Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
blob7e403eaa9e0fa1960b350f353cc471fb4498d5c8
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
34 #include <asm/set_memory.h>
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
47 /**
48 * DOC: Global GTT views
50 * Background and previous state
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
64 * 12
65 * 34
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
71 * 1212
72 * 3434
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
77 * Implementation and usage
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
92 * Code wanting to add or use a new GGTT view needs to:
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
113 /* Note that as an uncached mmio write, this should flush the
114 * WCB of the writes into the GGTT before it triggers the invalidate.
116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 gen6_ggtt_invalidate(dev_priv);
122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 intel_gtt_chipset_flush();
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 i915->ggtt.invalidate(i915);
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 int enable_ppgtt)
138 bool has_full_ppgtt;
139 bool has_full_48bit_ppgtt;
141 if (!dev_priv->info.has_aliasing_ppgtt)
142 return 0;
144 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147 if (intel_vgpu_active(dev_priv)) {
148 /* GVT-g has no support for 32bit ppgtt */
149 has_full_ppgtt = false;
150 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
154 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155 * execlists, the sole mechanism available to submit work.
157 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158 return 0;
160 if (enable_ppgtt == 1)
161 return 1;
163 if (enable_ppgtt == 2 && has_full_ppgtt)
164 return 2;
166 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167 return 3;
169 /* Disable ppgtt on SNB if VT-d is on. */
170 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171 DRM_INFO("Disabling PPGTT because VT-d is on\n");
172 return 0;
175 /* Early VLV doesn't have this */
176 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178 return 0;
181 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
182 if (has_full_48bit_ppgtt)
183 return 3;
185 if (has_full_ppgtt)
186 return 2;
189 return 1;
192 static int ppgtt_bind_vma(struct i915_vma *vma,
193 enum i915_cache_level cache_level,
194 u32 unused)
196 u32 pte_flags;
197 int ret;
199 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201 vma->size);
202 if (ret)
203 return ret;
206 /* Currently applicable only to VLV */
207 pte_flags = 0;
208 if (vma->obj->gt_ro)
209 pte_flags |= PTE_READ_ONLY;
211 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 return 0;
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
218 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
221 static int ppgtt_set_pages(struct i915_vma *vma)
223 GEM_BUG_ON(vma->pages);
225 vma->pages = vma->obj->mm.pages;
227 vma->page_sizes = vma->obj->mm.page_sizes;
229 return 0;
232 static void clear_pages(struct i915_vma *vma)
234 GEM_BUG_ON(!vma->pages);
236 if (vma->pages != vma->obj->mm.pages) {
237 sg_free_table(vma->pages);
238 kfree(vma->pages);
240 vma->pages = NULL;
242 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246 enum i915_cache_level level)
248 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249 pte |= addr;
251 switch (level) {
252 case I915_CACHE_NONE:
253 pte |= PPAT_UNCACHED;
254 break;
255 case I915_CACHE_WT:
256 pte |= PPAT_DISPLAY_ELLC;
257 break;
258 default:
259 pte |= PPAT_CACHED;
260 break;
263 return pte;
266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267 const enum i915_cache_level level)
269 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270 pde |= addr;
271 if (level != I915_CACHE_NONE)
272 pde |= PPAT_CACHED_PDE;
273 else
274 pde |= PPAT_UNCACHED;
275 return pde;
278 #define gen8_pdpe_encode gen8_pde_encode
279 #define gen8_pml4e_encode gen8_pde_encode
281 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282 enum i915_cache_level level,
283 u32 unused)
285 gen6_pte_t pte = GEN6_PTE_VALID;
286 pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 switch (level) {
289 case I915_CACHE_L3_LLC:
290 case I915_CACHE_LLC:
291 pte |= GEN6_PTE_CACHE_LLC;
292 break;
293 case I915_CACHE_NONE:
294 pte |= GEN6_PTE_UNCACHED;
295 break;
296 default:
297 MISSING_CASE(level);
300 return pte;
303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 u32 unused)
307 gen6_pte_t pte = GEN6_PTE_VALID;
308 pte |= GEN6_PTE_ADDR_ENCODE(addr);
310 switch (level) {
311 case I915_CACHE_L3_LLC:
312 pte |= GEN7_PTE_CACHE_L3_LLC;
313 break;
314 case I915_CACHE_LLC:
315 pte |= GEN6_PTE_CACHE_LLC;
316 break;
317 case I915_CACHE_NONE:
318 pte |= GEN6_PTE_UNCACHED;
319 break;
320 default:
321 MISSING_CASE(level);
324 return pte;
327 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328 enum i915_cache_level level,
329 u32 flags)
331 gen6_pte_t pte = GEN6_PTE_VALID;
332 pte |= GEN6_PTE_ADDR_ENCODE(addr);
334 if (!(flags & PTE_READ_ONLY))
335 pte |= BYT_PTE_WRITEABLE;
337 if (level != I915_CACHE_NONE)
338 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
340 return pte;
343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344 enum i915_cache_level level,
345 u32 unused)
347 gen6_pte_t pte = GEN6_PTE_VALID;
348 pte |= HSW_PTE_ADDR_ENCODE(addr);
350 if (level != I915_CACHE_NONE)
351 pte |= HSW_WB_LLC_AGE3;
353 return pte;
356 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357 enum i915_cache_level level,
358 u32 unused)
360 gen6_pte_t pte = GEN6_PTE_VALID;
361 pte |= HSW_PTE_ADDR_ENCODE(addr);
363 switch (level) {
364 case I915_CACHE_NONE:
365 break;
366 case I915_CACHE_WT:
367 pte |= HSW_WT_ELLC_LLC_AGE3;
368 break;
369 default:
370 pte |= HSW_WB_ELLC_LLC_AGE3;
371 break;
374 return pte;
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
379 struct pagevec *pvec = &vm->free_pages;
380 struct pagevec stash;
382 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383 i915_gem_shrink_all(vm->i915);
385 if (likely(pvec->nr))
386 return pvec->pages[--pvec->nr];
388 if (!vm->pt_kmap_wc)
389 return alloc_page(gfp);
391 /* A placeholder for a specific mutex to guard the WC stash */
392 lockdep_assert_held(&vm->i915->drm.struct_mutex);
394 /* Look in our global stash of WC pages... */
395 pvec = &vm->i915->mm.wc_stash;
396 if (likely(pvec->nr))
397 return pvec->pages[--pvec->nr];
400 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
402 * We have to be careful as page allocation may trigger the shrinker
403 * (via direct reclaim) which will fill up the WC stash underneath us.
404 * So we add our WB pages into a temporary pvec on the stack and merge
405 * them into the WC stash after all the allocations are complete.
407 pagevec_init(&stash);
408 do {
409 struct page *page;
411 page = alloc_page(gfp);
412 if (unlikely(!page))
413 break;
415 stash.pages[stash.nr++] = page;
416 } while (stash.nr < pagevec_space(pvec));
418 if (stash.nr) {
419 int nr = min_t(int, stash.nr, pagevec_space(pvec));
420 struct page **pages = stash.pages + stash.nr - nr;
422 if (nr && !set_pages_array_wc(pages, nr)) {
423 memcpy(pvec->pages + pvec->nr,
424 pages, sizeof(pages[0]) * nr);
425 pvec->nr += nr;
426 stash.nr -= nr;
429 pagevec_release(&stash);
432 return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
435 static void vm_free_pages_release(struct i915_address_space *vm,
436 bool immediate)
438 struct pagevec *pvec = &vm->free_pages;
440 GEM_BUG_ON(!pagevec_count(pvec));
442 if (vm->pt_kmap_wc) {
443 struct pagevec *stash = &vm->i915->mm.wc_stash;
445 /* When we use WC, first fill up the global stash and then
446 * only if full immediately free the overflow.
449 lockdep_assert_held(&vm->i915->drm.struct_mutex);
450 if (pagevec_space(stash)) {
451 do {
452 stash->pages[stash->nr++] =
453 pvec->pages[--pvec->nr];
454 if (!pvec->nr)
455 return;
456 } while (pagevec_space(stash));
458 /* As we have made some room in the VM's free_pages,
459 * we can wait for it to fill again. Unless we are
460 * inside i915_address_space_fini() and must
461 * immediately release the pages!
463 if (!immediate)
464 return;
467 set_pages_array_wb(pvec->pages, pvec->nr);
470 __pagevec_release(pvec);
473 static void vm_free_page(struct i915_address_space *vm, struct page *page)
476 * On !llc, we need to change the pages back to WB. We only do so
477 * in bulk, so we rarely need to change the page attributes here,
478 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
479 * To make detection of the possible sleep more likely, use an
480 * unconditional might_sleep() for everybody.
482 might_sleep();
483 if (!pagevec_add(&vm->free_pages, page))
484 vm_free_pages_release(vm, false);
487 static int __setup_page_dma(struct i915_address_space *vm,
488 struct i915_page_dma *p,
489 gfp_t gfp)
491 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
492 if (unlikely(!p->page))
493 return -ENOMEM;
495 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
496 PCI_DMA_BIDIRECTIONAL);
497 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
498 vm_free_page(vm, p->page);
499 return -ENOMEM;
502 return 0;
505 static int setup_page_dma(struct i915_address_space *vm,
506 struct i915_page_dma *p)
508 return __setup_page_dma(vm, p, I915_GFP_DMA);
511 static void cleanup_page_dma(struct i915_address_space *vm,
512 struct i915_page_dma *p)
514 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
515 vm_free_page(vm, p->page);
518 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
520 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
521 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
522 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
523 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
525 static void fill_page_dma(struct i915_address_space *vm,
526 struct i915_page_dma *p,
527 const u64 val)
529 u64 * const vaddr = kmap_atomic(p->page);
531 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
533 kunmap_atomic(vaddr);
536 static void fill_page_dma_32(struct i915_address_space *vm,
537 struct i915_page_dma *p,
538 const u32 v)
540 fill_page_dma(vm, p, (u64)v << 32 | v);
543 static int
544 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
546 struct page *page = NULL;
547 dma_addr_t addr;
548 int order;
551 * In order to utilize 64K pages for an object with a size < 2M, we will
552 * need to support a 64K scratch page, given that every 16th entry for a
553 * page-table operating in 64K mode must point to a properly aligned 64K
554 * region, including any PTEs which happen to point to scratch.
556 * This is only relevant for the 48b PPGTT where we support
557 * huge-gtt-pages, see also i915_vma_insert().
