Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / dma / imx-sdma.c
blobe7db24c67030d19a0db9c88d46ae867d11e4d0dd
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
50 #include "dmaengine.h"
52 /* SDMA registers */
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
84 * Buffer descriptor status values.
86 #define BD_DONE 0x01
87 #define BD_WRAP 0x02
88 #define BD_CONT 0x04
89 #define BD_INTR 0x08
90 #define BD_RROR 0x10
91 #define BD_LAST 0x20
92 #define BD_EXTD 0x80
95 * Data Node descriptor status values.
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
99 #define DND_DONE 0x20
100 #define DND_UNUSED 0x01
103 * IPCV2 descriptor status values.
105 #define BD_IPCV2_END_OF_FRAME 0x40
107 #define IPCV2_MAX_NODES 50
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
112 #define DATA_ERROR 0x10000000
115 * Buffer descriptor commands.
117 #define C0_ADDR 0x01
118 #define C0_LOAD 0x02
119 #define C0_DUMP 0x03
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
127 * Change endianness indicator in the BD command field
129 #define CHANGE_ENDIANNESS 0x80
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
137 * 9 PA 1: Pad Adding
138 * 0: No Pad Adding
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
142 * 0: Source on AIPS
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
151 * LWML event mask
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
155 * HWML event mask
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
165 * by the application
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
181 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
182 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
183 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
185 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
186 BIT(DMA_MEM_TO_DEV) | \
187 BIT(DMA_DEV_TO_DEV))
190 * Mode/Count of data node descriptors - IPCv2
192 struct sdma_mode_count {
193 u32 count : 16; /* size of the buffer pointed by this BD */
194 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
195 u32 command : 8; /* command mostly used for channel 0 */
199 * Buffer descriptor
201 struct sdma_buffer_descriptor {
202 struct sdma_mode_count mode;
203 u32 buffer_addr; /* address of the buffer described */
204 u32 ext_buffer_addr; /* extended buffer address */
205 } __attribute__ ((packed));
208 * struct sdma_channel_control - Channel control Block
210 * @current_bd_ptr current buffer descriptor processed
211 * @base_bd_ptr first element of buffer descriptor array
212 * @unused padding. The SDMA engine expects an array of 128 byte
213 * control blocks
215 struct sdma_channel_control {
216 u32 current_bd_ptr;
217 u32 base_bd_ptr;
218 u32 unused[2];
219 } __attribute__ ((packed));
222 * struct sdma_state_registers - SDMA context for a channel
224 * @pc: program counter
225 * @t: test bit: status of arithmetic & test instruction
226 * @rpc: return program counter
227 * @sf: source fault while loading data
228 * @spc: loop start program counter
229 * @df: destination fault while storing data
230 * @epc: loop end program counter
231 * @lm: loop mode
233 struct sdma_state_registers {
234 u32 pc :14;
235 u32 unused1: 1;
236 u32 t : 1;
237 u32 rpc :14;
238 u32 unused0: 1;
239 u32 sf : 1;
240 u32 spc :14;
241 u32 unused2: 1;
242 u32 df : 1;
243 u32 epc :14;
244 u32 lm : 2;
245 } __attribute__ ((packed));
248 * struct sdma_context_data - sdma context specific to a channel
250 * @channel_state: channel state bits
251 * @gReg: general registers
252 * @mda: burst dma destination address register
253 * @msa: burst dma source address register
254 * @ms: burst dma status register
255 * @md: burst dma data register
256 * @pda: peripheral dma destination address register
257 * @psa: peripheral dma source address register
258 * @ps: peripheral dma status register
259 * @pd: peripheral dma data register
260 * @ca: CRC polynomial register
261 * @cs: CRC accumulator register
262 * @dda: dedicated core destination address register
263 * @dsa: dedicated core source address register
264 * @ds: dedicated core status register
265 * @dd: dedicated core data register
267 struct sdma_context_data {
268 struct sdma_state_registers channel_state;
269 u32 gReg[8];
270 u32 mda;
271 u32 msa;
272 u32 ms;
273 u32 md;
274 u32 pda;
275 u32 psa;
276 u32 ps;
277 u32 pd;
278 u32 ca;
279 u32 cs;
280 u32 dda;
281 u32 dsa;
282 u32 ds;
283 u32 dd;
284 u32 scratch0;
285 u32 scratch1;
286 u32 scratch2;
287 u32 scratch3;
288 u32 scratch4;
289 u32 scratch5;
290 u32 scratch6;
291 u32 scratch7;
292 } __attribute__ ((packed));
294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
296 struct sdma_engine;
299 * struct sdma_channel - housekeeping for a SDMA channel
301 * @sdma pointer to the SDMA engine for this channel
302 * @channel the channel number, matches dmaengine chan_id + 1
303 * @direction transfer type. Needed for setting SDMA script
304 * @peripheral_type Peripheral type. Needed for setting SDMA script
305 * @event_id0 aka dma request line
306 * @event_id1 for channels that use 2 events
307 * @word_size peripheral access size
308 * @buf_tail ID of the buffer that was processed
309 * @buf_ptail ID of the previous buffer that was processed
310 * @num_bd max NUM_BD. number of descriptors currently handling
312 struct sdma_channel {
313 struct sdma_engine *sdma;
314 unsigned int channel;
315 enum dma_transfer_direction direction;
316 enum sdma_peripheral_type peripheral_type;
317 unsigned int event_id0;
318 unsigned int event_id1;
319 enum dma_slave_buswidth word_size;
320 unsigned int buf_tail;
321 unsigned int buf_ptail;
322 unsigned int num_bd;
323 unsigned int period_len;
324 struct sdma_buffer_descriptor *bd;
325 dma_addr_t bd_phys;
326 unsigned int pc_from_device, pc_to_device;
327 unsigned int device_to_device;
328 unsigned long flags;
329 dma_addr_t per_address, per_address2;
330 unsigned long event_mask[2];
331 unsigned long watermark_level;
332 u32 shp_addr, per_addr;
333 struct dma_chan chan;
334 spinlock_t lock;
335 struct dma_async_tx_descriptor desc;
336 enum dma_status status;
337 unsigned int chn_count;
338 unsigned int chn_real_count;
339 struct tasklet_struct tasklet;
340 struct imx_dma_data data;
343 #define IMX_DMA_SG_LOOP BIT(0)
345 #define MAX_DMA_CHANNELS 32
346 #define MXC_SDMA_DEFAULT_PRIORITY 1
347 #define MXC_SDMA_MIN_PRIORITY 1
348 #define MXC_SDMA_MAX_PRIORITY 7
350 #define SDMA_FIRMWARE_MAGIC 0x414d4453
353 * struct sdma_firmware_header - Layout of the firmware image
355 * @magic "SDMA"
356 * @version_major increased whenever layout of struct sdma_script_start_addrs
357 * changes.
