Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / gvt / gtt.c
blob8d5317d0122d41aa43f3d40d16f184129878a32a
1 /*
2 * GTT virtualization
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
45 * validate a gm address and related range size,
46 * translate it to host gm address
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 addr, size);
54 return false;
56 return true;
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 "invalid guest gmadr %llx\n", g_addr))
64 return -EACCES;
66 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68 + (g_addr - vgpu_aperture_offset(vgpu));
69 else
70 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71 + (g_addr - vgpu_hidden_offset(vgpu));
72 return 0;
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 "invalid host gmadr %llx\n", h_addr))
80 return -EACCES;
82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 else
86 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 return 0;
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 unsigned long *h_index)
94 u64 h_addr;
95 int ret;
97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
98 &h_addr);
99 if (ret)
100 return ret;
102 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
103 return 0;
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 unsigned long *g_index)
109 u64 g_addr;
110 int ret;
112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
113 &g_addr);
114 if (ret)
115 return ret;
117 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
118 return 0;
121 #define gtt_type_is_entry(type) \
122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
126 #define gtt_type_is_pt(type) \
127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
129 #define gtt_type_is_pte_pt(type) \
130 (type == GTT_TYPE_PPGTT_PTE_PT)
132 #define gtt_type_is_root_pointer(type) \
133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
135 #define gtt_init_entry(e, t, p, v) do { \
136 (e)->type = t; \
137 (e)->pdev = p; \
138 memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
142 * Mappings between GTT_TYPE* enumerations.
143 * Following information can be found according to the given type:
144 * - type of next level page table
145 * - type of entry inside this level page table
146 * - type of entry with PSE set
148 * If the given type doesn't have such a kind of information,
149 * e.g. give a l4 root entry type, then request to get its PSE type,
150 * give a PTE page table type, then request to get its next level page
151 * table type, as we know l4 root entry doesn't have a PSE bit,
152 * and a PTE page table doesn't have a next level page table type,
153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154 * page table.
157 struct gtt_type_table_entry {
158 int entry_type;
159 int pt_type;
160 int next_pt_type;
161 int pse_entry_type;
164 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
165 [type] = { \
166 .entry_type = e_type, \
167 .pt_type = cpt_type, \
168 .next_pt_type = npt_type, \
169 .pse_entry_type = pse_type, \
172 static struct gtt_type_table_entry gtt_type_table[] = {
173 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
174 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
175 GTT_TYPE_INVALID,
176 GTT_TYPE_PPGTT_PML4_PT,
177 GTT_TYPE_INVALID),
178 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
179 GTT_TYPE_PPGTT_PML4_ENTRY,
180 GTT_TYPE_PPGTT_PML4_PT,
181 GTT_TYPE_PPGTT_PDP_PT,
182 GTT_TYPE_INVALID),
183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
184 GTT_TYPE_PPGTT_PML4_ENTRY,
185 GTT_TYPE_PPGTT_PML4_PT,
186 GTT_TYPE_PPGTT_PDP_PT,
187 GTT_TYPE_INVALID),
188 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
189 GTT_TYPE_PPGTT_PDP_ENTRY,
190 GTT_TYPE_PPGTT_PDP_PT,
191 GTT_TYPE_PPGTT_PDE_PT,
192 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
193 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
194 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
195 GTT_TYPE_INVALID,
196 GTT_TYPE_PPGTT_PDE_PT,
197 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
198 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
199 GTT_TYPE_PPGTT_PDP_ENTRY,
200 GTT_TYPE_PPGTT_PDP_PT,
201 GTT_TYPE_PPGTT_PDE_PT,
202 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
204 GTT_TYPE_PPGTT_PDE_ENTRY,
205 GTT_TYPE_PPGTT_PDE_PT,
206 GTT_TYPE_PPGTT_PTE_PT,
207 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
208 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
209 GTT_TYPE_PPGTT_PDE_ENTRY,
210 GTT_TYPE_PPGTT_PDE_PT,
211 GTT_TYPE_PPGTT_PTE_PT,
212 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
213 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
214 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
215 GTT_TYPE_PPGTT_PTE_PT,
216 GTT_TYPE_INVALID,
217 GTT_TYPE_INVALID),
218 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
219 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
220 GTT_TYPE_PPGTT_PTE_PT,
221 GTT_TYPE_INVALID,
222 GTT_TYPE_INVALID),
223 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
224 GTT_TYPE_PPGTT_PDE_ENTRY,
225 GTT_TYPE_PPGTT_PDE_PT,
226 GTT_TYPE_INVALID,
227 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
228 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
229 GTT_TYPE_PPGTT_PDP_ENTRY,
230 GTT_TYPE_PPGTT_PDP_PT,
231 GTT_TYPE_INVALID,
232 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
233 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
234 GTT_TYPE_GGTT_PTE,
235 GTT_TYPE_INVALID,
236 GTT_TYPE_INVALID,
237 GTT_TYPE_INVALID),
240 static inline int get_next_pt_type(int type)
242 return gtt_type_table[type].next_pt_type;
245 static inline int get_pt_type(int type)
247 return gtt_type_table[type].pt_type;
250 static inline int get_entry_type(int type)
252 return gtt_type_table[type].entry_type;
255 static inline int get_pse_type(int type)
257 return gtt_type_table[type].pse_entry_type;
260 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
262 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
264 return readq(addr);
267 static void gtt_invalidate(struct drm_i915_private *dev_priv)
269 mmio_hw_access_pre(dev_priv);
270 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
271 mmio_hw_access_post(dev_priv);
274 static void write_pte64(struct drm_i915_private *dev_priv,
275 unsigned long index, u64 pte)
277 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
279 writeq(pte, addr);
282 static inline int gtt_get_entry64(void *pt,
283 struct intel_gvt_gtt_entry *e,
284 unsigned long index, bool hypervisor_access, unsigned long gpa,
285 struct intel_vgpu *vgpu)
287 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288 int ret;
290 if (WARN_ON(info->gtt_entry_size != 8))
291 return -EINVAL;
293 if (hypervisor_access) {
294 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
295 (index << info->gtt_entry_size_shift),
296 &e->val64, 8);
297 if (WARN_ON(ret))
298 return ret;
299 } else if (!pt) {
300 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
301 } else {
302 e->val64 = *((u64 *)pt + index);
304 return 0;
307 static inline int gtt_set_entry64(void *pt,
308 struct intel_gvt_gtt_entry *e,
309 unsigned long index, bool hypervisor_access, unsigned long gpa,
310 struct intel_vgpu *vgpu)
312 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
313 int ret;
315 if (WARN_ON(info->gtt_entry_size != 8))
316 return -EINVAL;
318 if (hypervisor_access) {
319 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
320 (index << info->gtt_entry_size_shift),
321 &e->val64, 8);
322 if (WARN_ON(ret))
323 return ret;
324 } else if (!pt) {
325 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
326 } else {
327 *((u64 *)pt + index) = e->val64;
329 return 0;
332 #define GTT_HAW 46
334 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
335 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
336 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
338 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
340 unsigned long pfn;
342 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
343 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
344 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
345 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
346 else
347 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
348 return pfn;
351 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
353 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
354 e->val64 &= ~ADDR_1G_MASK;
355 pfn &= (ADDR_1G_MASK >> 12);
356 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
357 e->val64 &= ~ADDR_2M_MASK;
358 pfn &= (ADDR_2M_MASK >> 12);
359 } else {
360 e->val64 &= ~ADDR_4K_MASK;
361 pfn &= (ADDR_4K_MASK >> 12);
364 e->val64 |= (pfn << 12);
367 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
369 /* Entry doesn't have PSE bit. */
370 if (get_pse_type(e->type) == GTT_TYPE_INVALID)
371 return false;
373 e->type = get_entry_type(e->type);
374 if (!(e->val64 & BIT(7)))
375 return false;
377 e->type = get_pse_type(e->type);
378 return true;
381 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
384 * i915 writes PDP root pointer registers without present bit,
385 * it also works, so we need to treat root pointer entry
386 * specifically.