559 * TODO: we should really consider write-protecting the scratch-page and
560 * sharing between ppgtt
562 if (i915_vm_is_48bit(vm) &&
563 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
564 order = get_order(I915_GTT_PAGE_SIZE_64K);
565 page = alloc_pages(gfp | __GFP_ZERO | __GFP_NOWARN, order);
566 if (page) {
567 addr = dma_map_page(vm->dma, page, 0,
568 I915_GTT_PAGE_SIZE_64K,
569 PCI_DMA_BIDIRECTIONAL);
570 if (unlikely(dma_mapping_error(vm->dma, addr))) {
571 __free_pages(page, order);
572 page = NULL;
575 if (!IS_ALIGNED(addr, I915_GTT_PAGE_SIZE_64K)) {
576 dma_unmap_page(vm->dma, addr,
577 I915_GTT_PAGE_SIZE_64K,
578 PCI_DMA_BIDIRECTIONAL);
579 __free_pages(page, order);
580 page = NULL;
585 if (!page) {
586 order = 0;
587 page = alloc_page(gfp | __GFP_ZERO);
588 if (unlikely(!page))
589 return -ENOMEM;
591 addr = dma_map_page(vm->dma, page, 0, PAGE_SIZE,
592 PCI_DMA_BIDIRECTIONAL);
593 if (unlikely(dma_mapping_error(vm->dma, addr))) {
594 __free_page(page);
595 return -ENOMEM;
599 vm->scratch_page.page = page;
600 vm->scratch_page.daddr = addr;
601 vm->scratch_page.order = order;
603 return 0;
606 static void cleanup_scratch_page(struct i915_address_space *vm)
608 struct i915_page_dma *p = &vm->scratch_page;
610 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
611 PCI_DMA_BIDIRECTIONAL);
612 __free_pages(p->page, p->order);
615 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
617 struct i915_page_table *pt;
619 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
620 if (unlikely(!pt))
621 return ERR_PTR(-ENOMEM);
623 if (unlikely(setup_px(vm, pt))) {
624 kfree(pt);
625 return ERR_PTR(-ENOMEM);
628 pt->used_ptes = 0;
629 return pt;
632 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
634 cleanup_px(vm, pt);
635 kfree(pt);
638 static void gen8_initialize_pt(struct i915_address_space *vm,
639 struct i915_page_table *pt)
641 fill_px(vm, pt,
642 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
645 static void gen6_initialize_pt(struct i915_address_space *vm,
646 struct i915_page_table *pt)
648 fill32_px(vm, pt,
649 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
652 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
654 struct i915_page_directory *pd;
656 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
657 if (unlikely(!pd))
658 return ERR_PTR(-ENOMEM);
660 if (unlikely(setup_px(vm, pd))) {
661 kfree(pd);
662 return ERR_PTR(-ENOMEM);
665 pd->used_pdes = 0;
666 return pd;
669 static void free_pd(struct i915_address_space *vm,
670 struct i915_page_directory *pd)
672 cleanup_px(vm, pd);
673 kfree(pd);
676 static void gen8_initialize_pd(struct i915_address_space *vm,
677 struct i915_page_directory *pd)
679 unsigned int i;
681 fill_px(vm, pd,
682 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
683 for (i = 0; i < I915_PDES; i++)
684 pd->page_table[i] = vm->scratch_pt;
687 static int __pdp_init(struct i915_address_space *vm,
688 struct i915_page_directory_pointer *pdp)
690 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
691 unsigned int i;
693 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
694 GFP_KERNEL | __GFP_NOWARN);
695 if (unlikely(!pdp->page_directory))
696 return -ENOMEM;
698 for (i = 0; i < pdpes; i++)
699 pdp->page_directory[i] = vm->scratch_pd;
701 return 0;
704 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
706 kfree(pdp->page_directory);
707 pdp->page_directory = NULL;
710 static inline bool use_4lvl(const struct i915_address_space *vm)
712 return i915_vm_is_48bit(vm);
715 static struct i915_page_directory_pointer *
716 alloc_pdp(struct i915_address_space *vm)
718 struct i915_page_directory_pointer *pdp;
719 int ret = -ENOMEM;
721 WARN_ON(!use_4lvl(vm));
723 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
724 if (!pdp)
725 return ERR_PTR(-ENOMEM);
727 ret = __pdp_init(vm, pdp);
728 if (ret)
729 goto fail_bitmap;
731 ret = setup_px(vm, pdp);
732 if (ret)
733 goto fail_page_m;
735 return pdp;
737 fail_page_m:
738 __pdp_fini(pdp);
739 fail_bitmap:
740 kfree(pdp);
742 return ERR_PTR(ret);
745 static void free_pdp(struct i915_address_space *vm,
746 struct i915_page_directory_pointer *pdp)
748 __pdp_fini(pdp);
750 if (!use_4lvl(vm))
751 return;
753 cleanup_px(vm, pdp);
754 kfree(pdp);
757 static void gen8_initialize_pdp(struct i915_address_space *vm,
758 struct i915_page_directory_pointer *pdp)
760 gen8_ppgtt_pdpe_t scratch_pdpe;
762 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
764 fill_px(vm, pdp, scratch_pdpe);
767 static void gen8_initialize_pml4(struct i915_address_space *vm,
768 struct i915_pml4 *pml4)
770 unsigned int i;
772 fill_px(vm, pml4,
773 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
774 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
775 pml4->pdps[i] = vm->scratch_pdp;
778 /* Broadwell Page Directory Pointer Descriptors */
779 static int gen8_write_pdp(struct drm_i915_gem_request *req,
780 unsigned entry,
781 dma_addr_t addr)
783 struct intel_engine_cs *engine = req->engine;
784 u32 *cs;
786 BUG_ON(entry >= 4);
788 cs = intel_ring_begin(req, 6);
789 if (IS_ERR(cs))
790 return PTR_ERR(cs);
792 *cs++ = MI_LOAD_REGISTER_IMM(1);
793 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
794 *cs++ = upper_32_bits(addr);
795 *cs++ = MI_LOAD_REGISTER_IMM(1);
796 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
797 *cs++ = lower_32_bits(addr);
798 intel_ring_advance(req, cs);
800 return 0;
803 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
804 struct drm_i915_gem_request *req)
806 int i, ret;
808 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
809 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
811 ret = gen8_write_pdp(req, i, pd_daddr);
812 if (ret)
813 return ret;
816 return 0;
819 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
820 struct drm_i915_gem_request *req)
822 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
825 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
826 * the page table structures, we mark them dirty so that
827 * context switching/execlist queuing code takes extra steps
828 * to ensure that tlbs are flushed.
830 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
832 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
835 /* Removes entries from a single page table, releasing it if it's empty.
836 * Caller can use the return value to update higher-level entries.
838 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
839 struct i915_page_table *pt,
840 u64 start, u64 length)
842 unsigned int num_entries = gen8_pte_count(start, length);
843 unsigned int pte = gen8_pte_index(start);
844 unsigned int pte_end = pte + num_entries;
845 const gen8_pte_t scratch_pte =
846 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
847 gen8_pte_t *vaddr;
849 GEM_BUG_ON(num_entries > pt->used_ptes);
851 pt->used_ptes -= num_entries;
852 if (!pt->used_ptes)
853 return true;
855 vaddr = kmap_atomic_px(pt);
856 while (pte < pte_end)
857 vaddr[pte++] = scratch_pte;
858 kunmap_atomic(vaddr);
860 return false;
863 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
864 struct i915_page_directory *pd,
865 struct i915_page_table *pt,
866 unsigned int pde)
868 gen8_pde_t *vaddr;
870 pd->page_table[pde] = pt;
872 vaddr = kmap_atomic_px(pd);
873 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
874 kunmap_atomic(vaddr);
877 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
878 struct i915_page_directory *pd,
879 u64 start, u64 length)
881 struct i915_page_table *pt;
882 u32 pde;
884 gen8_for_each_pde(pt, pd, start, length, pde) {
885 GEM_BUG_ON(pt == vm->scratch_pt);
887 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
888 continue;
890 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
891 GEM_BUG_ON(!pd->used_pdes);
892 pd->used_pdes--;
894 free_pt(vm, pt);
897 return !pd->used_pdes;
900 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
901 struct i915_page_directory_pointer *pdp,
902 struct i915_page_directory *pd,
903 unsigned int pdpe)
905 gen8_ppgtt_pdpe_t *vaddr;
907 pdp->page_directory[pdpe] = pd;
908 if (!use_4lvl(vm))
909 return;
911 vaddr = kmap_atomic_px(pdp);
912 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
913 kunmap_atomic(vaddr);
916 /* Removes entries from a single page dir pointer, releasing it if it's empty.
917 * Caller can use the return value to update higher-level entries
919 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
920 struct i915_page_directory_pointer *pdp,
921 u64 start, u64 length)
923 struct i915_page_directory *pd;
924 unsigned int pdpe;
926 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
927 GEM_BUG_ON(pd == vm->scratch_pd);
929 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
930 continue;
932 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
933 GEM_BUG_ON(!pdp->used_pdpes);
934 pdp->used_pdpes--;
936 free_pd(vm, pd);
939 return !pdp->used_pdpes;
942 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
943 u64 start, u64 length)
945 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
948 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
949 struct i915_page_directory_pointer *pdp,
950 unsigned int pml4e)
952 gen8_ppgtt_pml4e_t *vaddr;
954 pml4->pdps[pml4e] = pdp;
956 vaddr = kmap_atomic_px(pml4);
957 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
958 kunmap_atomic(vaddr);
961 /* Removes entries from a single pml4.
962 * This is the top-level structure in 4-level page tables used on gen8+.
963 * Empty entries are always scratch pml4e.
965 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
966 u64 start, u64 length)
968 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
969 struct i915_pml4 *pml4 = &ppgtt->pml4;
970 struct i915_page_directory_pointer *pdp;
971 unsigned int pml4e;
973 GEM_BUG_ON(!use_4lvl(vm));
975 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
976 GEM_BUG_ON(pdp == vm->scratch_pdp);
978 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
979 continue;
981 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
983 free_pdp(vm, pdp);
987 static inline struct sgt_dma {
988 struct scatterlist *sg;
989 dma_addr_t dma, max;
990 } sgt_dma(struct i915_vma *vma) {
991 struct scatterlist *sg = vma->pages->sgl;
992 dma_addr_t addr = sg_dma_address(sg);
993 return (struct sgt_dma) { sg, addr, addr + sg->length };
996 struct gen8_insert_pte {
997 u16 pml4e;
998 u16 pdpe;
999 u16 pde;
1000 u16 pte;
1003 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1005 return (struct gen8_insert_pte) {
1006 gen8_pml4e_index(start),
1007 gen8_pdpe_index(start),
1008 gen8_pde_index(start),
1009 gen8_pte_index(start),
1013 static __always_inline bool
1014 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1015 struct i915_page_directory_pointer *pdp,
1016 struct sgt_dma *iter,
1017 struct gen8_insert_pte *idx,
1018 enum i915_cache_level cache_level)
1020 struct i915_page_directory *pd;
1021 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1022 gen8_pte_t *vaddr;
1023 bool ret;
1025 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1026 pd = pdp->page_directory[idx->pdpe];
1027 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1028 do {
1029 vaddr[idx->pte] = pte_encode | iter->dma;
1031 iter->dma += PAGE_SIZE;
1032 if (iter->dma >= iter->max) {
1033 iter->sg = __sg_next(iter->sg);
1034 if (!iter->sg) {
1035 ret = false;
1036 break;
1039 iter->dma = sg_dma_address(iter->sg);
1040 iter->max = iter->dma + iter->sg->length;
1043 if (++idx->pte == GEN8_PTES) {
1044 idx->pte = 0;
1046 if (++idx->pde == I915_PDES) {
1047 idx->pde = 0;
1049 /* Limited by sg length for 3lvl */
1050 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1051 idx->pdpe = 0;
1052 ret = true;
1053 break;
1056 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1057 pd = pdp->page_directory[idx->pdpe];
1060 kunmap_atomic(vaddr);
1061 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1063 } while (1);
1064 kunmap_atomic(vaddr);
1066 return ret;
1069 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1070 struct i915_vma *vma,
1071 enum i915_cache_level cache_level,
1072 u32 unused)
1074 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1075 struct sgt_dma iter = sgt_dma(vma);
1076 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1078 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1079 cache_level);
1081 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1084 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1085 struct i915_page_directory_pointer **pdps,
1086 struct sgt_dma *iter,
1087 enum i915_cache_level cache_level)
1089 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1090 u64 start = vma->node.start;
1091 dma_addr_t rem = iter->sg->length;
1093 do {
1094 struct gen8_insert_pte idx = gen8_insert_pte(start);
1095 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1096 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1097 unsigned int page_size;
1098 bool maybe_64K = false;
1099 gen8_pte_t encode = pte_encode;
1100 gen8_pte_t *vaddr;
1101 u16 index, max;
1103 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1104 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1105 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1106 index = idx.pde;
1107 max = I915_PDES;
1108 page_size = I915_GTT_PAGE_SIZE_2M;
1110 encode |= GEN8_PDE_PS_2M;
1112 vaddr = kmap_atomic_px(pd);
1113 } else {
1114 struct i915_page_table *pt = pd->page_table[idx.pde];
1116 index = idx.pte;
1117 max = GEN8_PTES;
1118 page_size = I915_GTT_PAGE_SIZE;
1120 if (!index &&
1121 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1122 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1123 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1124 rem >= (max - index) << PAGE_SHIFT))
1125 maybe_64K = true;
1127 vaddr = kmap_atomic_px(pt);
1130 do {
1131 GEM_BUG_ON(iter->sg->length < page_size);
1132 vaddr[index++] = encode | iter->dma;
1134 start += page_size;
1135 iter->dma += page_size;
1136 rem -= page_size;
1137 if (iter->dma >= iter->max) {
1138 iter->sg = __sg_next(iter->sg);
1139 if (!iter->sg)
1140 break;
1142 rem = iter->sg->length;
1143 iter->dma = sg_dma_address(iter->sg);
1144 iter->max = iter->dma + rem;
1146 if (maybe_64K && index < max &&
1147 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1148 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1149 rem >= (max - index) << PAGE_SHIFT)))
1150 maybe_64K = false;
1152 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1153 break;
1155 } while (rem >= page_size && index < max);
1157 kunmap_atomic(vaddr);
1160 * Is it safe to mark the 2M block as 64K? -- Either we have
1161 * filled whole page-table with 64K entries, or filled part of
1162 * it and have reached the end of the sg table and we have
1163 * enough padding.
