Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_drv.h
blobd307429a5ae0a029e1f3b37c6ed76b39d9967b97
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/perf_event.h>
44 #include <linux/pm_qos.h>
45 #include <linux/reservation.h>
46 #include <linux/shmem_fs.h>
48 #include <drm/drmP.h>
49 #include <drm/intel-gtt.h>
50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
51 #include <drm/drm_gem.h>
52 #include <drm/drm_auth.h>
53 #include <drm/drm_cache.h>
55 #include "i915_params.h"
56 #include "i915_reg.h"
57 #include "i915_utils.h"
59 #include "intel_bios.h"
60 #include "intel_device_info.h"
61 #include "intel_display.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_lrc.h"
64 #include "intel_opregion.h"
65 #include "intel_ringbuffer.h"
66 #include "intel_uncore.h"
67 #include "intel_uc.h"
69 #include "i915_gem.h"
70 #include "i915_gem_context.h"
71 #include "i915_gem_fence_reg.h"
72 #include "i915_gem_object.h"
73 #include "i915_gem_gtt.h"
74 #include "i915_gem_request.h"
75 #include "i915_gem_timeline.h"
77 #include "i915_vma.h"
79 #include "intel_gvt.h"
81 /* General customization:
84 #define DRIVER_NAME "i915"
85 #define DRIVER_DESC "Intel Graphics"
86 #define DRIVER_DATE "20171222"
87 #define DRIVER_TIMESTAMP 1513971710
89 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
90 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
91 * which may not necessarily be a user visible problem. This will either
92 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
93 * enable distros and users to tailor their preferred amount of i915 abrt
94 * spam.
96 #define I915_STATE_WARN(condition, format...) ({ \
97 int __ret_warn_on = !!(condition); \
98 if (unlikely(__ret_warn_on)) \
99 if (!WARN(i915_modparams.verbose_state_checks, format)) \
100 DRM_ERROR(format); \
101 unlikely(__ret_warn_on); \
104 #define I915_STATE_WARN_ON(x) \
105 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
107 bool __i915_inject_load_failure(const char *func, int line);
108 #define i915_inject_load_failure() \
109 __i915_inject_load_failure(__func__, __LINE__)
111 typedef struct {
112 uint32_t val;
113 } uint_fixed_16_16_t;
115 #define FP_16_16_MAX ({ \
116 uint_fixed_16_16_t fp; \
117 fp.val = UINT_MAX; \
118 fp; \
121 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
123 if (val.val == 0)
124 return true;
125 return false;
128 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
130 uint_fixed_16_16_t fp;
132 WARN_ON(val > U16_MAX);
134 fp.val = val << 16;
135 return fp;
138 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
140 return DIV_ROUND_UP(fp.val, 1 << 16);
143 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
145 return fp.val >> 16;
148 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
149 uint_fixed_16_16_t min2)
151 uint_fixed_16_16_t min;
153 min.val = min(min1.val, min2.val);
154 return min;
157 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
158 uint_fixed_16_16_t max2)
160 uint_fixed_16_16_t max;
162 max.val = max(max1.val, max2.val);
163 return max;
166 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
168 uint_fixed_16_16_t fp;
169 WARN_ON(val > U32_MAX);
170 fp.val = (uint32_t) val;
171 return fp;
174 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
175 uint_fixed_16_16_t d)
177 return DIV_ROUND_UP(val.val, d.val);
180 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
181 uint_fixed_16_16_t mul)
183 uint64_t intermediate_val;
185 intermediate_val = (uint64_t) val * mul.val;
186 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
187 WARN_ON(intermediate_val > U32_MAX);
188 return (uint32_t) intermediate_val;
191 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
192 uint_fixed_16_16_t mul)
194 uint64_t intermediate_val;
196 intermediate_val = (uint64_t) val.val * mul.val;
197 intermediate_val = intermediate_val >> 16;
198 return clamp_u64_to_fixed16(intermediate_val);
201 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
203 uint64_t interm_val;
205 interm_val = (uint64_t)val << 16;
206 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
207 return clamp_u64_to_fixed16(interm_val);
210 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
211 uint_fixed_16_16_t d)
213 uint64_t interm_val;
215 interm_val = (uint64_t)val << 16;
216 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
217 WARN_ON(interm_val > U32_MAX);
218 return (uint32_t) interm_val;
221 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
222 uint_fixed_16_16_t mul)
224 uint64_t intermediate_val;
226 intermediate_val = (uint64_t) val * mul.val;
227 return clamp_u64_to_fixed16(intermediate_val);
230 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
231 uint_fixed_16_16_t add2)
233 uint64_t interm_sum;
235 interm_sum = (uint64_t) add1.val + add2.val;
236 return clamp_u64_to_fixed16(interm_sum);
239 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
240 uint32_t add2)
242 uint64_t interm_sum;
243 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
245 interm_sum = (uint64_t) add1.val + interm_add2.val;
246 return clamp_u64_to_fixed16(interm_sum);
249 enum hpd_pin {
250 HPD_NONE = 0,
251 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
252 HPD_CRT,
253 HPD_SDVO_B,
254 HPD_SDVO_C,
255 HPD_PORT_A,
256 HPD_PORT_B,
257 HPD_PORT_C,
258 HPD_PORT_D,
259 HPD_PORT_E,
260 HPD_NUM_PINS
263 #define for_each_hpd_pin(__pin) \
264 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266 #define HPD_STORM_DEFAULT_THRESHOLD 5
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
288 struct work_struct poll_init_work;
289 bool poll_enabled;
291 unsigned int hpd_storm_threshold;
294 * if we get a HPD irq from DP and a HPD irq from non-DP
295 * the non-DP HPD could block the workqueue on a mode config
296 * mutex getting, that userspace may have taken. However
297 * userspace is waiting on the DP workqueue to run which is
298 * blocked behind the non-DP one.
300 struct workqueue_struct *dp_wq;
303 #define I915_GEM_GPU_DOMAINS \
304 (I915_GEM_DOMAIN_RENDER | \
305 I915_GEM_DOMAIN_SAMPLER | \
306 I915_GEM_DOMAIN_COMMAND | \
307 I915_GEM_DOMAIN_INSTRUCTION | \
308 I915_GEM_DOMAIN_VERTEX)
310 struct drm_i915_private;
311 struct i915_mm_struct;
312 struct i915_mmu_object;
314 struct drm_i915_file_private {
315 struct drm_i915_private *dev_priv;
316 struct drm_file *file;
318 struct {
319 spinlock_t lock;
320 struct list_head request_list;
321 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
322 * chosen to prevent the CPU getting more than a frame ahead of the GPU
323 * (when using lax throttling for the frontbuffer). We also use it to
324 * offer free GPU waitboosts for severely congested workloads.
326 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
327 } mm;
328 struct idr context_idr;
330 struct intel_rps_client {
331 atomic_t boosts;
332 } rps_client;
334 unsigned int bsd_engine;
336 /* Client can have a maximum of 3 contexts banned before
337 * it is denied of creating new contexts. As one context
338 * ban needs 4 consecutive hangs, and more if there is
339 * progress in between, this is a last resort stop gap measure
340 * to limit the badly behaving clients access to gpu.
342 #define I915_MAX_CLIENT_CONTEXT_BANS 3
343 atomic_t context_bans;
346 /* Interface history:
348 * 1.1: Original.
349 * 1.2: Add Power Management
350 * 1.3: Add vblank support
351 * 1.4: Fix cmdbuffer path, add heap destroy
352 * 1.5: Add vblank pipe configuration
353 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
354 * - Support vertical blank on secondary display pipe
356 #define DRIVER_MAJOR 1
357 #define DRIVER_MINOR 6
358 #define DRIVER_PATCHLEVEL 0
360 struct intel_overlay;
361 struct intel_overlay_error_state;
363 struct sdvo_device_mapping {
364 u8 initialized;
365 u8 dvo_port;
366 u8 slave_addr;
367 u8 dvo_wiring;
368 u8 i2c_pin;
369 u8 ddc_pin;
372 struct intel_connector;
373 struct intel_encoder;
374 struct intel_atomic_state;
375 struct intel_crtc_state;
376 struct intel_initial_plane_config;
377 struct intel_crtc;
378 struct intel_limit;
379 struct dpll;
380 struct intel_cdclk_state;
382 struct drm_i915_display_funcs {
383 void (*get_cdclk)(struct drm_i915_private *dev_priv,
384 struct intel_cdclk_state *cdclk_state);
385 void (*set_cdclk)(struct drm_i915_private *dev_priv,
386 const struct intel_cdclk_state *cdclk_state);
387 int (*get_fifo_size)(struct drm_i915_private *dev_priv,
388 enum i9xx_plane_id i9xx_plane);
389 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
390 int (*compute_intermediate_wm)(struct drm_device *dev,
391 struct intel_crtc *intel_crtc,
392 struct intel_crtc_state *newstate);
393 void (*initial_watermarks)(struct intel_atomic_state *state,
394 struct intel_crtc_state *cstate);
395 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
396 struct intel_crtc_state *cstate);
397 void (*optimize_watermarks)(struct intel_atomic_state *state,
398 struct intel_crtc_state *cstate);
399 int (*compute_global_watermarks)(struct drm_atomic_state *state);
400 void (*update_wm)(struct intel_crtc *crtc);
401 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
402 /* Returns the active state of the crtc, and if the crtc is active,
403 * fills out the pipe-config with the hw state. */
404 bool (*get_pipe_config)(struct intel_crtc *,
405 struct intel_crtc_state *);
406 void (*get_initial_plane_config)(struct intel_crtc *,
407 struct intel_initial_plane_config *);
408 int (*crtc_compute_clock)(struct intel_crtc *crtc,
409 struct intel_crtc_state *crtc_state);
410 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
411 struct drm_atomic_state *old_state);
412 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
413 struct drm_atomic_state *old_state);
414 void (*update_crtcs)(struct drm_atomic_state *state);
415 void (*audio_codec_enable)(struct intel_encoder *encoder,
416 const struct intel_crtc_state *crtc_state,
417 const struct drm_connector_state *conn_state);
418 void (*audio_codec_disable)(struct intel_encoder *encoder,
419 const struct intel_crtc_state *old_crtc_state,
420 const struct drm_connector_state *old_conn_state);
421 void (*fdi_link_train)(struct intel_crtc *crtc,
422 const struct intel_crtc_state *crtc_state);
423 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
424 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
425 /* clock updates for mode set */
426 /* cursor updates */
427 /* render clock increase/decrease */
428 /* display clock increase/decrease */
429 /* pll clock increase/decrease */
431 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
432 void (*load_luts)(struct drm_crtc_state *crtc_state);
435 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
436 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
437 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
439 struct intel_csr {
440 struct work_struct work;
441 const char *fw_path;
442 uint32_t *dmc_payload;
443 uint32_t dmc_fw_size;
444 uint32_t version;
445 uint32_t mmio_count;
446 i915_reg_t mmioaddr[8];
447 uint32_t mmiodata[8];
448 uint32_t dc_state;
449 uint32_t allowed_dc_mask;
452 struct intel_display_error_state;
454 struct i915_gpu_state {
455 struct kref ref;
456 struct timeval time;
457 struct timeval boottime;
458 struct timeval uptime;
460 struct drm_i915_private *i915;
462 char error_msg[128];
463 bool simulated;
464 bool awake;
465 bool wakelock;
466 bool suspended;
467 int iommu;
468 u32 reset_count;
469 u32 suspend_count;
470 struct intel_device_info device_info;
471 struct i915_params params;
473 struct i915_error_uc {
474 struct intel_uc_fw guc_fw;
475 struct intel_uc_fw huc_fw;
476 struct drm_i915_error_object *guc_log;
477 } uc;
479 /* Generic register state */
480 u32 eir;
481 u32 pgtbl_er;
482 u32 ier;
483 u32 gtier[4], ngtier;
484 u32 ccid;
485 u32 derrmr;
486 u32 forcewake;
487 u32 error; /* gen6+ */
488 u32 err_int; /* gen7 */
489 u32 fault_data0; /* gen8, gen9 */
490 u32 fault_data1; /* gen8, gen9 */
491 u32 done_reg;
492 u32 gac_eco;
493 u32 gam_ecochk;
494 u32 gab_ctl;
495 u32 gfx_mode;
497 u32 nfence;
498 u64 fence[I915_MAX_NUM_FENCES];
499 struct intel_overlay_error_state *overlay;
500 struct intel_display_error_state *display;
502 struct drm_i915_error_engine {
503 int engine_id;
504 /* Software tracked state */
505 bool idle;
506 bool waiting;
507 int num_waiters;
508 unsigned long hangcheck_timestamp;
509 bool hangcheck_stalled;
510 enum intel_engine_hangcheck_action hangcheck_action;
511 struct i915_address_space *vm;
512 int num_requests;
513 u32 reset_count;
515 /* position of active request inside the ring */
516 u32 rq_head, rq_post, rq_tail;
518 /* our own tracking of ring head and tail */
519 u32 cpu_ring_head;
520 u32 cpu_ring_tail;
522 u32 last_seqno;
524 /* Register state */
525 u32 start;
526 u32 tail;
527 u32 head;
528 u32 ctl;
529 u32 mode;
530 u32 hws;
531 u32 ipeir;
532 u32 ipehr;
533 u32 bbstate;
534 u32 instpm;
535 u32 instps;
536 u32 seqno;
537 u64 bbaddr;
538 u64 acthd;
539 u32 fault_reg;
540 u64 faddr;
541 u32 rc_psmi; /* sleep state */
542 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
543 struct intel_instdone instdone;
545 struct drm_i915_error_context {
546 char comm[TASK_COMM_LEN];
547 pid_t pid;
548 u32 handle;
549 u32 hw_id;
550 int priority;
551 int ban_score;
552 int active;
553 int guilty;
554 } context;
556 struct drm_i915_error_object {
557 u64 gtt_offset;
558 u64 gtt_size;
559 int page_count;
560 int unused;
561 u32 *pages[0];
562 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
564 struct drm_i915_error_object **user_bo;
565 long user_bo_count;
567 struct drm_i915_error_object *wa_ctx;
568 struct drm_i915_error_object *default_state;
570 struct drm_i915_error_request {
571 long jiffies;
572 pid_t pid;
573 u32 context;
574 int priority;
575 int ban_score;
576 u32 seqno;
577 u32 head;
578 u32 tail;
579 } *requests, execlist[EXECLIST_MAX_PORTS];
580 unsigned int num_ports;
582 struct drm_i915_error_waiter {
583 char comm[TASK_COMM_LEN];
584 pid_t pid;
585 u32 seqno;
586 } *waiters;
588 struct {
589 u32 gfx_mode;
590 union {
591 u64 pdp[4];
592 u32 pp_dir_base;
594 } vm_info;
595 } engine[I915_NUM_ENGINES];
597 struct drm_i915_error_buffer {
598 u32 size;
599 u32 name;
600 u32 rseqno[I915_NUM_ENGINES], wseqno;
601 u64 gtt_offset;
602 u32 read_domains;
603 u32 write_domain;
604 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
605 u32 tiling:2;
606 u32 dirty:1;
607 u32 purgeable:1;
608 u32 userptr:1;
609 s32 engine:4;
610 u32 cache_level:3;
611 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
612 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
613 struct i915_address_space *active_vm[I915_NUM_ENGINES];
616 enum i915_cache_level {
617 I915_CACHE_NONE = 0,
618 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
619 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
620 caches, eg sampler/render caches, and the
621 large Last-Level-Cache. LLC is coherent with
622 the CPU, but L3 is only visible to the GPU. */
623 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
626 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
628 enum fb_op_origin {
629 ORIGIN_GTT,
630 ORIGIN_CPU,
631 ORIGIN_CS,
632 ORIGIN_FLIP,
633 ORIGIN_DIRTYFB,
636 struct intel_fbc {
637 /* This is always the inner lock when overlapping with struct_mutex and
638 * it's the outer lock when overlapping with stolen_lock. */
639 struct mutex lock;
640 unsigned threshold;
641 unsigned int possible_framebuffer_bits;
642 unsigned int busy_bits;
643 unsigned int visible_pipes_mask;
644 struct intel_crtc *crtc;
646 struct drm_mm_node compressed_fb;
647 struct drm_mm_node *compressed_llb;
649 bool false_color;
651 bool enabled;
652 bool active;
654 bool underrun_detected;
655 struct work_struct underrun_work;
658 * Due to the atomic rules we can't access some structures without the
659 * appropriate locking, so we cache information here in order to avoid
660 * these problems.