388 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
389 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
390 return (e->val64 != 0);
391 else
392 return (e->val64 & BIT(0));
395 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
397 e->val64 &= ~BIT(0);
400 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
402 e->val64 |= BIT(0);
406 * Per-platform GMA routines.
408 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
410 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
412 trace_gma_index(__func__, gma, x);
413 return x;
416 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
417 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
419 unsigned long x = (exp); \
420 trace_gma_index(__func__, gma, x); \
421 return x; \
424 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
425 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
426 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
427 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
428 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
430 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
431 .get_entry = gtt_get_entry64,
432 .set_entry = gtt_set_entry64,
433 .clear_present = gtt_entry_clear_present,
434 .set_present = gtt_entry_set_present,
435 .test_present = gen8_gtt_test_present,
436 .test_pse = gen8_gtt_test_pse,
437 .get_pfn = gen8_gtt_get_pfn,
438 .set_pfn = gen8_gtt_set_pfn,
441 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
442 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
443 .gma_to_pte_index = gen8_gma_to_pte_index,
444 .gma_to_pde_index = gen8_gma_to_pde_index,
445 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
446 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
447 .gma_to_pml4_index = gen8_gma_to_pml4_index,
450 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
451 struct intel_gvt_gtt_entry *m)
453 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
454 unsigned long gfn, mfn;
456 *m = *p;
458 if (!ops->test_present(p))
459 return 0;
461 gfn = ops->get_pfn(p);
463 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
464 if (mfn == INTEL_GVT_INVALID_ADDR) {
465 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
466 return -ENXIO;
469 ops->set_pfn(m, mfn);
470 return 0;
474 * MM helpers.
476 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
477 void *page_table, struct intel_gvt_gtt_entry *e,
478 unsigned long index)
480 struct intel_gvt *gvt = mm->vgpu->gvt;
481 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
482 int ret;
484 e->type = mm->page_table_entry_type;
486 ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
487 if (ret)
488 return ret;
490 ops->test_pse(e);
491 return 0;
494 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
495 void *page_table, struct intel_gvt_gtt_entry *e,
496 unsigned long index)
498 struct intel_gvt *gvt = mm->vgpu->gvt;
499 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
501 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
505 * PPGTT shadow page table helpers.
507 static inline int ppgtt_spt_get_entry(
508 struct intel_vgpu_ppgtt_spt *spt,
509 void *page_table, int type,
510 struct intel_gvt_gtt_entry *e, unsigned long index,
511 bool guest)
513 struct intel_gvt *gvt = spt->vgpu->gvt;
514 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
515 int ret;
517 e->type = get_entry_type(type);
519 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
520 return -EINVAL;
522 ret = ops->get_entry(page_table, e, index, guest,
523 spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
524 spt->vgpu);
525 if (ret)
526 return ret;
528 ops->test_pse(e);
529 return 0;
532 static inline int ppgtt_spt_set_entry(
533 struct intel_vgpu_ppgtt_spt *spt,
534 void *page_table, int type,
535 struct intel_gvt_gtt_entry *e, unsigned long index,
536 bool guest)
538 struct intel_gvt *gvt = spt->vgpu->gvt;
539 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
541 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
542 return -EINVAL;
544 return ops->set_entry(page_table, e, index, guest,
545 spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
546 spt->vgpu);
549 #define ppgtt_get_guest_entry(spt, e, index) \
550 ppgtt_spt_get_entry(spt, NULL, \
551 spt->guest_page_type, e, index, true)
553 #define ppgtt_set_guest_entry(spt, e, index) \
554 ppgtt_spt_set_entry(spt, NULL, \
555 spt->guest_page_type, e, index, true)
557 #define ppgtt_get_shadow_entry(spt, e, index) \
558 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
559 spt->shadow_page.type, e, index, false)
561 #define ppgtt_set_shadow_entry(spt, e, index) \
562 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
563 spt->shadow_page.type, e, index, false)
566 * intel_vgpu_init_page_track - init a page track data structure
567 * @vgpu: a vGPU
568 * @t: a page track data structure
569 * @gfn: guest memory page frame number
570 * @handler: the function will be called when target guest memory page has
571 * been modified.
573 * This function is called when a user wants to prepare a page track data
574 * structure to track a guest memory page.
576 * Returns:
577 * Zero on success, negative error code if failed.
579 int intel_vgpu_init_page_track(struct intel_vgpu *vgpu,
580 struct intel_vgpu_page_track *t,
581 unsigned long gfn,
582 int (*handler)(void *, u64, void *, int),
583 void *data)
585 INIT_HLIST_NODE(&t->node);
587 t->tracked = false;
588 t->gfn = gfn;
589 t->handler = handler;
590 t->data = data;
592 hash_add(vgpu->gtt.tracked_guest_page_hash_table, &t->node, t->gfn);
593 return 0;
597 * intel_vgpu_clean_page_track - release a page track data structure
598 * @vgpu: a vGPU
599 * @t: a page track data structure
601 * This function is called before a user frees a page track data structure.
603 void intel_vgpu_clean_page_track(struct intel_vgpu *vgpu,
604 struct intel_vgpu_page_track *t)
606 if (!hlist_unhashed(&t->node))
607 hash_del(&t->node);
609 if (t->tracked)
610 intel_gvt_hypervisor_disable_page_track(vgpu, t);
614 * intel_vgpu_find_tracked_page - find a tracked guest page
615 * @vgpu: a vGPU
616 * @gfn: guest memory page frame number
618 * This function is called when the emulation layer wants to figure out if a
619 * trapped GFN is a tracked guest page.
621 * Returns:
622 * Pointer to page track data structure, NULL if not found.