1165 if (maybe_64K &&
1166 (index == max ||
1167 (i915_vm_has_scratch_64K(vma->vm) &&
1168 !iter->sg && IS_ALIGNED(vma->node.start +
1169 vma->node.size,
1170 I915_GTT_PAGE_SIZE_2M)))) {
1171 vaddr = kmap_atomic_px(pd);
1172 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1173 kunmap_atomic(vaddr);
1174 page_size = I915_GTT_PAGE_SIZE_64K;
1177 vma->page_sizes.gtt |= page_size;
1178 } while (iter->sg);
1181 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1182 struct i915_vma *vma,
1183 enum i915_cache_level cache_level,
1184 u32 unused)
1186 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1187 struct sgt_dma iter = sgt_dma(vma);
1188 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1190 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1191 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1192 } else {
1193 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1195 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1196 &iter, &idx, cache_level))
1197 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1199 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1203 static void gen8_free_page_tables(struct i915_address_space *vm,
1204 struct i915_page_directory *pd)
1206 int i;
1208 if (!px_page(pd))
1209 return;
1211 for (i = 0; i < I915_PDES; i++) {
1212 if (pd->page_table[i] != vm->scratch_pt)
1213 free_pt(vm, pd->page_table[i]);
1217 static int gen8_init_scratch(struct i915_address_space *vm)
1219 int ret;
1221 ret = setup_scratch_page(vm, I915_GFP_DMA);
1222 if (ret)
1223 return ret;
1225 vm->scratch_pt = alloc_pt(vm);
1226 if (IS_ERR(vm->scratch_pt)) {
1227 ret = PTR_ERR(vm->scratch_pt);
1228 goto free_scratch_page;
1231 vm->scratch_pd = alloc_pd(vm);
1232 if (IS_ERR(vm->scratch_pd)) {
1233 ret = PTR_ERR(vm->scratch_pd);
1234 goto free_pt;
1237 if (use_4lvl(vm)) {
1238 vm->scratch_pdp = alloc_pdp(vm);
1239 if (IS_ERR(vm->scratch_pdp)) {
1240 ret = PTR_ERR(vm->scratch_pdp);
1241 goto free_pd;
1245 gen8_initialize_pt(vm, vm->scratch_pt);
1246 gen8_initialize_pd(vm, vm->scratch_pd);
1247 if (use_4lvl(vm))
1248 gen8_initialize_pdp(vm, vm->scratch_pdp);
1250 return 0;
1252 free_pd:
1253 free_pd(vm, vm->scratch_pd);
1254 free_pt:
1255 free_pt(vm, vm->scratch_pt);
1256 free_scratch_page:
1257 cleanup_scratch_page(vm);
1259 return ret;
1262 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1264 struct i915_address_space *vm = &ppgtt->base;
1265 struct drm_i915_private *dev_priv = vm->i915;
1266 enum vgt_g2v_type msg;
1267 int i;
1269 if (use_4lvl(vm)) {
1270 const u64 daddr = px_dma(&ppgtt->pml4);
1272 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1273 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1275 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1276 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1277 } else {
1278 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1279 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1281 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1282 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1285 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1286 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1289 I915_WRITE(vgtif_reg(g2v_notify), msg);
1291 return 0;
1294 static void gen8_free_scratch(struct i915_address_space *vm)
1296 if (use_4lvl(vm))
1297 free_pdp(vm, vm->scratch_pdp);
1298 free_pd(vm, vm->scratch_pd);
1299 free_pt(vm, vm->scratch_pt);
1300 cleanup_scratch_page(vm);
1303 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1304 struct i915_page_directory_pointer *pdp)
1306 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1307 int i;
1309 for (i = 0; i < pdpes; i++) {
1310 if (pdp->page_directory[i] == vm->scratch_pd)
1311 continue;
1313 gen8_free_page_tables(vm, pdp->page_directory[i]);
1314 free_pd(vm, pdp->page_directory[i]);
1317 free_pdp(vm, pdp);
1320 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1322 int i;
1324 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1325 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1326 continue;
1328 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1331 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1334 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1336 struct drm_i915_private *dev_priv = vm->i915;
1337 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1339 if (intel_vgpu_active(dev_priv))
1340 gen8_ppgtt_notify_vgt(ppgtt, false);
1342 if (use_4lvl(vm))
1343 gen8_ppgtt_cleanup_4lvl(ppgtt);
1344 else
1345 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1347 gen8_free_scratch(vm);
1350 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1351 struct i915_page_directory *pd,
1352 u64 start, u64 length)
1354 struct i915_page_table *pt;
1355 u64 from = start;
1356 unsigned int pde;
1358 gen8_for_each_pde(pt, pd, start, length, pde) {
1359 int count = gen8_pte_count(start, length);
1361 if (pt == vm->scratch_pt) {
1362 pd->used_pdes++;
1364 pt = alloc_pt(vm);
1365 if (IS_ERR(pt)) {
1366 pd->used_pdes--;
1367 goto unwind;
1370 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1371 gen8_initialize_pt(vm, pt);
1373 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1374 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1377 pt->used_ptes += count;
1379 return 0;
1381 unwind:
1382 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1383 return -ENOMEM;
1386 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1387 struct i915_page_directory_pointer *pdp,
1388 u64 start, u64 length)
1390 struct i915_page_directory *pd;
1391 u64 from = start;
1392 unsigned int pdpe;
1393 int ret;
1395 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1396 if (pd == vm->scratch_pd) {
1397 pdp->used_pdpes++;
1399 pd = alloc_pd(vm);
1400 if (IS_ERR(pd)) {
1401 pdp->used_pdpes--;
1402 goto unwind;
1405 gen8_initialize_pd(vm, pd);
1406 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1407 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1409 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1412 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1413 if (unlikely(ret))
1414 goto unwind_pd;
1417 return 0;
1419 unwind_pd:
1420 if (!pd->used_pdes) {
1421 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1422 GEM_BUG_ON(!pdp->used_pdpes);
1423 pdp->used_pdpes--;
1424 free_pd(vm, pd);
1426 unwind:
1427 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1428 return -ENOMEM;
1431 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1432 u64 start, u64 length)
1434 return gen8_ppgtt_alloc_pdp(vm,
1435 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1438 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1439 u64 start, u64 length)
1441 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1442 struct i915_pml4 *pml4 = &ppgtt->pml4;
1443 struct i915_page_directory_pointer *pdp;
1444 u64 from = start;
1445 u32 pml4e;
1446 int ret;
1448 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1449 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1450 pdp = alloc_pdp(vm);
1451 if (IS_ERR(pdp))
1452 goto unwind;
1454 gen8_initialize_pdp(vm, pdp);
1455 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1458 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1459 if (unlikely(ret))
1460 goto unwind_pdp;
1463 return 0;
1465 unwind_pdp:
1466 if (!pdp->used_pdpes) {
1467 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1468 free_pdp(vm, pdp);
1470 unwind:
1471 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1472 return -ENOMEM;
1475 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1476 struct i915_page_directory_pointer *pdp,
1477 u64 start, u64 length,
1478 gen8_pte_t scratch_pte,
1479 struct seq_file *m)
1481 struct i915_address_space *vm = &ppgtt->base;
1482 struct i915_page_directory *pd;
1483 u32 pdpe;
1485 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1486 struct i915_page_table *pt;
1487 u64 pd_len = length;
1488 u64 pd_start = start;
1489 u32 pde;
1491 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1492 continue;
1494 seq_printf(m, "\tPDPE #%d\n", pdpe);
1495 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1496 u32 pte;
1497 gen8_pte_t *pt_vaddr;
1499 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1500 continue;
1502 pt_vaddr = kmap_atomic_px(pt);
1503 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1504 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1505 pde << GEN8_PDE_SHIFT |
1506 pte << GEN8_PTE_SHIFT);
1507 int i;
1508 bool found = false;
1510 for (i = 0; i < 4; i++)
1511 if (pt_vaddr[pte + i] != scratch_pte)
1512 found = true;
1513 if (!found)
1514 continue;
1516 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1517 for (i = 0; i < 4; i++) {
1518 if (pt_vaddr[pte + i] != scratch_pte)
1519 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1520 else
1521 seq_puts(m, " SCRATCH ");
1523 seq_puts(m, "\n");
1525 kunmap_atomic(pt_vaddr);
1530 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1532 struct i915_address_space *vm = &ppgtt->base;
1533 const gen8_pte_t scratch_pte =
1534 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1535 u64 start = 0, length = ppgtt->base.total;
1537 if (use_4lvl(vm)) {
1538 u64 pml4e;
1539 struct i915_pml4 *pml4 = &ppgtt->pml4;
1540 struct i915_page_directory_pointer *pdp;
1542 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1543 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1544 continue;
1546 seq_printf(m, " PML4E #%llu\n", pml4e);
1547 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1549 } else {
1550 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1554 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1556 struct i915_address_space *vm = &ppgtt->base;
1557 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1558 struct i915_page_directory *pd;
1559 u64 start = 0, length = ppgtt->base.total;
1560 u64 from = start;
1561 unsigned int pdpe;
1563 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1564 pd = alloc_pd(vm);
1565 if (IS_ERR(pd))
1566 goto unwind;
1568 gen8_initialize_pd(vm, pd);
1569 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1570 pdp->used_pdpes++;
1573 pdp->used_pdpes++; /* never remove */
1574 return 0;
1576 unwind:
1577 start -= from;
1578 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1579 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1580 free_pd(vm, pd);
1582 pdp->used_pdpes = 0;
1583 return -ENOMEM;
1587 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1588 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1589 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1590 * space.
1593 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1595 struct i915_address_space *vm = &ppgtt->base;
1596 struct drm_i915_private *dev_priv = vm->i915;
1597 int ret;
1599 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1600 1ULL << 48 :
1601 1ULL << 32;
1603 /* There are only few exceptions for gen >=6. chv and bxt.
1604 * And we are not sure about the latter so play safe for now.
