Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / intel_guc_submission.c
blob4d2409466a3adaaaf6f7070f9c66472188492bed
1 /*
2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/circ_buf.h>
26 #include <trace/events/dma_fence.h>
28 #include "intel_guc_submission.h"
29 #include "i915_drv.h"
31 /**
32 * DOC: GuC-based command submission
34 * GuC client:
35 * A intel_guc_client refers to a submission path through GuC. Currently, there
36 * are two clients. One of them (the execbuf_client) is charged with all
37 * submissions to the GuC, the other one (preempt_client) is responsible for
38 * preempting the execbuf_client. This struct is the owner of a doorbell, a
39 * process descriptor and a workqueue (all of them inside a single gem object
40 * that contains all required pages for these elements).
42 * GuC stage descriptor:
43 * During initialization, the driver allocates a static pool of 1024 such
44 * descriptors, and shares them with the GuC.
45 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
46 * guc_stage_desc (via the client's stage_id), so effectively only one
47 * gets used. This stage descriptor lets the GuC know about the doorbell,
48 * workqueue and process descriptor. Theoretically, it also lets the GuC
49 * know about our HW contexts (context ID, etc...), but we actually
50 * employ a kind of submission where the GuC uses the LRCA sent via the work
51 * item instead (the single guc_stage_desc associated to execbuf client
52 * contains information about the default kernel context only, but this is
53 * essentially unused). This is called a "proxy" submission.
55 * The Scratch registers:
56 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
57 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
58 * triggers an interrupt on the GuC via another register write (0xC4C8).
59 * Firmware writes a success/fail code back to the action register after
60 * processes the request. The kernel driver polls waiting for this update and
61 * then proceeds.
62 * See intel_guc_send()
64 * Doorbells:
65 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
66 * mapped into process space.
68 * Work Items:
69 * There are several types of work items that the host may place into a
70 * workqueue, each with its own requirements and limitations. Currently only
71 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
72 * represents in-order queue. The kernel driver packs ring tail pointer and an
73 * ELSP context descriptor dword into Work Item.
74 * See guc_add_request()
76 * ADS:
77 * The Additional Data Struct (ADS) has pointers for different buffers used by
78 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
79 * scheduling policies (guc_policies), a structure describing a collection of
80 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
81 * its internal state for sleep.
85 static inline bool is_high_priority(struct intel_guc_client *client)
87 return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
88 client->priority == GUC_CLIENT_PRIORITY_HIGH);
91 static int reserve_doorbell(struct intel_guc_client *client)
93 unsigned long offset;
94 unsigned long end;
95 u16 id;
97 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
100 * The bitmap tracks which doorbell registers are currently in use.
101 * It is split into two halves; the first half is used for normal
102 * priority contexts, the second half for high-priority ones.
104 offset = 0;
105 end = GUC_NUM_DOORBELLS / 2;
106 if (is_high_priority(client)) {
107 offset = end;
108 end += offset;
111 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
112 if (id == end)
113 return -ENOSPC;
115 __set_bit(id, client->guc->doorbell_bitmap);
116 client->doorbell_id = id;
117 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
118 client->stage_id, yesno(is_high_priority(client)),
119 id);
120 return 0;
123 static void unreserve_doorbell(struct intel_guc_client *client)
125 GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
127 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
128 client->doorbell_id = GUC_DOORBELL_INVALID;
132 * Tell the GuC to allocate or deallocate a specific doorbell
135 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
137 u32 action[] = {
138 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
139 stage_id
142 return intel_guc_send(guc, action, ARRAY_SIZE(action));
145 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
147 u32 action[] = {
148 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
149 stage_id
152 return intel_guc_send(guc, action, ARRAY_SIZE(action));
155 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
157 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
159 return &base[client->stage_id];
163 * Initialise, update, or clear doorbell data shared with the GuC
165 * These functions modify shared data and so need access to the mapped
166 * client object which contains the page being used for the doorbell
169 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
171 struct guc_stage_desc *desc;
173 /* Update the GuC's idea of the doorbell ID */
174 desc = __get_stage_desc(client);
175 desc->db_id = new_id;
178 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
180 return client->vaddr + client->doorbell_offset;
183 static bool has_doorbell(struct intel_guc_client *client)
185 if (client->doorbell_id == GUC_DOORBELL_INVALID)
186 return false;
188 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
191 static void __create_doorbell(struct intel_guc_client *client)