662 struct intel_fbc_state_cache {
663 struct i915_vma *vma;
665 struct {
666 unsigned int mode_flags;
667 uint32_t hsw_bdw_pixel_rate;
668 } crtc;
670 struct {
671 unsigned int rotation;
672 int src_w;
673 int src_h;
674 bool visible;
676 * Display surface base address adjustement for
677 * pageflips. Note that on gen4+ this only adjusts up
678 * to a tile, offsets within a tile are handled in
679 * the hw itself (with the TILEOFF register).
681 int adjusted_x;
682 int adjusted_y;
684 int y;
685 } plane;
687 struct {
688 const struct drm_format_info *format;
689 unsigned int stride;
690 } fb;
691 } state_cache;
694 * This structure contains everything that's relevant to program the
695 * hardware registers. When we want to figure out if we need to disable
696 * and re-enable FBC for a new configuration we just check if there's
697 * something different in the struct. The genx_fbc_activate functions
698 * are supposed to read from it in order to program the registers.
700 struct intel_fbc_reg_params {
701 struct i915_vma *vma;
703 struct {
704 enum pipe pipe;
705 enum i9xx_plane_id i9xx_plane;
706 unsigned int fence_y_offset;
707 } crtc;
709 struct {
710 const struct drm_format_info *format;
711 unsigned int stride;
712 } fb;
714 int cfb_size;
715 unsigned int gen9_wa_cfb_stride;
716 } params;
718 struct intel_fbc_work {
719 bool scheduled;
720 u32 scheduled_vblank;
721 struct work_struct work;
722 } work;
724 const char *no_fbc_reason;
728 * HIGH_RR is the highest eDP panel refresh rate read from EDID
729 * LOW_RR is the lowest eDP panel refresh rate found from EDID
730 * parsing for same resolution.
732 enum drrs_refresh_rate_type {
733 DRRS_HIGH_RR,
734 DRRS_LOW_RR,
735 DRRS_MAX_RR, /* RR count */
738 enum drrs_support_type {
739 DRRS_NOT_SUPPORTED = 0,
740 STATIC_DRRS_SUPPORT = 1,
741 SEAMLESS_DRRS_SUPPORT = 2
744 struct intel_dp;
745 struct i915_drrs {
746 struct mutex mutex;
747 struct delayed_work work;
748 struct intel_dp *dp;
749 unsigned busy_frontbuffer_bits;
750 enum drrs_refresh_rate_type refresh_rate_type;
751 enum drrs_support_type type;
754 struct i915_psr {
755 struct mutex lock;
756 bool sink_support;
757 bool source_ok;
758 struct intel_dp *enabled;
759 bool active;
760 struct delayed_work work;
761 unsigned busy_frontbuffer_bits;
762 bool psr2_support;
763 bool aux_frame_sync;
764 bool link_standby;
765 bool y_cord_support;
766 bool colorimetry_support;
767 bool alpm;
769 void (*enable_source)(struct intel_dp *,
770 const struct intel_crtc_state *);
771 void (*disable_source)(struct intel_dp *,
772 const struct intel_crtc_state *);
773 void (*enable_sink)(struct intel_dp *);
774 void (*activate)(struct intel_dp *);
775 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
778 enum intel_pch {
779 PCH_NONE = 0, /* No PCH present */
780 PCH_IBX, /* Ibexpeak PCH */
781 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
782 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
783 PCH_SPT, /* Sunrisepoint PCH */
784 PCH_KBP, /* Kaby Lake PCH */
785 PCH_CNP, /* Cannon Lake PCH */
786 PCH_NOP,
789 enum intel_sbi_destination {
790 SBI_ICLK,
791 SBI_MPHY,
794 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
795 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
796 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
797 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
798 #define QUIRK_INCREASE_T12_DELAY (1<<6)
800 struct intel_fbdev;
801 struct intel_fbc_work;
803 struct intel_gmbus {
804 struct i2c_adapter adapter;
805 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
806 u32 force_bit;
807 u32 reg0;
808 i915_reg_t gpio_reg;
809 struct i2c_algo_bit_data bit_algo;
810 struct drm_i915_private *dev_priv;
813 struct i915_suspend_saved_registers {
814 u32 saveDSPARB;
815 u32 saveFBC_CONTROL;
816 u32 saveCACHE_MODE_0;
817 u32 saveMI_ARB_STATE;
818 u32 saveSWF0[16];
819 u32 saveSWF1[16];
820 u32 saveSWF3[3];
821 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
822 u32 savePCH_PORT_HOTPLUG;
823 u16 saveGCDGMBUS;
826 struct vlv_s0ix_state {
827 /* GAM */
828 u32 wr_watermark;
829 u32 gfx_prio_ctrl;
830 u32 arb_mode;
831 u32 gfx_pend_tlb0;
832 u32 gfx_pend_tlb1;
833 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
834 u32 media_max_req_count;
835 u32 gfx_max_req_count;
836 u32 render_hwsp;
837 u32 ecochk;
838 u32 bsd_hwsp;
839 u32 blt_hwsp;
840 u32 tlb_rd_addr;
842 /* MBC */
843 u32 g3dctl;
844 u32 gsckgctl;
845 u32 mbctl;
847 /* GCP */
848 u32 ucgctl1;
849 u32 ucgctl3;
850 u32 rcgctl1;
851 u32 rcgctl2;
852 u32 rstctl;
853 u32 misccpctl;
855 /* GPM */
856 u32 gfxpause;
857 u32 rpdeuhwtc;
858 u32 rpdeuc;
859 u32 ecobus;
860 u32 pwrdwnupctl;
861 u32 rp_down_timeout;
862 u32 rp_deucsw;
863 u32 rcubmabdtmr;
864 u32 rcedata;
865 u32 spare2gh;
867 /* Display 1 CZ domain */
868 u32 gt_imr;
869 u32 gt_ier;
870 u32 pm_imr;
871 u32 pm_ier;
872 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
874 /* GT SA CZ domain */
875 u32 tilectl;
876 u32 gt_fifoctl;
877 u32 gtlc_wake_ctrl;
878 u32 gtlc_survive;
879 u32 pmwgicz;
881 /* Display 2 CZ domain */
882 u32 gu_ctl0;
883 u32 gu_ctl1;
884 u32 pcbr;
885 u32 clock_gate_dis2;
888 struct intel_rps_ei {
889 ktime_t ktime;
890 u32 render_c0;
891 u32 media_c0;
894 struct intel_rps {
896 * work, interrupts_enabled and pm_iir are protected by
897 * dev_priv->irq_lock
899 struct work_struct work;
900 bool interrupts_enabled;
901 u32 pm_iir;
903 /* PM interrupt bits that should never be masked */
904 u32 pm_intrmsk_mbz;
906 /* Frequencies are stored in potentially platform dependent multiples.
907 * In other words, *_freq needs to be multiplied by X to be interesting.
908 * Soft limits are those which are used for the dynamic reclocking done
909 * by the driver (raise frequencies under heavy loads, and lower for
910 * lighter loads). Hard limits are those imposed by the hardware.
912 * A distinction is made for overclocking, which is never enabled by
913 * default, and is considered to be above the hard limit if it's
914 * possible at all.
916 u8 cur_freq; /* Current frequency (cached, may not == HW) */
917 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
918 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
919 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
920 u8 min_freq; /* AKA RPn. Minimum frequency */
921 u8 boost_freq; /* Frequency to request when wait boosting */
922 u8 idle_freq; /* Frequency to request when we are idle */
923 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
924 u8 rp1_freq; /* "less than" RP0 power/freqency */
925 u8 rp0_freq; /* Non-overclocked max frequency. */
926 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
928 u8 up_threshold; /* Current %busy required to uplock */
929 u8 down_threshold; /* Current %busy required to downclock */
931 int last_adj;
932 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
934 bool enabled;
935 atomic_t num_waiters;
936 atomic_t boosts;
938 /* manual wa residency calculations */
939 struct intel_rps_ei ei;
942 struct intel_rc6 {
943 bool enabled;
946 struct intel_llc_pstate {
947 bool enabled;
950 struct intel_gen6_power_mgmt {
951 struct intel_rps rps;
952 struct intel_rc6 rc6;
953 struct intel_llc_pstate llc_pstate;
956 /* defined intel_pm.c */
957 extern spinlock_t mchdev_lock;
959 struct intel_ilk_power_mgmt {
960 u8 cur_delay;
961 u8 min_delay;
962 u8 max_delay;
963 u8 fmax;
964 u8 fstart;
966 u64 last_count1;
967 unsigned long last_time1;
968 unsigned long chipset_power;
969 u64 last_count2;
970 u64 last_time2;
971 unsigned long gfx_power;
972 u8 corr;
974 int c_m;
975 int r_t;
978 struct drm_i915_private;
979 struct i915_power_well;
981 struct i915_power_well_ops {
983 * Synchronize the well's hw state to match the current sw state, for
984 * example enable/disable it based on the current refcount. Called
985 * during driver init and resume time, possibly after first calling
986 * the enable/disable handlers.
988 void (*sync_hw)(struct drm_i915_private *dev_priv,
989 struct i915_power_well *power_well);
991 * Enable the well and resources that depend on it (for example
992 * interrupts located on the well). Called after the 0->1 refcount
993 * transition.