1606 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1607 ppgtt->base.pt_kmap_wc = true;
1609 ret = gen8_init_scratch(&ppgtt->base);
1610 if (ret) {
1611 ppgtt->base.total = 0;
1612 return ret;
1615 if (use_4lvl(vm)) {
1616 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1617 if (ret)
1618 goto free_scratch;
1620 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1622 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1623 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1624 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1625 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1626 } else {
1627 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1628 if (ret)
1629 goto free_scratch;
1631 if (intel_vgpu_active(dev_priv)) {
1632 ret = gen8_preallocate_top_level_pdp(ppgtt);
1633 if (ret) {
1634 __pdp_fini(&ppgtt->pdp);
1635 goto free_scratch;
1639 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1640 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1641 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1642 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1645 if (intel_vgpu_active(dev_priv))
1646 gen8_ppgtt_notify_vgt(ppgtt, true);
1648 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1649 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1650 ppgtt->base.bind_vma = ppgtt_bind_vma;
1651 ppgtt->base.set_pages = ppgtt_set_pages;
1652 ppgtt->base.clear_pages = clear_pages;
1653 ppgtt->debug_dump = gen8_dump_ppgtt;
1655 return 0;
1657 free_scratch:
1658 gen8_free_scratch(&ppgtt->base);
1659 return ret;
1662 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1664 struct i915_address_space *vm = &ppgtt->base;
1665 struct i915_page_table *unused;
1666 gen6_pte_t scratch_pte;
1667 u32 pd_entry, pte, pde;
1668 u32 start = 0, length = ppgtt->base.total;
1670 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1671 I915_CACHE_LLC, 0);
1673 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1674 u32 expected;
1675 gen6_pte_t *pt_vaddr;
1676 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1677 pd_entry = readl(ppgtt->pd_addr + pde);
1678 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1680 if (pd_entry != expected)
1681 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1682 pde,
1683 pd_entry,
1684 expected);
1685 seq_printf(m, "\tPDE: %x\n", pd_entry);
1687 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1689 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1690 unsigned long va =
1691 (pde * PAGE_SIZE * GEN6_PTES) +
1692 (pte * PAGE_SIZE);
1693 int i;
1694 bool found = false;
1695 for (i = 0; i < 4; i++)
1696 if (pt_vaddr[pte + i] != scratch_pte)
1697 found = true;
1698 if (!found)
1699 continue;
1701 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1702 for (i = 0; i < 4; i++) {
1703 if (pt_vaddr[pte + i] != scratch_pte)
1704 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1705 else
1706 seq_puts(m, " SCRATCH ");
1708 seq_puts(m, "\n");
1710 kunmap_atomic(pt_vaddr);
1714 /* Write pde (index) from the page directory @pd to the page table @pt */
1715 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1716 const unsigned int pde,
1717 const struct i915_page_table *pt)
1719 /* Caller needs to make sure the write completes if necessary */
1720 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1721 ppgtt->pd_addr + pde);
1724 /* Write all the page tables found in the ppgtt structure to incrementing page
1725 * directories. */
1726 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1727 u32 start, u32 length)
1729 struct i915_page_table *pt;
1730 unsigned int pde;
1732 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1733 gen6_write_pde(ppgtt, pde, pt);
1735 mark_tlbs_dirty(ppgtt);
1736 wmb();
1739 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1741 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1742 return ppgtt->pd.base.ggtt_offset << 10;
1745 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1746 struct drm_i915_gem_request *req)
1748 struct intel_engine_cs *engine = req->engine;
1749 u32 *cs;
1751 /* NB: TLBs must be flushed and invalidated before a switch */
1752 cs = intel_ring_begin(req, 6);
1753 if (IS_ERR(cs))
1754 return PTR_ERR(cs);
1756 *cs++ = MI_LOAD_REGISTER_IMM(2);
1757 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1758 *cs++ = PP_DIR_DCLV_2G;
1759 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1760 *cs++ = get_pd_offset(ppgtt);
1761 *cs++ = MI_NOOP;
1762 intel_ring_advance(req, cs);
1764 return 0;
1767 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1768 struct drm_i915_gem_request *req)
1770 struct intel_engine_cs *engine = req->engine;
1771 u32 *cs;
1773 /* NB: TLBs must be flushed and invalidated before a switch */
1774 cs = intel_ring_begin(req, 6);
1775 if (IS_ERR(cs))
1776 return PTR_ERR(cs);
1778 *cs++ = MI_LOAD_REGISTER_IMM(2);
1779 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1780 *cs++ = PP_DIR_DCLV_2G;
1781 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1782 *cs++ = get_pd_offset(ppgtt);
1783 *cs++ = MI_NOOP;
1784 intel_ring_advance(req, cs);
1786 return 0;
1789 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1790 struct drm_i915_gem_request *req)
1792 struct intel_engine_cs *engine = req->engine;
1793 struct drm_i915_private *dev_priv = req->i915;
1795 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1796 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1797 return 0;
1800 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1802 struct intel_engine_cs *engine;
1803 enum intel_engine_id id;
1805 for_each_engine(engine, dev_priv, id) {
1806 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1807 GEN8_GFX_PPGTT_48B : 0;
1808 I915_WRITE(RING_MODE_GEN7(engine),
1809 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1813 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1815 struct intel_engine_cs *engine;
1816 u32 ecochk, ecobits;
1817 enum intel_engine_id id;
1819 ecobits = I915_READ(GAC_ECO_BITS);
1820 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1822 ecochk = I915_READ(GAM_ECOCHK);
1823 if (IS_HASWELL(dev_priv)) {
1824 ecochk |= ECOCHK_PPGTT_WB_HSW;
1825 } else {
1826 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1827 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1829 I915_WRITE(GAM_ECOCHK, ecochk);
1831 for_each_engine(engine, dev_priv, id) {
1832 /* GFX_MODE is per-ring on gen7+ */
1833 I915_WRITE(RING_MODE_GEN7(engine),
1834 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1838 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1840 u32 ecochk, gab_ctl, ecobits;
1842 ecobits = I915_READ(GAC_ECO_BITS);
1843 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1844 ECOBITS_PPGTT_CACHE64B);
1846 gab_ctl = I915_READ(GAB_CTL);
1847 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1849 ecochk = I915_READ(GAM_ECOCHK);
1850 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1852 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1855 /* PPGTT support for Sandybdrige/Gen6 and later */
1856 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1857 u64 start, u64 length)
1859 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1860 unsigned int first_entry = start >> PAGE_SHIFT;
1861 unsigned int pde = first_entry / GEN6_PTES;
1862 unsigned int pte = first_entry % GEN6_PTES;
1863 unsigned int num_entries = length >> PAGE_SHIFT;
1864 gen6_pte_t scratch_pte =
1865 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1867 while (num_entries) {
1868 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1869 unsigned int end = min(pte + num_entries, GEN6_PTES);
1870 gen6_pte_t *vaddr;
1872 num_entries -= end - pte;
1874 /* Note that the hw doesn't support removing PDE on the fly
1875 * (they are cached inside the context with no means to
1876 * invalidate the cache), so we can only reset the PTE
1877 * entries back to scratch.
1880 vaddr = kmap_atomic_px(pt);
1881 do {
1882 vaddr[pte++] = scratch_pte;
1883 } while (pte < end);
1884 kunmap_atomic(vaddr);
1886 pte = 0;
1890 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1891 struct i915_vma *vma,
1892 enum i915_cache_level cache_level,
1893 u32 flags)
1895 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1896 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1897 unsigned act_pt = first_entry / GEN6_PTES;
1898 unsigned act_pte = first_entry % GEN6_PTES;
1899 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1900 struct sgt_dma iter = sgt_dma(vma);
1901 gen6_pte_t *vaddr;
1903 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1904 do {
1905 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1907 iter.dma += PAGE_SIZE;
1908 if (iter.dma == iter.max) {
1909 iter.sg = __sg_next(iter.sg);
1910 if (!iter.sg)
1911 break;
1913 iter.dma = sg_dma_address(iter.sg);
1914 iter.max = iter.dma + iter.sg->length;
1917 if (++act_pte == GEN6_PTES) {
1918 kunmap_atomic(vaddr);
1919 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1920 act_pte = 0;
1922 } while (1);
1923 kunmap_atomic(vaddr);
1925 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1928 static int gen6_alloc_va_range(struct i915_address_space *vm,
1929 u64 start, u64 length)
1931 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1932 struct i915_page_table *pt;
1933 u64 from = start;
1934 unsigned int pde;
1935 bool flush = false;
1937 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1938 if (pt == vm->scratch_pt) {
1939 pt = alloc_pt(vm);
1940 if (IS_ERR(pt))
1941 goto unwind_out;
1943 gen6_initialize_pt(vm, pt);
1944 ppgtt->pd.page_table[pde] = pt;
1945 gen6_write_pde(ppgtt, pde, pt);
1946 flush = true;
1950 if (flush) {
1951 mark_tlbs_dirty(ppgtt);
1952 wmb();
1955 return 0;
1957 unwind_out:
1958 gen6_ppgtt_clear_range(vm, from, start);
1959 return -ENOMEM;
1962 static int gen6_init_scratch(struct i915_address_space *vm)
1964 int ret;
1966 ret = setup_scratch_page(vm, I915_GFP_DMA);
1967 if (ret)
1968 return ret;
1970 vm->scratch_pt = alloc_pt(vm);
1971 if (IS_ERR(vm->scratch_pt)) {
1972 cleanup_scratch_page(vm);
1973 return PTR_ERR(vm->scratch_pt);
1976 gen6_initialize_pt(vm, vm->scratch_pt);
1978 return 0;
1981 static void gen6_free_scratch(struct i915_address_space *vm)
1983 free_pt(vm, vm->scratch_pt);
1984 cleanup_scratch_page(vm);
1987 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1989 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1990 struct i915_page_directory *pd = &ppgtt->pd;
1991 struct i915_page_table *pt;
1992 u32 pde;
1994 drm_mm_remove_node(&ppgtt->node);
1996 gen6_for_all_pdes(pt, pd, pde)
1997 if (pt != vm->scratch_pt)
1998 free_pt(vm, pt);
2000 gen6_free_scratch(vm);
2003 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2005 struct i915_address_space *vm = &ppgtt->base;
2006 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2007 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2008 int ret;
2010 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2011 * allocator works in address space sizes, so it's multiplied by page
2012 * size. We allocate at the top of the GTT to avoid fragmentation.
2014 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2016 ret = gen6_init_scratch(vm);
2017 if (ret)
2018 return ret;
2020 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2021 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2022 I915_COLOR_UNEVICTABLE,
2023 0, ggtt->base.total,
2024 PIN_HIGH);
2025 if (ret)
2026 goto err_out;
2028 if (ppgtt->node.start < ggtt->mappable_end)
2029 DRM_DEBUG("Forced to use aperture for PDEs\n");
2031 ppgtt->pd.base.ggtt_offset =
2032 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2034 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2035 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2037 return 0;
2039 err_out:
2040 gen6_free_scratch(vm);
2041 return ret;
2044 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2046 return gen6_ppgtt_allocate_page_directories(ppgtt);
2049 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2050 u64 start, u64 length)
2052 struct i915_page_table *unused;
2053 u32 pde;
2055 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2056 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2059 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2061 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2062 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2063 int ret;
2065 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2066 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2067 ppgtt->switch_mm = gen6_mm_switch;
2068 else if (IS_HASWELL(dev_priv))
2069 ppgtt->switch_mm = hsw_mm_switch;
2070 else if (IS_GEN7(dev_priv))
2071 ppgtt->switch_mm = gen7_mm_switch;
2072 else
2073 BUG();
2075 ret = gen6_ppgtt_alloc(ppgtt);
2076 if (ret)
2077 return ret;
2079 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2081 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2082 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2084 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2085 if (ret) {
2086 gen6_ppgtt_cleanup(&ppgtt->base);
2087 return ret;
2090 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2091 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2092 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2093 ppgtt->base.bind_vma = ppgtt_bind_vma;
2094 ppgtt->base.set_pages = ppgtt_set_pages;
2095 ppgtt->base.clear_pages = clear_pages;
2096 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2097 ppgtt->debug_dump = gen6_dump_ppgtt;
2099 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2100 ppgtt->node.size >> 20,
2101 ppgtt->node.start / PAGE_SIZE);
2103 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2104 ppgtt->pd.base.ggtt_offset << 10);
2106 return 0;
2109 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2110 struct drm_i915_private *dev_priv)
2112 ppgtt->base.i915 = dev_priv;
2113 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2115 if (INTEL_INFO(dev_priv)->gen < 8)
2116 return gen6_ppgtt_init(ppgtt);
2117 else
2118 return gen8_ppgtt_init(ppgtt);
2121 static void i915_address_space_init(struct i915_address_space *vm,
2122 struct drm_i915_private *dev_priv,
2123 const char *name)
2125 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2127 drm_mm_init(&vm->mm, 0, vm->total);
2128 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2130 INIT_LIST_HEAD(&vm->active_list);
2131 INIT_LIST_HEAD(&vm->inactive_list);
2132 INIT_LIST_HEAD(&vm->unbound_list);
2134 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2135 pagevec_init(&vm->free_pages);
2138 static void i915_address_space_fini(struct i915_address_space *vm)
2140 if (pagevec_count(&vm->free_pages))
2141 vm_free_pages_release(vm, true);
2143 i915_gem_timeline_fini(&vm->timeline);
2144 drm_mm_takedown(&vm->mm);
2145 list_del(&vm->global_link);
2148 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2150 /* This function is for gtt related workarounds. This function is
2151 * called on driver load and after a GPU reset, so you can place
2152 * workarounds here even if they get overwritten by GPU reset.
2154 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2155 if (IS_BROADWELL(dev_priv))
2156 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2157 else if (IS_CHERRYVIEW(dev_priv))
2158 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2159 else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2160 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2161 else if (IS_GEN9_LP(dev_priv))
2162 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2165 * To support 64K PTEs we need to first enable the use of the
2166 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2167 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2168 * shouldn't be needed after GEN10.
2170 * 64K pages were first introduced from BDW+, although technically they
2171 * only *work* from gen9+. For pre-BDW we instead have the option for
2172 * 32K pages, but we don't currently have any support for it in our
2173 * driver.