358 * @version_minor firmware minor version (for binary compatible changes)
359 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
360 * @num_script_addrs Number of script addresses in this image
361 * @ram_code_start offset of SDMA ram image in this firmware image
362 * @ram_code_size size of SDMA ram image
363 * @script_addrs Stores the start address of the SDMA scripts
364 * (in SDMA memory space)
366 struct sdma_firmware_header {
367 u32 magic;
368 u32 version_major;
369 u32 version_minor;
370 u32 script_addrs_start;
371 u32 num_script_addrs;
372 u32 ram_code_start;
373 u32 ram_code_size;
376 struct sdma_driver_data {
377 int chnenbl0;
378 int num_events;
379 struct sdma_script_start_addrs *script_addrs;
382 struct sdma_engine {
383 struct device *dev;
384 struct device_dma_parameters dma_parms;
385 struct sdma_channel channel[MAX_DMA_CHANNELS];
386 struct sdma_channel_control *channel_control;
387 void __iomem *regs;
388 struct sdma_context_data *context;
389 dma_addr_t context_phys;
390 struct dma_device dma_device;
391 struct clk *clk_ipg;
392 struct clk *clk_ahb;
393 spinlock_t channel_0_lock;
394 u32 script_number;
395 struct sdma_script_start_addrs *script_addrs;
396 const struct sdma_driver_data *drvdata;
397 u32 spba_start_addr;
398 u32 spba_end_addr;
399 unsigned int irq;
402 static struct sdma_driver_data sdma_imx31 = {
403 .chnenbl0 = SDMA_CHNENBL0_IMX31,
404 .num_events = 32,
407 static struct sdma_script_start_addrs sdma_script_imx25 = {
408 .ap_2_ap_addr = 729,
409 .uart_2_mcu_addr = 904,
410 .per_2_app_addr = 1255,
411 .mcu_2_app_addr = 834,
412 .uartsh_2_mcu_addr = 1120,
413 .per_2_shp_addr = 1329,
414 .mcu_2_shp_addr = 1048,
415 .ata_2_mcu_addr = 1560,
416 .mcu_2_ata_addr = 1479,
417 .app_2_per_addr = 1189,
418 .app_2_mcu_addr = 770,
419 .shp_2_per_addr = 1407,
420 .shp_2_mcu_addr = 979,
423 static struct sdma_driver_data sdma_imx25 = {
424 .chnenbl0 = SDMA_CHNENBL0_IMX35,
425 .num_events = 48,
426 .script_addrs = &sdma_script_imx25,
429 static struct sdma_driver_data sdma_imx35 = {
430 .chnenbl0 = SDMA_CHNENBL0_IMX35,
431 .num_events = 48,
434 static struct sdma_script_start_addrs sdma_script_imx51 = {
435 .ap_2_ap_addr = 642,
436 .uart_2_mcu_addr = 817,
437 .mcu_2_app_addr = 747,
438 .mcu_2_shp_addr = 961,
439 .ata_2_mcu_addr = 1473,
440 .mcu_2_ata_addr = 1392,
441 .app_2_per_addr = 1033,
442 .app_2_mcu_addr = 683,
443 .shp_2_per_addr = 1251,
444 .shp_2_mcu_addr = 892,
447 static struct sdma_driver_data sdma_imx51 = {
448 .chnenbl0 = SDMA_CHNENBL0_IMX35,
449 .num_events = 48,
450 .script_addrs = &sdma_script_imx51,
453 static struct sdma_script_start_addrs sdma_script_imx53 = {
454 .ap_2_ap_addr = 642,
455 .app_2_mcu_addr = 683,
456 .mcu_2_app_addr = 747,
457 .uart_2_mcu_addr = 817,
458 .shp_2_mcu_addr = 891,
459 .mcu_2_shp_addr = 960,
460 .uartsh_2_mcu_addr = 1032,
461 .spdif_2_mcu_addr = 1100,
462 .mcu_2_spdif_addr = 1134,
463 .firi_2_mcu_addr = 1193,
464 .mcu_2_firi_addr = 1290,
467 static struct sdma_driver_data sdma_imx53 = {
468 .chnenbl0 = SDMA_CHNENBL0_IMX35,
469 .num_events = 48,
470 .script_addrs = &sdma_script_imx53,
473 static struct sdma_script_start_addrs sdma_script_imx6q = {
474 .ap_2_ap_addr = 642,
475 .uart_2_mcu_addr = 817,
476 .mcu_2_app_addr = 747,
477 .per_2_per_addr = 6331,
478 .uartsh_2_mcu_addr = 1032,
479 .mcu_2_shp_addr = 960,
480 .app_2_mcu_addr = 683,
481 .shp_2_mcu_addr = 891,
482 .spdif_2_mcu_addr = 1100,
483 .mcu_2_spdif_addr = 1134,
486 static struct sdma_driver_data sdma_imx6q = {
487 .chnenbl0 = SDMA_CHNENBL0_IMX35,
488 .num_events = 48,
489 .script_addrs = &sdma_script_imx6q,
492 static struct sdma_script_start_addrs sdma_script_imx7d = {
493 .ap_2_ap_addr = 644,
494 .uart_2_mcu_addr = 819,
495 .mcu_2_app_addr = 749,
496 .uartsh_2_mcu_addr = 1034,
497 .mcu_2_shp_addr = 962,
498 .app_2_mcu_addr = 685,
499 .shp_2_mcu_addr = 893,
500 .spdif_2_mcu_addr = 1102,
501 .mcu_2_spdif_addr = 1136,
504 static struct sdma_driver_data sdma_imx7d = {
505 .chnenbl0 = SDMA_CHNENBL0_IMX35,
506 .num_events = 48,
507 .script_addrs = &sdma_script_imx7d,
510 static const struct platform_device_id sdma_devtypes[] = {
512 .name = "imx25-sdma",
513 .driver_data = (unsigned long)&sdma_imx25,
514 }, {
515 .name = "imx31-sdma",
516 .driver_data = (unsigned long)&sdma_imx31,
517 }, {
518 .name = "imx35-sdma",
519 .driver_data = (unsigned long)&sdma_imx35,
520 }, {
521 .name = "imx51-sdma",
522 .driver_data = (unsigned long)&sdma_imx51,
523 }, {
524 .name = "imx53-sdma",
525 .driver_data = (unsigned long)&sdma_imx53,
526 }, {
527 .name = "imx6q-sdma",
528 .driver_data = (unsigned long)&sdma_imx6q,
529 }, {
530 .name = "imx7d-sdma",
531 .driver_data = (unsigned long)&sdma_imx7d,
532 }, {
533 /* sentinel */
536 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
538 static const struct of_device_id sdma_dt_ids[] = {
539 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