624 struct intel_vgpu_page_track *intel_vgpu_find_tracked_page(
625 struct intel_vgpu *vgpu, unsigned long gfn)
627 struct intel_vgpu_page_track *t;
629 hash_for_each_possible(vgpu->gtt.tracked_guest_page_hash_table,
630 t, node, gfn) {
631 if (t->gfn == gfn)
632 return t;
634 return NULL;
637 static int init_guest_page(struct intel_vgpu *vgpu,
638 struct intel_vgpu_guest_page *p,
639 unsigned long gfn,
640 int (*handler)(void *, u64, void *, int),
641 void *data)
643 p->oos_page = NULL;
644 p->write_cnt = 0;
646 return intel_vgpu_init_page_track(vgpu, &p->track, gfn, handler, data);
649 static int detach_oos_page(struct intel_vgpu *vgpu,
650 struct intel_vgpu_oos_page *oos_page);
652 static void clean_guest_page(struct intel_vgpu *vgpu,
653 struct intel_vgpu_guest_page *p)
655 if (p->oos_page)
656 detach_oos_page(vgpu, p->oos_page);
658 intel_vgpu_clean_page_track(vgpu, &p->track);
661 static inline int init_shadow_page(struct intel_vgpu *vgpu,
662 struct intel_vgpu_shadow_page *p, int type, bool hash)
664 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
665 dma_addr_t daddr;
667 daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
668 if (dma_mapping_error(kdev, daddr)) {
669 gvt_vgpu_err("fail to map dma addr\n");
670 return -EINVAL;
673 p->vaddr = page_address(p->page);
674 p->type = type;
676 INIT_HLIST_NODE(&p->node);
678 p->mfn = daddr >> I915_GTT_PAGE_SHIFT;
679 if (hash)
680 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
681 return 0;
684 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
685 struct intel_vgpu_shadow_page *p)
687 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
689 dma_unmap_page(kdev, p->mfn << I915_GTT_PAGE_SHIFT, 4096,
690 PCI_DMA_BIDIRECTIONAL);
692 if (!hlist_unhashed(&p->node))
693 hash_del(&p->node);
696 static inline struct intel_vgpu_shadow_page *find_shadow_page(
697 struct intel_vgpu *vgpu, unsigned long mfn)
699 struct intel_vgpu_shadow_page *p;
701 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
702 p, node, mfn) {
703 if (p->mfn == mfn)
704 return p;
706 return NULL;
709 #define page_track_to_guest_page(ptr) \
710 container_of(ptr, struct intel_vgpu_guest_page, track)
712 #define guest_page_to_ppgtt_spt(ptr) \
713 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
715 #define shadow_page_to_ppgtt_spt(ptr) \
716 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
718 static void *alloc_spt(gfp_t gfp_mask)
720 struct intel_vgpu_ppgtt_spt *spt;
722 spt = kzalloc(sizeof(*spt), gfp_mask);
723 if (!spt)
724 return NULL;
726 spt->shadow_page.page = alloc_page(gfp_mask);
727 if (!spt->shadow_page.page) {
728 kfree(spt);
729 return NULL;
731 return spt;
734 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
736 __free_page(spt->shadow_page.page);
737 kfree(spt);
740 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
742 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
744 clean_shadow_page(spt->vgpu, &spt->shadow_page);
745 clean_guest_page(spt->vgpu, &spt->guest_page);
746 list_del_init(&spt->post_shadow_list);
748 free_spt(spt);
751 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
753 struct hlist_node *n;
754 struct intel_vgpu_shadow_page *sp;
755 int i;
757 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
758 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
761 static int ppgtt_handle_guest_write_page_table_bytes(
762 struct intel_vgpu_guest_page *gpt,
763 u64 pa, void *p_data, int bytes);
765 static int ppgtt_write_protection_handler(void *data, u64 pa,
766 void *p_data, int bytes)
768 struct intel_vgpu_page_track *t = data;
769 struct intel_vgpu_guest_page *p = page_track_to_guest_page(t);
770 int ret;
772 if (bytes != 4 && bytes != 8)
773 return -EINVAL;
775 if (!t->tracked)
776 return -EINVAL;
778 ret = ppgtt_handle_guest_write_page_table_bytes(p,
779 pa, p_data, bytes);
780 if (ret)
781 return ret;
782 return ret;
785 static int reclaim_one_mm(struct intel_gvt *gvt);
787 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
788 struct intel_vgpu *vgpu, int type, unsigned long gfn)
790 struct intel_vgpu_ppgtt_spt *spt = NULL;
791 int ret;
793 retry:
794 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
795 if (!spt) {
796 if (reclaim_one_mm(vgpu->gvt))
797 goto retry;
799 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
800 return ERR_PTR(-ENOMEM);
803 spt->vgpu = vgpu;
804 spt->guest_page_type = type;
805 atomic_set(&spt->refcount, 1);
806 INIT_LIST_HEAD(&spt->post_shadow_list);
809 * TODO: guest page type may be different with shadow page type,
810 * when we support PSE page in future.
812 ret = init_shadow_page(vgpu, &spt->shadow_page, type, true);
813 if (ret) {
814 gvt_vgpu_err("fail to initialize shadow page for spt\n");
815 goto err;
818 ret = init_guest_page(vgpu, &spt->guest_page,
819 gfn, ppgtt_write_protection_handler, NULL);
820 if (ret) {
821 gvt_vgpu_err("fail to initialize guest page for spt\n");
822 goto err;
825 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
826 return spt;
827 err:
828 ppgtt_free_shadow_page(spt);
829 return ERR_PTR(ret);
832 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
833 struct intel_vgpu *vgpu, unsigned long mfn)
835 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
837 if (p)
838 return shadow_page_to_ppgtt_spt(p);
840 gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
841 return NULL;
844 #define pt_entry_size_shift(spt) \
845 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
847 #define pt_entries(spt) \
848 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
850 #define for_each_present_guest_entry(spt, e, i) \
851 for (i = 0; i < pt_entries(spt); i++) \
852 if (!ppgtt_get_guest_entry(spt, e, i) && \
853 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
855 #define for_each_present_shadow_entry(spt, e, i) \
856 for (i = 0; i < pt_entries(spt); i++) \
857 if (!ppgtt_get_shadow_entry(spt, e, i) && \
858 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
860 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
862 int v = atomic_read(&spt->refcount);
864 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
866 atomic_inc(&spt->refcount);
869 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
871 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
872 struct intel_gvt_gtt_entry *e)
874 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
875 struct intel_vgpu_ppgtt_spt *s;
876 intel_gvt_gtt_type_t cur_pt_type;
878 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
879 return -EINVAL;
881 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
882 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
883 cur_pt_type = get_next_pt_type(e->type) + 1;
884 if (ops->get_pfn(e) ==
885 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
886 return 0;
888 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
889 if (!s) {
890 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
891 ops->get_pfn(e));
892 return -ENXIO;
894 return ppgtt_invalidate_shadow_page(s);
897 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
899 struct intel_vgpu *vgpu = spt->vgpu;
900 struct intel_gvt_gtt_entry e;
901 unsigned long index;
902 int ret;
903 int v = atomic_read(&spt->refcount);
905 trace_spt_change(spt->vgpu->id, "die", spt,
906 spt->guest_page.track.gfn, spt->shadow_page.type);
908 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
910 if (atomic_dec_return(&spt->refcount) > 0)
911 return 0;
913 if (gtt_type_is_pte_pt(spt->shadow_page.type))
914 goto release;
916 for_each_present_shadow_entry(spt, &e, index) {
917 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
918 gvt_vgpu_err("GVT doesn't support pse bit for now\n");
919 return -EINVAL;
921 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
922 spt->vgpu, &e);
923 if (ret)
924 goto fail;
926 release:
927 trace_spt_change(spt->vgpu->id, "release", spt,
928 spt->guest_page.track.gfn, spt->shadow_page.type);
929 ppgtt_free_shadow_page(spt);
930 return 0;
931 fail:
932 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
933 spt, e.val64, e.type);
934 return ret;
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
939 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
940 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
942 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
943 struct intel_vgpu_ppgtt_spt *s = NULL;
944 struct intel_vgpu_guest_page *g;
945 struct intel_vgpu_page_track *t;
946 int ret;
948 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
949 ret = -EINVAL;
950 goto fail;
953 t = intel_vgpu_find_tracked_page(vgpu, ops->get_pfn(we));
954 if (t) {
955 g = page_track_to_guest_page(t);
956 s = guest_page_to_ppgtt_spt(g);
957 ppgtt_get_shadow_page(s);
958 } else {
959 int type = get_next_pt_type(we->type);