2175 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2176 INTEL_GEN(dev_priv) <= 10)
2177 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2178 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2179 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2182 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2184 gtt_write_workarounds(dev_priv);
2186 /* In the case of execlists, PPGTT is enabled by the context descriptor
2187 * and the PDPs are contained within the context itself. We don't
2188 * need to do anything here. */
2189 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2190 return 0;
2192 if (!USES_PPGTT(dev_priv))
2193 return 0;
2195 if (IS_GEN6(dev_priv))
2196 gen6_ppgtt_enable(dev_priv);
2197 else if (IS_GEN7(dev_priv))
2198 gen7_ppgtt_enable(dev_priv);
2199 else if (INTEL_GEN(dev_priv) >= 8)
2200 gen8_ppgtt_enable(dev_priv);
2201 else
2202 MISSING_CASE(INTEL_GEN(dev_priv));
2204 return 0;
2207 struct i915_hw_ppgtt *
2208 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2209 struct drm_i915_file_private *fpriv,
2210 const char *name)
2212 struct i915_hw_ppgtt *ppgtt;
2213 int ret;
2215 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2216 if (!ppgtt)
2217 return ERR_PTR(-ENOMEM);
2219 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2220 if (ret) {
2221 kfree(ppgtt);
2222 return ERR_PTR(ret);
2225 kref_init(&ppgtt->ref);
2226 i915_address_space_init(&ppgtt->base, dev_priv, name);
2227 ppgtt->base.file = fpriv;
2229 trace_i915_ppgtt_create(&ppgtt->base);
2231 return ppgtt;
2234 void i915_ppgtt_close(struct i915_address_space *vm)
2236 struct list_head *phases[] = {
2237 &vm->active_list,
2238 &vm->inactive_list,
2239 &vm->unbound_list,
2240 NULL,
2241 }, **phase;
2243 GEM_BUG_ON(vm->closed);
2244 vm->closed = true;
2246 for (phase = phases; *phase; phase++) {
2247 struct i915_vma *vma, *vn;
2249 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2250 if (!i915_vma_is_closed(vma))
2251 i915_vma_close(vma);
2255 void i915_ppgtt_release(struct kref *kref)
2257 struct i915_hw_ppgtt *ppgtt =
2258 container_of(kref, struct i915_hw_ppgtt, ref);
2260 trace_i915_ppgtt_release(&ppgtt->base);
2262 /* vmas should already be unbound and destroyed */
2263 WARN_ON(!list_empty(&ppgtt->base.active_list));
2264 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2265 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2267 ppgtt->base.cleanup(&ppgtt->base);
2268 i915_address_space_fini(&ppgtt->base);
2269 kfree(ppgtt);
2272 /* Certain Gen5 chipsets require require idling the GPU before
2273 * unmapping anything from the GTT when VT-d is enabled.
2275 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2277 /* Query intel_iommu to see if we need the workaround. Presumably that
2278 * was loaded first.
2280 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2283 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2285 struct intel_engine_cs *engine;
2286 enum intel_engine_id id;
2287 u32 fault;
2289 for_each_engine(engine, dev_priv, id) {
2290 fault = I915_READ(RING_FAULT_REG(engine));
2291 if (fault & RING_FAULT_VALID) {
2292 DRM_DEBUG_DRIVER("Unexpected fault\n"
2293 "\tAddr: 0x%08lx\n"
2294 "\tAddress space: %s\n"
2295 "\tSource ID: %d\n"
2296 "\tType: %d\n",
2297 fault & PAGE_MASK,
2298 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2299 RING_FAULT_SRCID(fault),
2300 RING_FAULT_FAULT_TYPE(fault));
2301 I915_WRITE(RING_FAULT_REG(engine),
2302 fault & ~RING_FAULT_VALID);
2306 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2309 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2311 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2313 if (fault & RING_FAULT_VALID) {
2314 u32 fault_data0, fault_data1;
2315 u64 fault_addr;
2317 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2318 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2319 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2320 ((u64)fault_data0 << 12);
2322 DRM_DEBUG_DRIVER("Unexpected fault\n"
2323 "\tAddr: 0x%08x_%08x\n"
2324 "\tAddress space: %s\n"
2325 "\tEngine ID: %d\n"
2326 "\tSource ID: %d\n"
2327 "\tType: %d\n",
2328 upper_32_bits(fault_addr),
2329 lower_32_bits(fault_addr),
2330 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2331 GEN8_RING_FAULT_ENGINE_ID(fault),
2332 RING_FAULT_SRCID(fault),
2333 RING_FAULT_FAULT_TYPE(fault));
2334 I915_WRITE(GEN8_RING_FAULT_REG,
2335 fault & ~RING_FAULT_VALID);
2338 POSTING_READ(GEN8_RING_FAULT_REG);
2341 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2343 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2344 if (INTEL_GEN(dev_priv) >= 8)
2345 gen8_check_and_clear_faults(dev_priv);
2346 else if (INTEL_GEN(dev_priv) >= 6)
2347 gen6_check_and_clear_faults(dev_priv);
2348 else
2349 return;
2352 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2354 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2356 /* Don't bother messing with faults pre GEN6 as we have little
2357 * documentation supporting that it's a good idea.
2359 if (INTEL_GEN(dev_priv) < 6)
2360 return;
2362 i915_check_and_clear_faults(dev_priv);
2364 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2366 i915_ggtt_invalidate(dev_priv);
2369 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2370 struct sg_table *pages)
2372 do {
2373 if (dma_map_sg(&obj->base.dev->pdev->dev,
2374 pages->sgl, pages->nents,
2375 PCI_DMA_BIDIRECTIONAL))
2376 return 0;
2378 /* If the DMA remap fails, one cause can be that we have
2379 * too many objects pinned in a small remapping table,
2380 * such as swiotlb. Incrementally purge all other objects and
2381 * try again - if there are no more pages to remove from
2382 * the DMA remapper, i915_gem_shrink will return 0.
2384 GEM_BUG_ON(obj->mm.pages == pages);
2385 } while (i915_gem_shrink(to_i915(obj->base.dev),
2386 obj->base.size >> PAGE_SHIFT, NULL,
2387 I915_SHRINK_BOUND |
2388 I915_SHRINK_UNBOUND |
2389 I915_SHRINK_ACTIVE));
2391 return -ENOSPC;
2394 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2396 writeq(pte, addr);
2399 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2400 dma_addr_t addr,
2401 u64 offset,
2402 enum i915_cache_level level,
2403 u32 unused)
2405 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2406 gen8_pte_t __iomem *pte =
2407 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2409 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2411 ggtt->invalidate(vm->i915);
2414 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2415 struct i915_vma *vma,
2416 enum i915_cache_level level,
2417 u32 unused)
2419 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2420 struct sgt_iter sgt_iter;
2421 gen8_pte_t __iomem *gtt_entries;
2422 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2423 dma_addr_t addr;
2425 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2426 gtt_entries += vma->node.start >> PAGE_SHIFT;
2427 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2428 gen8_set_pte(gtt_entries++, pte_encode | addr);
2430 wmb();
2432 /* This next bit makes the above posting read even more important. We
2433 * want to flush the TLBs only after we're certain all the PTE updates
2434 * have finished.
2436 ggtt->invalidate(vm->i915);
2439 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2440 dma_addr_t addr,
2441 u64 offset,
2442 enum i915_cache_level level,
2443 u32 flags)
2445 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2446 gen6_pte_t __iomem *pte =
2447 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2449 iowrite32(vm->pte_encode(addr, level, flags), pte);
2451 ggtt->invalidate(vm->i915);
2455 * Binds an object into the global gtt with the specified cache level. The object
2456 * will be accessible to the GPU via commands whose operands reference offsets
2457 * within the global GTT as well as accessible by the GPU through the GMADR
2458 * mapped BAR (dev_priv->mm.gtt->gtt).
2460 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2461 struct i915_vma *vma,
2462 enum i915_cache_level level,
2463 u32 flags)
2465 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2467 unsigned int i = vma->node.start >> PAGE_SHIFT;
2468 struct sgt_iter iter;
2469 dma_addr_t addr;
2470 for_each_sgt_dma(addr, iter, vma->pages)
2471 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2472 wmb();
2474 /* This next bit makes the above posting read even more important. We
2475 * want to flush the TLBs only after we're certain all the PTE updates
2476 * have finished.
2478 ggtt->invalidate(vm->i915);
2481 static void nop_clear_range(struct i915_address_space *vm,
2482 u64 start, u64 length)
2486 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2487 u64 start, u64 length)
2489 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2490 unsigned first_entry = start >> PAGE_SHIFT;
2491 unsigned num_entries = length >> PAGE_SHIFT;
2492 const gen8_pte_t scratch_pte =
2493 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2494 gen8_pte_t __iomem *gtt_base =
2495 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2496 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2497 int i;
2499 if (WARN(num_entries > max_entries,
2500 "First entry = %d; Num entries = %d (max=%d)\n",
2501 first_entry, num_entries, max_entries))
2502 num_entries = max_entries;
2504 for (i = 0; i < num_entries; i++)
2505 gen8_set_pte(&gtt_base[i], scratch_pte);
2508 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2510 struct drm_i915_private *dev_priv = vm->i915;
2513 * Make sure the internal GAM fifo has been cleared of all GTT
2514 * writes before exiting stop_machine(). This guarantees that
2515 * any aperture accesses waiting to start in another process
2516 * cannot back up behind the GTT writes causing a hang.
2517 * The register can be any arbitrary GAM register.
2519 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2522 struct insert_page {
2523 struct i915_address_space *vm;
2524 dma_addr_t addr;
2525 u64 offset;
2526 enum i915_cache_level level;
2529 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2531 struct insert_page *arg = _arg;
2533 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2534 bxt_vtd_ggtt_wa(arg->vm);
2536 return 0;
2539 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2540 dma_addr_t addr,
2541 u64 offset,
2542 enum i915_cache_level level,
2543 u32 unused)
2545 struct insert_page arg = { vm, addr, offset, level };
2547 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2550 struct insert_entries {
2551 struct i915_address_space *vm;
2552 struct i915_vma *vma;
2553 enum i915_cache_level level;
2556 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2558 struct insert_entries *arg = _arg;
2560 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2561 bxt_vtd_ggtt_wa(arg->vm);
2563 return 0;
2566 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2567 struct i915_vma *vma,
2568 enum i915_cache_level level,
2569 u32 unused)
2571 struct insert_entries arg = { vm, vma, level };
2573 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2576 struct clear_range {
2577 struct i915_address_space *vm;
2578 u64 start;
2579 u64 length;
2582 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2584 struct clear_range *arg = _arg;
2586 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2587 bxt_vtd_ggtt_wa(arg->vm);
2589 return 0;
2592 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2593 u64 start,
2594 u64 length)
2596 struct clear_range arg = { vm, start, length };
2598 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2601 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2602 u64 start, u64 length)
2604 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2605 unsigned first_entry = start >> PAGE_SHIFT;
2606 unsigned num_entries = length >> PAGE_SHIFT;
2607 gen6_pte_t scratch_pte, __iomem *gtt_base =
2608 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2609 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2610 int i;
2612 if (WARN(num_entries > max_entries,
2613 "First entry = %d; Num entries = %d (max=%d)\n",
2614 first_entry, num_entries, max_entries))
2615 num_entries = max_entries;
2617 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2618 I915_CACHE_LLC, 0);
2620 for (i = 0; i < num_entries; i++)
2621 iowrite32(scratch_pte, &gtt_base[i]);
2624 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2625 dma_addr_t addr,
2626 u64 offset,
2627 enum i915_cache_level cache_level,
2628 u32 unused)
2630 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2631 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2633 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2636 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2637 struct i915_vma *vma,
2638 enum i915_cache_level cache_level,
2639 u32 unused)
2641 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2642 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2644 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2645 flags);
2648 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2649 u64 start, u64 length)
2651 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2654 static int ggtt_bind_vma(struct i915_vma *vma,
2655 enum i915_cache_level cache_level,
2656 u32 flags)
2658 struct drm_i915_private *i915 = vma->vm->i915;
2659 struct drm_i915_gem_object *obj = vma->obj;
2660 u32 pte_flags;
2662 /* Currently applicable only to VLV */
2663 pte_flags = 0;
2664 if (obj->gt_ro)
2665 pte_flags |= PTE_READ_ONLY;
2667 intel_runtime_pm_get(i915);
2668 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2669 intel_runtime_pm_put(i915);
2671 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2674 * Without aliasing PPGTT there's no difference between
2675 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2676 * upgrade to both bound if we bind either to avoid double-binding.