540 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
541 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
542 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
543 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
544 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
545 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
546 { /* sentinel */ }
548 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
550 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
551 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
552 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
553 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
555 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
557 u32 chnenbl0 = sdma->drvdata->chnenbl0;
558 return chnenbl0 + event * 4;
561 static int sdma_config_ownership(struct sdma_channel *sdmac,
562 bool event_override, bool mcu_override, bool dsp_override)
564 struct sdma_engine *sdma = sdmac->sdma;
565 int channel = sdmac->channel;
566 unsigned long evt, mcu, dsp;
568 if (event_override && mcu_override && dsp_override)
569 return -EINVAL;
571 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
572 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
573 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
575 if (dsp_override)
576 __clear_bit(channel, &dsp);
577 else
578 __set_bit(channel, &dsp);
580 if (event_override)
581 __clear_bit(channel, &evt);
582 else
583 __set_bit(channel, &evt);
585 if (mcu_override)
586 __clear_bit(channel, &mcu);
587 else
588 __set_bit(channel, &mcu);
590 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
591 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
592 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
594 return 0;
597 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
599 writel(BIT(channel), sdma->regs + SDMA_H_START);
603 * sdma_run_channel0 - run a channel and wait till it's done
605 static int sdma_run_channel0(struct sdma_engine *sdma)
607 int ret;
608 u32 reg;
610 sdma_enable_channel(sdma, 0);
612 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
613 reg, !(reg & 1), 1, 500);
614 if (ret)
615 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
617 /* Set bits of CONFIG register with dynamic context switching */
618 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
619 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
621 return ret;
624 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
625 u32 address)
627 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
628 void *buf_virt;
629 dma_addr_t buf_phys;
630 int ret;
631 unsigned long flags;
633 buf_virt = dma_alloc_coherent(NULL,
634 size,
635 &buf_phys, GFP_KERNEL);
636 if (!buf_virt) {
637 return -ENOMEM;
640 spin_lock_irqsave(&sdma->channel_0_lock, flags);
642 bd0->mode.command = C0_SETPM;
643 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
644 bd0->mode.count = size / 2;
645 bd0->buffer_addr = buf_phys;
646 bd0->ext_buffer_addr = address;
648 memcpy(buf_virt, buf, size);
650 ret = sdma_run_channel0(sdma);
652 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
654 dma_free_coherent(NULL, size, buf_virt, buf_phys);
656 return ret;
659 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
661 struct sdma_engine *sdma = sdmac->sdma;
662 int channel = sdmac->channel;
663 unsigned long val;
664 u32 chnenbl = chnenbl_ofs(sdma, event);
666 val = readl_relaxed(sdma->regs + chnenbl);
667 __set_bit(channel, &val);
668 writel_relaxed(val, sdma->regs + chnenbl);
671 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
673 struct sdma_engine *sdma = sdmac->sdma;
674 int channel = sdmac->channel;
675 u32 chnenbl = chnenbl_ofs(sdma, event);
676 unsigned long val;
678 val = readl_relaxed(sdma->regs + chnenbl);
679 __clear_bit(channel, &val);
680 writel_relaxed(val, sdma->regs + chnenbl);
683 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
685 struct sdma_buffer_descriptor *bd;
686 int error = 0;
687 enum dma_status old_status = sdmac->status;
690 * loop mode. Iterate over descriptors, re-setup them and
691 * call callback function.
693 while (1) {
694 bd = &sdmac->bd[sdmac->buf_tail];
696 if (bd->mode.status & BD_DONE)
697 break;
699 if (bd->mode.status & BD_RROR) {
700 bd->mode.status &= ~BD_RROR;
701 sdmac->status = DMA_ERROR;
702 error = -EIO;
706 * We use bd->mode.count to calculate the residue, since contains
707 * the number of bytes present in the current buffer descriptor.
710 sdmac->chn_real_count = bd->mode.count;
711 bd->mode.status |= BD_DONE;
712 bd->mode.count = sdmac->period_len;
713 sdmac->buf_ptail = sdmac->buf_tail;
714 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
717 * The callback is called from the interrupt context in order
718 * to reduce latency and to avoid the risk of altering the
719 * SDMA transaction status by the time the client tasklet is
720 * executed.