961 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
962 if (IS_ERR(s)) {
963 ret = PTR_ERR(s);
964 goto fail;
967 ret = intel_gvt_hypervisor_enable_page_track(vgpu,
968 &s->guest_page.track);
969 if (ret)
970 goto fail;
972 ret = ppgtt_populate_shadow_page(s);
973 if (ret)
974 goto fail;
976 trace_spt_change(vgpu->id, "new", s, s->guest_page.track.gfn,
977 s->shadow_page.type);
979 return s;
980 fail:
981 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
982 s, we->val64, we->type);
983 return ERR_PTR(ret);
986 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
987 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
989 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
991 se->type = ge->type;
992 se->val64 = ge->val64;
994 ops->set_pfn(se, s->shadow_page.mfn);
997 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
999 struct intel_vgpu *vgpu = spt->vgpu;
1000 struct intel_gvt *gvt = vgpu->gvt;
1001 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1002 struct intel_vgpu_ppgtt_spt *s;
1003 struct intel_gvt_gtt_entry se, ge;
1004 unsigned long gfn, i;
1005 int ret;
1007 trace_spt_change(spt->vgpu->id, "born", spt,
1008 spt->guest_page.track.gfn, spt->shadow_page.type);
1010 if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
1011 for_each_present_guest_entry(spt, &ge, i) {
1012 gfn = ops->get_pfn(&ge);
1013 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn) ||
1014 gtt_entry_p2m(vgpu, &ge, &se))
1015 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1016 ppgtt_set_shadow_entry(spt, &se, i);
1018 return 0;
1021 for_each_present_guest_entry(spt, &ge, i) {
1022 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
1023 gvt_vgpu_err("GVT doesn't support pse bit now\n");
1024 ret = -EINVAL;
1025 goto fail;
1028 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1029 if (IS_ERR(s)) {
1030 ret = PTR_ERR(s);
1031 goto fail;
1033 ppgtt_get_shadow_entry(spt, &se, i);
1034 ppgtt_generate_shadow_entry(&se, s, &ge);
1035 ppgtt_set_shadow_entry(spt, &se, i);
1037 return 0;
1038 fail:
1039 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1040 spt, ge.val64, ge.type);
1041 return ret;
1044 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1045 struct intel_gvt_gtt_entry *se, unsigned long index)
1047 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1048 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1049 struct intel_vgpu *vgpu = spt->vgpu;
1050 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1051 int ret;
1053 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1054 index);
1056 if (!ops->test_present(se))
1057 return 0;
1059 if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1060 return 0;
1062 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1063 struct intel_vgpu_ppgtt_spt *s =
1064 ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1065 if (!s) {
1066 gvt_vgpu_err("fail to find guest page\n");
1067 ret = -ENXIO;
1068 goto fail;
1070 ret = ppgtt_invalidate_shadow_page(s);
1071 if (ret)
1072 goto fail;
1074 return 0;
1075 fail:
1076 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1077 spt, se->val64, se->type);
1078 return ret;
1081 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1082 struct intel_gvt_gtt_entry *we, unsigned long index)
1084 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1085 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1086 struct intel_vgpu *vgpu = spt->vgpu;
1087 struct intel_gvt_gtt_entry m;
1088 struct intel_vgpu_ppgtt_spt *s;
1089 int ret;
1091 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1092 we->val64, index);
1094 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1095 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1096 if (IS_ERR(s)) {
1097 ret = PTR_ERR(s);
1098 goto fail;
1100 ppgtt_get_shadow_entry(spt, &m, index);
1101 ppgtt_generate_shadow_entry(&m, s, we);
1102 ppgtt_set_shadow_entry(spt, &m, index);
1103 } else {
1104 ret = gtt_entry_p2m(vgpu, we, &m);
1105 if (ret)
1106 goto fail;
1107 ppgtt_set_shadow_entry(spt, &m, index);
1109 return 0;
1110 fail:
1111 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1112 spt, we->val64, we->type);
1113 return ret;
1116 static int sync_oos_page(struct intel_vgpu *vgpu,
1117 struct intel_vgpu_oos_page *oos_page)
1119 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1120 struct intel_gvt *gvt = vgpu->gvt;
1121 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1122 struct intel_vgpu_ppgtt_spt *spt =
1123 guest_page_to_ppgtt_spt(oos_page->guest_page);
1124 struct intel_gvt_gtt_entry old, new, m;
1125 int index;
1126 int ret;
1128 trace_oos_change(vgpu->id, "sync", oos_page->id,
1129 oos_page->guest_page, spt->guest_page_type);
1131 old.type = new.type = get_entry_type(spt->guest_page_type);
1132 old.val64 = new.val64 = 0;
1134 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1135 info->gtt_entry_size_shift); index++) {
1136 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1137 ops->get_entry(NULL, &new, index, true,
1138 oos_page->guest_page->track.gfn << PAGE_SHIFT, vgpu);
1140 if (old.val64 == new.val64
1141 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1142 continue;
1144 trace_oos_sync(vgpu->id, oos_page->id,
1145 oos_page->guest_page, spt->guest_page_type,
1146 new.val64, index);
1148 ret = gtt_entry_p2m(vgpu, &new, &m);
1149 if (ret)
1150 return ret;
1152 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1153 ppgtt_set_shadow_entry(spt, &m, index);
1156 oos_page->guest_page->write_cnt = 0;
1157 list_del_init(&spt->post_shadow_list);
1158 return 0;
1161 static int detach_oos_page(struct intel_vgpu *vgpu,
1162 struct intel_vgpu_oos_page *oos_page)
1164 struct intel_gvt *gvt = vgpu->gvt;
1165 struct intel_vgpu_ppgtt_spt *spt =
1166 guest_page_to_ppgtt_spt(oos_page->guest_page);
1168 trace_oos_change(vgpu->id, "detach", oos_page->id,
1169 oos_page->guest_page, spt->guest_page_type);
1171 oos_page->guest_page->write_cnt = 0;
1172 oos_page->guest_page->oos_page = NULL;
1173 oos_page->guest_page = NULL;
1175 list_del_init(&oos_page->vm_list);
1176 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1178 return 0;
1181 static int attach_oos_page(struct intel_vgpu *vgpu,
1182 struct intel_vgpu_oos_page *oos_page,
1183 struct intel_vgpu_guest_page *gpt)
1185 struct intel_gvt *gvt = vgpu->gvt;
1186 int ret;
1188 ret = intel_gvt_hypervisor_read_gpa(vgpu,
1189 gpt->track.gfn << I915_GTT_PAGE_SHIFT,
1190 oos_page->mem, I915_GTT_PAGE_SIZE);
1191 if (ret)
1192 return ret;
1194 oos_page->guest_page = gpt;
1195 gpt->oos_page = oos_page;
1197 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1199 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1200 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201 return 0;
1204 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1205 struct intel_vgpu_guest_page *gpt)
1207 int ret;
1209 ret = intel_gvt_hypervisor_enable_page_track(vgpu, &gpt->track);
1210 if (ret)
1211 return ret;
1213 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1214 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1216 list_del_init(&gpt->oos_page->vm_list);
1217 return sync_oos_page(vgpu, gpt->oos_page);
1220 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1221 struct intel_vgpu_guest_page *gpt)
1223 struct intel_gvt *gvt = vgpu->gvt;
1224 struct intel_gvt_gtt *gtt = &gvt->gtt;
1225 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1226 int ret;
1228 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1230 if (list_empty(&gtt->oos_page_free_list_head)) {
1231 oos_page = container_of(gtt->oos_page_use_list_head.next,
1232 struct intel_vgpu_oos_page, list);
1233 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1234 if (ret)
1235 return ret;
1236 ret = detach_oos_page(vgpu, oos_page);
1237 if (ret)
1238 return ret;
1239 } else
1240 oos_page = container_of(gtt->oos_page_free_list_head.next,
1241 struct intel_vgpu_oos_page, list);
1242 return attach_oos_page(vgpu, oos_page, gpt);
1245 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1246 struct intel_vgpu_guest_page *gpt)
1248 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1250 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1251 return -EINVAL;
1253 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1254 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1256 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1257 return intel_gvt_hypervisor_disable_page_track(vgpu, &gpt->track);
1261 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1262 * @vgpu: a vGPU
1264 * This function is called before submitting a guest workload to host,
1265 * to sync all the out-of-synced shadow for vGPU
1267 * Returns:
1268 * Zero on success, negative error code if failed.