2678 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2680 return 0;
2683 static void ggtt_unbind_vma(struct i915_vma *vma)
2685 struct drm_i915_private *i915 = vma->vm->i915;
2687 intel_runtime_pm_get(i915);
2688 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2689 intel_runtime_pm_put(i915);
2692 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2693 enum i915_cache_level cache_level,
2694 u32 flags)
2696 struct drm_i915_private *i915 = vma->vm->i915;
2697 u32 pte_flags;
2698 int ret;
2700 /* Currently applicable only to VLV */
2701 pte_flags = 0;
2702 if (vma->obj->gt_ro)
2703 pte_flags |= PTE_READ_ONLY;
2705 if (flags & I915_VMA_LOCAL_BIND) {
2706 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2708 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2709 appgtt->base.allocate_va_range) {
2710 ret = appgtt->base.allocate_va_range(&appgtt->base,
2711 vma->node.start,
2712 vma->size);
2713 if (ret)
2714 return ret;
2717 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2718 pte_flags);
2721 if (flags & I915_VMA_GLOBAL_BIND) {
2722 intel_runtime_pm_get(i915);
2723 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2724 intel_runtime_pm_put(i915);
2727 return 0;
2730 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2732 struct drm_i915_private *i915 = vma->vm->i915;
2734 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2735 intel_runtime_pm_get(i915);
2736 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2737 intel_runtime_pm_put(i915);
2740 if (vma->flags & I915_VMA_LOCAL_BIND) {
2741 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2743 vm->clear_range(vm, vma->node.start, vma->size);
2747 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2748 struct sg_table *pages)
2750 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2751 struct device *kdev = &dev_priv->drm.pdev->dev;
2752 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2754 if (unlikely(ggtt->do_idle_maps)) {
2755 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2756 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2757 /* Wait a bit, in hopes it avoids the hang */
2758 udelay(10);
2762 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2765 static int ggtt_set_pages(struct i915_vma *vma)
2767 int ret;
2769 GEM_BUG_ON(vma->pages);
2771 ret = i915_get_ggtt_vma_pages(vma);
2772 if (ret)
2773 return ret;
2775 vma->page_sizes = vma->obj->mm.page_sizes;
2777 return 0;
2780 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2781 unsigned long color,
2782 u64 *start,
2783 u64 *end)
2785 if (node->allocated && node->color != color)
2786 *start += I915_GTT_PAGE_SIZE;
2788 /* Also leave a space between the unallocated reserved node after the
2789 * GTT and any objects within the GTT, i.e. we use the color adjustment
2790 * to insert a guard page to prevent prefetches crossing over the
2791 * GTT boundary.
2793 node = list_next_entry(node, node_list);
2794 if (node->color != color)
2795 *end -= I915_GTT_PAGE_SIZE;
2798 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2800 struct i915_ggtt *ggtt = &i915->ggtt;
2801 struct i915_hw_ppgtt *ppgtt;
2802 int err;
2804 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2805 if (IS_ERR(ppgtt))
2806 return PTR_ERR(ppgtt);
2808 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2809 err = -ENODEV;
2810 goto err_ppgtt;
2813 if (ppgtt->base.allocate_va_range) {
2814 /* Note we only pre-allocate as far as the end of the global
2815 * GTT. On 48b / 4-level page-tables, the difference is very,
2816 * very significant! We have to preallocate as GVT/vgpu does
2817 * not like the page directory disappearing.
2819 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2820 0, ggtt->base.total);
2821 if (err)
2822 goto err_ppgtt;
2825 i915->mm.aliasing_ppgtt = ppgtt;
2827 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2828 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2830 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2831 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2833 return 0;
2835 err_ppgtt:
2836 i915_ppgtt_put(ppgtt);
2837 return err;
2840 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2842 struct i915_ggtt *ggtt = &i915->ggtt;
2843 struct i915_hw_ppgtt *ppgtt;
2845 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2846 if (!ppgtt)
2847 return;
2849 i915_ppgtt_put(ppgtt);
2851 ggtt->base.bind_vma = ggtt_bind_vma;
2852 ggtt->base.unbind_vma = ggtt_unbind_vma;
2855 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2857 /* Let GEM Manage all of the aperture.
2859 * However, leave one page at the end still bound to the scratch page.
2860 * There are a number of places where the hardware apparently prefetches
2861 * past the end of the object, and we've seen multiple hangs with the
2862 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2863 * aperture. One page should be enough to keep any prefetching inside
2864 * of the aperture.
2866 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2867 unsigned long hole_start, hole_end;
2868 struct drm_mm_node *entry;
2869 int ret;
2871 ret = intel_vgt_balloon(dev_priv);
2872 if (ret)
2873 return ret;
2875 /* Reserve a mappable slot for our lockless error capture */
2876 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2877 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2878 0, ggtt->mappable_end,
2879 DRM_MM_INSERT_LOW);
2880 if (ret)
2881 return ret;
2883 /* Clear any non-preallocated blocks */
2884 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2885 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2886 hole_start, hole_end);
2887 ggtt->base.clear_range(&ggtt->base, hole_start,
2888 hole_end - hole_start);
2891 /* And finally clear the reserved guard page */
2892 ggtt->base.clear_range(&ggtt->base,
2893 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2895 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2896 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2897 if (ret)
2898 goto err;
2901 return 0;
2903 err:
2904 drm_mm_remove_node(&ggtt->error_capture);
2905 return ret;
2909 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2910 * @dev_priv: i915 device
2912 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2914 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2915 struct i915_vma *vma, *vn;
2916 struct pagevec *pvec;
2918 ggtt->base.closed = true;
2920 mutex_lock(&dev_priv->drm.struct_mutex);
2921 WARN_ON(!list_empty(&ggtt->base.active_list));
2922 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2923 WARN_ON(i915_vma_unbind(vma));
2924 mutex_unlock(&dev_priv->drm.struct_mutex);
2926 i915_gem_cleanup_stolen(&dev_priv->drm);
2928 mutex_lock(&dev_priv->drm.struct_mutex);
2929 i915_gem_fini_aliasing_ppgtt(dev_priv);
2931 if (drm_mm_node_allocated(&ggtt->error_capture))
2932 drm_mm_remove_node(&ggtt->error_capture);
2934 if (drm_mm_initialized(&ggtt->base.mm)) {
2935 intel_vgt_deballoon(dev_priv);
2936 i915_address_space_fini(&ggtt->base);
2939 ggtt->base.cleanup(&ggtt->base);
2941 pvec = &dev_priv->mm.wc_stash;
2942 if (pvec->nr) {
2943 set_pages_array_wb(pvec->pages, pvec->nr);
2944 __pagevec_release(pvec);
2947 mutex_unlock(&dev_priv->drm.struct_mutex);
2949 arch_phys_wc_del(ggtt->mtrr);
2950 io_mapping_fini(&ggtt->iomap);
2953 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2955 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2956 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2957 return snb_gmch_ctl << 20;
2960 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2962 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2963 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2964 if (bdw_gmch_ctl)
2965 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2967 #ifdef CONFIG_X86_32
2968 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2969 if (bdw_gmch_ctl > 4)
2970 bdw_gmch_ctl = 4;
2971 #endif
2973 return bdw_gmch_ctl << 20;
2976 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2978 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2979 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2981 if (gmch_ctrl)
2982 return 1 << (20 + gmch_ctrl);
2984 return 0;
2987 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2989 struct drm_i915_private *dev_priv = ggtt->base.i915;
2990 struct pci_dev *pdev = dev_priv->drm.pdev;
2991 phys_addr_t phys_addr;
2992 int ret;
2994 /* For Modern GENs the PTEs and register space are split in the BAR */
2995 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2998 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2999 * will be dropped. For WC mappings in general we have 64 byte burst
3000 * writes when the WC buffer is flushed, so we can't use it, but have to
3001 * resort to an uncached mapping. The WC issue is easily caught by the
3002 * readback check when writing GTT PTE entries.
3004 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3005 ggtt->gsm = ioremap_nocache(phys_addr, size);
3006 else
3007 ggtt->gsm = ioremap_wc(phys_addr, size);
3008 if (!ggtt->gsm) {
3009 DRM_ERROR("Failed to map the ggtt page table\n");
3010 return -ENOMEM;
3013 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3014 if (ret) {
3015 DRM_ERROR("Scratch setup failed\n");
3016 /* iounmap will also get called at remove, but meh */
3017 iounmap(ggtt->gsm);
3018 return ret;
3021 return 0;
3024 static struct intel_ppat_entry *
3025 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3027 struct intel_ppat_entry *entry = &ppat->entries[index];
3029 GEM_BUG_ON(index >= ppat->max_entries);
3030 GEM_BUG_ON(test_bit(index, ppat->used));
3032 entry->ppat = ppat;
3033 entry->value = value;
3034 kref_init(&entry->ref);
3035 set_bit(index, ppat->used);
3036 set_bit(index, ppat->dirty);
3038 return entry;
3041 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3043 struct intel_ppat *ppat = entry->ppat;
3044 unsigned int index = entry - ppat->entries;
3046 GEM_BUG_ON(index >= ppat->max_entries);
3047 GEM_BUG_ON(!test_bit(index, ppat->used));
3049 entry->value = ppat->clear_value;
3050 clear_bit(index, ppat->used);
3051 set_bit(index, ppat->dirty);
3055 * intel_ppat_get - get a usable PPAT entry
3056 * @i915: i915 device instance
3057 * @value: the PPAT value required by the caller
3059 * The function tries to search if there is an existing PPAT entry which
3060 * matches with the required value. If perfectly matched, the existing PPAT
3061 * entry will be used. If only partially matched, it will try to check if
3062 * there is any available PPAT index. If yes, it will allocate a new PPAT
3063 * index for the required entry and update the HW. If not, the partially
3064 * matched entry will be used.
3066 const struct intel_ppat_entry *
3067 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3069 struct intel_ppat *ppat = &i915->ppat;
3070 struct intel_ppat_entry *entry = NULL;
3071 unsigned int scanned, best_score;
3072 int i;
3074 GEM_BUG_ON(!ppat->max_entries);
3076 scanned = best_score = 0;
3077 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3078 unsigned int score;
3080 score = ppat->match(ppat->entries[i].value, value);
3081 if (score > best_score) {
3082 entry = &ppat->entries[i];
3083 if (score == INTEL_PPAT_PERFECT_MATCH) {
3084 kref_get(&entry->ref);
3085 return entry;
3087 best_score = score;
3089 scanned++;
3092 if (scanned == ppat->max_entries) {
3093 if (!entry)
3094 return ERR_PTR(-ENOSPC);
3096 kref_get(&entry->ref);
3097 return entry;
3100 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3101 entry = __alloc_ppat_entry(ppat, i, value);
3102 ppat->update_hw(i915);
3103 return entry;
3106 static void release_ppat(struct kref *kref)
3108 struct intel_ppat_entry *entry =
3109 container_of(kref, struct intel_ppat_entry, ref);
3110 struct drm_i915_private *i915 = entry->ppat->i915;
3112 __free_ppat_entry(entry);
3113 entry->ppat->update_hw(i915);
3117 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3118 * @entry: an intel PPAT entry
3120 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3121 * entry is dynamically allocated, its reference count will be decreased. Once
3122 * the reference count becomes into zero, the PPAT index becomes free again.