723 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
725 if (error)
726 sdmac->status = old_status;
730 static void mxc_sdma_handle_channel_normal(unsigned long data)
732 struct sdma_channel *sdmac = (struct sdma_channel *) data;
733 struct sdma_buffer_descriptor *bd;
734 int i, error = 0;
736 sdmac->chn_real_count = 0;
738 * non loop mode. Iterate over all descriptors, collect
739 * errors and call callback function
741 for (i = 0; i < sdmac->num_bd; i++) {
742 bd = &sdmac->bd[i];
744 if (bd->mode.status & (BD_DONE | BD_RROR))
745 error = -EIO;
746 sdmac->chn_real_count += bd->mode.count;
749 if (error)
750 sdmac->status = DMA_ERROR;
751 else
752 sdmac->status = DMA_COMPLETE;
754 dma_cookie_complete(&sdmac->desc);
756 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
759 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
761 struct sdma_engine *sdma = dev_id;
762 unsigned long stat;
764 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
765 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
766 /* channel 0 is special and not handled here, see run_channel0() */
767 stat &= ~1;
769 while (stat) {
770 int channel = fls(stat) - 1;
771 struct sdma_channel *sdmac = &sdma->channel[channel];
773 if (sdmac->flags & IMX_DMA_SG_LOOP)
774 sdma_update_channel_loop(sdmac);
775 else
776 tasklet_schedule(&sdmac->tasklet);
778 __clear_bit(channel, &stat);
781 return IRQ_HANDLED;
785 * sets the pc of SDMA script according to the peripheral type
787 static void sdma_get_pc(struct sdma_channel *sdmac,
788 enum sdma_peripheral_type peripheral_type)
790 struct sdma_engine *sdma = sdmac->sdma;
791 int per_2_emi = 0, emi_2_per = 0;
793 * These are needed once we start to support transfers between
794 * two peripherals or memory-to-memory transfers
796 int per_2_per = 0;
798 sdmac->pc_from_device = 0;
799 sdmac->pc_to_device = 0;
800 sdmac->device_to_device = 0;
802 switch (peripheral_type) {
803 case IMX_DMATYPE_MEMORY:
804 break;
805 case IMX_DMATYPE_DSP:
806 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
807 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
808 break;
809 case IMX_DMATYPE_FIRI:
810 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
811 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
812 break;
813 case IMX_DMATYPE_UART:
814 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
815 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
816 break;
817 case IMX_DMATYPE_UART_SP:
818 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
819 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
820 break;
821 case IMX_DMATYPE_ATA:
822 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
823 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
824 break;
825 case IMX_DMATYPE_CSPI:
826 case IMX_DMATYPE_EXT:
827 case IMX_DMATYPE_SSI:
828 case IMX_DMATYPE_SAI:
829 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
830 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
831 break;
832 case IMX_DMATYPE_SSI_DUAL:
833 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
834 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
835 break;
836 case IMX_DMATYPE_SSI_SP:
837 case IMX_DMATYPE_MMC:
838 case IMX_DMATYPE_SDHC:
839 case IMX_DMATYPE_CSPI_SP:
840 case IMX_DMATYPE_ESAI:
841 case IMX_DMATYPE_MSHC_SP:
842 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
843 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
844 break;
845 case IMX_DMATYPE_ASRC:
846 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
847 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
848 per_2_per = sdma->script_addrs->per_2_per_addr;
849 break;
850 case IMX_DMATYPE_ASRC_SP:
851 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
852 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
853 per_2_per = sdma->script_addrs->per_2_per_addr;
854 break;
855 case IMX_DMATYPE_MSHC:
856 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
857 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
858 break;
859 case IMX_DMATYPE_CCM:
860 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
861 break;
862 case IMX_DMATYPE_SPDIF:
863 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
864 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
865 break;
866 case IMX_DMATYPE_IPU_MEMORY:
867 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
868 break;
869 default:
870 break;
873 sdmac->pc_from_device = per_2_emi;
874 sdmac->pc_to_device = emi_2_per;
875 sdmac->device_to_device = per_2_per;
878 static int sdma_load_context(struct sdma_channel *sdmac)
880 struct sdma_engine *sdma = sdmac->sdma;
881 int channel = sdmac->channel;
882 int load_address;
883 struct sdma_context_data *context = sdma->context;
884 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
885 int ret;
886 unsigned long flags;
888 if (sdmac->direction == DMA_DEV_TO_MEM)
889 load_address = sdmac->pc_from_device;
890 else if (sdmac->direction == DMA_DEV_TO_DEV)
891 load_address = sdmac->device_to_device;
892 else
893 load_address = sdmac->pc_to_device;
895 if (load_address < 0)
896 return load_address;
898 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
899 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
900 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
901 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
902 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
903 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
905 spin_lock_irqsave(&sdma->channel_0_lock, flags);
907 memset(context, 0, sizeof(*context));
908 context->channel_state.pc = load_address;
910 /* Send by context the event mask,base address for peripheral
911 * and watermark level
913 context->gReg[0] = sdmac->event_mask[1];
914 context->gReg[1] = sdmac->event_mask[0];
915 context->gReg[2] = sdmac->per_addr;
916 context->gReg[6] = sdmac->shp_addr;
917 context->gReg[7] = sdmac->watermark_level;
919 bd0->mode.command = C0_SETDM;
920 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
921 bd0->mode.count = sizeof(*context) / 4;
922 bd0->buffer_addr = sdma->context_phys;
923 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
924 ret = sdma_run_channel0(sdma);
926 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
928 return ret;
931 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
933 return container_of(chan, struct sdma_channel, chan);
936 static int sdma_disable_channel(struct dma_chan *chan)
938 struct sdma_channel *sdmac = to_sdma_chan(chan);
939 struct sdma_engine *sdma = sdmac->sdma;
940 int channel = sdmac->channel;
942 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
943 sdmac->status = DMA_ERROR;
945 return 0;
948 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
950 sdma_disable_channel(chan);
953 * According to NXP R&D team a delay of one BD SDMA cost time
954 * (maximum is 1ms) should be added after disable of the channel
955 * bit, to ensure SDMA core has really been stopped after SDMA
956 * clients call .device_terminate_all.
958 mdelay(1);
960 return 0;
963 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
965 struct sdma_engine *sdma = sdmac->sdma;
967 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
968 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
970 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
971 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
973 if (sdmac->event_id0 > 31)
974 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
976 if (sdmac->event_id1 > 31)
977 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
980 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
981 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
982 * r0(event_mask[1]) and r1(event_mask[0]).