193 struct guc_doorbell_info *doorbell;
195 doorbell = __get_doorbell(client);
196 doorbell->db_status = GUC_DOORBELL_ENABLED;
197 doorbell->cookie = 0;
200 static void __destroy_doorbell(struct intel_guc_client *client)
202 struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
203 struct guc_doorbell_info *doorbell;
204 u16 db_id = client->doorbell_id;
207 doorbell = __get_doorbell(client);
208 doorbell->db_status = GUC_DOORBELL_DISABLED;
209 doorbell->cookie = 0;
211 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
212 * to go to zero after updating db_status before we call the GuC to
213 * release the doorbell
215 if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
216 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
219 static int create_doorbell(struct intel_guc_client *client)
221 int ret;
223 __update_doorbell_desc(client, client->doorbell_id);
224 __create_doorbell(client);
226 ret = __guc_allocate_doorbell(client->guc, client->stage_id);
227 if (ret) {
228 __destroy_doorbell(client);
229 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
230 DRM_ERROR("Couldn't create client %u doorbell: %d\n",
231 client->stage_id, ret);
232 return ret;
235 return 0;
238 static int destroy_doorbell(struct intel_guc_client *client)
240 int ret;
242 GEM_BUG_ON(!has_doorbell(client));
244 __destroy_doorbell(client);
245 ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
246 if (ret)
247 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
248 client->stage_id, ret);
250 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
252 return ret;
255 static unsigned long __select_cacheline(struct intel_guc *guc)
257 unsigned long offset;
259 /* Doorbell uses a single cache line within a page */
260 offset = offset_in_page(guc->db_cacheline);
262 /* Moving to next cache line to reduce contention */
263 guc->db_cacheline += cache_line_size();
265 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
266 offset, guc->db_cacheline, cache_line_size());
267 return offset;
270 static inline struct guc_process_desc *
271 __get_process_desc(struct intel_guc_client *client)
273 return client->vaddr + client->proc_desc_offset;
277 * Initialise the process descriptor shared with the GuC firmware.
279 static void guc_proc_desc_init(struct intel_guc *guc,
280 struct intel_guc_client *client)
282 struct guc_process_desc *desc;
284 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
287 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
288 * space for ring3 clients (set them as in mmap_ioctl) or kernel
289 * space for kernel clients (map on demand instead? May make debug
290 * easier to have it mapped).
292 desc->wq_base_addr = 0;
293 desc->db_base_addr = 0;
295 desc->stage_id = client->stage_id;
296 desc->wq_size_bytes = GUC_WQ_SIZE;
297 desc->wq_status = WQ_STATUS_ACTIVE;
298 desc->priority = client->priority;
301 static int guc_stage_desc_pool_create(struct intel_guc *guc)
303 struct i915_vma *vma;
304 void *vaddr;
306 vma = intel_guc_allocate_vma(guc,
307 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
308 GUC_MAX_STAGE_DESCRIPTORS));
309 if (IS_ERR(vma))
310 return PTR_ERR(vma);
312 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
313 if (IS_ERR(vaddr)) {
314 i915_vma_unpin_and_release(&vma);
315 return PTR_ERR(vaddr);
318 guc->stage_desc_pool = vma;
319 guc->stage_desc_pool_vaddr = vaddr;
320 ida_init(&guc->stage_ids);
322 return 0;
325 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
327 ida_destroy(&guc->stage_ids);
328 i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
329 i915_vma_unpin_and_release(&guc->stage_desc_pool);
333 * Initialise/clear the stage descriptor shared with the GuC firmware.
335 * This descriptor tells the GuC where (in GGTT space) to find the important
336 * data structures relating to this client (doorbell, process descriptor,
337 * write queue, etc).
339 static void guc_stage_desc_init(struct intel_guc *guc,
340 struct intel_guc_client *client)
342 struct drm_i915_private *dev_priv = guc_to_i915(guc);
343 struct intel_engine_cs *engine;
344 struct i915_gem_context *ctx = client->owner;
345 struct guc_stage_desc *desc;
346 unsigned int tmp;
347 u32 gfx_addr;
349 desc = __get_stage_desc(client);
350 memset(desc, 0, sizeof(*desc));
352 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
353 GUC_STAGE_DESC_ATTR_KERNEL;
354 if (is_high_priority(client))
355 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
356 desc->stage_id = client->stage_id;
357 desc->priority = client->priority;
358 desc->db_id = client->doorbell_id;
360 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
361 struct intel_context *ce = &ctx->engine[engine->id];
362 u32 guc_engine_id = engine->guc_id;
363 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
365 /* TODO: We have a design issue to be solved here. Only when we
366 * receive the first batch, we know which engine is used by the
367 * user. But here GuC expects the lrc and ring to be pinned. It
368 * is not an issue for default context, which is the only one
369 * for now who owns a GuC client. But for future owner of GuC
370 * client, need to make sure lrc is pinned prior to enter here.
372 if (!ce->state)
373 break; /* XXX: continue? */
376 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
377 * submission or, in other words, not using a direct submission
378 * model) the KMD's LRCA is not used for any work submission.
379 * Instead, the GuC uses the LRCA of the user mode context (see
380 * guc_add_request below).
