD_BUG_ON(pgd_index(VMALLOC_END
- PAGE_SIZE
) !=
890 pgd_index(VMALLOC_START
));
893 * Note that races in the updates of insync and start aren't
894 * problematic: insync can only get set bits added, and updates to
895 * start are only improving performance (without affecting correctness
898 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
899 static unsigned long start
= PAGE_OFFSET
;
900 unsigned long address
;
902 BUILD_BUG_ON(PAGE_OFFSET
& ~PGDIR_MASK
);
903 for (address
= start
; address
>= PAGE_OFFSET
; address
+= PGDIR_SIZE
) {
904 if (!test_bit(pgd_index(address
), insync
)) {
906 struct list_head
*pos
;
908 spin_lock_irqsave(&pgd_lock
, flags
);
909 list_for_each(pos
, &pgd_list
)
910 if (!vmalloc_sync_one(list_to_pgd(pos
),
912 /* Must be at first entry in list. */
913 BUG_ON(pos
!= pgd_list
.next
);
916 spin_unlock_irqrestore(&pgd_lock
, flags
);
917 if (pos
!= pgd_list
.next
)
918 set_bit(pgd_index(address
), insync
);
920 if (address
== start
&& test_bit(pgd_index(address
), insync
))
921 start
= address
+ PGDIR_SIZE
;