984 if (lwml > hwml) {
985 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
986 SDMA_WATERMARK_LEVEL_HWML);
987 sdmac->watermark_level |= hwml;
988 sdmac->watermark_level |= lwml << 16;
989 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
992 if (sdmac->per_address2 >= sdma->spba_start_addr &&
993 sdmac->per_address2 <= sdma->spba_end_addr)
994 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
996 if (sdmac->per_address >= sdma->spba_start_addr &&
997 sdmac->per_address <= sdma->spba_end_addr)
998 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1000 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1003 static int sdma_config_channel(struct dma_chan *chan)
1005 struct sdma_channel *sdmac = to_sdma_chan(chan);
1006 int ret;
1008 sdma_disable_channel(chan);
1010 sdmac->event_mask[0] = 0;
1011 sdmac->event_mask[1] = 0;
1012 sdmac->shp_addr = 0;
1013 sdmac->per_addr = 0;
1015 if (sdmac->event_id0) {
1016 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1017 return -EINVAL;
1018 sdma_event_enable(sdmac, sdmac->event_id0);
1021 if (sdmac->event_id1) {
1022 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1023 return -EINVAL;
1024 sdma_event_enable(sdmac, sdmac->event_id1);
1027 switch (sdmac->peripheral_type) {
1028 case IMX_DMATYPE_DSP:
1029 sdma_config_ownership(sdmac, false, true, true);
1030 break;
1031 case IMX_DMATYPE_MEMORY:
1032 sdma_config_ownership(sdmac, false, true, false);
1033 break;
1034 default:
1035 sdma_config_ownership(sdmac, true, true, false);
1036 break;
1039 sdma_get_pc(sdmac, sdmac->peripheral_type);
1041 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1042 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1043 /* Handle multiple event channels differently */
1044 if (sdmac->event_id1) {
1045 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1046 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1047 sdma_set_watermarklevel_for_p2p(sdmac);
1048 } else
1049 __set_bit(sdmac->event_id0, sdmac->event_mask);
1051 /* Address */
1052 sdmac->shp_addr = sdmac->per_address;
1053 sdmac->per_addr = sdmac->per_address2;
1054 } else {
1055 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1058 ret = sdma_load_context(sdmac);
1060 return ret;
1063 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1064 unsigned int priority)
1066 struct sdma_engine *sdma = sdmac->sdma;
1067 int channel = sdmac->channel;
1069 if (priority < MXC_SDMA_MIN_PRIORITY
1070 || priority > MXC_SDMA_MAX_PRIORITY) {
1071 return -EINVAL;
1074 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1076 return 0;
1079 static int sdma_request_channel(struct sdma_channel *sdmac)
1081 struct sdma_engine *sdma = sdmac->sdma;
1082 int channel = sdmac->channel;
1083 int ret = -EBUSY;
1085 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1086 GFP_KERNEL);
1087 if (!sdmac->bd) {
1088 ret = -ENOMEM;
1089 goto out;
1092 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1093 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1095 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1096 return 0;
1097 out:
1099 return ret;
1102 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1104 unsigned long flags;
1105 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1106 dma_cookie_t cookie;
1108 spin_lock_irqsave(&sdmac->lock, flags);
1110 cookie = dma_cookie_assign(tx);
1112 spin_unlock_irqrestore(&sdmac->lock, flags);
1114 return cookie;
1117 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1119 struct sdma_channel *sdmac = to_sdma_chan(chan);
1120 struct imx_dma_data *data = chan->private;
1121 int prio, ret;
1123 if (!data)
1124 return -EINVAL;
1126 switch (data->priority) {
1127 case DMA_PRIO_HIGH:
1128 prio = 3;
1129 break;
1130 case DMA_PRIO_MEDIUM:
1131 prio = 2;
1132 break;
1133 case DMA_PRIO_LOW:
1134 default:
1135 prio = 1;
1136 break;
1139 sdmac->peripheral_type = data->peripheral_type;
1140 sdmac->event_id0 = data->dma_request;
1141 sdmac->event_id1 = data->dma_request2;
1143 ret = clk_enable(sdmac->sdma->clk_ipg);
1144 if (ret)
1145 return ret;
1146 ret = clk_enable(sdmac->sdma->clk_ahb);
1147 if (ret)
1148 goto disable_clk_ipg;
1150 ret = sdma_request_channel(sdmac);
1151 if (ret)
1152 goto disable_clk_ahb;
1154 ret = sdma_set_channel_priority(sdmac, prio);
1155 if (ret)
1156 goto disable_clk_ahb;
1158 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1159 sdmac->desc.tx_submit = sdma_tx_submit;
1160 /* txd.flags will be overwritten in prep funcs */
1161 sdmac->desc.flags = DMA_CTRL_ACK;
1163 return 0;
1165 disable_clk_ahb:
1166 clk_disable(sdmac->sdma->clk_ahb);
1167 disable_clk_ipg:
1168 clk_disable(sdmac->sdma->clk_ipg);
1169 return ret;
1172 static void sdma_free_chan_resources(struct dma_chan *chan)
1174 struct sdma_channel *sdmac = to_sdma_chan(chan);
1175 struct sdma_engine *sdma = sdmac->sdma;
1177 sdma_disable_channel(chan);
1179 if (sdmac->event_id0)
1180 sdma_event_disable(sdmac, sdmac->event_id0);
1181 if (sdmac->event_id1)
1182 sdma_event_disable(sdmac, sdmac->event_id1);
1184 sdmac->event_id0 = 0;
1185 sdmac->event_id1 = 0;
1187 sdma_set_channel_priority(sdmac, 0);
1189 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1191 clk_disable(sdma->clk_ipg);
1192 clk_disable(sdma->clk_ahb);
1195 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1196 struct dma_chan *chan, struct scatterlist *sgl,
1197 unsigned int sg_len, enum dma_transfer_direction direction,
1198 unsigned long flags, void *context)
1200 struct sdma_channel *sdmac = to_sdma_chan(chan);
1201 struct sdma_engine *sdma = sdmac->sdma;
1202 int ret, i, count;
1203 int channel = sdmac->channel;
1204 struct scatterlist *sg;
1206 if (sdmac->status == DMA_IN_PROGRESS)
1207 return NULL;
1208 sdmac->status = DMA_IN_PROGRESS;
1210 sdmac->flags = 0;
1212 sdmac->buf_tail = 0;
1213 sdmac->buf_ptail = 0;
1214 sdmac->chn_real_count = 0;
1216 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1217 sg_len, channel);
1219 sdmac->direction = direction;
1220 ret = sdma_load_context(sdmac);
1221 if (ret)
1222 goto err_out;
1224 if (sg_len > NUM_BD) {
1225 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1226 channel, sg_len, NUM_BD);
1227 ret = -EINVAL;
1228 goto err_out;
1231 sdmac->chn_count = 0;
1232 for_each_sg(sgl, sg, sg_len, i) {
1233 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1234 int param;
1236 bd->buffer_addr = sg->dma_address;