382 lrc->context_desc = lower_32_bits(ce->lrc_desc);
384 /* The state page is after PPHWSP */
385 lrc->ring_lrca =
386 guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
388 /* XXX: In direct submission, the GuC wants the HW context id
389 * here. In proxy submission, it wants the stage id
391 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
392 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
394 lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
395 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
396 lrc->ring_next_free_location = lrc->ring_begin;
397 lrc->ring_current_tail_pointer_value = 0;
399 desc->engines_used |= (1 << guc_engine_id);
402 DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
403 client->engines, desc->engines_used);
404 WARN_ON(desc->engines_used == 0);
407 * The doorbell, process descriptor, and workqueue are all parts
408 * of the client object, which the GuC will reference via the GGTT
410 gfx_addr = guc_ggtt_offset(client->vma);
411 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
412 client->doorbell_offset;
413 desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
414 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
415 desc->process_desc = gfx_addr + client->proc_desc_offset;
416 desc->wq_addr = gfx_addr + GUC_DB_SIZE;
417 desc->wq_size = GUC_WQ_SIZE;
419 desc->desc_private = ptr_to_u64(client);
422 static void guc_stage_desc_fini(struct intel_guc *guc,
423 struct intel_guc_client *client)
425 struct guc_stage_desc *desc;
427 desc = __get_stage_desc(client);
428 memset(desc, 0, sizeof(*desc));
431 /* Construct a Work Item and append it to the GuC's Work Queue */
432 static void guc_wq_item_append(struct intel_guc_client *client,
433 u32 target_engine, u32 context_desc,
434 u32 ring_tail, u32 fence_id)
436 /* wqi_len is in DWords, and does not include the one-word header */
437 const size_t wqi_size = sizeof(struct guc_wq_item);
438 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
439 struct guc_process_desc *desc = __get_process_desc(client);
440 struct guc_wq_item *wqi;
441 u32 wq_off;
443 lockdep_assert_held(&client->wq_lock);
445 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
446 * should not have the case where structure wqi is across page, neither
447 * wrapped to the beginning. This simplifies the implementation below.
449 * XXX: if not the case, we need save data to a temp wqi and copy it to
450 * workqueue buffer dw by dw.
452 BUILD_BUG_ON(wqi_size != 16);
454 /* Free space is guaranteed. */
455 wq_off = READ_ONCE(desc->tail);
456 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
457 GUC_WQ_SIZE) < wqi_size);
458 GEM_BUG_ON(wq_off & (wqi_size - 1));
460 /* WQ starts from the page after doorbell / process_desc */
461 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
463 /* Now fill in the 4-word work queue item */
464 wqi->header = WQ_TYPE_INORDER |
465 (wqi_len << WQ_LEN_SHIFT) |
466 (target_engine << WQ_TARGET_SHIFT) |
467 WQ_NO_WCFLUSH_WAIT;
468 wqi->context_desc = context_desc;
469 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
470 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
471 wqi->fence_id = fence_id;
473 /* Make the update visible to GuC */
474 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
477 static void guc_reset_wq(struct intel_guc_client *client)
479 struct guc_process_desc *desc = __get_process_desc(client);
481 desc->head = 0;
482 desc->tail = 0;
485 static void guc_ring_doorbell(struct intel_guc_client *client)
487 struct guc_doorbell_info *db;
488 u32 cookie;
490 lockdep_assert_held(&client->wq_lock);
492 /* pointer of current doorbell cacheline */
493 db = __get_doorbell(client);
496 * We're not expecting the doorbell cookie to change behind our back,
497 * we also need to treat 0 as a reserved value.
499 cookie = READ_ONCE(db->cookie);
500 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
502 /* XXX: doorbell was lost and need to acquire it again */
503 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
506 static void guc_add_request(struct intel_guc *guc,
507 struct drm_i915_gem_request *rq)
509 struct intel_guc_client *client = guc->execbuf_client;
510 struct intel_engine_cs *engine = rq->engine;
511 u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(rq->ctx,
512 engine));
513 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
515 spin_lock(&client->wq_lock);
517 guc_wq_item_append(client, engine->guc_id, ctx_desc,
518 ring_tail, rq->global_seqno);
519 guc_ring_doorbell(client);
521 client->submissions[engine->id] += 1;
523 spin_unlock(&client->wq_lock);
527 * When we're doing submissions using regular execlists backend, writing to
528 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
529 * pinned in mappable aperture portion of GGTT are visible to command streamer.
530 * Writes done by GuC on our behalf are not guaranteeing such ordering,
531 * therefore, to ensure the flush, we're issuing a POSTING READ.