3124 void intel_ppat_put(const struct intel_ppat_entry *entry)
3126 struct intel_ppat *ppat = entry->ppat;
3127 unsigned int index = entry - ppat->entries;
3129 GEM_BUG_ON(!ppat->max_entries);
3131 kref_put(&ppat->entries[index].ref, release_ppat);
3134 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3136 struct intel_ppat *ppat = &dev_priv->ppat;
3137 int i;
3139 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3140 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3141 clear_bit(i, ppat->dirty);
3145 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3147 struct intel_ppat *ppat = &dev_priv->ppat;
3148 u64 pat = 0;
3149 int i;
3151 for (i = 0; i < ppat->max_entries; i++)
3152 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3154 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3156 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3157 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3160 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3162 unsigned int score = 0;
3163 enum {
3164 AGE_MATCH = BIT(0),
3165 TC_MATCH = BIT(1),
3166 CA_MATCH = BIT(2),
3169 /* Cache attribute has to be matched. */
3170 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3171 return 0;
3173 score |= CA_MATCH;
3175 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3176 score |= TC_MATCH;
3178 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3179 score |= AGE_MATCH;
3181 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3182 return INTEL_PPAT_PERFECT_MATCH;
3184 return score;
3187 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3189 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3190 INTEL_PPAT_PERFECT_MATCH : 0;
3193 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3195 ppat->max_entries = 8;
3196 ppat->update_hw = cnl_private_pat_update_hw;
3197 ppat->match = bdw_private_pat_match;
3198 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3200 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3201 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3202 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3203 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3204 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3205 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3206 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3207 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3210 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3211 * bits. When using advanced contexts each context stores its own PAT, but
3212 * writing this data shouldn't be harmful even in those cases. */
3213 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3215 ppat->max_entries = 8;
3216 ppat->update_hw = bdw_private_pat_update_hw;
3217 ppat->match = bdw_private_pat_match;
3218 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3220 if (!USES_PPGTT(ppat->i915)) {
3221 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3222 * so RTL will always use the value corresponding to
3223 * pat_sel = 000".
3224 * So let's disable cache for GGTT to avoid screen corruptions.
3225 * MOCS still can be used though.
3226 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3227 * before this patch, i.e. the same uncached + snooping access
3228 * like on gen6/7 seems to be in effect.
3229 * - So this just fixes blitter/render access. Again it looks
3230 * like it's not just uncached access, but uncached + snooping.
3231 * So we can still hold onto all our assumptions wrt cpu
3232 * clflushing on LLC machines.
3234 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3235 return;
3238 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3239 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3240 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3241 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3242 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3243 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3244 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3245 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3248 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3250 ppat->max_entries = 8;
3251 ppat->update_hw = bdw_private_pat_update_hw;
3252 ppat->match = chv_private_pat_match;
3253 ppat->clear_value = CHV_PPAT_SNOOP;
3256 * Map WB on BDW to snooped on CHV.
3258 * Only the snoop bit has meaning for CHV, the rest is
3259 * ignored.
3261 * The hardware will never snoop for certain types of accesses:
3262 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3263 * - PPGTT page tables
3264 * - some other special cycles
3266 * As with BDW, we also need to consider the following for GT accesses:
3267 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3268 * so RTL will always use the value corresponding to
3269 * pat_sel = 000".
3270 * Which means we must set the snoop bit in PAT entry 0
3271 * in order to keep the global status page working.
3274 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3275 __alloc_ppat_entry(ppat, 1, 0);
3276 __alloc_ppat_entry(ppat, 2, 0);
3277 __alloc_ppat_entry(ppat, 3, 0);
3278 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3279 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3280 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3281 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3284 static void gen6_gmch_remove(struct i915_address_space *vm)
3286 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3288 iounmap(ggtt->gsm);
3289 cleanup_scratch_page(vm);
3292 static void setup_private_pat(struct drm_i915_private *dev_priv)
3294 struct intel_ppat *ppat = &dev_priv->ppat;
3295 int i;
3297 ppat->i915 = dev_priv;
3299 if (INTEL_GEN(dev_priv) >= 10)
3300 cnl_setup_private_ppat(ppat);
3301 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3302 chv_setup_private_ppat(ppat);
3303 else
3304 bdw_setup_private_ppat(ppat);
3306 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3308 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3309 ppat->entries[i].value = ppat->clear_value;
3310 ppat->entries[i].ppat = ppat;
3311 set_bit(i, ppat->dirty);
3314 ppat->update_hw(dev_priv);
3317 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3319 struct drm_i915_private *dev_priv = ggtt->base.i915;
3320 struct pci_dev *pdev = dev_priv->drm.pdev;
3321 unsigned int size;
3322 u16 snb_gmch_ctl;
3323 int err;
3325 /* TODO: We're not aware of mappable constraints on gen8 yet */
3326 ggtt->gmadr =
3327 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3328 pci_resource_len(pdev, 2));
3329 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3331 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3332 if (!err)
3333 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3334 if (err)
3335 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3337 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3339 if (INTEL_GEN(dev_priv) >= 9) {
3340 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3341 } else if (IS_CHERRYVIEW(dev_priv)) {
3342 size = chv_get_total_gtt_size(snb_gmch_ctl);
3343 } else {
3344 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3347 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3348 ggtt->base.cleanup = gen6_gmch_remove;
3349 ggtt->base.bind_vma = ggtt_bind_vma;
3350 ggtt->base.unbind_vma = ggtt_unbind_vma;
3351 ggtt->base.set_pages = ggtt_set_pages;
3352 ggtt->base.clear_pages = clear_pages;
3353 ggtt->base.insert_page = gen8_ggtt_insert_page;
3354 ggtt->base.clear_range = nop_clear_range;
3355 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3356 ggtt->base.clear_range = gen8_ggtt_clear_range;
3358 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3360 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3361 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3362 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3363 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3364 if (ggtt->base.clear_range != nop_clear_range)
3365 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3368 ggtt->invalidate = gen6_ggtt_invalidate;
3370 setup_private_pat(dev_priv);
3372 return ggtt_probe_common(ggtt, size);
3375 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3377 struct drm_i915_private *dev_priv = ggtt->base.i915;
3378 struct pci_dev *pdev = dev_priv->drm.pdev;
3379 unsigned int size;
3380 u16 snb_gmch_ctl;
3381 int err;
3383 ggtt->gmadr =
3384 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3385 pci_resource_len(pdev, 2));
3386 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3388 /* 64/512MB is the current min/max we actually know of, but this is just
3389 * a coarse sanity check.
3391 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3392 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3393 return -ENXIO;
3396 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3397 if (!err)
3398 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3399 if (err)
3400 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3401 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3403 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3404 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3406 ggtt->base.clear_range = gen6_ggtt_clear_range;
3407 ggtt->base.insert_page = gen6_ggtt_insert_page;
3408 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3409 ggtt->base.bind_vma = ggtt_bind_vma;
3410 ggtt->base.unbind_vma = ggtt_unbind_vma;
3411 ggtt->base.set_pages = ggtt_set_pages;
3412 ggtt->base.clear_pages = clear_pages;
3413 ggtt->base.cleanup = gen6_gmch_remove;
3415 ggtt->invalidate = gen6_ggtt_invalidate;
3417 if (HAS_EDRAM(dev_priv))
3418 ggtt->base.pte_encode = iris_pte_encode;
3419 else if (IS_HASWELL(dev_priv))
3420 ggtt->base.pte_encode = hsw_pte_encode;
3421 else if (IS_VALLEYVIEW(dev_priv))
3422 ggtt->base.pte_encode = byt_pte_encode;
3423 else if (INTEL_GEN(dev_priv) >= 7)
3424 ggtt->base.pte_encode = ivb_pte_encode;
3425 else
3426 ggtt->base.pte_encode = snb_pte_encode;
3428 return ggtt_probe_common(ggtt, size);
3431 static void i915_gmch_remove(struct i915_address_space *vm)
3433 intel_gmch_remove();
3436 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3438 struct drm_i915_private *dev_priv = ggtt->base.i915;
3439 phys_addr_t gmadr_base;
3440 int ret;
3442 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3443 if (!ret) {
3444 DRM_ERROR("failed to set up gmch\n");
3445 return -EIO;
3448 intel_gtt_get(&ggtt->base.total,
3449 &gmadr_base,
3450 &ggtt->mappable_end);
3452 ggtt->gmadr =
3453 (struct resource) DEFINE_RES_MEM(gmadr_base,
3454 ggtt->mappable_end);
3456 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3457 ggtt->base.insert_page = i915_ggtt_insert_page;
3458 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3459 ggtt->base.clear_range = i915_ggtt_clear_range;
3460 ggtt->base.bind_vma = ggtt_bind_vma;
3461 ggtt->base.unbind_vma = ggtt_unbind_vma;
3462 ggtt->base.set_pages = ggtt_set_pages;
3463 ggtt->base.clear_pages = clear_pages;
3464 ggtt->base.cleanup = i915_gmch_remove;
3466 ggtt->invalidate = gmch_ggtt_invalidate;
3468 if (unlikely(ggtt->do_idle_maps))
3469 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3471 return 0;
3475 * i915_ggtt_probe_hw - Probe GGTT hardware location
3476 * @dev_priv: i915 device
3478 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3480 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3481 int ret;
3483 ggtt->base.i915 = dev_priv;
3484 ggtt->base.dma = &dev_priv->drm.pdev->dev;
3486 if (INTEL_GEN(dev_priv) <= 5)
3487 ret = i915_gmch_probe(ggtt);
3488 else if (INTEL_GEN(dev_priv) < 8)
3489 ret = gen6_gmch_probe(ggtt);
3490 else
3491 ret = gen8_gmch_probe(ggtt);
3492 if (ret)
3493 return ret;
3495 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3496 * This is easier than doing range restriction on the fly, as we
3497 * currently don't have any bits spare to pass in this upper
3498 * restriction!
3500 if (USES_GUC(dev_priv)) {
3501 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3502 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3505 if ((ggtt->base.total - 1) >> 32) {
3506 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3507 " of address space! Found %lldM!\n",
3508 ggtt->base.total >> 20);
3509 ggtt->base.total = 1ULL << 32;
3510 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3513 if (ggtt->mappable_end > ggtt->base.total) {
3514 DRM_ERROR("mappable aperture extends past end of GGTT,"
3515 " aperture=%pa, total=%llx\n",
3516 &ggtt->mappable_end, ggtt->base.total);
3517 ggtt->mappable_end = ggtt->base.total;
3520 /* GMADR is the PCI mmio aperture into the global GTT. */
3521 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3522 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3523 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3524 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3525 if (intel_vtd_active())
3526 DRM_INFO("VT-d active for gfx access\n");
3528 return 0;
3532 * i915_ggtt_init_hw - Initialize GGTT hardware
3533 * @dev_priv: i915 device
3535 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3537 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3538 int ret;
3540 INIT_LIST_HEAD(&dev_priv->vm_list);
3542 /* Note that we use page colouring to enforce a guard page at the
3543 * end of the address space. This is required as the CS may prefetch
3544 * beyond the end of the batch buffer, across the page boundary,
3545 * and beyond the end of the GTT if we do not provide a guard.
3547 mutex_lock(&dev_priv->drm.struct_mutex);
3548 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3549 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3550 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3551 mutex_unlock(&dev_priv->drm.struct_mutex);
3553 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3554 dev_priv->ggtt.gmadr.start,
3555 dev_priv->ggtt.mappable_end)) {
3556 ret = -EIO;
3557 goto out_gtt_cleanup;
3560 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3563 * Initialise stolen early so that we may reserve preallocated
3564 * objects for the BIOS to KMS transition.
3566 ret = i915_gem_init_stolen(dev_priv);
3567 if (ret)
3568 goto out_gtt_cleanup;
3570 return 0;
3572 out_gtt_cleanup:
3573 ggtt->base.cleanup(&ggtt->base);
3574 return ret;
3577 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3579 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3580 return -EIO;
3582 return 0;
3585 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3587 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3589 i915->ggtt.invalidate = guc_ggtt_invalidate;
3591 i915_ggtt_invalidate(i915);
3594 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3596 /* We should only be called after i915_ggtt_enable_guc() */
3597 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3599 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3601 i915_ggtt_invalidate(i915);
3604 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3606 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3607 struct drm_i915_gem_object *obj, *on;
3609 i915_check_and_clear_faults(dev_priv);
3611 /* First fill our portion of the GTT with scratch pages */
3612 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3614 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3616 /* clflush objects bound into the GGTT and rebind them. */
3617 list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3618 bool ggtt_bound = false;
3619 struct i915_vma *vma;
3621 for_each_ggtt_vma(vma, obj) {
3622 if (!i915_vma_unbind(vma))
3623 continue;
3625 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3626 PIN_UPDATE));
3627 ggtt_bound = true;
3630 if (ggtt_bound)
3631 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3634 ggtt->base.closed = false;
3636 if (INTEL_GEN(dev_priv) >= 8) {
3637 struct intel_ppat *ppat = &dev_priv->ppat;
3639 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3640 dev_priv->ppat.update_hw(dev_priv);
3641 return;
3644 if (USES_PPGTT(dev_priv)) {
3645 struct i915_address_space *vm;
3647 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3648 struct i915_hw_ppgtt *ppgtt;
3650 if (i915_is_ggtt(vm))
3651 ppgtt = dev_priv->mm.aliasing_ppgtt;
3652 else
3653 ppgtt = i915_vm_to_ppgtt(vm);
3655 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3659 i915_ggtt_invalidate(dev_priv);
3662 static struct scatterlist *
3663 rotate_pages(const dma_addr_t *in, unsigned int offset,
3664 unsigned int width, unsigned int height,
3665 unsigned int stride,
3666 struct sg_table *st, struct scatterlist *sg)
3668 unsigned int column, row;
3669 unsigned int src_idx;
3671 for (column = 0; column < width; column++) {
3672 src_idx = stride * (height - 1) + column;
3673 for (row = 0; row < height; row++) {
3674 st->nents++;
3675 /* We don't need the pages, but need to initialize
3676 * the entries so the sg list can be happily traversed.