1270 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1272 struct list_head *pos, *n;
1273 struct intel_vgpu_oos_page *oos_page;
1274 int ret;
1276 if (!enable_out_of_sync)
1277 return 0;
1279 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1280 oos_page = container_of(pos,
1281 struct intel_vgpu_oos_page, vm_list);
1282 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1283 if (ret)
1284 return ret;
1286 return 0;
1290 * The heart of PPGTT shadow page table.
1292 static int ppgtt_handle_guest_write_page_table(
1293 struct intel_vgpu_guest_page *gpt,
1294 struct intel_gvt_gtt_entry *we, unsigned long index)
1296 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1297 struct intel_vgpu *vgpu = spt->vgpu;
1298 int type = spt->shadow_page.type;
1299 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1300 struct intel_gvt_gtt_entry se;
1302 int ret;
1303 int new_present;
1305 new_present = ops->test_present(we);
1308 * Adding the new entry first and then removing the old one, that can
1309 * guarantee the ppgtt table is validated during the window between
1310 * adding and removal.
1312 ppgtt_get_shadow_entry(spt, &se, index);
1314 if (new_present) {
1315 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1316 if (ret)
1317 goto fail;
1320 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1321 if (ret)
1322 goto fail;
1324 if (!new_present) {
1325 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1326 ppgtt_set_shadow_entry(spt, &se, index);
1329 return 0;
1330 fail:
1331 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1332 spt, we->val64, we->type);
1333 return ret;
1336 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1338 return enable_out_of_sync
1339 && gtt_type_is_pte_pt(
1340 guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1341 && gpt->write_cnt >= 2;
1344 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1345 unsigned long index)
1347 set_bit(index, spt->post_shadow_bitmap);
1348 if (!list_empty(&spt->post_shadow_list))
1349 return;
1351 list_add_tail(&spt->post_shadow_list,
1352 &spt->vgpu->gtt.post_shadow_list_head);
1356 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1357 * @vgpu: a vGPU
1359 * This function is called before submitting a guest workload to host,
1360 * to flush all the post shadows for a vGPU.
1362 * Returns:
1363 * Zero on success, negative error code if failed.
1365 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1367 struct list_head *pos, *n;
1368 struct intel_vgpu_ppgtt_spt *spt;
1369 struct intel_gvt_gtt_entry ge;
1370 unsigned long index;
1371 int ret;
1373 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1374 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1375 post_shadow_list);
1377 for_each_set_bit(index, spt->post_shadow_bitmap,
1378 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1379 ppgtt_get_guest_entry(spt, &ge, index);
1381 ret = ppgtt_handle_guest_write_page_table(
1382 &spt->guest_page, &ge, index);
1383 if (ret)
1384 return ret;
1385 clear_bit(index, spt->post_shadow_bitmap);
1387 list_del_init(&spt->post_shadow_list);
1389 return 0;
1392 static int ppgtt_handle_guest_write_page_table_bytes(
1393 struct intel_vgpu_guest_page *gpt,
1394 u64 pa, void *p_data, int bytes)
1396 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1397 struct intel_vgpu *vgpu = spt->vgpu;
1398 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1399 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1400 struct intel_gvt_gtt_entry we, se;
1401 unsigned long index;
1402 int ret;
1404 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1406 ppgtt_get_guest_entry(spt, &we, index);
1408 ops->test_pse(&we);
1410 if (bytes == info->gtt_entry_size) {
1411 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1412 if (ret)
1413 return ret;
1414 } else {
1415 if (!test_bit(index, spt->post_shadow_bitmap)) {
1416 int type = spt->shadow_page.type;
1418 ppgtt_get_shadow_entry(spt, &se, index);
1419 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1420 if (ret)
1421 return ret;
1422 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1423 ppgtt_set_shadow_entry(spt, &se, index);
1425 ppgtt_set_post_shadow(spt, index);
1428 if (!enable_out_of_sync)
1429 return 0;
1431 gpt->write_cnt++;
1433 if (gpt->oos_page)
1434 ops->set_entry(gpt->oos_page->mem, &we, index,
1435 false, 0, vgpu);
1437 if (can_do_out_of_sync(gpt)) {
1438 if (!gpt->oos_page)
1439 ppgtt_allocate_oos_page(vgpu, gpt);
1441 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1442 if (ret < 0)
1443 return ret;
1445 return 0;
1449 * mm page table allocation policy for bdw+
1450 * - for ggtt, only virtual page table will be allocated.
1451 * - for ppgtt, dedicated virtual/shadow page table will be allocated.
1453 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1455 struct intel_vgpu *vgpu = mm->vgpu;
1456 struct intel_gvt *gvt = vgpu->gvt;
1457 const struct intel_gvt_device_info *info = &gvt->device_info;
1458 void *mem;
1460 if (mm->type == INTEL_GVT_MM_PPGTT) {
1461 mm->page_table_entry_cnt = 4;
1462 mm->page_table_entry_size = mm->page_table_entry_cnt *
1463 info->gtt_entry_size;
1464 mem = kzalloc(mm->has_shadow_page_table ?
1465 mm->page_table_entry_size * 2
1466 : mm->page_table_entry_size, GFP_KERNEL);
1467 if (!mem)
1468 return -ENOMEM;
1469 mm->virtual_page_table = mem;
1470 if (!mm->has_shadow_page_table)
1471 return 0;
1472 mm->shadow_page_table = mem + mm->page_table_entry_size;
1473 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1474 mm->page_table_entry_cnt =
1475 (gvt_ggtt_gm_sz(gvt) >> I915_GTT_PAGE_SHIFT);
1476 mm->page_table_entry_size = mm->page_table_entry_cnt *
1477 info->gtt_entry_size;
1478 mem = vzalloc(mm->page_table_entry_size);
1479 if (!mem)
1480 return -ENOMEM;
1481 mm->virtual_page_table = mem;
1483 return 0;
1486 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1488 if (mm->type == INTEL_GVT_MM_PPGTT) {
1489 kfree(mm->virtual_page_table);
1490 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1491 if (mm->virtual_page_table)
1492 vfree(mm->virtual_page_table);
1494 mm->virtual_page_table = mm->shadow_page_table = NULL;
1497 static void invalidate_mm(struct intel_vgpu_mm *mm)
1499 struct intel_vgpu *vgpu = mm->vgpu;
1500 struct intel_gvt *gvt = vgpu->gvt;
1501 struct intel_gvt_gtt *gtt = &gvt->gtt;
1502 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1503 struct intel_gvt_gtt_entry se;
1504 int i;
1506 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1507 return;
1509 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1510 ppgtt_get_shadow_root_entry(mm, &se, i);
1511 if (!ops->test_present(&se))
1512 continue;
1513 ppgtt_invalidate_shadow_page_by_shadow_entry(
1514 vgpu, &se);
1515 se.val64 = 0;
1516 ppgtt_set_shadow_root_entry(mm, &se, i);
1518 trace_gpt_change(vgpu->id, "destroy root pointer",
1519 NULL, se.type, se.val64, i);
1521 mm->shadowed = false;
1525 * intel_vgpu_destroy_mm - destroy a mm object
1526 * @mm: a kref object
1528 * This function is used to destroy a mm object for vGPU
1531 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1533 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1534 struct intel_vgpu *vgpu = mm->vgpu;
1535 struct intel_gvt *gvt = vgpu->gvt;
1536 struct intel_gvt_gtt *gtt = &gvt->gtt;
1538 if (!mm->initialized)
1539 goto out;
1541 list_del(&mm->list);
1542 list_del(&mm->lru_list);
1544 if (mm->has_shadow_page_table)
1545 invalidate_mm(mm);
1547 gtt->mm_free_page_table(mm);
1548 out:
1549 kfree(mm);
1552 static int shadow_mm(struct intel_vgpu_mm *mm)
1554 struct intel_vgpu *vgpu = mm->vgpu;
1555 struct intel_gvt *gvt = vgpu->gvt;
1556 struct intel_gvt_gtt *gtt = &gvt->gtt;
1557 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1558 struct intel_vgpu_ppgtt_spt *spt;
1559 struct intel_gvt_gtt_entry ge, se;
1560 int i;
1561 int ret;
1563 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1564 return 0;
1566 mm->shadowed = true;
1568 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1569 ppgtt_get_guest_root_entry(mm, &ge, i);
1570 if (!ops->test_present(&ge))
1571 continue;
1573 trace_gpt_change(vgpu->id, __func__, NULL,
1574 ge.type, ge.val64, i);
1576 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1577 if (IS_ERR(spt)) {
1578 gvt_vgpu_err("fail to populate guest root pointer\n");
1579 ret = PTR_ERR(spt);
1580 goto fail;
1582 ppgtt_generate_shadow_entry(&se, spt, &ge);
1583 ppgtt_set_shadow_root_entry(mm, &se, i);
1585 trace_gpt_change(vgpu->id, "populate root pointer",
1586 NULL, se.type, se.val64, i);
1588 return 0;
1589 fail:
1590 invalidate_mm(mm);
1591 return ret;
1595 * intel_vgpu_create_mm - create a mm object for a vGPU
1596 * @vgpu: a vGPU
1597 * @mm_type: mm object type, should be PPGTT or GGTT
1598 * @virtual_page_table: page table root pointers. Could be NULL if user wants
1599 * to populate shadow later.