533 static void flush_ggtt_writes(struct i915_vma *vma)
535 struct drm_i915_private *dev_priv = to_i915(vma->obj->base.dev);
537 if (i915_vma_is_map_and_fenceable(vma))
538 POSTING_READ_FW(GUC_STATUS);
541 #define GUC_PREEMPT_FINISHED 0x1
542 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
543 static void inject_preempt_context(struct work_struct *work)
545 struct guc_preempt_work *preempt_work =
546 container_of(work, typeof(*preempt_work), work);
547 struct intel_engine_cs *engine = preempt_work->engine;
548 struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
549 preempt_work[engine->id]);
550 struct intel_guc_client *client = guc->preempt_client;
551 struct guc_stage_desc *stage_desc = __get_stage_desc(client);
552 struct intel_ring *ring = client->owner->engine[engine->id].ring;
553 u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(client->owner,
554 engine));
555 u32 *cs = ring->vaddr + ring->tail;
556 u32 data[7];
558 if (engine->id == RCS) {
559 cs = gen8_emit_ggtt_write_rcs(cs, GUC_PREEMPT_FINISHED,
560 intel_hws_preempt_done_address(engine));
561 } else {
562 cs = gen8_emit_ggtt_write(cs, GUC_PREEMPT_FINISHED,
563 intel_hws_preempt_done_address(engine));
564 *cs++ = MI_NOOP;
565 *cs++ = MI_NOOP;
567 *cs++ = MI_USER_INTERRUPT;
568 *cs++ = MI_NOOP;
570 GEM_BUG_ON(!IS_ALIGNED(ring->size,
571 GUC_PREEMPT_BREADCRUMB_DWORDS * sizeof(u32)));
572 GEM_BUG_ON((void *)cs - (ring->vaddr + ring->tail) !=
573 GUC_PREEMPT_BREADCRUMB_DWORDS * sizeof(u32));
575 ring->tail += GUC_PREEMPT_BREADCRUMB_DWORDS * sizeof(u32);
576 ring->tail &= (ring->size - 1);
578 flush_ggtt_writes(ring->vma);
580 spin_lock_irq(&client->wq_lock);
581 guc_wq_item_append(client, engine->guc_id, ctx_desc,
582 ring->tail / sizeof(u64), 0);
583 spin_unlock_irq(&client->wq_lock);
586 * If GuC firmware performs an engine reset while that engine had
587 * a preemption pending, it will set the terminated attribute bit
588 * on our preemption stage descriptor. GuC firmware retains all
589 * pending work items for a high-priority GuC client, unlike the
590 * normal-priority GuC client where work items are dropped. It
591 * wants to make sure the preempt-to-idle work doesn't run when
592 * scheduling resumes, and uses this bit to inform its scheduler
593 * and presumably us as well. Our job is to clear it for the next
594 * preemption after reset, otherwise that and future preemptions
595 * will never complete. We'll just clear it every time.
597 stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
599 data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
600 data[1] = client->stage_id;
601 data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
602 INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
603 data[3] = engine->guc_id;
604 data[4] = guc->execbuf_client->priority;
605 data[5] = guc->execbuf_client->stage_id;
606 data[6] = guc_ggtt_offset(guc->shared_data);
608 if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
609 execlists_clear_active(&engine->execlists,
610 EXECLISTS_ACTIVE_PREEMPT);
611 tasklet_schedule(&engine->execlists.tasklet);
616 * We're using user interrupt and HWSP value to mark that preemption has
617 * finished and GPU is idle. Normally, we could unwind and continue similar to
618 * execlists submission path. Unfortunately, with GuC we also need to wait for
619 * it to finish its own postprocessing, before attempting to submit. Otherwise
620 * GuC may silently ignore our submissions, and thus we risk losing request at
621 * best, executing out-of-order and causing kernel panic at worst.
623 #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
624 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
626 struct intel_guc *guc = &engine->i915->guc;
627 struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
628 struct guc_ctx_report *report =
629 &data->preempt_ctx_report[engine->guc_id];
631 WARN_ON(wait_for_atomic(report->report_return_status ==
632 INTEL_GUC_REPORT_STATUS_COMPLETE,
633 GUC_PREEMPT_POSTPROCESS_DELAY_MS));
635 * GuC is expecting that we're also going to clear the affected context
636 * counter, let's also reset the return status to not depend on GuC
637 * resetting it after recieving another preempt action
639 report->affected_count = 0;
640 report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
644 * guc_submit() - Submit commands through GuC
645 * @engine: engine associated with the commands
647 * The only error here arises if the doorbell hardware isn't functioning
648 * as expected, which really shouln't happen.