1238 count = sg_dma_len(sg);
1240 if (count > 0xffff) {
1241 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1242 channel, count, 0xffff);
1243 ret = -EINVAL;
1244 goto err_out;
1247 bd->mode.count = count;
1248 sdmac->chn_count += count;
1250 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1251 ret = -EINVAL;
1252 goto err_out;
1255 switch (sdmac->word_size) {
1256 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1257 bd->mode.command = 0;
1258 if (count & 3 || sg->dma_address & 3)
1259 return NULL;
1260 break;
1261 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1262 bd->mode.command = 2;
1263 if (count & 1 || sg->dma_address & 1)
1264 return NULL;
1265 break;
1266 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1267 bd->mode.command = 1;
1268 break;
1269 default:
1270 return NULL;
1273 param = BD_DONE | BD_EXTD | BD_CONT;
1275 if (i + 1 == sg_len) {
1276 param |= BD_INTR;
1277 param |= BD_LAST;
1278 param &= ~BD_CONT;
1281 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1282 i, count, (u64)sg->dma_address,
1283 param & BD_WRAP ? "wrap" : "",
1284 param & BD_INTR ? " intr" : "");
1286 bd->mode.status = param;
1289 sdmac->num_bd = sg_len;
1290 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1292 return &sdmac->desc;
1293 err_out:
1294 sdmac->status = DMA_ERROR;
1295 return NULL;
1298 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1299 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1300 size_t period_len, enum dma_transfer_direction direction,
1301 unsigned long flags)
1303 struct sdma_channel *sdmac = to_sdma_chan(chan);
1304 struct sdma_engine *sdma = sdmac->sdma;
1305 int num_periods = buf_len / period_len;
1306 int channel = sdmac->channel;
1307 int ret, i = 0, buf = 0;
1309 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1311 if (sdmac->status == DMA_IN_PROGRESS)
1312 return NULL;
1314 sdmac->status = DMA_IN_PROGRESS;
1316 sdmac->buf_tail = 0;
1317 sdmac->buf_ptail = 0;
1318 sdmac->chn_real_count = 0;
1319 sdmac->period_len = period_len;
1321 sdmac->flags |= IMX_DMA_SG_LOOP;
1322 sdmac->direction = direction;
1323 ret = sdma_load_context(sdmac);
1324 if (ret)
1325 goto err_out;
1327 if (num_periods > NUM_BD) {
1328 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1329 channel, num_periods, NUM_BD);
1330 goto err_out;
1333 if (period_len > 0xffff) {
1334 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1335 channel, period_len, 0xffff);
1336 goto err_out;
1339 while (buf < buf_len) {
1340 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1341 int param;
1343 bd->buffer_addr = dma_addr;
1345 bd->mode.count = period_len;
1347 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1348 goto err_out;
1349 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1350 bd->mode.command = 0;
1351 else
1352 bd->mode.command = sdmac->word_size;
1354 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1355 if (i + 1 == num_periods)
1356 param |= BD_WRAP;
1358 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1359 i, period_len, (u64)dma_addr,
1360 param & BD_WRAP ? "wrap" : "",
1361 param & BD_INTR ? " intr" : "");
1363 bd->mode.status = param;
1365 dma_addr += period_len;
1366 buf += period_len;
1368 i++;
1371 sdmac->num_bd = num_periods;
1372 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1374 return &sdmac->desc;
1375 err_out:
1376 sdmac->status = DMA_ERROR;
1377 return NULL;
1380 static int sdma_config(struct dma_chan *chan,
1381 struct dma_slave_config *dmaengine_cfg)
1383 struct sdma_channel *sdmac = to_sdma_chan(chan);
1385 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1386 sdmac->per_address = dmaengine_cfg->src_addr;
1387 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1388 dmaengine_cfg->src_addr_width;
1389 sdmac->word_size = dmaengine_cfg->src_addr_width;
1390 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1391 sdmac->per_address2 = dmaengine_cfg->src_addr;
1392 sdmac->per_address = dmaengine_cfg->dst_addr;
1393 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1394 SDMA_WATERMARK_LEVEL_LWML;
1395 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1396 SDMA_WATERMARK_LEVEL_HWML;
1397 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1398 } else {
1399 sdmac->per_address = dmaengine_cfg->dst_addr;
1400 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1401 dmaengine_cfg->dst_addr_width;
1402 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1404 sdmac->direction = dmaengine_cfg->direction;
1405 return sdma_config_channel(chan);
1408 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1409 dma_cookie_t cookie,
1410 struct dma_tx_state *txstate)
1412 struct sdma_channel *sdmac = to_sdma_chan(chan);
1413 u32 residue;
1415 if (sdmac->flags & IMX_DMA_SG_LOOP)
1416 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1417 sdmac->period_len - sdmac->chn_real_count;
1418 else
1419 residue = sdmac->chn_count - sdmac->chn_real_count;
1421 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1422 residue);
1424 return sdmac->status;
1427 static void sdma_issue_pending(struct dma_chan *chan)
1429 struct sdma_channel *sdmac = to_sdma_chan(chan);
1430 struct sdma_engine *sdma = sdmac->sdma;
1432 if (sdmac->status == DMA_IN_PROGRESS)
1433 sdma_enable_channel(sdma, sdmac->channel);
1436 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1437 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1438 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1439 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1441 static void sdma_add_scripts(struct sdma_engine *sdma,
1442 const struct sdma_script_start_addrs *addr)
1444 s32 *addr_arr = (u32 *)addr;
1445 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1446 int i;
1448 /* use the default firmware in ROM if missing external firmware */
1449 if (!sdma->script_number)
1450 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1452 for (i = 0; i < sdma->script_number; i++)
1453 if (addr_arr[i] > 0)
1454 saddr_arr[i] = addr_arr[i];
1457 static void sdma_load_firmware(const struct firmware *fw, void *context)
1459 struct sdma_engine *sdma = context;
1460 const struct sdma_firmware_header *header;
1461 const struct sdma_script_start_addrs *addr;
1462 unsigned short *ram_code;
1464 if (!fw) {
1465 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1466 /* In this case we just use the ROM firmware. */
1467 return;
1470 if (fw->size < sizeof(*header))