995 void (*enable)(struct drm_i915_private *dev_priv,
996 struct i915_power_well *power_well);
998 * Disable the well and resources that depend on it. Called after
999 * the 1->0 refcount transition.
1001 void (*disable)(struct drm_i915_private *dev_priv,
1002 struct i915_power_well *power_well);
1003 /* Returns the hw enabled state. */
1004 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1005 struct i915_power_well *power_well);
1008 /* Power well structure for haswell */
1009 struct i915_power_well {
1010 const char *name;
1011 bool always_on;
1012 /* power well enable/disable usage count */
1013 int count;
1014 /* cached hw enabled state */
1015 bool hw_enabled;
1016 u64 domains;
1017 /* unique identifier for this power well */
1018 enum i915_power_well_id id;
1020 * Arbitraty data associated with this power well. Platform and power
1021 * well specific.
1023 union {
1024 struct {
1025 enum dpio_phy phy;
1026 } bxt;
1027 struct {
1028 /* Mask of pipes whose IRQ logic is backed by the pw */
1029 u8 irq_pipe_mask;
1030 /* The pw is backing the VGA functionality */
1031 bool has_vga:1;
1032 bool has_fuses:1;
1033 } hsw;
1035 const struct i915_power_well_ops *ops;
1038 struct i915_power_domains {
1040 * Power wells needed for initialization at driver init and suspend
1041 * time are on. They are kept on until after the first modeset.
1043 bool init_power_on;
1044 bool initializing;
1045 int power_well_count;
1047 struct mutex lock;
1048 int domain_use_count[POWER_DOMAIN_NUM];
1049 struct i915_power_well *power_wells;
1052 #define MAX_L3_SLICES 2
1053 struct intel_l3_parity {
1054 u32 *remap_info[MAX_L3_SLICES];
1055 struct work_struct error_work;
1056 int which_slice;
1059 struct i915_gem_mm {
1060 /** Memory allocator for GTT stolen memory */
1061 struct drm_mm stolen;
1062 /** Protects the usage of the GTT stolen memory allocator. This is
1063 * always the inner lock when overlapping with struct_mutex. */
1064 struct mutex stolen_lock;
1066 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1067 spinlock_t obj_lock;
1069 /** List of all objects in gtt_space. Used to restore gtt
1070 * mappings on resume */
1071 struct list_head bound_list;
1073 * List of objects which are not bound to the GTT (thus
1074 * are idle and not used by the GPU). These objects may or may
1075 * not actually have any pages attached.
1077 struct list_head unbound_list;
1079 /** List of all objects in gtt_space, currently mmaped by userspace.
1080 * All objects within this list must also be on bound_list.
1082 struct list_head userfault_list;
1085 * List of objects which are pending destruction.
1087 struct llist_head free_list;
1088 struct work_struct free_work;
1089 spinlock_t free_lock;
1092 * Small stash of WC pages
1094 struct pagevec wc_stash;
1097 * tmpfs instance used for shmem backed objects
1099 struct vfsmount *gemfs;
1101 /** PPGTT used for aliasing the PPGTT with the GTT */
1102 struct i915_hw_ppgtt *aliasing_ppgtt;
1104 struct notifier_block oom_notifier;
1105 struct notifier_block vmap_notifier;
1106 struct shrinker shrinker;
1108 /** LRU list of objects with fence regs on them. */
1109 struct list_head fence_list;
1112 * Workqueue to fault in userptr pages, flushed by the execbuf
1113 * when required but otherwise left to userspace to try again
1114 * on EAGAIN.
1116 struct workqueue_struct *userptr_wq;
1118 u64 unordered_timeline;
1120 /* the indicator for dispatch video commands on two BSD rings */
1121 atomic_t bsd_engine_dispatch_index;
1123 /** Bit 6 swizzling required for X tiling */
1124 uint32_t bit_6_swizzle_x;
1125 /** Bit 6 swizzling required for Y tiling */
1126 uint32_t bit_6_swizzle_y;
1128 /* accounting, useful for userland debugging */
1129 spinlock_t object_stat_lock;
1130 u64 object_memory;
1131 u32 object_count;
1134 struct drm_i915_error_state_buf {
1135 struct drm_i915_private *i915;
1136 unsigned bytes;
1137 unsigned size;
1138 int err;
1139 u8 *buf;
1140 loff_t start;
1141 loff_t pos;
1144 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1146 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1147 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1149 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1150 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1152 struct i915_gpu_error {
1153 /* For hangcheck timer */
1154 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1155 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1157 struct delayed_work hangcheck_work;
1159 /* For reset and error_state handling. */
1160 spinlock_t lock;
1161 /* Protected by the above dev->gpu_error.lock. */
1162 struct i915_gpu_state *first_error;
1164 atomic_t pending_fb_pin;
1166 unsigned long missed_irq_rings;
1169 * State variable controlling the reset flow and count
1171 * This is a counter which gets incremented when reset is triggered,
1173 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1174 * meaning that any waiters holding onto the struct_mutex should
1175 * relinquish the lock immediately in order for the reset to start.
1177 * If reset is not completed succesfully, the I915_WEDGE bit is
1178 * set meaning that hardware is terminally sour and there is no
1179 * recovery. All waiters on the reset_queue will be woken when
1180 * that happens.
1182 * This counter is used by the wait_seqno code to notice that reset
1183 * event happened and it needs to restart the entire ioctl (since most
1184 * likely the seqno it waited for won't ever signal anytime soon).
1186 * This is important for lock-free wait paths, where no contended lock
1187 * naturally enforces the correct ordering between the bail-out of the
1188 * waiter and the gpu reset work code.
1190 unsigned long reset_count;
1193 * flags: Control various stages of the GPU reset
1195 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1196 * other users acquiring the struct_mutex. To do this we set the
1197 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1198 * and then check for that bit before acquiring the struct_mutex (in
1199 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1200 * secondary role in preventing two concurrent global reset attempts.
1202 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1203 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1204 * but it may be held by some long running waiter (that we cannot
1205 * interrupt without causing trouble). Once we are ready to do the GPU
1206 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1207 * they already hold the struct_mutex and want to participate they can
1208 * inspect the bit and do the reset directly, otherwise the worker
1209 * waits for the struct_mutex.
1211 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1212 * acquire the struct_mutex to reset an engine, we need an explicit
1213 * flag to prevent two concurrent reset attempts in the same engine.
1214 * As the number of engines continues to grow, allocate the flags from
1215 * the most significant bits.
1217 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1218 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1219 * i915_gem_request_alloc(), this bit is checked and the sequence
1220 * aborted (with -EIO reported to userspace) if set.
1222 unsigned long flags;
1223 #define I915_RESET_BACKOFF 0
1224 #define I915_RESET_HANDOFF 1
1225 #define I915_RESET_MODESET 2
1226 #define I915_WEDGED (BITS_PER_LONG - 1)
1227 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1229 /** Number of times an engine has been reset */
1230 u32 reset_engine_count[I915_NUM_ENGINES];
1233 * Waitqueue to signal when a hang is detected. Used to for waiters
1234 * to release the struct_mutex for the reset to procede.
1236 wait_queue_head_t wait_queue;
1239 * Waitqueue to signal when the reset has completed. Used by clients
1240 * that wait for dev_priv->mm.wedged to settle.
1242 wait_queue_head_t reset_queue;
1244 /* For missed irq/seqno simulation. */
1245 unsigned long test_irq_rings;
1248 enum modeset_restore {
1249 MODESET_ON_LID_OPEN,
1250 MODESET_DONE,
1251 MODESET_SUSPENDED,
1254 #define DP_AUX_A 0x40
1255 #define DP_AUX_B 0x10
1256 #define DP_AUX_C 0x20
1257 #define DP_AUX_D 0x30
1259 #define DDC_PIN_B 0x05
1260 #define DDC_PIN_C 0x04
1261 #define DDC_PIN_D 0x06
1263 struct ddi_vbt_port_info {
1264 int max_tmds_clock;
1267 * This is an index in the HDMI/DVI DDI buffer translation table.
1268 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1269 * populate this field.
1271 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1272 uint8_t hdmi_level_shift;
1274 uint8_t supports_dvi:1;
1275 uint8_t supports_hdmi:1;
1276 uint8_t supports_dp:1;
1277 uint8_t supports_edp:1;
1279 uint8_t alternate_aux_channel;
1280 uint8_t alternate_ddc_pin;
1282 uint8_t dp_boost_level;
1283 uint8_t hdmi_boost_level;
1286 enum psr_lines_to_wait {
1287 PSR_0_LINES_TO_WAIT = 0,
1288 PSR_1_LINE_TO_WAIT,
1289 PSR_4_LINES_TO_WAIT,
1290 PSR_8_LINES_TO_WAIT
1293 struct intel_vbt_data {
1294 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1295 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1297 /* Feature bits */
1298 unsigned int int_tv_support:1;
1299 unsigned int lvds_dither:1;
1300 unsigned int lvds_vbt:1;
1301 unsigned int int_crt_support:1;
1302 unsigned int lvds_use_ssc:1;
1303 unsigned int display_clock_mode:1;
1304 unsigned int fdi_rx_polarity_inverted:1;
1305 unsigned int panel_type:4;
1306 int lvds_ssc_freq;
1307 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1309 enum drrs_support_type drrs_type;
1311 struct {
1312 int rate;
1313 int lanes;
1314 int preemphasis;
1315 int vswing;
1316 bool low_vswing;
1317 bool initialized;
1318 bool support;
1319 int bpp;
1320 struct edp_power_seq pps;
1321 } edp;
1323 struct {
1324 bool full_link;
1325 bool require_aux_wakeup;
1326 int idle_frames;
1327 enum psr_lines_to_wait lines_to_wait;
1328 int tp1_wakeup_time;
1329 int tp2_tp3_wakeup_time;
1330 } psr;
1332 struct {
1333 u16 pwm_freq_hz;
1334 bool present;
1335 bool active_low_pwm;
1336 u8 min_brightness; /* min_brightness/255 of max */
1337 u8 controller; /* brightness controller number */
1338 enum intel_backlight_type type;
1339 } backlight;
1341 /* MIPI DSI */
1342 struct {
1343 u16 panel_id;
1344 struct mipi_config *config;
1345 struct mipi_pps_data *pps;
1346 u16 bl_ports;
1347 u16 cabc_ports;
1348 u8 seq_version;
1349 u32 size;
1350 u8 *data;
1351 const u8 *sequence[MIPI_SEQ_MAX];
1352 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1353 } dsi;
1355 int crt_ddc_pin;
1357 int child_dev_num;
1358 struct child_device_config *child_dev;
1360 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1361 struct sdvo_device_mapping sdvo_mappings[2];
1364 enum intel_ddb_partitioning {
1365 INTEL_DDB_PART_1_2,
1366 INTEL_DDB_PART_5_6, /* IVB+ */
1369 struct intel_wm_level {
1370 bool enable;
1371 uint32_t pri_val;
1372 uint32_t spr_val;
1373 uint32_t cur_val;
1374 uint32_t fbc_val;
1377 struct ilk_wm_values {
1378 uint32_t wm_pipe[3];
1379 uint32_t wm_lp[3];
1380 uint32_t wm_lp_spr[3];
1381 uint32_t wm_linetime[3];
1382 bool enable_fbc_wm;
1383 enum intel_ddb_partitioning partitioning;
1386 struct g4x_pipe_wm {
1387 uint16_t plane[I915_MAX_PLANES];
1388 uint16_t fbc;
1391 struct g4x_sr_wm {
1392 uint16_t plane;
1393 uint16_t cursor;
1394 uint16_t fbc;
1397 struct vlv_wm_ddl_values {
1398 uint8_t plane[I915_MAX_PLANES];
1401 struct vlv_wm_values {
1402 struct g4x_pipe_wm pipe[3];
1403 struct g4x_sr_wm sr;
1404 struct vlv_wm_ddl_values ddl[3];
1405 uint8_t level;
1406 bool cxsr;
1409 struct g4x_wm_values {
1410 struct g4x_pipe_wm pipe[2];
1411 struct g4x_sr_wm sr;
1412 struct g4x_sr_wm hpll;
1413 bool cxsr;
1414 bool hpll_en;
1415 bool fbc_en;
1418 struct skl_ddb_entry {
1419 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1422 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1424 return entry->end - entry->start;
1427 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1428 const struct skl_ddb_entry *e2)
1430 if (e1->start == e2->start && e1->end == e2->end)
1431 return true;
1433 return false;
1436 struct skl_ddb_allocation {
1437 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1438 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1441 struct skl_wm_values {
1442 unsigned dirty_pipes;
1443 struct skl_ddb_allocation ddb;
1446 struct skl_wm_level {
1447 bool plane_en;
1448 uint16_t plane_res_b;
1449 uint8_t plane_res_l;
1452 /* Stores plane specific WM parameters */
1453 struct skl_wm_params {
1454 bool x_tiled, y_tiled;
1455 bool rc_surface;
1456 uint32_t width;
1457 uint8_t cpp;
1458 uint32_t plane_pixel_rate;
1459 uint32_t y_min_scanlines;
1460 uint32_t plane_bytes_per_line;
1461 uint_fixed_16_16_t plane_blocks_per_line;
1462 uint_fixed_16_16_t y_tile_minimum;
1463 uint32_t linetime_us;
1467 * This struct helps tracking the state needed for runtime PM, which puts the
1468 * device in PCI D3 state. Notice that when this happens, nothing on the
1469 * graphics device works, even register access, so we don't get interrupts nor
1470 * anything else.