1600 * @page_table_level: describe the page table level of the mm object
1601 * @pde_base_index: pde root pointer base in GGTT MMIO.
1603 * This function is used to create a mm object for a vGPU.
1605 * Returns:
1606 * Zero on success, negative error code in pointer if failed.
1608 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1609 int mm_type, void *virtual_page_table, int page_table_level,
1610 u32 pde_base_index)
1612 struct intel_gvt *gvt = vgpu->gvt;
1613 struct intel_gvt_gtt *gtt = &gvt->gtt;
1614 struct intel_vgpu_mm *mm;
1615 int ret;
1617 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1618 if (!mm) {
1619 ret = -ENOMEM;
1620 goto fail;
1623 mm->type = mm_type;
1625 if (page_table_level == 1)
1626 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1627 else if (page_table_level == 3)
1628 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1629 else if (page_table_level == 4)
1630 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1631 else {
1632 WARN_ON(1);
1633 ret = -EINVAL;
1634 goto fail;
1637 mm->page_table_level = page_table_level;
1638 mm->pde_base_index = pde_base_index;
1640 mm->vgpu = vgpu;
1641 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1643 kref_init(&mm->ref);
1644 atomic_set(&mm->pincount, 0);
1645 INIT_LIST_HEAD(&mm->list);
1646 INIT_LIST_HEAD(&mm->lru_list);
1647 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1649 ret = gtt->mm_alloc_page_table(mm);
1650 if (ret) {
1651 gvt_vgpu_err("fail to allocate page table for mm\n");
1652 goto fail;
1655 mm->initialized = true;
1657 if (virtual_page_table)
1658 memcpy(mm->virtual_page_table, virtual_page_table,
1659 mm->page_table_entry_size);
1661 if (mm->has_shadow_page_table) {
1662 ret = shadow_mm(mm);
1663 if (ret)
1664 goto fail;
1665 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1667 return mm;
1668 fail:
1669 gvt_vgpu_err("fail to create mm\n");
1670 if (mm)
1671 intel_gvt_mm_unreference(mm);
1672 return ERR_PTR(ret);
1676 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1677 * @mm: a vGPU mm object
1679 * This function is called when user doesn't want to use a vGPU mm object
1681 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1683 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1684 return;
1686 atomic_dec(&mm->pincount);
1690 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1691 * @vgpu: a vGPU
1693 * This function is called when user wants to use a vGPU mm object. If this
1694 * mm object hasn't been shadowed yet, the shadow will be populated at this
1695 * time.
1697 * Returns:
1698 * Zero on success, negative error code if failed.
1700 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1702 int ret;
1704 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1705 return 0;
1707 if (!mm->shadowed) {
1708 ret = shadow_mm(mm);
1709 if (ret)
1710 return ret;
1713 atomic_inc(&mm->pincount);
1714 list_del_init(&mm->lru_list);
1715 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1716 return 0;
1719 static int reclaim_one_mm(struct intel_gvt *gvt)
1721 struct intel_vgpu_mm *mm;
1722 struct list_head *pos, *n;
1724 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1725 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1727 if (mm->type != INTEL_GVT_MM_PPGTT)
1728 continue;
1729 if (atomic_read(&mm->pincount))
1730 continue;
1732 list_del_init(&mm->lru_list);
1733 invalidate_mm(mm);
1734 return 1;
1736 return 0;
1740 * GMA translation APIs.
1742 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1743 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1745 struct intel_vgpu *vgpu = mm->vgpu;
1746 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1747 struct intel_vgpu_ppgtt_spt *s;
1749 if (WARN_ON(!mm->has_shadow_page_table))
1750 return -EINVAL;
1752 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1753 if (!s)
1754 return -ENXIO;
1756 if (!guest)
1757 ppgtt_get_shadow_entry(s, e, index);
1758 else
1759 ppgtt_get_guest_entry(s, e, index);
1760 return 0;
1764 * intel_vgpu_gma_to_gpa - translate a gma to GPA
1765 * @mm: mm object. could be a PPGTT or GGTT mm object
1766 * @gma: graphics memory address in this mm object
1768 * This function is used to translate a graphics memory address in specific
1769 * graphics memory space to guest physical address.
1771 * Returns:
1772 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1774 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1776 struct intel_vgpu *vgpu = mm->vgpu;
1777 struct intel_gvt *gvt = vgpu->gvt;
1778 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1779 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1780 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1781 unsigned long gma_index[4];
1782 struct intel_gvt_gtt_entry e;
1783 int i, index;
1784 int ret;
1786 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1787 return INTEL_GVT_INVALID_ADDR;
1789 if (mm->type == INTEL_GVT_MM_GGTT) {
1790 if (!vgpu_gmadr_is_valid(vgpu, gma))
1791 goto err;
1793 ret = ggtt_get_guest_entry(mm, &e,
1794 gma_ops->gma_to_ggtt_pte_index(gma));
1795 if (ret)
1796 goto err;
1797 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1798 + (gma & ~I915_GTT_PAGE_MASK);
1800 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1801 return gpa;
1804 switch (mm->page_table_level) {
1805 case 4:
1806 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1807 if (ret)
1808 goto err;
1809 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1810 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1811 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1812 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1813 index = 4;
1814 break;
1815 case 3:
1816 ret = ppgtt_get_shadow_root_entry(mm, &e,
1817 gma_ops->gma_to_l3_pdp_index(gma));
1818 if (ret)
1819 goto err;
1820 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1821 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1822 index = 2;
1823 break;
1824 case 2:
1825 ret = ppgtt_get_shadow_root_entry(mm, &e,
1826 gma_ops->gma_to_pde_index(gma));
1827 if (ret)
1828 goto err;
1829 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1830 index = 1;
1831 break;
1832 default:
1833 WARN_ON(1);
1834 goto err;
1837 /* walk into the shadow page table and get gpa from guest entry */
1838 for (i = 0; i < index; i++) {
1839 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1840 (i == index - 1));
1841 if (ret)
1842 goto err;
1844 if (!pte_ops->test_present(&e)) {
1845 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1846 goto err;
1850 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1851 + (gma & ~I915_GTT_PAGE_MASK);
1853 trace_gma_translate(vgpu->id, "ppgtt", 0,
1854 mm->page_table_level, gma, gpa);
1855 return gpa;
1856 err:
1857 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1858 return INTEL_GVT_INVALID_ADDR;
1861 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1862 unsigned int off, void *p_data, unsigned int bytes)
1864 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1865 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1866 unsigned long index = off >> info->gtt_entry_size_shift;
1867 struct intel_gvt_gtt_entry e;
1869 if (bytes != 4 && bytes != 8)
1870 return -EINVAL;
1872 ggtt_get_guest_entry(ggtt_mm, &e, index);
1873 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1874 bytes);
1875 return 0;
1879 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1880 * @vgpu: a vGPU
1881 * @off: register offset
1882 * @p_data: data will be returned to guest
1883 * @bytes: data length
1885 * This function is used to emulate the GTT MMIO register read
1887 * Returns:
1888 * Zero on success, error code if failed.