1471 goto err_firmware;
1473 header = (struct sdma_firmware_header *)fw->data;
1475 if (header->magic != SDMA_FIRMWARE_MAGIC)
1476 goto err_firmware;
1477 if (header->ram_code_start + header->ram_code_size > fw->size)
1478 goto err_firmware;
1479 switch (header->version_major) {
1480 case 1:
1481 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1482 break;
1483 case 2:
1484 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1485 break;
1486 case 3:
1487 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1488 break;
1489 case 4:
1490 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1491 break;
1492 default:
1493 dev_err(sdma->dev, "unknown firmware version\n");
1494 goto err_firmware;
1497 addr = (void *)header + header->script_addrs_start;
1498 ram_code = (void *)header + header->ram_code_start;
1500 clk_enable(sdma->clk_ipg);
1501 clk_enable(sdma->clk_ahb);
1502 /* download the RAM image for SDMA */
1503 sdma_load_script(sdma, ram_code,
1504 header->ram_code_size,
1505 addr->ram_code_start_addr);
1506 clk_disable(sdma->clk_ipg);
1507 clk_disable(sdma->clk_ahb);
1509 sdma_add_scripts(sdma, addr);
1511 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1512 header->version_major,
1513 header->version_minor);
1515 err_firmware:
1516 release_firmware(fw);
1519 #define EVENT_REMAP_CELLS 3
1521 static int sdma_event_remap(struct sdma_engine *sdma)
1523 struct device_node *np = sdma->dev->of_node;
1524 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1525 struct property *event_remap;
1526 struct regmap *gpr;
1527 char propname[] = "fsl,sdma-event-remap";
1528 u32 reg, val, shift, num_map, i;
1529 int ret = 0;
1531 if (IS_ERR(np) || IS_ERR(gpr_np))
1532 goto out;
1534 event_remap = of_find_property(np, propname, NULL);
1535 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1536 if (!num_map) {
1537 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1538 goto out;
1539 } else if (num_map % EVENT_REMAP_CELLS) {
1540 dev_err(sdma->dev, "the property %s must modulo %d\n",
1541 propname, EVENT_REMAP_CELLS);
1542 ret = -EINVAL;
1543 goto out;
1546 gpr = syscon_node_to_regmap(gpr_np);
1547 if (IS_ERR(gpr)) {
1548 dev_err(sdma->dev, "failed to get gpr regmap\n");
1549 ret = PTR_ERR(gpr);
1550 goto out;
1553 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1554 ret = of_property_read_u32_index(np, propname, i, &reg);
1555 if (ret) {
1556 dev_err(sdma->dev, "failed to read property %s index %d\n",
1557 propname, i);
1558 goto out;
1561 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1562 if (ret) {
1563 dev_err(sdma->dev, "failed to read property %s index %d\n",
1564 propname, i + 1);
1565 goto out;
1568 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1569 if (ret) {
1570 dev_err(sdma->dev, "failed to read property %s index %d\n",
1571 propname, i + 2);
1572 goto out;
1575 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1578 out:
1579 if (!IS_ERR(gpr_np))
1580 of_node_put(gpr_np);
1582 return ret;
1585 static int sdma_get_firmware(struct sdma_engine *sdma,
1586 const char *fw_name)
1588 int ret;
1590 ret = request_firmware_nowait(THIS_MODULE,
1591 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1592 GFP_KERNEL, sdma, sdma_load_firmware);
1594 return ret;
1597 static int sdma_init(struct sdma_engine *sdma)
1599 int i, ret;
1600 dma_addr_t ccb_phys;
1602 ret = clk_enable(sdma->clk_ipg);
1603 if (ret)
1604 return ret;
1605 ret = clk_enable(sdma->clk_ahb);
1606 if (ret)
1607 goto disable_clk_ipg;
1609 /* Be sure SDMA has not started yet */
1610 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1612 sdma->channel_control = dma_alloc_coherent(NULL,
1613 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1614 sizeof(struct sdma_context_data),
1615 &ccb_phys, GFP_KERNEL);
1617 if (!sdma->channel_control) {
1618 ret = -ENOMEM;
1619 goto err_dma_alloc;
1622 sdma->context = (void *)sdma->channel_control +
1623 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1624 sdma->context_phys = ccb_phys +
1625 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1627 /* Zero-out the CCB structures array just allocated */
1628 memset(sdma->channel_control, 0,
1629 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1631 /* disable all channels */
1632 for (i = 0; i < sdma->drvdata->num_events; i++)
1633 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1635 /* All channels have priority 0 */
1636 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1637 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1639 ret = sdma_request_channel(&sdma->channel[0]);
1640 if (ret)
1641 goto err_dma_alloc;
1643 sdma_config_ownership(&sdma->channel[0], false, true, false);
1645 /* Set Command Channel (Channel Zero) */
1646 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1648 /* Set bits of CONFIG register but with static context switching */
1649 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1650 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1652 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1654 /* Initializes channel's priorities */
1655 sdma_set_channel_priority(&sdma->channel[0], 7);
1657 clk_disable(sdma->clk_ipg);
1658 clk_disable(sdma->clk_ahb);
1660 return 0;
1662 err_dma_alloc:
1663 clk_disable(sdma->clk_ahb);
1664 disable_clk_ipg:
1665 clk_disable(sdma->clk_ipg);
1666 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1667 return ret;
1670 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1672 struct sdma_channel *sdmac = to_sdma_chan(chan);
1673 struct imx_dma_data *data = fn_param;
1675 if (!imx_dma_is_general_purpose(chan))
1676 return false;
1678 sdmac->data = *data;
1679 chan->private = &sdmac->data;
1681 return true;
1684 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1685 struct of_dma *ofdma)
1687 struct sdma_engine *sdma = ofdma->of_dma_data;
1688 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1689 struct imx_dma_data data;
1691 if (dma_spec->args_count != 3)
1692 return NULL;
1694 data.dma_request = dma_spec->args[0];
1695 data.peripheral_type = dma_spec->args[1];
1696 data.priority = dma_spec->args[2];
1698 * init dma_request2 to zero, which is not used by the dts.
1699 * For P2P, dma_request2 is init from dma_request_channel(),
1700 * chan->private will point to the imx_dma_data, and in
1701 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1702 * be set to sdmac->event_id1.