1472 * Every piece of our code that needs to actually touch the hardware needs to
1473 * either call intel_runtime_pm_get or call intel_display_power_get with the
1474 * appropriate power domain.
1476 * Our driver uses the autosuspend delay feature, which means we'll only really
1477 * suspend if we stay with zero refcount for a certain amount of time. The
1478 * default value is currently very conservative (see intel_runtime_pm_enable), but
1479 * it can be changed with the standard runtime PM files from sysfs.
1481 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1482 * goes back to false exactly before we reenable the IRQs. We use this variable
1483 * to check if someone is trying to enable/disable IRQs while they're supposed
1484 * to be disabled. This shouldn't happen and we'll print some error messages in
1485 * case it happens.
1487 * For more, read the Documentation/power/runtime_pm.txt.
1489 struct i915_runtime_pm {
1490 atomic_t wakeref_count;
1491 bool suspended;
1492 bool irqs_enabled;
1495 enum intel_pipe_crc_source {
1496 INTEL_PIPE_CRC_SOURCE_NONE,
1497 INTEL_PIPE_CRC_SOURCE_PLANE1,
1498 INTEL_PIPE_CRC_SOURCE_PLANE2,
1499 INTEL_PIPE_CRC_SOURCE_PF,
1500 INTEL_PIPE_CRC_SOURCE_PIPE,
1501 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1502 INTEL_PIPE_CRC_SOURCE_TV,
1503 INTEL_PIPE_CRC_SOURCE_DP_B,
1504 INTEL_PIPE_CRC_SOURCE_DP_C,
1505 INTEL_PIPE_CRC_SOURCE_DP_D,
1506 INTEL_PIPE_CRC_SOURCE_AUTO,
1507 INTEL_PIPE_CRC_SOURCE_MAX,
1510 struct intel_pipe_crc_entry {
1511 uint32_t frame;
1512 uint32_t crc[5];
1515 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1516 struct intel_pipe_crc {
1517 spinlock_t lock;
1518 bool opened; /* exclusive access to the result file */
1519 struct intel_pipe_crc_entry *entries;
1520 enum intel_pipe_crc_source source;
1521 int head, tail;
1522 wait_queue_head_t wq;
1523 int skipped;
1526 struct i915_frontbuffer_tracking {
1527 spinlock_t lock;
1530 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1531 * scheduled flips.
1533 unsigned busy_bits;
1534 unsigned flip_bits;
1537 struct i915_wa_reg {
1538 i915_reg_t addr;
1539 u32 value;
1540 /* bitmask representing WA bits */
1541 u32 mask;
1544 #define I915_MAX_WA_REGS 16
1546 struct i915_workarounds {
1547 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1548 u32 count;
1549 u32 hw_whitelist_count[I915_NUM_ENGINES];
1552 struct i915_virtual_gpu {
1553 bool active;
1554 u32 caps;
1557 /* used in computing the new watermarks state */
1558 struct intel_wm_config {
1559 unsigned int num_pipes_active;
1560 bool sprites_enabled;
1561 bool sprites_scaled;
1564 struct i915_oa_format {
1565 u32 format;
1566 int size;
1569 struct i915_oa_reg {
1570 i915_reg_t addr;
1571 u32 value;
1574 struct i915_oa_config {
1575 char uuid[UUID_STRING_LEN + 1];
1576 int id;
1578 const struct i915_oa_reg *mux_regs;
1579 u32 mux_regs_len;
1580 const struct i915_oa_reg *b_counter_regs;
1581 u32 b_counter_regs_len;
1582 const struct i915_oa_reg *flex_regs;
1583 u32 flex_regs_len;
1585 struct attribute_group sysfs_metric;
1586 struct attribute *attrs[2];
1587 struct device_attribute sysfs_metric_id;
1589 atomic_t ref_count;
1592 struct i915_perf_stream;
1595 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1597 struct i915_perf_stream_ops {
1599 * @enable: Enables the collection of HW samples, either in response to
1600 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1601 * without `I915_PERF_FLAG_DISABLED`.
1603 void (*enable)(struct i915_perf_stream *stream);
1606 * @disable: Disables the collection of HW samples, either in response
1607 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1608 * the stream.
1610 void (*disable)(struct i915_perf_stream *stream);
1613 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1614 * once there is something ready to read() for the stream
1616 void (*poll_wait)(struct i915_perf_stream *stream,
1617 struct file *file,
1618 poll_table *wait);
1621 * @wait_unlocked: For handling a blocking read, wait until there is
1622 * something to ready to read() for the stream. E.g. wait on the same
1623 * wait queue that would be passed to poll_wait().
1625 int (*wait_unlocked)(struct i915_perf_stream *stream);
1628 * @read: Copy buffered metrics as records to userspace
1629 * **buf**: the userspace, destination buffer
1630 * **count**: the number of bytes to copy, requested by userspace
1631 * **offset**: zero at the start of the read, updated as the read
1632 * proceeds, it represents how many bytes have been copied so far and
1633 * the buffer offset for copying the next record.
1635 * Copy as many buffered i915 perf samples and records for this stream
1636 * to userspace as will fit in the given buffer.
1638 * Only write complete records; returning -%ENOSPC if there isn't room
1639 * for a complete record.
1641 * Return any error condition that results in a short read such as
1642 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1643 * returning to userspace.
1645 int (*read)(struct i915_perf_stream *stream,
1646 char __user *buf,
1647 size_t count,
1648 size_t *offset);
1651 * @destroy: Cleanup any stream specific resources.
1653 * The stream will always be disabled before this is called.
1655 void (*destroy)(struct i915_perf_stream *stream);
1659 * struct i915_perf_stream - state for a single open stream FD
1661 struct i915_perf_stream {
1663 * @dev_priv: i915 drm device
1665 struct drm_i915_private *dev_priv;
1668 * @link: Links the stream into ``&drm_i915_private->streams``
1670 struct list_head link;
1673 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1674 * properties given when opening a stream, representing the contents
1675 * of a single sample as read() by userspace.
1677 u32 sample_flags;
1680 * @sample_size: Considering the configured contents of a sample
1681 * combined with the required header size, this is the total size
1682 * of a single sample record.
1684 int sample_size;
1687 * @ctx: %NULL if measuring system-wide across all contexts or a
1688 * specific context that is being monitored.
1690 struct i915_gem_context *ctx;
1693 * @enabled: Whether the stream is currently enabled, considering
1694 * whether the stream was opened in a disabled state and based
1695 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1697 bool enabled;
1700 * @ops: The callbacks providing the implementation of this specific
1701 * type of configured stream.
1703 const struct i915_perf_stream_ops *ops;
1706 * @oa_config: The OA configuration used by the stream.
1708 struct i915_oa_config *oa_config;
1712 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1714 struct i915_oa_ops {
1716 * @is_valid_b_counter_reg: Validates register's address for
1717 * programming boolean counters for a particular platform.
1719 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1720 u32 addr);
1723 * @is_valid_mux_reg: Validates register's address for programming mux
1724 * for a particular platform.
1726 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1729 * @is_valid_flex_reg: Validates register's address for programming
1730 * flex EU filtering for a particular platform.
1732 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1735 * @init_oa_buffer: Resets the head and tail pointers of the
1736 * circular buffer for periodic OA reports.
1738 * Called when first opening a stream for OA metrics, but also may be
1739 * called in response to an OA buffer overflow or other error
1740 * condition.
1742 * Note it may be necessary to clear the full OA buffer here as part of
1743 * maintaining the invariable that new reports must be written to
1744 * zeroed memory for us to be able to reliable detect if an expected
1745 * report has not yet landed in memory. (At least on Haswell the OA
1746 * buffer tail pointer is not synchronized with reports being visible
1747 * to the CPU)
1749 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1752 * @enable_metric_set: Selects and applies any MUX configuration to set
1753 * up the Boolean and Custom (B/C) counters that are part of the
1754 * counter reports being sampled. May apply system constraints such as
1755 * disabling EU clock gating as required.
1757 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1758 const struct i915_oa_config *oa_config);
1761 * @disable_metric_set: Remove system constraints associated with using
1762 * the OA unit.
1764 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1767 * @oa_enable: Enable periodic sampling
1769 void (*oa_enable)(struct drm_i915_private *dev_priv);
1772 * @oa_disable: Disable periodic sampling
1774 void (*oa_disable)(struct drm_i915_private *dev_priv);
1777 * @read: Copy data from the circular OA buffer into a given userspace
1778 * buffer.
1780 int (*read)(struct i915_perf_stream *stream,
1781 char __user *buf,
1782 size_t count,
1783 size_t *offset);
1786 * @oa_hw_tail_read: read the OA tail pointer register
1788 * In particular this enables us to share all the fiddly code for
1789 * handling the OA unit tail pointer race that affects multiple
1790 * generations.
1792 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1795 struct intel_cdclk_state {
1796 unsigned int cdclk, vco, ref;
1797 u8 voltage_level;
1800 struct drm_i915_private {
1801 struct drm_device drm;
1803 struct kmem_cache *objects;
1804 struct kmem_cache *vmas;
1805 struct kmem_cache *luts;
1806 struct kmem_cache *requests;
1807 struct kmem_cache *dependencies;
1808 struct kmem_cache *priorities;
1810 const struct intel_device_info info;
1813 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1814 * end of stolen which we can optionally use to create GEM objects
1815 * backed by stolen memory. Note that stolen_usable_size tells us
1816 * exactly how much of this we are actually allowed to use, given that
1817 * some portion of it is in fact reserved for use by hardware functions.
1819 struct resource dsm;
1821 * Reseved portion of Data Stolen Memory
1823 struct resource dsm_reserved;
1826 * Stolen memory is segmented in hardware with different portions
1827 * offlimits to certain functions.
1829 * The drm_mm is initialised to the total accessible range, as found
1830 * from the PCI config. On Broadwell+, this is further restricted to
1831 * avoid the first page! The upper end of stolen memory is reserved for
1832 * hardware functions and similarly removed from the accessible range.
1834 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */
1836 void __iomem *regs;
1838 struct intel_uncore uncore;
1840 struct i915_virtual_gpu vgpu;
1842 struct intel_gvt *gvt;
1844 struct intel_huc huc;
1845 struct intel_guc guc;
1847 struct intel_csr csr;
1849 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1851 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1852 * controller on different i2c buses. */
1853 struct mutex gmbus_mutex;
1856 * Base address of the gmbus and gpio block.
1858 uint32_t gpio_mmio_base;
1860 /* MMIO base address for MIPI regs */
1861 uint32_t mipi_mmio_base;
1863 uint32_t psr_mmio_base;
1865 uint32_t pps_mmio_base;
1867 wait_queue_head_t gmbus_wait_queue;
1869 struct pci_dev *bridge_dev;
1870 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1871 /* Context used internally to idle the GPU and setup initial state */
1872 struct i915_gem_context *kernel_context;
1873 /* Context only to be used for injecting preemption commands */
1874 struct i915_gem_context *preempt_context;
1875 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1876 [MAX_ENGINE_INSTANCE + 1];
1878 struct drm_dma_handle *status_page_dmah;
1879 struct resource mch_res;
1881 /* protects the irq masks */
1882 spinlock_t irq_lock;
1884 bool display_irqs_enabled;
1886 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1887 struct pm_qos_request pm_qos;
1889 /* Sideband mailbox protection */
1890 struct mutex sb_lock;
1892 /** Cached value of IMR to avoid reads in updating the bitfield */
1893 union {
1894 u32 irq_mask;
1895 u32 de_irq_mask[I915_MAX_PIPES];
1897 u32 gt_irq_mask;
1898 u32 pm_imr;
1899 u32 pm_ier;
1900 u32 pm_rps_events;
1901 u32 pm_guc_events;
1902 u32 pipestat_irq_mask[I915_MAX_PIPES];
1904 struct i915_hotplug hotplug;
1905 struct intel_fbc fbc;
1906 struct i915_drrs drrs;
1907 struct intel_opregion opregion;
1908 struct intel_vbt_data vbt;
1910 bool preserve_bios_swizzle;
1912 /* overlay */
1913 struct intel_overlay *overlay;
1915 /* backlight registers and fields in struct intel_panel */
1916 struct mutex backlight_lock;
1918 /* LVDS info */
1919 bool no_aux_handshake;
1921 /* protects panel power sequencer state */
1922 struct mutex pps_mutex;
1924 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1925 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1927 unsigned int fsb_freq, mem_freq, is_ddr3;
1928 unsigned int skl_preferred_vco_freq;
1929 unsigned int max_cdclk_freq;
1931 unsigned int max_dotclk_freq;
1932 unsigned int rawclk_freq;
1933 unsigned int hpll_freq;
1934 unsigned int fdi_pll_freq;
1935 unsigned int czclk_freq;
1937 struct {
1939 * The current logical cdclk state.