3677 * The only thing we need are DMA addresses.
3679 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3680 sg_dma_address(sg) = in[offset + src_idx];
3681 sg_dma_len(sg) = PAGE_SIZE;
3682 sg = sg_next(sg);
3683 src_idx -= stride;
3687 return sg;
3690 static noinline struct sg_table *
3691 intel_rotate_pages(struct intel_rotation_info *rot_info,
3692 struct drm_i915_gem_object *obj)
3694 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3695 unsigned int size = intel_rotation_info_size(rot_info);
3696 struct sgt_iter sgt_iter;
3697 dma_addr_t dma_addr;
3698 unsigned long i;
3699 dma_addr_t *page_addr_list;
3700 struct sg_table *st;
3701 struct scatterlist *sg;
3702 int ret = -ENOMEM;
3704 /* Allocate a temporary list of source pages for random access. */
3705 page_addr_list = kvmalloc_array(n_pages,
3706 sizeof(dma_addr_t),
3707 GFP_KERNEL);
3708 if (!page_addr_list)
3709 return ERR_PTR(ret);
3711 /* Allocate target SG list. */
3712 st = kmalloc(sizeof(*st), GFP_KERNEL);
3713 if (!st)
3714 goto err_st_alloc;
3716 ret = sg_alloc_table(st, size, GFP_KERNEL);
3717 if (ret)
3718 goto err_sg_alloc;
3720 /* Populate source page list from the object. */
3721 i = 0;
3722 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3723 page_addr_list[i++] = dma_addr;
3725 GEM_BUG_ON(i != n_pages);
3726 st->nents = 0;
3727 sg = st->sgl;
3729 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3730 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3731 rot_info->plane[i].width, rot_info->plane[i].height,
3732 rot_info->plane[i].stride, st, sg);
3735 kvfree(page_addr_list);
3737 return st;
3739 err_sg_alloc:
3740 kfree(st);
3741 err_st_alloc:
3742 kvfree(page_addr_list);
3744 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3745 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3747 return ERR_PTR(ret);
3750 static noinline struct sg_table *
3751 intel_partial_pages(const struct i915_ggtt_view *view,
3752 struct drm_i915_gem_object *obj)
3754 struct sg_table *st;
3755 struct scatterlist *sg, *iter;
3756 unsigned int count = view->partial.size;
3757 unsigned int offset;
3758 int ret = -ENOMEM;
3760 st = kmalloc(sizeof(*st), GFP_KERNEL);
3761 if (!st)
3762 goto err_st_alloc;
3764 ret = sg_alloc_table(st, count, GFP_KERNEL);
3765 if (ret)
3766 goto err_sg_alloc;
3768 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3769 GEM_BUG_ON(!iter);
3771 sg = st->sgl;
3772 st->nents = 0;
3773 do {
3774 unsigned int len;
3776 len = min(iter->length - (offset << PAGE_SHIFT),
3777 count << PAGE_SHIFT);
3778 sg_set_page(sg, NULL, len, 0);
3779 sg_dma_address(sg) =
3780 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3781 sg_dma_len(sg) = len;
3783 st->nents++;
3784 count -= len >> PAGE_SHIFT;
3785 if (count == 0) {
3786 sg_mark_end(sg);
3787 return st;
3790 sg = __sg_next(sg);
3791 iter = __sg_next(iter);
3792 offset = 0;
3793 } while (1);
3795 err_sg_alloc:
3796 kfree(st);
3797 err_st_alloc:
3798 return ERR_PTR(ret);
3801 static int
3802 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3804 int ret;
3806 /* The vma->pages are only valid within the lifespan of the borrowed
3807 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3808 * must be the vma->pages. A simple rule is that vma->pages must only
3809 * be accessed when the obj->mm.pages are pinned.
3811 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3813 switch (vma->ggtt_view.type) {
3814 case I915_GGTT_VIEW_NORMAL:
3815 vma->pages = vma->obj->mm.pages;
3816 return 0;
3818 case I915_GGTT_VIEW_ROTATED:
3819 vma->pages =
3820 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3821 break;
3823 case I915_GGTT_VIEW_PARTIAL:
3824 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3825 break;
3827 default:
3828 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3829 vma->ggtt_view.type);
3830 return -EINVAL;
3833 ret = 0;
3834 if (unlikely(IS_ERR(vma->pages))) {
3835 ret = PTR_ERR(vma->pages);
3836 vma->pages = NULL;
3837 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3838 vma->ggtt_view.type, ret);
3840 return ret;
3844 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3845 * @vm: the &struct i915_address_space
3846 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3847 * @size: how much space to allocate inside the GTT,
3848 * must be #I915_GTT_PAGE_SIZE aligned
3849 * @offset: where to insert inside the GTT,
3850 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3851 * (@offset + @size) must fit within the address space
3852 * @color: color to apply to node, if this node is not from a VMA,
3853 * color must be #I915_COLOR_UNEVICTABLE
3854 * @flags: control search and eviction behaviour
3856 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3857 * the address space (using @size and @color). If the @node does not fit, it
3858 * tries to evict any overlapping nodes from the GTT, including any
3859 * neighbouring nodes if the colors do not match (to ensure guard pages between
3860 * differing domains). See i915_gem_evict_for_node() for the gory details
3861 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3862 * evicting active overlapping objects, and any overlapping node that is pinned
3863 * or marked as unevictable will also result in failure.
3865 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3866 * asked to wait for eviction and interrupted.
3868 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3869 struct drm_mm_node *node,
3870 u64 size, u64 offset, unsigned long color,
3871 unsigned int flags)
3873 int err;
3875 GEM_BUG_ON(!size);
3876 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3877 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3878 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3879 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3880 GEM_BUG_ON(drm_mm_node_allocated(node));
3882 node->size = size;
3883 node->start = offset;
3884 node->color = color;
3886 err = drm_mm_reserve_node(&vm->mm, node);
3887 if (err != -ENOSPC)
3888 return err;
3890 if (flags & PIN_NOEVICT)
3891 return -ENOSPC;
3893 err = i915_gem_evict_for_node(vm, node, flags);
3894 if (err == 0)
3895 err = drm_mm_reserve_node(&vm->mm, node);
3897 return err;
3900 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3902 u64 range, addr;
3904 GEM_BUG_ON(range_overflows(start, len, end));
3905 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3907 range = round_down(end - len, align) - round_up(start, align);
3908 if (range) {
3909 if (sizeof(unsigned long) == sizeof(u64)) {
3910 addr = get_random_long();
3911 } else {
3912 addr = get_random_int();
3913 if (range > U32_MAX) {
3914 addr <<= 32;
3915 addr |= get_random_int();
3918 div64_u64_rem(addr, range, &addr);
3919 start += addr;
3922 return round_up(start, align);
3926 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3927 * @vm: the &struct i915_address_space
3928 * @node: the &struct drm_mm_node (typically i915_vma.node)
3929 * @size: how much space to allocate inside the GTT,
3930 * must be #I915_GTT_PAGE_SIZE aligned
3931 * @alignment: required alignment of starting offset, may be 0 but
3932 * if specified, this must be a power-of-two and at least
3933 * #I915_GTT_MIN_ALIGNMENT
3934 * @color: color to apply to node
3935 * @start: start of any range restriction inside GTT (0 for all),
3936 * must be #I915_GTT_PAGE_SIZE aligned
3937 * @end: end of any range restriction inside GTT (U64_MAX for all),
3938 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3939 * @flags: control search and eviction behaviour
3941 * i915_gem_gtt_insert() first searches for an available hole into which
3942 * is can insert the node. The hole address is aligned to @alignment and
3943 * its @size must then fit entirely within the [@start, @end] bounds. The
3944 * nodes on either side of the hole must match @color, or else a guard page
3945 * will be inserted between the two nodes (or the node evicted). If no
3946 * suitable hole is found, first a victim is randomly selected and tested
3947 * for eviction, otherwise then the LRU list of objects within the GTT
3948 * is scanned to find the first set of replacement nodes to create the hole.
3949 * Those old overlapping nodes are evicted from the GTT (and so must be
3950 * rebound before any future use). Any node that is currently pinned cannot
3951 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3952 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3953 * searching for an eviction candidate. See i915_gem_evict_something() for
3954 * the gory details on the eviction algorithm.
3956 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3957 * asked to wait for eviction and interrupted.
3959 int i915_gem_gtt_insert(struct i915_address_space *vm,
3960 struct drm_mm_node *node,
3961 u64 size, u64 alignment, unsigned long color,
3962 u64 start, u64 end, unsigned int flags)
3964 enum drm_mm_insert_mode mode;
3965 u64 offset;
3966 int err;
3968 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3969 GEM_BUG_ON(!size);
3970 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3971 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3972 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3973 GEM_BUG_ON(start >= end);
3974 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3975 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3976 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3977 GEM_BUG_ON(drm_mm_node_allocated(node));
3979 if (unlikely(range_overflows(start, size, end)))
3980 return -ENOSPC;
3982 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3983 return -ENOSPC;
3985 mode = DRM_MM_INSERT_BEST;
3986 if (flags & PIN_HIGH)
3987 mode = DRM_MM_INSERT_HIGH;
3988 if (flags & PIN_MAPPABLE)
3989 mode = DRM_MM_INSERT_LOW;
3991 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3992 * so we know that we always have a minimum alignment of 4096.
3993 * The drm_mm range manager is optimised to return results
3994 * with zero alignment, so where possible use the optimal
3995 * path.
3997 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3998 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3999 alignment = 0;
4001 err = drm_mm_insert_node_in_range(&vm->mm, node,
4002 size, alignment, color,
4003 start, end, mode);
4004 if (err != -ENOSPC)
4005 return err;
4007 if (flags & PIN_NOEVICT)
4008 return -ENOSPC;
4010 /* No free space, pick a slot at random.
4012 * There is a pathological case here using a GTT shared between
4013 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4015 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4016 * (64k objects) (448k objects)
4018 * Now imagine that the eviction LRU is ordered top-down (just because
4019 * pathology meets real life), and that we need to evict an object to
4020 * make room inside the aperture. The eviction scan then has to walk
4021 * the 448k list before it finds one within range. And now imagine that
4022 * it has to search for a new hole between every byte inside the memcpy,
4023 * for several simultaneous clients.
4025 * On a full-ppgtt system, if we have run out of available space, there
4026 * will be lots and lots of objects in the eviction list! Again,
4027 * searching that LRU list may be slow if we are also applying any
4028 * range restrictions (e.g. restriction to low 4GiB) and so, for
4029 * simplicity and similarilty between different GTT, try the single
4030 * random replacement first.
4032 offset = random_offset(start, end,
4033 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4034 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4035 if (err != -ENOSPC)
4036 return err;
4038 /* Randomly selected placement is pinned, do a search */
4039 err = i915_gem_evict_something(vm, size, alignment, color,
4040 start, end, flags);
4041 if (err)
4042 return err;
4044 return drm_mm_insert_node_in_range(&vm->mm, node,
4045 size, alignment, color,
4046 start, end, DRM_MM_INSERT_EVICT);
4049 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4050 #include "selftests/mock_gtt.c"
4051 #include "selftests/i915_gem_gtt.c"
4052 #endif