650 static void guc_submit(struct intel_engine_cs *engine)
652 struct intel_guc *guc = &engine->i915->guc;
653 struct intel_engine_execlists * const execlists = &engine->execlists;
654 struct execlist_port *port = execlists->port;
655 unsigned int n;
657 for (n = 0; n < execlists_num_ports(execlists); n++) {
658 struct drm_i915_gem_request *rq;
659 unsigned int count;
661 rq = port_unpack(&port[n], &count);
662 if (rq && count == 0) {
663 port_set(&port[n], port_pack(rq, ++count));
665 flush_ggtt_writes(rq->ring->vma);
667 guc_add_request(guc, rq);
672 static void port_assign(struct execlist_port *port,
673 struct drm_i915_gem_request *rq)
675 GEM_BUG_ON(port_isset(port));
677 port_set(port, i915_gem_request_get(rq));
680 static void guc_dequeue(struct intel_engine_cs *engine)
682 struct intel_engine_execlists * const execlists = &engine->execlists;
683 struct execlist_port *port = execlists->port;
684 struct drm_i915_gem_request *last = NULL;
685 const struct execlist_port * const last_port =
686 &execlists->port[execlists->port_mask];
687 bool submit = false;
688 struct rb_node *rb;
690 spin_lock_irq(&engine->timeline->lock);
691 rb = execlists->first;
692 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
694 if (!rb)
695 goto unlock;
697 if (port_isset(port)) {
698 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
699 struct guc_preempt_work *preempt_work =
700 &engine->i915->guc.preempt_work[engine->id];
702 if (rb_entry(rb, struct i915_priolist, node)->priority >
703 max(port_request(port)->priotree.priority, 0)) {
704 execlists_set_active(execlists,
705 EXECLISTS_ACTIVE_PREEMPT);
706 queue_work(engine->i915->guc.preempt_wq,
707 &preempt_work->work);
708 goto unlock;
712 port++;
713 if (port_isset(port))
714 goto unlock;
716 GEM_BUG_ON(port_isset(port));
718 do {
719 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
720 struct drm_i915_gem_request *rq, *rn;
722 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
723 if (last && rq->ctx != last->ctx) {
724 if (port == last_port) {
725 __list_del_many(&p->requests,
726 &rq->priotree.link);
727 goto done;
730 if (submit)
731 port_assign(port, last);
732 port++;
735 INIT_LIST_HEAD(&rq->priotree.link);
737 __i915_gem_request_submit(rq);
738 trace_i915_gem_request_in(rq,
739 port_index(port, execlists));
740 last = rq;
741 submit = true;
744 rb = rb_next(rb);
745 rb_erase(&p->node, &execlists->queue);
746 INIT_LIST_HEAD(&p->requests);
747 if (p->priority != I915_PRIORITY_NORMAL)
748 kmem_cache_free(engine->i915->priorities, p);
749 } while (rb);
750 done:
751 execlists->first = rb;
752 if (submit) {
753 port_assign(port, last);
754 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
755 guc_submit(engine);
757 unlock:
758 spin_unlock_irq(&engine->timeline->lock);
761 static void guc_submission_tasklet(unsigned long data)
763 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
764 struct intel_engine_execlists * const execlists = &engine->execlists;
765 struct execlist_port *port = execlists->port;
766 struct drm_i915_gem_request *rq;
768 rq = port_request(&port[0]);
769 while (rq && i915_gem_request_completed(rq)) {
770 trace_i915_gem_request_out(rq);
771 i915_gem_request_put(rq);
773 execlists_port_complete(execlists, port);
775 rq = port_request(&port[0]);
777 if (!rq)
778 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
780 if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
781 intel_read_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX) ==
782 GUC_PREEMPT_FINISHED) {
783 execlists_cancel_port_requests(&engine->execlists);
784 execlists_unwind_incomplete_requests(execlists);
786 wait_for_guc_preempt_report(engine);
788 execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
789 intel_write_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX, 0);
792 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
793 guc_dequeue(engine);
797 * Everything below here is concerned with setup & teardown, and is
798 * therefore not part of the somewhat time-critical batch-submission
799 * path of guc_submit() above.
802 /* Check that a doorbell register is in the expected state */
803 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
805 struct drm_i915_private *dev_priv = guc_to_i915(guc);
806 u32 drbregl;
807 bool valid;
809 GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
811 drbregl = I915_READ(GEN8_DRBREGL(db_id));
812 valid = drbregl & GEN8_DRB_VALID;
814 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
815 return true;
817 DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
818 db_id, drbregl, yesno(valid));
820 return false;
823 static bool guc_verify_doorbells(struct intel_guc *guc)
825 u16 db_id;
827 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
828 if (!doorbell_ok(guc, db_id))
829 return false;
831 return true;
834 static int guc_clients_doorbell_init(struct intel_guc *guc)
836 int ret;
838 ret = create_doorbell(guc->execbuf_client);
839 if (ret)
840 return ret;
842 ret = create_doorbell(guc->preempt_client);
843 if (ret) {
844 destroy_doorbell(guc->execbuf_client);
845 return ret;
848 return 0;
851 static void guc_clients_doorbell_fini(struct intel_guc *guc)
854 * By the time we're here, GuC has already been reset.