1940 * See intel_atomic_state.cdclk.logical
1942 * For reading holding any crtc lock is sufficient,
1943 * for writing must hold all of them.
1945 struct intel_cdclk_state logical;
1947 * The current actual cdclk state.
1948 * See intel_atomic_state.cdclk.actual
1950 struct intel_cdclk_state actual;
1951 /* The current hardware cdclk state */
1952 struct intel_cdclk_state hw;
1953 } cdclk;
1956 * wq - Driver workqueue for GEM.
1958 * NOTE: Work items scheduled here are not allowed to grab any modeset
1959 * locks, for otherwise the flushing done in the pageflip code will
1960 * result in deadlocks.
1962 struct workqueue_struct *wq;
1964 /* ordered wq for modesets */
1965 struct workqueue_struct *modeset_wq;
1967 /* Display functions */
1968 struct drm_i915_display_funcs display;
1970 /* PCH chipset type */
1971 enum intel_pch pch_type;
1972 unsigned short pch_id;
1974 unsigned long quirks;
1976 enum modeset_restore modeset_restore;
1977 struct mutex modeset_restore_lock;
1978 struct drm_atomic_state *modeset_restore_state;
1979 struct drm_modeset_acquire_ctx reset_ctx;
1981 struct list_head vm_list; /* Global list of all address spaces */
1982 struct i915_ggtt ggtt; /* VM representing the global address space */
1984 struct i915_gem_mm mm;
1985 DECLARE_HASHTABLE(mm_structs, 7);
1986 struct mutex mm_lock;
1988 struct intel_ppat ppat;
1990 /* Kernel Modesetting */
1992 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1993 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1995 #ifdef CONFIG_DEBUG_FS
1996 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1997 #endif
1999 /* dpll and cdclk state is protected by connection_mutex */
2000 int num_shared_dpll;
2001 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2002 const struct intel_dpll_mgr *dpll_mgr;
2005 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2006 * Must be global rather than per dpll, because on some platforms
2007 * plls share registers.
2009 struct mutex dpll_lock;
2011 unsigned int active_crtcs;
2012 /* minimum acceptable cdclk for each pipe */
2013 int min_cdclk[I915_MAX_PIPES];
2014 /* minimum acceptable voltage level for each pipe */
2015 u8 min_voltage_level[I915_MAX_PIPES];
2017 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2019 struct i915_workarounds workarounds;
2021 struct i915_frontbuffer_tracking fb_tracking;
2023 struct intel_atomic_helper {
2024 struct llist_head free_list;
2025 struct work_struct free_work;
2026 } atomic_helper;
2028 u16 orig_clock;
2030 bool mchbar_need_disable;
2032 struct intel_l3_parity l3_parity;
2034 /* Cannot be determined by PCIID. You must always read a register. */
2035 u32 edram_cap;
2038 * Protects RPS/RC6 register access and PCU communication.
2039 * Must be taken after struct_mutex if nested. Note that
2040 * this lock may be held for long periods of time when
2041 * talking to hw - so only take it when talking to hw!
2043 struct mutex pcu_lock;
2045 /* gen6+ GT PM state */
2046 struct intel_gen6_power_mgmt gt_pm;
2048 /* ilk-only ips/rps state. Everything in here is protected by the global
2049 * mchdev_lock in intel_pm.c */
2050 struct intel_ilk_power_mgmt ips;
2052 struct i915_power_domains power_domains;
2054 struct i915_psr psr;
2056 struct i915_gpu_error gpu_error;
2058 struct drm_i915_gem_object *vlv_pctx;
2060 /* list of fbdev register on this device */
2061 struct intel_fbdev *fbdev;
2062 struct work_struct fbdev_suspend_work;
2064 struct drm_property *broadcast_rgb_property;
2065 struct drm_property *force_audio_property;
2067 /* hda/i915 audio component */
2068 struct i915_audio_component *audio_component;
2069 bool audio_component_registered;
2071 * av_mutex - mutex for audio/video sync
2074 struct mutex av_mutex;
2076 struct {
2077 struct list_head list;
2078 struct llist_head free_list;
2079 struct work_struct free_work;
2081 /* The hw wants to have a stable context identifier for the
2082 * lifetime of the context (for OA, PASID, faults, etc).
2083 * This is limited in execlists to 21 bits.
2085 struct ida hw_ida;
2086 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2087 } contexts;
2089 u32 fdi_rx_config;
2091 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2092 u32 chv_phy_control;
2094 * Shadows for CHV DPLL_MD regs to keep the state
2095 * checker somewhat working in the presence hardware
2096 * crappiness (can't read out DPLL_MD for pipes B & C).
2098 u32 chv_dpll_md[I915_MAX_PIPES];
2099 u32 bxt_phy_grc;
2101 u32 suspend_count;
2102 bool suspended_to_idle;
2103 struct i915_suspend_saved_registers regfile;
2104 struct vlv_s0ix_state vlv_s0ix_state;
2106 enum {
2107 I915_SAGV_UNKNOWN = 0,
2108 I915_SAGV_DISABLED,
2109 I915_SAGV_ENABLED,
2110 I915_SAGV_NOT_CONTROLLED
2111 } sagv_status;
2113 struct {
2115 * Raw watermark latency values:
2116 * in 0.1us units for WM0,
2117 * in 0.5us units for WM1+.
2119 /* primary */
2120 uint16_t pri_latency[5];
2121 /* sprite */
2122 uint16_t spr_latency[5];
2123 /* cursor */
2124 uint16_t cur_latency[5];
2126 * Raw watermark memory latency values
2127 * for SKL for all 8 levels
2128 * in 1us units.
2130 uint16_t skl_latency[8];
2132 /* current hardware state */
2133 union {
2134 struct ilk_wm_values hw;
2135 struct skl_wm_values skl_hw;
2136 struct vlv_wm_values vlv;
2137 struct g4x_wm_values g4x;
2140 uint8_t max_level;
2143 * Should be held around atomic WM register writing; also
2144 * protects * intel_crtc->wm.active and
2145 * cstate->wm.need_postvbl_update.
2147 struct mutex wm_mutex;
2150 * Set during HW readout of watermarks/DDB. Some platforms
2151 * need to know when we're still using BIOS-provided values
2152 * (which we don't fully trust).
2154 bool distrust_bios_wm;
2155 } wm;
2157 struct i915_runtime_pm runtime_pm;
2159 struct {
2160 bool initialized;
2162 struct kobject *metrics_kobj;
2163 struct ctl_table_header *sysctl_header;
2166 * Lock associated with adding/modifying/removing OA configs
2167 * in dev_priv->perf.metrics_idr.
2169 struct mutex metrics_lock;
2172 * List of dynamic configurations, you need to hold
2173 * dev_priv->perf.metrics_lock to access it.
2175 struct idr metrics_idr;
2178 * Lock associated with anything below within this structure
2179 * except exclusive_stream.
2181 struct mutex lock;
2182 struct list_head streams;
2184 struct {
2186 * The stream currently using the OA unit. If accessed
2187 * outside a syscall associated to its file
2188 * descriptor, you need to hold
2189 * dev_priv->drm.struct_mutex.
2191 struct i915_perf_stream *exclusive_stream;
2193 u32 specific_ctx_id;
2195 struct hrtimer poll_check_timer;
2196 wait_queue_head_t poll_wq;
2197 bool pollin;
2200 * For rate limiting any notifications of spurious
2201 * invalid OA reports
2203 struct ratelimit_state spurious_report_rs;
2205 bool periodic;
2206 int period_exponent;
2208 struct i915_oa_config test_config;
2210 struct {
2211 struct i915_vma *vma;
2212 u8 *vaddr;
2213 u32 last_ctx_id;
2214 int format;
2215 int format_size;
2218 * Locks reads and writes to all head/tail state
2220 * Consider: the head and tail pointer state
2221 * needs to be read consistently from a hrtimer
2222 * callback (atomic context) and read() fop
2223 * (user context) with tail pointer updates
2224 * happening in atomic context and head updates
2225 * in user context and the (unlikely)
2226 * possibility of read() errors needing to
2227 * reset all head/tail state.
2229 * Note: Contention or performance aren't
2230 * currently a significant concern here
2231 * considering the relatively low frequency of
2232 * hrtimer callbacks (5ms period) and that
2233 * reads typically only happen in response to a
2234 * hrtimer event and likely complete before the
2235 * next callback.
2237 * Note: This lock is not held *while* reading
2238 * and copying data to userspace so the value
2239 * of head observed in htrimer callbacks won't
2240 * represent any partial consumption of data.
2242 spinlock_t ptr_lock;
2245 * One 'aging' tail pointer and one 'aged'
2246 * tail pointer ready to used for reading.
2248 * Initial values of 0xffffffff are invalid
2249 * and imply that an update is required
2250 * (and should be ignored by an attempted
2251 * read)
2253 struct {
2254 u32 offset;
2255 } tails[2];
2258 * Index for the aged tail ready to read()
2259 * data up to.
2261 unsigned int aged_tail_idx;
2264 * A monotonic timestamp for when the current
2265 * aging tail pointer was read; used to
2266 * determine when it is old enough to trust.
2268 u64 aging_timestamp;
2271 * Although we can always read back the head
2272 * pointer register, we prefer to avoid
2273 * trusting the HW state, just to avoid any
2274 * risk that some hardware condition could
2275 * somehow bump the head pointer unpredictably
2276 * and cause us to forward the wrong OA buffer
2277 * data to userspace.
2279 u32 head;
2280 } oa_buffer;
2282 u32 gen7_latched_oastatus1;
2283 u32 ctx_oactxctrl_offset;
2284 u32 ctx_flexeu0_offset;
2287 * The RPT_ID/reason field for Gen8+ includes a bit
2288 * to determine if the CTX ID in the report is valid
2289 * but the specific bit differs between Gen 8 and 9
2291 u32 gen8_valid_ctx_bit;
2293 struct i915_oa_ops ops;
2294 const struct i915_oa_format *oa_formats;
2295 } oa;
2296 } perf;
2298 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2299 struct {
2300 void (*resume)(struct drm_i915_private *);
2301 void (*cleanup_engine)(struct intel_engine_cs *engine);
2303 struct list_head timelines;
2304 struct i915_gem_timeline global_timeline;
2305 u32 active_requests;
2308 * Is the GPU currently considered idle, or busy executing
2309 * userspace requests? Whilst idle, we allow runtime power
2310 * management to power down the hardware and display clocks.
2311 * In order to reduce the effect on performance, there
2312 * is a slight delay before we do so.
2314 bool awake;
2317 * We leave the user IRQ off as much as possible,
2318 * but this means that requests will finish and never
2319 * be retired once the system goes idle. Set a timer to
2320 * fire periodically while the ring is running. When it
2321 * fires, go retire requests.
2323 struct delayed_work retire_work;
2326 * When we detect an idle GPU, we want to turn on
2327 * powersaving features. So once we see that there
2328 * are no more requests outstanding and no more
2329 * arrive within a small period of time, we fire
2330 * off the idle_work.
2332 struct delayed_work idle_work;
2334 ktime_t last_init_time;
2335 } gt;
2337 /* perform PHY state sanity checks? */
2338 bool chv_phy_assert[2];
2340 bool ipc_enabled;
2342 /* Used to save the pipe-to-encoder mapping for audio */
2343 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2345 /* necessary resource sharing with HDMI LPE audio driver. */
2346 struct {
2347 struct platform_device *platdev;
2348 int irq;
2349 } lpe_audio;
2351 struct i915_pmu pmu;
2354 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2355 * will be rejected. Instead look for a better place.
2359 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2361 return container_of(dev, struct drm_i915_private, drm);
2364 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2366 return to_i915(dev_get_drvdata(kdev));
2369 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2371 return container_of(guc, struct drm_i915_private, guc);
2374 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2376 return container_of(huc, struct drm_i915_private, huc);
2379 /* Simple iterator over all initialised engines */
2380 #define for_each_engine(engine__, dev_priv__, id__) \
2381 for ((id__) = 0; \
2382 (id__) < I915_NUM_ENGINES; \
2383 (id__)++) \
2384 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2386 /* Iterator over subset of engines selected by mask */
2387 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2388 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2389 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2391 enum hdmi_force_audio {
2392 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2393 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2394 HDMI_AUDIO_AUTO, /* trust EDID */
2395 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2398 #define I915_GTT_OFFSET_NONE ((u32)-1)
2401 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2402 * considered to be the frontbuffer for the given plane interface-wise. This
2403 * doesn't mean that the hw necessarily already scans it out, but that any
2404 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2406 * We have one bit per pipe and per scanout plane type.