1890 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1891 void *p_data, unsigned int bytes)
1893 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1894 int ret;
1896 if (bytes != 4 && bytes != 8)
1897 return -EINVAL;
1899 off -= info->gtt_start_offset;
1900 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1901 return ret;
1904 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1905 void *p_data, unsigned int bytes)
1907 struct intel_gvt *gvt = vgpu->gvt;
1908 const struct intel_gvt_device_info *info = &gvt->device_info;
1909 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1910 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1911 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1912 unsigned long gma, gfn;
1913 struct intel_gvt_gtt_entry e, m;
1914 int ret;
1916 if (bytes != 4 && bytes != 8)
1917 return -EINVAL;
1919 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1921 /* the VM may configure the whole GM space when ballooning is used */
1922 if (!vgpu_gmadr_is_valid(vgpu, gma))
1923 return 0;
1925 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1927 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1928 bytes);
1930 if (ops->test_present(&e)) {
1931 gfn = ops->get_pfn(&e);
1933 /* one PTE update may be issued in multiple writes and the
1934 * first write may not construct a valid gfn
1936 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1937 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1938 goto out;
1941 ret = gtt_entry_p2m(vgpu, &e, &m);
1942 if (ret) {
1943 gvt_vgpu_err("fail to translate guest gtt entry\n");
1944 /* guest driver may read/write the entry when partial
1945 * update the entry in this situation p2m will fail
1946 * settting the shadow entry to point to a scratch page
1948 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1950 } else {
1951 m = e;
1952 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1955 out:
1956 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1957 gtt_invalidate(gvt->dev_priv);
1958 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1959 return 0;
1963 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1964 * @vgpu: a vGPU
1965 * @off: register offset
1966 * @p_data: data from guest write
1967 * @bytes: data length
1969 * This function is used to emulate the GTT MMIO register write
1971 * Returns:
1972 * Zero on success, error code if failed.
1974 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1975 void *p_data, unsigned int bytes)
1977 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1978 int ret;
1980 if (bytes != 4 && bytes != 8)
1981 return -EINVAL;
1983 off -= info->gtt_start_offset;
1984 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1985 return ret;
1988 int intel_vgpu_write_protect_handler(struct intel_vgpu *vgpu, u64 pa,
1989 void *p_data, unsigned int bytes)
1991 struct intel_gvt *gvt = vgpu->gvt;
1992 int ret = 0;
1994 if (atomic_read(&vgpu->gtt.n_tracked_guest_page)) {
1995 struct intel_vgpu_page_track *t;
1997 mutex_lock(&gvt->lock);
1999 t = intel_vgpu_find_tracked_page(vgpu, pa >> PAGE_SHIFT);
2000 if (t) {
2001 if (unlikely(vgpu->failsafe)) {
2002 /* remove write protection to prevent furture traps */
2003 intel_vgpu_clean_page_track(vgpu, t);
2004 } else {
2005 ret = t->handler(t, pa, p_data, bytes);
2006 if (ret) {
2007 gvt_err("guest page write error %d, "
2008 "gfn 0x%lx, pa 0x%llx, "
2009 "var 0x%x, len %d\n",
2010 ret, t->gfn, pa,
2011 *(u32 *)p_data, bytes);
2015 mutex_unlock(&gvt->lock);
2017 return ret;
2021 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2022 intel_gvt_gtt_type_t type)
2024 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2025 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2026 int page_entry_num = I915_GTT_PAGE_SIZE >>
2027 vgpu->gvt->device_info.gtt_entry_size_shift;
2028 void *scratch_pt;
2029 int i;
2030 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2031 dma_addr_t daddr;
2033 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2034 return -EINVAL;
2036 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2037 if (!scratch_pt) {
2038 gvt_vgpu_err("fail to allocate scratch page\n");
2039 return -ENOMEM;
2042 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2043 4096, PCI_DMA_BIDIRECTIONAL);
2044 if (dma_mapping_error(dev, daddr)) {
2045 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2046 __free_page(virt_to_page(scratch_pt));
2047 return -ENOMEM;
2049 gtt->scratch_pt[type].page_mfn =
2050 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2051 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2052 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2053 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2055 /* Build the tree by full filled the scratch pt with the entries which
2056 * point to the next level scratch pt or scratch page. The
2057 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2058 * 'type' pt.
2059 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2060 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2061 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2063 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
2064 struct intel_gvt_gtt_entry se;
2066 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2067 se.type = get_entry_type(type - 1);
2068 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2070 /* The entry parameters like present/writeable/cache type
2071 * set to the same as i915's scratch page tree.
2073 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2074 if (type == GTT_TYPE_PPGTT_PDE_PT)
2075 se.val64 |= PPAT_CACHED;
2077 for (i = 0; i < page_entry_num; i++)
2078 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2081 return 0;
2084 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2086 int i;
2087 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2088 dma_addr_t daddr;
2090 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2091 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2092 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2093 I915_GTT_PAGE_SHIFT);
2094 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2095 __free_page(vgpu->gtt.scratch_pt[i].page);
2096 vgpu->gtt.scratch_pt[i].page = NULL;
2097 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2101 return 0;
2104 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2106 int i, ret;
2108 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2109 ret = alloc_scratch_pages(vgpu, i);
2110 if (ret)
2111 goto err;
2114 return 0;
2116 err:
2117 release_scratch_page_tree(vgpu);
2118 return ret;
2122 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2123 * @vgpu: a vGPU
2125 * This function is used to initialize per-vGPU graphics memory virtualization
2126 * components.
2128 * Returns:
2129 * Zero on success, error code if failed.
2131 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2133 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2134 struct intel_vgpu_mm *ggtt_mm;
2136 hash_init(gtt->tracked_guest_page_hash_table);
2137 hash_init(gtt->shadow_page_hash_table);
2139 INIT_LIST_HEAD(&gtt->mm_list_head);
2140 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2141 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2143 intel_vgpu_reset_ggtt(vgpu);
2145 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2146 NULL, 1, 0);
2147 if (IS_ERR(ggtt_mm)) {
2148 gvt_vgpu_err("fail to create mm for ggtt.\n");
2149 return PTR_ERR(ggtt_mm);
2152 gtt->ggtt_mm = ggtt_mm;
2154 return create_scratch_page_tree(vgpu);
2157 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2159 struct list_head *pos, *n;
2160 struct intel_vgpu_mm *mm;
2162 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2163 mm = container_of(pos, struct intel_vgpu_mm, list);
2164 if (mm->type == type) {
2165 vgpu->gvt->gtt.mm_free_page_table(mm);
2166 list_del(&mm->list);
2167 list_del(&mm->lru_list);
2168 kfree(mm);
2174 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2175 * @vgpu: a vGPU
2177 * This function is used to clean up per-vGPU graphics memory virtualization
2178 * components.