855 * Instead of trying (in vain) to communicate with it, let's just
856 * cleanup the doorbell HW and our internal state.
858 __destroy_doorbell(guc->preempt_client);
859 __update_doorbell_desc(guc->preempt_client, GUC_DOORBELL_INVALID);
860 __destroy_doorbell(guc->execbuf_client);
861 __update_doorbell_desc(guc->execbuf_client, GUC_DOORBELL_INVALID);
865 * guc_client_alloc() - Allocate an intel_guc_client
866 * @dev_priv: driver private data structure
867 * @engines: The set of engines to enable for this client
868 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
869 * The kernel client to replace ExecList submission is created with
870 * NORMAL priority. Priority of a client for scheduler can be HIGH,
871 * while a preemption context can use CRITICAL.
872 * @ctx: the context that owns the client (we use the default render
873 * context)
875 * Return: An intel_guc_client object if success, else NULL.
877 static struct intel_guc_client *
878 guc_client_alloc(struct drm_i915_private *dev_priv,
879 u32 engines,
880 u32 priority,
881 struct i915_gem_context *ctx)
883 struct intel_guc_client *client;
884 struct intel_guc *guc = &dev_priv->guc;
885 struct i915_vma *vma;
886 void *vaddr;
887 int ret;
889 client = kzalloc(sizeof(*client), GFP_KERNEL);
890 if (!client)
891 return ERR_PTR(-ENOMEM);
893 client->guc = guc;
894 client->owner = ctx;
895 client->engines = engines;
896 client->priority = priority;
897 client->doorbell_id = GUC_DOORBELL_INVALID;
898 spin_lock_init(&client->wq_lock);
900 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
901 GFP_KERNEL);
902 if (ret < 0)
903 goto err_client;
905 client->stage_id = ret;
907 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
908 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
909 if (IS_ERR(vma)) {
910 ret = PTR_ERR(vma);
911 goto err_id;
914 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
915 client->vma = vma;
917 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
918 if (IS_ERR(vaddr)) {
919 ret = PTR_ERR(vaddr);
920 goto err_vma;
922 client->vaddr = vaddr;
924 client->doorbell_offset = __select_cacheline(guc);
927 * Since the doorbell only requires a single cacheline, we can save
928 * space by putting the application process descriptor in the same
929 * page. Use the half of the page that doesn't include the doorbell.
931 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
932 client->proc_desc_offset = 0;
933 else
934 client->proc_desc_offset = (GUC_DB_SIZE / 2);
936 guc_proc_desc_init(guc, client);
937 guc_stage_desc_init(guc, client);
939 ret = reserve_doorbell(client);
940 if (ret)
941 goto err_vaddr;
943 DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
944 priority, client, client->engines, client->stage_id);
945 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
946 client->doorbell_id, client->doorbell_offset);
948 return client;
950 err_vaddr:
951 i915_gem_object_unpin_map(client->vma->obj);
952 err_vma:
953 i915_vma_unpin_and_release(&client->vma);
954 err_id:
955 ida_simple_remove(&guc->stage_ids, client->stage_id);
956 err_client:
957 kfree(client);
958 return ERR_PTR(ret);
961 static void guc_client_free(struct intel_guc_client *client)
963 unreserve_doorbell(client);
964 guc_stage_desc_fini(client->guc, client);
965 i915_gem_object_unpin_map(client->vma->obj);
966 i915_vma_unpin_and_release(&client->vma);
967 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
968 kfree(client);
971 static int guc_clients_create(struct intel_guc *guc)
973 struct drm_i915_private *dev_priv = guc_to_i915(guc);
974 struct intel_guc_client *client;
976 GEM_BUG_ON(guc->execbuf_client);
977 GEM_BUG_ON(guc->preempt_client);
979 client = guc_client_alloc(dev_priv,
980 INTEL_INFO(dev_priv)->ring_mask,
981 GUC_CLIENT_PRIORITY_KMD_NORMAL,
982 dev_priv->kernel_context);
983 if (IS_ERR(client)) {
984 DRM_ERROR("Failed to create GuC client for submission!\n");
985 return PTR_ERR(client);
987 guc->execbuf_client = client;
989 client = guc_client_alloc(dev_priv,
990 INTEL_INFO(dev_priv)->ring_mask,
991 GUC_CLIENT_PRIORITY_KMD_HIGH,
992 dev_priv->preempt_context);
993 if (IS_ERR(client)) {
994 DRM_ERROR("Failed to create GuC client for preemption!\n");
995 guc_client_free(guc->execbuf_client);
996 guc->execbuf_client = NULL;
997 return PTR_ERR(client);
999 guc->preempt_client = client;
1001 return 0;
1004 static void guc_clients_destroy(struct intel_guc *guc)
1006 struct intel_guc_client *client;
1008 client = fetch_and_zero(&guc->execbuf_client);
1009 guc_client_free(client);
1011 client = fetch_and_zero(&guc->preempt_client);
1012 guc_client_free(client);
1015 static void guc_policy_init(struct guc_policy *policy)
1017 policy->execution_quantum = POLICY_DEFAULT_EXECUTION_QUANTUM_US;
1018 policy->preemption_time = POLICY_DEFAULT_PREEMPTION_TIME_US;
1019 policy->fault_time = POLICY_DEFAULT_FAULT_TIME_US;
1020 policy->policy_flags = 0;
1023 static void guc_policies_init(struct guc_policies *policies)
1025 struct guc_policy *policy;
1026 u32 p, i;
1028 policies->dpc_promote_time = POLICY_DEFAULT_DPC_PROMOTE_TIME_US;
1029 policies->max_num_work_items = POLICY_MAX_NUM_WI;
1031 for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
1032 for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1033 policy = &policies->policy[p][i];
1035 guc_policy_init(policy);
1039 policies->is_valid = 1;
1043 * The first 80 dwords of the register state context, containing the
1044 * execlists and ppgtt registers.