2408 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2409 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2410 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2411 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2412 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2413 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2414 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2415 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2416 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2417 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2418 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2419 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2422 * Optimised SGL iterator for GEM objects
2424 static __always_inline struct sgt_iter {
2425 struct scatterlist *sgp;
2426 union {
2427 unsigned long pfn;
2428 dma_addr_t dma;
2430 unsigned int curr;
2431 unsigned int max;
2432 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2433 struct sgt_iter s = { .sgp = sgl };
2435 if (s.sgp) {
2436 s.max = s.curr = s.sgp->offset;
2437 s.max += s.sgp->length;
2438 if (dma)
2439 s.dma = sg_dma_address(s.sgp);
2440 else
2441 s.pfn = page_to_pfn(sg_page(s.sgp));
2444 return s;
2447 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2449 ++sg;
2450 if (unlikely(sg_is_chain(sg)))
2451 sg = sg_chain_ptr(sg);
2452 return sg;
2456 * __sg_next - return the next scatterlist entry in a list
2457 * @sg: The current sg entry
2459 * Description:
2460 * If the entry is the last, return NULL; otherwise, step to the next
2461 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2462 * otherwise just return the pointer to the current element.
2464 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2466 #ifdef CONFIG_DEBUG_SG
2467 BUG_ON(sg->sg_magic != SG_MAGIC);
2468 #endif
2469 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2473 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2474 * @__dmap: DMA address (output)
2475 * @__iter: 'struct sgt_iter' (iterator state, internal)
2476 * @__sgt: sg_table to iterate over (input)
2478 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2479 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2480 ((__dmap) = (__iter).dma + (__iter).curr); \
2481 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2482 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2485 * for_each_sgt_page - iterate over the pages of the given sg_table
2486 * @__pp: page pointer (output)
2487 * @__iter: 'struct sgt_iter' (iterator state, internal)
2488 * @__sgt: sg_table to iterate over (input)
2490 #define for_each_sgt_page(__pp, __iter, __sgt) \
2491 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2492 ((__pp) = (__iter).pfn == 0 ? NULL : \
2493 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2494 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2495 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2497 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2499 unsigned int page_sizes;
2501 page_sizes = 0;
2502 while (sg) {
2503 GEM_BUG_ON(sg->offset);
2504 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2505 page_sizes |= sg->length;
2506 sg = __sg_next(sg);
2509 return page_sizes;
2512 static inline unsigned int i915_sg_segment_size(void)
2514 unsigned int size = swiotlb_max_segment();
2516 if (size == 0)
2517 return SCATTERLIST_MAX_SEGMENT;
2519 size = rounddown(size, PAGE_SIZE);
2520 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2521 if (size < PAGE_SIZE)
2522 size = PAGE_SIZE;
2524 return size;
2527 static inline const struct intel_device_info *
2528 intel_info(const struct drm_i915_private *dev_priv)
2530 return &dev_priv->info;
2533 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2535 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2536 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2538 #define REVID_FOREVER 0xff
2539 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2541 #define GEN_FOREVER (0)
2543 #define INTEL_GEN_MASK(s, e) ( \
2544 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2545 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2546 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2547 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2551 * Returns true if Gen is in inclusive range [Start, End].
2553 * Use GEN_FOREVER for unbound start and or end.
2555 #define IS_GEN(dev_priv, s, e) \
2556 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2559 * Return true if revision is in range [since,until] inclusive.
2561 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2563 #define IS_REVID(p, since, until) \
2564 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2566 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2568 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2569 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2570 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2571 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2572 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2573 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2574 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2575 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2576 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2577 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2578 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2579 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2580 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2581 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2582 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2583 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2584 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2585 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2586 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2587 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2588 (dev_priv)->info.gt == 1)
2589 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2590 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2591 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2592 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2593 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2594 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2595 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2596 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2597 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2598 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2599 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2600 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2601 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2602 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2603 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2604 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2605 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2606 /* ULX machines are also considered ULT. */
2607 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2608 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2609 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2610 (dev_priv)->info.gt == 3)
2611 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2612 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2613 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2614 (dev_priv)->info.gt == 3)
2615 /* ULX machines are also considered ULT. */
2616 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2617 INTEL_DEVID(dev_priv) == 0x0A1E)
2618 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2619 INTEL_DEVID(dev_priv) == 0x1913 || \
2620 INTEL_DEVID(dev_priv) == 0x1916 || \
2621 INTEL_DEVID(dev_priv) == 0x1921 || \
2622 INTEL_DEVID(dev_priv) == 0x1926)
2623 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2624 INTEL_DEVID(dev_priv) == 0x1915 || \
2625 INTEL_DEVID(dev_priv) == 0x191E)
2626 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2627 INTEL_DEVID(dev_priv) == 0x5913 || \
2628 INTEL_DEVID(dev_priv) == 0x5916 || \
2629 INTEL_DEVID(dev_priv) == 0x5921 || \
2630 INTEL_DEVID(dev_priv) == 0x5926)
2631 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2632 INTEL_DEVID(dev_priv) == 0x5915 || \
2633 INTEL_DEVID(dev_priv) == 0x591E)
2634 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2635 (dev_priv)->info.gt == 2)
2636 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2637 (dev_priv)->info.gt == 3)
2638 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2639 (dev_priv)->info.gt == 4)
2640 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2641 (dev_priv)->info.gt == 2)
2642 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2643 (dev_priv)->info.gt == 3)
2644 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2645 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2646 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2647 (dev_priv)->info.gt == 2)
2648 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2649 (dev_priv)->info.gt == 3)
2651 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2653 #define SKL_REVID_A0 0x0
2654 #define SKL_REVID_B0 0x1
2655 #define SKL_REVID_C0 0x2
2656 #define SKL_REVID_D0 0x3
2657 #define SKL_REVID_E0 0x4
2658 #define SKL_REVID_F0 0x5
2659 #define SKL_REVID_G0 0x6
2660 #define SKL_REVID_H0 0x7
2662 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2664 #define BXT_REVID_A0 0x0
2665 #define BXT_REVID_A1 0x1
2666 #define BXT_REVID_B0 0x3
2667 #define BXT_REVID_B_LAST 0x8
2668 #define BXT_REVID_C0 0x9
2670 #define IS_BXT_REVID(dev_priv, since, until) \
2671 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2673 #define KBL_REVID_A0 0x0
2674 #define KBL_REVID_B0 0x1
2675 #define KBL_REVID_C0 0x2
2676 #define KBL_REVID_D0 0x3
2677 #define KBL_REVID_E0 0x4
2679 #define IS_KBL_REVID(dev_priv, since, until) \
2680 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2682 #define GLK_REVID_A0 0x0
2683 #define GLK_REVID_A1 0x1
2685 #define IS_GLK_REVID(dev_priv, since, until) \
2686 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2688 #define CNL_REVID_A0 0x0
2689 #define CNL_REVID_B0 0x1
2690 #define CNL_REVID_C0 0x2
2692 #define IS_CNL_REVID(p, since, until) \
2693 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2696 * The genX designation typically refers to the render engine, so render
2697 * capability related checks should use IS_GEN, while display and other checks
2698 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2699 * chips, etc.).
2701 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2702 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2703 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2704 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2705 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2706 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2707 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2708 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2709 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2711 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2712 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2713 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2715 #define ENGINE_MASK(id) BIT(id)
2716 #define RENDER_RING ENGINE_MASK(RCS)
2717 #define BSD_RING ENGINE_MASK(VCS)
2718 #define BLT_RING ENGINE_MASK(BCS)
2719 #define VEBOX_RING ENGINE_MASK(VECS)
2720 #define BSD2_RING ENGINE_MASK(VCS2)
2721 #define ALL_ENGINES (~0)
2723 #define HAS_ENGINE(dev_priv, id) \
2724 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2726 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2727 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2728 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2729 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2731 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2733 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2734 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2735 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2736 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2737 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2739 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2741 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2742 ((dev_priv)->info.has_logical_ring_contexts)
2743 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2744 ((dev_priv)->info.has_logical_ring_preemption)
2746 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2748 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
2749 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
2750 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
2751 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2752 GEM_BUG_ON((sizes) == 0); \
2753 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2756 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2757 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2758 ((dev_priv)->info.overlay_needs_physical)
2760 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2761 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2763 /* WaRsDisableCoarsePowerGating:skl,bxt */
2764 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2765 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2768 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2769 * even when in MSI mode. This results in spurious interrupt warnings if the
2770 * legacy irq no. is shared with another device. The kernel then disables that
2771 * interrupt source and so prevents the other device from working properly.
2773 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2774 * interrupts.
2776 #define HAS_AUX_IRQ(dev_priv) true
2777 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2779 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2780 * rows, which changed the alignment requirements and fence programming.
2782 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2783 !(IS_I915G(dev_priv) || \
2784 IS_I915GM(dev_priv)))
2785 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2786 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2788 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2789 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2790 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2792 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2794 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2796 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2797 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2798 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2800 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2801 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2802 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */
2804 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2806 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2807 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2809 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
2812 * For now, anything with a GuC requires uCode loading, and then supports
2813 * command submission once loaded. But these are logically independent
2814 * properties, so we have separate macros to test them.
2816 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2817 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
2818 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2819 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2821 /* For now, anything with a GuC has also HuC */
2822 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv))
2823 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2825 /* Having a GuC is not the same as using a GuC */
2826 #define USES_GUC(dev_priv) intel_uc_is_using_guc()
2827 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission()
2828 #define USES_HUC(dev_priv) intel_uc_is_using_huc()
2830 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2832 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2834 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
2835 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2836 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2837 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2838 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2839 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2840 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
2841 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
2842 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2843 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2844 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
2845 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
2846 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
2847 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2848 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2849 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2851 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2852 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2853 #define HAS_PCH_CNP_LP(dev_priv) \
2854 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2855 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2856 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2857 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2858 #define HAS_PCH_LPT_LP(dev_priv) \
2859 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2860 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2861 #define HAS_PCH_LPT_H(dev_priv) \
2862 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2863 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2864 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2865 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2866 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2867 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2869 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2871 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2873 /* DPF == dynamic parity feature */
2874 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2875 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2876 2 : HAS_L3_DPF(dev_priv))
2878 #define GT_FREQUENCY_MULTIPLIER 50
2879 #define GEN9_FREQ_SCALER 3
2881 #include "i915_trace.h"
2883 static inline bool intel_vtd_active(void)
2885 #ifdef CONFIG_INTEL_IOMMU
2886 if (intel_iommu_gfx_mapped)
2887 return true;
2888 #endif
2889 return false;
2892 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2894 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2897 static inline bool
2898 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2900 return IS_BROXTON(dev_priv) && intel_vtd_active();
2903 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2904 int enable_ppgtt);
2906 /* i915_drv.c */
2907 void __printf(3, 4)
2908 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2909 const char *fmt, ...);
2911 #define i915_report_error(dev_priv, fmt, ...) \
2912 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2914 #ifdef CONFIG_COMPAT
2915 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2916 unsigned long arg);
2917 #else
2918 #define i915_compat_ioctl NULL
2919 #endif
2920 extern const struct dev_pm_ops i915_pm_ops;
2922 extern int i915_driver_load(struct pci_dev *pdev,
2923 const struct pci_device_id *ent);
2924 extern void i915_driver_unload(struct drm_device *dev);
2925 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2926 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2928 #define I915_RESET_QUIET BIT(0)
2929 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
2930 extern int i915_reset_engine(struct intel_engine_cs *engine,
2931 unsigned int flags);
2933 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2934 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2935 extern int intel_guc_reset_engine(struct intel_guc *guc,
2936 struct intel_engine_cs *engine);
2937 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2938 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2939 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2940 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2941 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2942 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2943 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2945 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2946 int intel_engines_init(struct drm_i915_private *dev_priv);
2948 /* intel_hotplug.c */
2949 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2950 u32 pin_mask, u32 long_mask);
2951 void intel_hpd_init(struct drm_i915_private *dev_priv);
2952 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2953 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2954 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
2955 enum hpd_pin intel_hpd_pin(enum port port);
2956 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2957 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2959 /* i915_irq.c */
2960 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2962 unsigned long delay;
2964 if (unlikely(!i915_modparams.enable_hangcheck))
2965 return;
2967 /* Don't continually defer the hangcheck so that it is always run at
2968 * least once after work has been scheduled on any ring. Otherwise,
2969 * we will ignore a hung ring if a second ring is kept busy.