2180 * Returns:
2181 * Zero on success, error code if failed.
2183 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2185 ppgtt_free_all_shadow_page(vgpu);
2186 release_scratch_page_tree(vgpu);
2188 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2189 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2192 static void clean_spt_oos(struct intel_gvt *gvt)
2194 struct intel_gvt_gtt *gtt = &gvt->gtt;
2195 struct list_head *pos, *n;
2196 struct intel_vgpu_oos_page *oos_page;
2198 WARN(!list_empty(&gtt->oos_page_use_list_head),
2199 "someone is still using oos page\n");
2201 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2202 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2203 list_del(&oos_page->list);
2204 kfree(oos_page);
2208 static int setup_spt_oos(struct intel_gvt *gvt)
2210 struct intel_gvt_gtt *gtt = &gvt->gtt;
2211 struct intel_vgpu_oos_page *oos_page;
2212 int i;
2213 int ret;
2215 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2216 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2218 for (i = 0; i < preallocated_oos_pages; i++) {
2219 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2220 if (!oos_page) {
2221 ret = -ENOMEM;
2222 goto fail;
2225 INIT_LIST_HEAD(&oos_page->list);
2226 INIT_LIST_HEAD(&oos_page->vm_list);
2227 oos_page->id = i;
2228 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2231 gvt_dbg_mm("%d oos pages preallocated\n", i);
2233 return 0;
2234 fail:
2235 clean_spt_oos(gvt);
2236 return ret;
2240 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2241 * @vgpu: a vGPU
2242 * @page_table_level: PPGTT page table level
2243 * @root_entry: PPGTT page table root pointers
2245 * This function is used to find a PPGTT mm object from mm object pool
2247 * Returns:
2248 * pointer to mm object on success, NULL if failed.
2250 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2251 int page_table_level, void *root_entry)
2253 struct list_head *pos;
2254 struct intel_vgpu_mm *mm;
2255 u64 *src, *dst;
2257 list_for_each(pos, &vgpu->gtt.mm_list_head) {
2258 mm = container_of(pos, struct intel_vgpu_mm, list);
2259 if (mm->type != INTEL_GVT_MM_PPGTT)
2260 continue;
2262 if (mm->page_table_level != page_table_level)
2263 continue;
2265 src = root_entry;
2266 dst = mm->virtual_page_table;
2268 if (page_table_level == 3) {
2269 if (src[0] == dst[0]
2270 && src[1] == dst[1]
2271 && src[2] == dst[2]
2272 && src[3] == dst[3])
2273 return mm;
2274 } else {
2275 if (src[0] == dst[0])
2276 return mm;
2279 return NULL;
2283 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2284 * g2v notification
2285 * @vgpu: a vGPU
2286 * @page_table_level: PPGTT page table level
2288 * This function is used to create a PPGTT mm object from a guest to GVT-g
2289 * notification.
2291 * Returns:
2292 * Zero on success, negative error code if failed.
2294 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2295 int page_table_level)
2297 u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2298 struct intel_vgpu_mm *mm;
2300 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2301 return -EINVAL;
2303 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2304 if (mm) {
2305 intel_gvt_mm_reference(mm);
2306 } else {
2307 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2308 pdp, page_table_level, 0);
2309 if (IS_ERR(mm)) {
2310 gvt_vgpu_err("fail to create mm\n");
2311 return PTR_ERR(mm);
2314 return 0;
2318 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2319 * g2v notification
2320 * @vgpu: a vGPU
2321 * @page_table_level: PPGTT page table level
2323 * This function is used to create a PPGTT mm object from a guest to GVT-g
2324 * notification.
2326 * Returns:
2327 * Zero on success, negative error code if failed.
2329 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2330 int page_table_level)
2332 u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2333 struct intel_vgpu_mm *mm;
2335 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2336 return -EINVAL;
2338 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2339 if (!mm) {
2340 gvt_vgpu_err("fail to find ppgtt instance.\n");
2341 return -EINVAL;
2343 intel_gvt_mm_unreference(mm);
2344 return 0;
2348 * intel_gvt_init_gtt - initialize mm components of a GVT device
2349 * @gvt: GVT device
2351 * This function is called at the initialization stage, to initialize
2352 * the mm components of a GVT device.
2354 * Returns:
2355 * zero on success, negative error code if failed.
2357 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2359 int ret;
2360 void *page;
2361 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2362 dma_addr_t daddr;
2364 gvt_dbg_core("init gtt\n");
2366 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2367 || IS_KABYLAKE(gvt->dev_priv)) {
2368 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2369 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2370 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2371 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2372 } else {
2373 return -ENODEV;
2376 page = (void *)get_zeroed_page(GFP_KERNEL);
2377 if (!page) {
2378 gvt_err("fail to allocate scratch ggtt page\n");
2379 return -ENOMEM;
2382 daddr = dma_map_page(dev, virt_to_page(page), 0,
2383 4096, PCI_DMA_BIDIRECTIONAL);
2384 if (dma_mapping_error(dev, daddr)) {
2385 gvt_err("fail to dmamap scratch ggtt page\n");
2386 __free_page(virt_to_page(page));
2387 return -ENOMEM;
2390 gvt->gtt.scratch_page = virt_to_page(page);
2391 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2393 if (enable_out_of_sync) {
2394 ret = setup_spt_oos(gvt);
2395 if (ret) {
2396 gvt_err("fail to initialize SPT oos\n");
2397 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2398 __free_page(gvt->gtt.scratch_page);
2399 return ret;
2402 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2403 return 0;
2407 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2408 * @gvt: GVT device
2410 * This function is called at the driver unloading stage, to clean up the
2411 * the mm components of a GVT device.
2414 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2416 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2417 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2418 I915_GTT_PAGE_SHIFT);
2420 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2422 __free_page(gvt->gtt.scratch_page);
2424 if (enable_out_of_sync)
2425 clean_spt_oos(gvt);
2429 * intel_vgpu_reset_ggtt - reset the GGTT entry
2430 * @vgpu: a vGPU
2432 * This function is called at the vGPU create stage
2433 * to reset all the GGTT entries.
2436 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2438 struct intel_gvt *gvt = vgpu->gvt;
2439 struct drm_i915_private *dev_priv = gvt->dev_priv;
2440 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2441 u32 index;
2442 u32 offset;
2443 u32 num_entries;
2444 struct intel_gvt_gtt_entry e;
2446 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2447 e.type = GTT_TYPE_GGTT_PTE;
2448 ops->set_pfn(&e, gvt->gtt.scratch_mfn);
2449 e.val64 |= _PAGE_PRESENT;
2451 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2452 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2453 for (offset = 0; offset < num_entries; offset++)
2454 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2456 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2457 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2458 for (offset = 0; offset < num_entries; offset++)
2459 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2461 gtt_invalidate(dev_priv);
2465 * intel_vgpu_reset_gtt - reset the all GTT related status
2466 * @vgpu: a vGPU
2468 * This function is called from vfio core to reset reset all
2469 * GTT related status, including GGTT, PPGTT, scratch page.
2472 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2474 ppgtt_free_all_shadow_page(vgpu);
2476 /* Shadow pages are only created when there is no page
2477 * table tracking data, so remove page tracking data after
2478 * removing the shadow pages.
2480 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2482 intel_vgpu_reset_ggtt(vgpu);