1046 #define LR_HW_CONTEXT_SIZE (80 * sizeof(u32))
1048 static int guc_ads_create(struct intel_guc *guc)
1050 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1051 struct i915_vma *vma;
1052 struct page *page;
1053 /* The ads obj includes the struct itself and buffers passed to GuC */
1054 struct {
1055 struct guc_ads ads;
1056 struct guc_policies policies;
1057 struct guc_mmio_reg_state reg_state;
1058 u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
1059 } __packed *blob;
1060 struct intel_engine_cs *engine;
1061 enum intel_engine_id id;
1062 const u32 skipped_offset = LRC_HEADER_PAGES * PAGE_SIZE;
1063 const u32 skipped_size = LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SIZE;
1064 u32 base;
1066 GEM_BUG_ON(guc->ads_vma);
1068 vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
1069 if (IS_ERR(vma))
1070 return PTR_ERR(vma);
1072 guc->ads_vma = vma;
1074 page = i915_vma_first_page(vma);
1075 blob = kmap(page);
1077 /* GuC scheduling policies */
1078 guc_policies_init(&blob->policies);
1080 /* MMIO reg state */
1081 for_each_engine(engine, dev_priv, id) {
1082 blob->reg_state.white_list[engine->guc_id].mmio_start =
1083 engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1085 /* Nothing to be saved or restored for now. */
1086 blob->reg_state.white_list[engine->guc_id].count = 0;
1090 * The GuC requires a "Golden Context" when it reinitialises
1091 * engines after a reset. Here we use the Render ring default
1092 * context, which must already exist and be pinned in the GGTT,
1093 * so its address won't change after we've told the GuC where
1094 * to find it. Note that we have to skip our header (1 page),
1095 * because our GuC shared data is there.
1097 blob->ads.golden_context_lrca =
1098 guc_ggtt_offset(dev_priv->kernel_context->engine[RCS].state) +
1099 skipped_offset;
1102 * The GuC expects us to exclude the portion of the context image that
1103 * it skips from the size it is to read. It starts reading from after
1104 * the execlist context (so skipping the first page [PPHWSP] and 80
1105 * dwords). Weird guc is weird.
1107 for_each_engine(engine, dev_priv, id)
1108 blob->ads.eng_state_size[engine->guc_id] =
1109 engine->context_size - skipped_size;
1111 base = guc_ggtt_offset(vma);
1112 blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
1113 blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
1114 blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1116 kunmap(page);
1118 return 0;
1121 static void guc_ads_destroy(struct intel_guc *guc)
1123 i915_vma_unpin_and_release(&guc->ads_vma);
1127 * Set up the memory resources to be shared with the GuC (via the GGTT)
1128 * at firmware loading time.
1130 int intel_guc_submission_init(struct intel_guc *guc)
1132 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1133 struct intel_engine_cs *engine;
1134 enum intel_engine_id id;
1135 int ret;
1137 if (guc->stage_desc_pool)
1138 return 0;
1140 ret = guc_stage_desc_pool_create(guc);
1141 if (ret)
1142 return ret;
1144 * Keep static analysers happy, let them know that we allocated the
1145 * vma after testing that it didn't exist earlier.