2972 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2973 queue_delayed_work(system_long_wq,
2974 &dev_priv->gpu_error.hangcheck_work, delay);
2977 __printf(3, 4)
2978 void i915_handle_error(struct drm_i915_private *dev_priv,
2979 u32 engine_mask,
2980 const char *fmt, ...);
2982 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2983 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2984 int intel_irq_install(struct drm_i915_private *dev_priv);
2985 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2987 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2989 return dev_priv->gvt;
2992 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2994 return dev_priv->vgpu.active;
2997 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2998 enum pipe pipe);
2999 void
3000 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3001 u32 status_mask);
3003 void
3004 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3005 u32 status_mask);
3007 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3008 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3009 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3010 uint32_t mask,
3011 uint32_t bits);
3012 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3013 uint32_t interrupt_mask,
3014 uint32_t enabled_irq_mask);
3015 static inline void
3016 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3018 ilk_update_display_irq(dev_priv, bits, bits);
3020 static inline void
3021 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3023 ilk_update_display_irq(dev_priv, bits, 0);
3025 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3026 enum pipe pipe,
3027 uint32_t interrupt_mask,
3028 uint32_t enabled_irq_mask);
3029 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3030 enum pipe pipe, uint32_t bits)
3032 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3034 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3035 enum pipe pipe, uint32_t bits)
3037 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3039 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3040 uint32_t interrupt_mask,
3041 uint32_t enabled_irq_mask);
3042 static inline void
3043 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3045 ibx_display_interrupt_update(dev_priv, bits, bits);
3047 static inline void
3048 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3050 ibx_display_interrupt_update(dev_priv, bits, 0);
3053 /* i915_gem.c */
3054 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3055 struct drm_file *file_priv);
3056 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3057 struct drm_file *file_priv);
3058 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3059 struct drm_file *file_priv);
3060 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3061 struct drm_file *file_priv);
3062 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3063 struct drm_file *file_priv);
3064 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3065 struct drm_file *file_priv);
3066 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3067 struct drm_file *file_priv);
3068 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3069 struct drm_file *file_priv);
3070 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3071 struct drm_file *file_priv);
3072 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3073 struct drm_file *file_priv);
3074 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3075 struct drm_file *file);
3076 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3077 struct drm_file *file);
3078 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3079 struct drm_file *file_priv);
3080 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3081 struct drm_file *file_priv);
3082 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3083 struct drm_file *file_priv);
3084 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3085 struct drm_file *file_priv);
3086 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3087 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3088 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3089 struct drm_file *file);
3090 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3091 struct drm_file *file_priv);
3092 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3093 struct drm_file *file_priv);
3094 void i915_gem_sanitize(struct drm_i915_private *i915);
3095 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3096 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3097 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3098 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3099 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3101 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3102 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3103 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3104 const struct drm_i915_gem_object_ops *ops);
3105 struct drm_i915_gem_object *
3106 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3107 struct drm_i915_gem_object *
3108 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3109 const void *data, size_t size);
3110 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3111 void i915_gem_free_object(struct drm_gem_object *obj);
3113 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3115 /* A single pass should suffice to release all the freed objects (along
3116 * most call paths) , but be a little more paranoid in that freeing
3117 * the objects does take a little amount of time, during which the rcu
3118 * callbacks could have added new objects into the freed list, and
3119 * armed the work again.
3121 do {
3122 rcu_barrier();
3123 } while (flush_work(&i915->mm.free_work));
3126 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3129 * Similar to objects above (see i915_gem_drain_freed-objects), in
3130 * general we have workers that are armed by RCU and then rearm
3131 * themselves in their callbacks. To be paranoid, we need to
3132 * drain the workqueue a second time after waiting for the RCU
3133 * grace period so that we catch work queued via RCU from the first
3134 * pass. As neither drain_workqueue() nor flush_workqueue() report
3135 * a result, we make an assumption that we only don't require more
3136 * than 2 passes to catch all recursive RCU delayed work.
3139 int pass = 2;
3140 do {
3141 rcu_barrier();
3142 drain_workqueue(i915->wq);
3143 } while (--pass);
3146 struct i915_vma * __must_check
3147 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3148 const struct i915_ggtt_view *view,
3149 u64 size,
3150 u64 alignment,
3151 u64 flags);
3153 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3154 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3156 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3158 static inline int __sg_page_count(const struct scatterlist *sg)
3160 return sg->length >> PAGE_SHIFT;
3163 struct scatterlist *
3164 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3165 unsigned int n, unsigned int *offset);
3167 struct page *
3168 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3169 unsigned int n);
3171 struct page *
3172 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3173 unsigned int n);
3175 dma_addr_t
3176 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3177 unsigned long n);
3179 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3180 struct sg_table *pages,
3181 unsigned int sg_page_sizes);
3182 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3184 static inline int __must_check
3185 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3187 might_lock(&obj->mm.lock);
3189 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3190 return 0;
3192 return __i915_gem_object_get_pages(obj);
3195 static inline bool
3196 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3198 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3201 static inline void
3202 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3204 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3206 atomic_inc(&obj->mm.pages_pin_count);
3209 static inline bool
3210 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3212 return atomic_read(&obj->mm.pages_pin_count);
3215 static inline void
3216 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3218 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3219 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3221 atomic_dec(&obj->mm.pages_pin_count);
3224 static inline void
3225 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3227 __i915_gem_object_unpin_pages(obj);
3230 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3231 I915_MM_NORMAL = 0,
3232 I915_MM_SHRINKER
3235 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3236 enum i915_mm_subclass subclass);
3237 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3239 enum i915_map_type {
3240 I915_MAP_WB = 0,
3241 I915_MAP_WC,
3242 #define I915_MAP_OVERRIDE BIT(31)
3243 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3244 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3248 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3249 * @obj: the object to map into kernel address space
3250 * @type: the type of mapping, used to select pgprot_t
3252 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3253 * pages and then returns a contiguous mapping of the backing storage into
3254 * the kernel address space. Based on the @type of mapping, the PTE will be
3255 * set to either WriteBack or WriteCombine (via pgprot_t).
3257 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3258 * mapping is no longer required.
3260 * Returns the pointer through which to access the mapped object, or an
3261 * ERR_PTR() on error.
3263 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3264 enum i915_map_type type);
3267 * i915_gem_object_unpin_map - releases an earlier mapping
3268 * @obj: the object to unmap
3270 * After pinning the object and mapping its pages, once you are finished
3271 * with your access, call i915_gem_object_unpin_map() to release the pin
3272 * upon the mapping. Once the pin count reaches zero, that mapping may be
3273 * removed.
3275 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3277 i915_gem_object_unpin_pages(obj);
3280 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3281 unsigned int *needs_clflush);
3282 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3283 unsigned int *needs_clflush);
3284 #define CLFLUSH_BEFORE BIT(0)
3285 #define CLFLUSH_AFTER BIT(1)
3286 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3288 static inline void
3289 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3291 i915_gem_object_unpin_pages(obj);
3294 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3295 void i915_vma_move_to_active(struct i915_vma *vma,
3296 struct drm_i915_gem_request *req,
3297 unsigned int flags);
3298 int i915_gem_dumb_create(struct drm_file *file_priv,
3299 struct drm_device *dev,
3300 struct drm_mode_create_dumb *args);
3301 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3302 uint32_t handle, uint64_t *offset);
3303 int i915_gem_mmap_gtt_version(void);
3305 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3306 struct drm_i915_gem_object *new,
3307 unsigned frontbuffer_bits);
3309 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3311 struct drm_i915_gem_request *
3312 i915_gem_find_active_request(struct intel_engine_cs *engine);
3314 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3316 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3318 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3321 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3323 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3326 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3328 return unlikely(test_bit(I915_WEDGED, &error->flags));
3331 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3333 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3336 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3338 return READ_ONCE(error->reset_count);
3341 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3342 struct intel_engine_cs *engine)
3344 return READ_ONCE(error->reset_engine_count[engine->id]);
3347 struct drm_i915_gem_request *
3348 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3349 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3350 void i915_gem_reset(struct drm_i915_private *dev_priv);
3351 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3352 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3353 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3354 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3355 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3356 struct drm_i915_gem_request *request);
3358 void i915_gem_init_mmio(struct drm_i915_private *i915);
3359 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3360 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3361 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3362 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3363 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3364 unsigned int flags);
3365 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3366 void i915_gem_resume(struct drm_i915_private *dev_priv);
3367 int i915_gem_fault(struct vm_fault *vmf);
3368 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3369 unsigned int flags,
3370 long timeout,
3371 struct intel_rps_client *rps);
3372 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3373 unsigned int flags,
3374 int priority);
3375 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3377 int __must_check
3378 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3379 int __must_check
3380 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3381 int __must_check
3382 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3383 struct i915_vma * __must_check
3384 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3385 u32 alignment,
3386 const struct i915_ggtt_view *view);
3387 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3388 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3389 int align);
3390 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3391 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3393 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3394 enum i915_cache_level cache_level);
3396 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3397 struct dma_buf *dma_buf);
3399 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3400 struct drm_gem_object *gem_obj, int flags);
3402 static inline struct i915_hw_ppgtt *
3403 i915_vm_to_ppgtt(struct i915_address_space *vm)
3405 return container_of(vm, struct i915_hw_ppgtt, base);
3408 /* i915_gem_fence_reg.c */
3409 struct drm_i915_fence_reg *
3410 i915_reserve_fence(struct drm_i915_private *dev_priv);
3411 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3413 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3414 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3416 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3417 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3418 struct sg_table *pages);
3419 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3420 struct sg_table *pages);
3422 static inline struct i915_gem_context *
3423 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3425 return idr_find(&file_priv->context_idr, id);
3428 static inline struct i915_gem_context *
3429 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3431 struct i915_gem_context *ctx;
3433 rcu_read_lock();
3434 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3435 if (ctx && !kref_get_unless_zero(&ctx->ref))
3436 ctx = NULL;
3437 rcu_read_unlock();
3439 return ctx;
3442 static inline struct intel_timeline *
3443 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3444 struct intel_engine_cs *engine)
3446 struct i915_address_space *vm;
3448 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3449 return &vm->timeline.engine[engine->id];
3452 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3453 struct drm_file *file);
3454 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3455 struct drm_file *file);
3456 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3457 struct drm_file *file);
3458 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3459 struct i915_gem_context *ctx,
3460 uint32_t *reg_state);
3462 /* i915_gem_evict.c */
3463 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3464 u64 min_size, u64 alignment,
3465 unsigned cache_level,
3466 u64 start, u64 end,
3467 unsigned flags);
3468 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3469 struct drm_mm_node *node,
3470 unsigned int flags);
3471 int i915_gem_evict_vm(struct i915_address_space *vm);
3473 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3475 /* belongs in i915_gem_gtt.h */
3476 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3478 wmb();
3479 if (INTEL_GEN(dev_priv) < 6)
3480 intel_gtt_chipset_flush();
3483 /* i915_gem_stolen.c */
3484 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3485 struct drm_mm_node *node, u64 size,
3486 unsigned alignment);
3487 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3488 struct drm_mm_node *node, u64 size,
3489 unsigned alignment, u64 start,
3490 u64 end);
3491 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3492 struct drm_mm_node *node);
3493 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3494 void i915_gem_cleanup_stolen(struct drm_device *dev);
3495 struct drm_i915_gem_object *
3496 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3497 resource_size_t size);
3498 struct drm_i915_gem_object *
3499 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3500 resource_size_t stolen_offset,
3501 resource_size_t gtt_offset,
3502 resource_size_t size);
3504 /* i915_gem_internal.c */
3505 struct drm_i915_gem_object *
3506 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3507 phys_addr_t size);
3509 /* i915_gem_shrinker.c */
3510 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3511 unsigned long target,
3512 unsigned long *nr_scanned,
3513 unsigned flags);
3514 #define I915_SHRINK_PURGEABLE 0x1
3515 #define I915_SHRINK_UNBOUND 0x2
3516 #define I915_SHRINK_BOUND 0x4
3517 #define I915_SHRINK_ACTIVE 0x8
3518 #define I915_SHRINK_VMAPS 0x10
3519 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3520 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3521 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3524 /* i915_gem_tiling.c */
3525 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3527 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3529 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3530 i915_gem_object_is_tiled(obj);
3533 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3534 unsigned int tiling, unsigned int stride);
3535 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3536 unsigned int tiling, unsigned int stride);
3538 /* i915_debugfs.c */
3539 #ifdef CONFIG_DEBUG_FS
3540 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3541 int i915_debugfs_connector_add(struct drm_connector *connector);
3542 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3543 #else
3544 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3545 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3546 { return 0; }
3547 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3548 #endif
3550 /* i915_gpu_error.c */
3551 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3553 __printf(2, 3)
3554 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3555 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3556 const struct i915_gpu_state *gpu);