1704 data.dma_request2 = 0;
1706 return dma_request_channel(mask, sdma_filter_fn, &data);
1709 static int sdma_probe(struct platform_device *pdev)
1711 const struct of_device_id *of_id =
1712 of_match_device(sdma_dt_ids, &pdev->dev);
1713 struct device_node *np = pdev->dev.of_node;
1714 struct device_node *spba_bus;
1715 const char *fw_name;
1716 int ret;
1717 int irq;
1718 struct resource *iores;
1719 struct resource spba_res;
1720 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1721 int i;
1722 struct sdma_engine *sdma;
1723 s32 *saddr_arr;
1724 const struct sdma_driver_data *drvdata = NULL;
1726 if (of_id)
1727 drvdata = of_id->data;
1728 else if (pdev->id_entry)
1729 drvdata = (void *)pdev->id_entry->driver_data;
1731 if (!drvdata) {
1732 dev_err(&pdev->dev, "unable to find driver data\n");
1733 return -EINVAL;
1736 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1737 if (ret)
1738 return ret;
1740 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1741 if (!sdma)
1742 return -ENOMEM;
1744 spin_lock_init(&sdma->channel_0_lock);
1746 sdma->dev = &pdev->dev;
1747 sdma->drvdata = drvdata;
1749 irq = platform_get_irq(pdev, 0);
1750 if (irq < 0)
1751 return irq;
1753 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1754 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1755 if (IS_ERR(sdma->regs))
1756 return PTR_ERR(sdma->regs);
1758 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1759 if (IS_ERR(sdma->clk_ipg))
1760 return PTR_ERR(sdma->clk_ipg);
1762 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1763 if (IS_ERR(sdma->clk_ahb))
1764 return PTR_ERR(sdma->clk_ahb);
1766 ret = clk_prepare(sdma->clk_ipg);
1767 if (ret)
1768 return ret;
1770 ret = clk_prepare(sdma->clk_ahb);
1771 if (ret)
1772 goto err_clk;
1774 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1775 sdma);
1776 if (ret)
1777 goto err_irq;
1779 sdma->irq = irq;
1781 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1782 if (!sdma->script_addrs) {
1783 ret = -ENOMEM;
1784 goto err_irq;
1787 /* initially no scripts available */
1788 saddr_arr = (s32 *)sdma->script_addrs;
1789 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1790 saddr_arr[i] = -EINVAL;
1792 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1793 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1795 INIT_LIST_HEAD(&sdma->dma_device.channels);
1796 /* Initialize channel parameters */
1797 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1798 struct sdma_channel *sdmac = &sdma->channel[i];
1800 sdmac->sdma = sdma;
1801 spin_lock_init(&sdmac->lock);
1803 sdmac->chan.device = &sdma->dma_device;
1804 dma_cookie_init(&sdmac->chan);
1805 sdmac->channel = i;
1807 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1808 (unsigned long) sdmac);
1810 * Add the channel to the DMAC list. Do not add channel 0 though
1811 * because we need it internally in the SDMA driver. This also means
1812 * that channel 0 in dmaengine counting matches sdma channel 1.
1814 if (i)
1815 list_add_tail(&sdmac->chan.device_node,
1816 &sdma->dma_device.channels);
1819 ret = sdma_init(sdma);
1820 if (ret)
1821 goto err_init;
1823 ret = sdma_event_remap(sdma);
1824 if (ret)
1825 goto err_init;
1827 if (sdma->drvdata->script_addrs)
1828 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1829 if (pdata && pdata->script_addrs)
1830 sdma_add_scripts(sdma, pdata->script_addrs);
1832 if (pdata) {
1833 ret = sdma_get_firmware(sdma, pdata->fw_name);
1834 if (ret)
1835 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1836 } else {
1838 * Because that device tree does not encode ROM script address,
1839 * the RAM script in firmware is mandatory for device tree
1840 * probe, otherwise it fails.
1842 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1843 &fw_name);
1844 if (ret)
1845 dev_warn(&pdev->dev, "failed to get firmware name\n");
1846 else {
1847 ret = sdma_get_firmware(sdma, fw_name);
1848 if (ret)
1849 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1853 sdma->dma_device.dev = &pdev->dev;
1855 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1856 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1857 sdma->dma_device.device_tx_status = sdma_tx_status;
1858 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1859 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1860 sdma->dma_device.device_config = sdma_config;
1861 sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1862 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1863 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1864 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1865 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1866 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1867 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1868 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1870 platform_set_drvdata(pdev, sdma);
1872 ret = dma_async_device_register(&sdma->dma_device);
1873 if (ret) {
1874 dev_err(&pdev->dev, "unable to register\n");
1875 goto err_init;
1878 if (np) {
1879 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1880 if (ret) {
1881 dev_err(&pdev->dev, "failed to register controller\n");
1882 goto err_register;
1885 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1886 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1887 if (!ret) {
1888 sdma->spba_start_addr = spba_res.start;
1889 sdma->spba_end_addr = spba_res.end;
1891 of_node_put(spba_bus);
1894 return 0;
1896 err_register:
1897 dma_async_device_unregister(&sdma->dma_device);
1898 err_init:
1899 kfree(sdma->script_addrs);
1900 err_irq:
1901 clk_unprepare(sdma->clk_ahb);
1902 err_clk:
1903 clk_unprepare(sdma->clk_ipg);
1904 return ret;
1907 static int sdma_remove(struct platform_device *pdev)
1909 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1910 int i;
1912 devm_free_irq(&pdev->dev, sdma->irq, sdma);
1913 dma_async_device_unregister(&sdma->dma_device);
1914 kfree(sdma->script_addrs);
1915 clk_unprepare(sdma->clk_ahb);
1916 clk_unprepare(sdma->clk_ipg);
1917 /* Kill the tasklet */
1918 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1919 struct sdma_channel *sdmac = &sdma->channel[i];
1921 tasklet_kill(&sdmac->tasklet);
1924 platform_set_drvdata(pdev, NULL);
1925 return 0;
1928 static struct platform_driver sdma_driver = {
1929 .driver = {
1930 .name = "imx-sdma",
1931 .of_match_table = sdma_dt_ids,
1933 .id_table = sdma_devtypes,
1934 .remove = sdma_remove,
1935 .probe = sdma_probe,
1938 module_platform_driver(sdma_driver);
1940 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1941 MODULE_DESCRIPTION("i.MX SDMA driver");
1942 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1943 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1944 #endif
1945 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1946 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1947 #endif
1948 MODULE_LICENSE("GPL");