1147 GEM_BUG_ON(!guc->stage_desc_pool);
1149 ret = intel_guc_log_create(guc);
1150 if (ret < 0)
1151 goto err_stage_desc_pool;
1153 ret = guc_ads_create(guc);
1154 if (ret < 0)
1155 goto err_log;
1156 GEM_BUG_ON(!guc->ads_vma);
1158 WARN_ON(!guc_verify_doorbells(guc));
1159 ret = guc_clients_create(guc);
1160 if (ret)
1161 return ret;
1163 for_each_engine(engine, dev_priv, id) {
1164 guc->preempt_work[id].engine = engine;
1165 INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1168 return 0;
1170 err_log:
1171 intel_guc_log_destroy(guc);
1172 err_stage_desc_pool:
1173 guc_stage_desc_pool_destroy(guc);
1174 return ret;
1177 void intel_guc_submission_fini(struct intel_guc *guc)
1179 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1180 struct intel_engine_cs *engine;
1181 enum intel_engine_id id;
1183 for_each_engine(engine, dev_priv, id)
1184 cancel_work_sync(&guc->preempt_work[id].work);
1186 guc_clients_destroy(guc);
1187 WARN_ON(!guc_verify_doorbells(guc));
1189 guc_ads_destroy(guc);
1190 intel_guc_log_destroy(guc);
1191 guc_stage_desc_pool_destroy(guc);
1194 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1196 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1197 struct intel_engine_cs *engine;
1198 enum intel_engine_id id;
1199 int irqs;
1201 /* tell all command streamers to forward interrupts (but not vblank)
1202 * to GuC
1204 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1205 for_each_engine(engine, dev_priv, id)
1206 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1208 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1209 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1210 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1211 /* These three registers have the same bit definitions */
1212 I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1213 I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1214 I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1217 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1218 * (unmasked) PM interrupts to the GuC. All other bits of this
1219 * register *disable* generation of a specific interrupt.
1221 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1222 * writing to the PM interrupt mask register, i.e. interrupts
1223 * that must not be disabled.
1225 * If the GuC is handling these interrupts, then we must not let
1226 * the PM code disable ANY interrupt that the GuC is expecting.
1227 * So for each ENABLED (0) bit in this register, we must SET the
1228 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1229 * GuC needs ARAT expired interrupt unmasked hence it is set in
1230 * pm_intrmsk_mbz.
1232 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1233 * result in the register bit being left SET!
1235 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1236 rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1239 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1241 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1242 struct intel_engine_cs *engine;
1243 enum intel_engine_id id;
1244 int irqs;
1247 * tell all command streamers NOT to forward interrupts or vblank
1248 * to GuC.
1250 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1251 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1252 for_each_engine(engine, dev_priv, id)
1253 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1255 /* route all GT interrupts to the host */
1256 I915_WRITE(GUC_BCS_RCS_IER, 0);
1257 I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1258 I915_WRITE(GUC_WD_VECS_IER, 0);
1260 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1261 rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1264 static void guc_submission_park(struct intel_engine_cs *engine)
1266 intel_engine_unpin_breadcrumbs_irq(engine);
1269 static void guc_submission_unpark(struct intel_engine_cs *engine)
1271 intel_engine_pin_breadcrumbs_irq(engine);
1274 int intel_guc_submission_enable(struct intel_guc *guc)
1276 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1277 struct intel_engine_cs *engine;
1278 enum intel_engine_id id;
1279 int err;
1282 * We're using GuC work items for submitting work through GuC. Since
1283 * we're coalescing multiple requests from a single context into a
1284 * single work item prior to assigning it to execlist_port, we can
1285 * never have more work items than the total number of ports (for all
1286 * engines). The GuC firmware is controlling the HEAD of work queue,
1287 * and it is guaranteed that it will remove the work item from the
1288 * queue before our request is completed.
1290 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1291 sizeof(struct guc_wq_item) *
1292 I915_NUM_ENGINES > GUC_WQ_SIZE);
1294 GEM_BUG_ON(!guc->execbuf_client);
1296 guc_reset_wq(guc->execbuf_client);
1297 guc_reset_wq(guc->preempt_client);
1299 err = intel_guc_sample_forcewake(guc);
1300 if (err)
1301 return err;
1303 err = guc_clients_doorbell_init(guc);
1304 if (err)
1305 return err;
1307 /* Take over from manual control of ELSP (execlists) */
1308 guc_interrupts_capture(dev_priv);
1310 for_each_engine(engine, dev_priv, id) {
1311 struct intel_engine_execlists * const execlists =
1312 &engine->execlists;
1314 execlists->tasklet.func = guc_submission_tasklet;
1315 engine->park = guc_submission_park;
1316 engine->unpark = guc_submission_unpark;
1318 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1321 return 0;
1324 void intel_guc_submission_disable(struct intel_guc *guc)
1326 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1328 GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1330 guc_interrupts_release(dev_priv);
1331 guc_clients_doorbell_fini(guc);
1333 /* Revert back to manual ELSP submission */
1334 intel_engines_reset_default_submission(dev_priv);
1337 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1338 #include "selftests/intel_guc.c"
1339 #endif