3557 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3558 struct drm_i915_private *i915,
3559 size_t count, loff_t pos);
3560 static inline void i915_error_state_buf_release(
3561 struct drm_i915_error_state_buf *eb)
3563 kfree(eb->buf);
3566 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3567 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3568 u32 engine_mask,
3569 const char *error_msg);
3571 static inline struct i915_gpu_state *
3572 i915_gpu_state_get(struct i915_gpu_state *gpu)
3574 kref_get(&gpu->ref);
3575 return gpu;
3578 void __i915_gpu_state_free(struct kref *kref);
3579 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3581 if (gpu)
3582 kref_put(&gpu->ref, __i915_gpu_state_free);
3585 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3586 void i915_reset_error_state(struct drm_i915_private *i915);
3588 #else
3590 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3591 u32 engine_mask,
3592 const char *error_msg)
3596 static inline struct i915_gpu_state *
3597 i915_first_error_state(struct drm_i915_private *i915)
3599 return NULL;
3602 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3606 #endif
3608 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3610 /* i915_cmd_parser.c */
3611 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3612 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3613 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3614 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3615 struct drm_i915_gem_object *batch_obj,
3616 struct drm_i915_gem_object *shadow_batch_obj,
3617 u32 batch_start_offset,
3618 u32 batch_len,
3619 bool is_master);
3621 /* i915_perf.c */
3622 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3623 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3624 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3625 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3627 /* i915_suspend.c */
3628 extern int i915_save_state(struct drm_i915_private *dev_priv);
3629 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3631 /* i915_sysfs.c */
3632 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3633 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3635 /* intel_lpe_audio.c */
3636 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3637 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3638 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3639 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3640 enum pipe pipe, enum port port,
3641 const void *eld, int ls_clock, bool dp_output);
3643 /* intel_i2c.c */
3644 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3645 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3646 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3647 unsigned int pin);
3649 extern struct i2c_adapter *
3650 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3651 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3652 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3653 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3655 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3657 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3659 /* intel_bios.c */
3660 void intel_bios_init(struct drm_i915_private *dev_priv);
3661 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3662 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3663 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3664 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3665 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3666 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3667 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3668 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3669 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3670 enum port port);
3671 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3672 enum port port);
3674 /* intel_acpi.c */
3675 #ifdef CONFIG_ACPI
3676 extern void intel_register_dsm_handler(void);
3677 extern void intel_unregister_dsm_handler(void);
3678 #else
3679 static inline void intel_register_dsm_handler(void) { return; }
3680 static inline void intel_unregister_dsm_handler(void) { return; }
3681 #endif /* CONFIG_ACPI */
3683 /* intel_device_info.c */
3684 static inline struct intel_device_info *
3685 mkwrite_device_info(struct drm_i915_private *dev_priv)
3687 return (struct intel_device_info *)&dev_priv->info;
3690 /* modesetting */
3691 extern void intel_modeset_init_hw(struct drm_device *dev);
3692 extern int intel_modeset_init(struct drm_device *dev);
3693 extern void intel_modeset_cleanup(struct drm_device *dev);
3694 extern int intel_connector_register(struct drm_connector *);
3695 extern void intel_connector_unregister(struct drm_connector *);
3696 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3697 bool state);
3698 extern void intel_display_resume(struct drm_device *dev);
3699 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3700 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3701 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3702 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3703 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3704 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3705 bool enable);
3707 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3708 struct drm_file *file);
3710 /* overlay */
3711 extern struct intel_overlay_error_state *
3712 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3713 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3714 struct intel_overlay_error_state *error);
3716 extern struct intel_display_error_state *
3717 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3718 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3719 struct intel_display_error_state *error);
3721 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3722 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3723 u32 val, int timeout_us);
3724 #define sandybridge_pcode_write(dev_priv, mbox, val) \
3725 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500)
3727 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3728 u32 reply_mask, u32 reply, int timeout_base_ms);
3730 /* intel_sideband.c */
3731 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3732 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3733 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3734 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3735 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3736 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3737 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3738 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3739 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3740 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3741 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3742 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3743 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3744 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3745 enum intel_sbi_destination destination);
3746 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3747 enum intel_sbi_destination destination);
3748 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3749 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3751 /* intel_dpio_phy.c */
3752 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3753 enum dpio_phy *phy, enum dpio_channel *ch);
3754 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3755 enum port port, u32 margin, u32 scale,
3756 u32 enable, u32 deemphasis);
3757 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3758 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3759 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3760 enum dpio_phy phy);
3761 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3762 enum dpio_phy phy);
3763 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3764 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3765 uint8_t lane_lat_optim_mask);
3766 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3768 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3769 u32 deemph_reg_value, u32 margin_reg_value,
3770 bool uniq_trans_scale);
3771 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3772 const struct intel_crtc_state *crtc_state,
3773 bool reset);
3774 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3775 const struct intel_crtc_state *crtc_state);
3776 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3777 const struct intel_crtc_state *crtc_state);
3778 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3779 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3780 const struct intel_crtc_state *old_crtc_state);
3782 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3783 u32 demph_reg_value, u32 preemph_reg_value,
3784 u32 uniqtranscale_reg_value, u32 tx3_demph);
3785 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3786 const struct intel_crtc_state *crtc_state);
3787 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3788 const struct intel_crtc_state *crtc_state);
3789 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3790 const struct intel_crtc_state *old_crtc_state);
3792 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3793 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3794 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3795 const i915_reg_t reg);
3797 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3799 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3800 const i915_reg_t reg)
3802 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3805 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3806 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3808 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3809 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3810 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3811 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3813 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3814 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3815 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3816 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3818 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3819 * will be implemented using 2 32-bit writes in an arbitrary order with
3820 * an arbitrary delay between them. This can cause the hardware to
3821 * act upon the intermediate value, possibly leading to corruption and
3822 * machine death. For this reason we do not support I915_WRITE64, or
3823 * dev_priv->uncore.funcs.mmio_writeq.
3825 * When reading a 64-bit value as two 32-bit values, the delay may cause
3826 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3827 * occasionally a 64-bit register does not actualy support a full readq
3828 * and must be read using two 32-bit reads.
3830 * You have been warned.
3832 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3834 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3835 u32 upper, lower, old_upper, loop = 0; \
3836 upper = I915_READ(upper_reg); \
3837 do { \
3838 old_upper = upper; \
3839 lower = I915_READ(lower_reg); \
3840 upper = I915_READ(upper_reg); \
3841 } while (upper != old_upper && loop++ < 2); \
3842 (u64)upper << 32 | lower; })
3844 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3845 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3847 #define __raw_read(x, s) \
3848 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3849 i915_reg_t reg) \
3851 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3854 #define __raw_write(x, s) \
3855 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3856 i915_reg_t reg, uint##x##_t val) \
3858 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3860 __raw_read(8, b)
3861 __raw_read(16, w)
3862 __raw_read(32, l)
3863 __raw_read(64, q)
3865 __raw_write(8, b)
3866 __raw_write(16, w)
3867 __raw_write(32, l)
3868 __raw_write(64, q)
3870 #undef __raw_read
3871 #undef __raw_write
3873 /* These are untraced mmio-accessors that are only valid to be used inside
3874 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3875 * controlled.
3877 * Think twice, and think again, before using these.
3879 * As an example, these accessors can possibly be used between:
3881 * spin_lock_irq(&dev_priv->uncore.lock);
3882 * intel_uncore_forcewake_get__locked();
3884 * and
3886 * intel_uncore_forcewake_put__locked();
3887 * spin_unlock_irq(&dev_priv->uncore.lock);
3890 * Note: some registers may not need forcewake held, so
3891 * intel_uncore_forcewake_{get,put} can be omitted, see
3892 * intel_uncore_forcewake_for_reg().
3894 * Certain architectures will die if the same cacheline is concurrently accessed
3895 * by different clients (e.g. on Ivybridge). Access to registers should
3896 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3897 * a more localised lock guarding all access to that bank of registers.
3899 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3900 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3901 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3902 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3904 /* "Broadcast RGB" property */
3905 #define INTEL_BROADCAST_RGB_AUTO 0
3906 #define INTEL_BROADCAST_RGB_FULL 1
3907 #define INTEL_BROADCAST_RGB_LIMITED 2
3909 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3911 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3912 return VLV_VGACNTRL;
3913 else if (INTEL_GEN(dev_priv) >= 5)
3914 return CPU_VGACNTRL;
3915 else
3916 return VGACNTRL;
3919 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3921 unsigned long j = msecs_to_jiffies(m);
3923 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3926 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3928 /* nsecs_to_jiffies64() does not guard against overflow */
3929 if (NSEC_PER_SEC % HZ &&
3930 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3931 return MAX_JIFFY_OFFSET;
3933 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3936 static inline unsigned long
3937 timespec_to_jiffies_timeout(const struct timespec *value)
3939 unsigned long j = timespec_to_jiffies(value);
3941 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3945 * If you need to wait X milliseconds between events A and B, but event B
3946 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3947 * when event A happened, then just before event B you call this function and
3948 * pass the timestamp as the first argument, and X as the second argument.
3950 static inline void
3951 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3953 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3956 * Don't re-read the value of "jiffies" every time since it may change
3957 * behind our back and break the math.
3959 tmp_jiffies = jiffies;
3960 target_jiffies = timestamp_jiffies +
3961 msecs_to_jiffies_timeout(to_wait_ms);
3963 if (time_after(target_jiffies, tmp_jiffies)) {
3964 remaining_jiffies = target_jiffies - tmp_jiffies;
3965 while (remaining_jiffies)
3966 remaining_jiffies =
3967 schedule_timeout_uninterruptible(remaining_jiffies);
3971 static inline bool
3972 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
3974 struct intel_engine_cs *engine = req->engine;
3975 u32 seqno;
3977 /* Note that the engine may have wrapped around the seqno, and
3978 * so our request->global_seqno will be ahead of the hardware,
3979 * even though it completed the request before wrapping. We catch
3980 * this by kicking all the waiters before resetting the seqno
3981 * in hardware, and also signal the fence.
3983 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
3984 return true;
3986 /* The request was dequeued before we were awoken. We check after
3987 * inspecting the hw to confirm that this was the same request
3988 * that generated the HWS update. The memory barriers within
3989 * the request execution are sufficient to ensure that a check
3990 * after reading the value from hw matches this request.
3992 seqno = i915_gem_request_global_seqno(req);
3993 if (!seqno)
3994 return false;
3996 /* Before we do the heavier coherent read of the seqno,
3997 * check the value (hopefully) in the CPU cacheline.
3999 if (__i915_gem_request_completed(req, seqno))
4000 return true;
4002 /* Ensure our read of the seqno is coherent so that we
4003 * do not "miss an interrupt" (i.e. if this is the last
4004 * request and the seqno write from the GPU is not visible
4005 * by the time the interrupt fires, we will see that the
4006 * request is incomplete and go back to sleep awaiting
4007 * another interrupt that will never come.)
4009 * Strictly, we only need to do this once after an interrupt,
4010 * but it is easier and safer to do it every time the waiter
4011 * is woken.
4013 if (engine->irq_seqno_barrier &&
4014 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4015 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4017 /* The ordering of irq_posted versus applying the barrier
4018 * is crucial. The clearing of the current irq_posted must
4019 * be visible before we perform the barrier operation,
4020 * such that if a subsequent interrupt arrives, irq_posted
4021 * is reasserted and our task rewoken (which causes us to
4022 * do another __i915_request_irq_complete() immediately
4023 * and reapply the barrier). Conversely, if the clear
4024 * occurs after the barrier, then an interrupt that arrived
4025 * whilst we waited on the barrier would not trigger a
4026 * barrier on the next pass, and the read may not see the
4027 * seqno update.
4029 engine->irq_seqno_barrier(engine);
4031 /* If we consume the irq, but we are no longer the bottom-half,
4032 * the real bottom-half may not have serialised their own
4033 * seqno check with the irq-barrier (i.e. may have inspected
4034 * the seqno before we believe it coherent since they see
4035 * irq_posted == false but we are still running).
4037 spin_lock_irq(&b->irq_lock);
4038 if (b->irq_wait && b->irq_wait->tsk != current)
4039 /* Note that if the bottom-half is changed as we
4040 * are sending the wake-up, the new bottom-half will
4041 * be woken by whomever made the change. We only have
4042 * to worry about when we steal the irq-posted for
4043 * ourself.
4045 wake_up_process(b->irq_wait->tsk);
4046 spin_unlock_irq(&b->irq_lock);
4048 if (__i915_gem_request_completed(req, seqno))
4049 return true;
4052 return false;
4055 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4056 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4058 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4059 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4060 * perform the operation. To check beforehand, pass in the parameters to
4061 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4062 * you only need to pass in the minor offsets, page-aligned pointers are
4063 * always valid.
4065 * For just checking for SSE4.1, in the foreknowledge that the future use
4066 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4068 #define i915_can_memcpy_from_wc(dst, src, len) \
4069 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4071 #define i915_has_memcpy_from_wc() \
4072 i915_memcpy_from_wc(NULL, NULL, 0)
4074 /* i915_mm.c */
4075 int remap_io_mapping(struct vm_area_struct *vma,
4076 unsigned long addr, unsigned long pfn, unsigned long size,
4077 struct io_mapping *iomap);
4079 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4081 if (INTEL_GEN(i915) >= 10)
4082 return CNL_HWS_CSB_WRITE_INDEX;
4083 else
4084 return I915_HWS_CSB_WRITE_INDEX;
4087 #endif