Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / intel_lrc.c
blob7ece2f061b9e8087ce7f5b22179377435d50af9b
1 /*
2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_mocs.h"
142 #define RING_EXECLIST_QFULL (1 << 0x2)
143 #define RING_EXECLIST1_VALID (1 << 0x3)
144 #define RING_EXECLIST0_VALID (1 << 0x4)
145 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
146 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
147 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
150 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
151 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
152 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
153 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
154 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156 #define GEN8_CTX_STATUS_COMPLETED_MASK \
157 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188 #define CTX_REG(reg_state, pos, reg, val) do { \
189 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 (reg_state)[(pos)+1] = (val); \
191 } while (0)
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 } while (0)
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 } while (0)
204 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
205 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
206 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
208 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
209 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210 #define WA_TAIL_DWORDS 2
211 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
212 #define PREEMPT_ID 0x1
214 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215 struct intel_engine_cs *engine);
216 static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
222 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
223 * descriptor for a pinned context
224 * @ctx: Context to work on
225 * @engine: Engine the descriptor will be used with
227 * The context descriptor encodes various attributes of a context,
228 * including its GTT address and some flags. Because it's fairly
229 * expensive to calculate, we'll just do it once and cache the result,
230 * which remains valid until the context is unpinned.
232 * This is what a descriptor looks like, from LSB to MSB::
234 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
235 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
236 * bits 32-52: ctx ID, a globally unique tag
237 * bits 53-54: mbz, reserved for use by hardware
238 * bits 55-63: group ID, currently unused and set to 0
240 static void
241 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
242 struct intel_engine_cs *engine)
244 struct intel_context *ce = &ctx->engine[engine->id];
245 u64 desc;
247 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
249 desc = ctx->desc_template; /* bits 0-11 */
250 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
251 /* bits 12-31 */
252 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
254 ce->lrc_desc = desc;
257 static struct i915_priolist *
258 lookup_priolist(struct intel_engine_cs *engine,
259 struct i915_priotree *pt,
260 int prio)
262 struct intel_engine_execlists * const execlists = &engine->execlists;
263 struct i915_priolist *p;
264 struct rb_node **parent, *rb;
265 bool first = true;
267 if (unlikely(execlists->no_priolist))
268 prio = I915_PRIORITY_NORMAL;
270 find_priolist:
271 /* most positive priority is scheduled first, equal priorities fifo */
272 rb = NULL;
273 parent = &execlists->queue.rb_node;
274 while (*parent) {
275 rb = *parent;
276 p = rb_entry(rb, typeof(*p), node);
277 if (prio > p->priority) {
278 parent = &rb->rb_left;
279 } else if (prio < p->priority) {
280 parent = &rb->rb_right;
281 first = false;
282 } else {
283 return p;
287 if (prio == I915_PRIORITY_NORMAL) {
288 p = &execlists->default_priolist;
289 } else {
290 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
291 /* Convert an allocation failure to a priority bump */
292 if (unlikely(!p)) {
293 prio = I915_PRIORITY_NORMAL; /* recurses just once */
295 /* To maintain ordering with all rendering, after an
296 * allocation failure we have to disable all scheduling.
297 * Requests will then be executed in fifo, and schedule
298 * will ensure that dependencies are emitted in fifo.
299 * There will be still some reordering with existing
300 * requests, so if userspace lied about their
301 * dependencies that reordering may be visible.
303 execlists->no_priolist = true;
304 goto find_priolist;
308 p->priority = prio;
309 INIT_LIST_HEAD(&p->requests);
310 rb_link_node(&p->node, rb, parent);
311 rb_insert_color(&p->node, &execlists->queue);
313 if (first)
314 execlists->first = &p->node;
316 return ptr_pack_bits(p, first, 1);
319 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
321 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322 assert_ring_tail_valid(rq->ring, rq->tail);
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327 struct drm_i915_gem_request *rq, *rn;
328 struct i915_priolist *uninitialized_var(p);
329 int last_prio = I915_PRIORITY_INVALID;
331 lockdep_assert_held(&engine->timeline->lock);
333 list_for_each_entry_safe_reverse(rq, rn,
334 &engine->timeline->requests,
335 link) {
336 if (i915_gem_request_completed(rq))
337 return;
339 __i915_gem_request_unsubmit(rq);
340 unwind_wa_tail(rq);
342 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
343 if (rq->priotree.priority != last_prio) {
344 p = lookup_priolist(engine,
345 &rq->priotree,
346 rq->priotree.priority);
347 p = ptr_mask_bits(p, 1);
349 last_prio = rq->priotree.priority;
352 list_add(&rq->priotree.link, &p->requests);
356 void
357 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
359 struct intel_engine_cs *engine =
360 container_of(execlists, typeof(*engine), execlists);
362 spin_lock_irq(&engine->timeline->lock);
363 __unwind_incomplete_requests(engine);
364 spin_unlock_irq(&engine->timeline->lock);
367 static inline void
368 execlists_context_status_change(struct drm_i915_gem_request *rq,
369 unsigned long status)
372 * Only used when GVT-g is enabled now. When GVT-g is disabled,
373 * The compiler should eliminate this function as dead-code.
375 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
376 return;
378 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
379 status, rq);
382 static inline void
383 execlists_context_schedule_in(struct drm_i915_gem_request *rq)
385 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
386 intel_engine_context_in(rq->engine);
389 static inline void
390 execlists_context_schedule_out(struct drm_i915_gem_request *rq)
392 intel_engine_context_out(rq->engine);
393 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
396 static void
397 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
399 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
400 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
401 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
402 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
405 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
407 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
408 struct i915_hw_ppgtt *ppgtt =
409 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
410 u32 *reg_state = ce->lrc_reg_state;
412 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
414 /* True 32b PPGTT with dynamic page allocation: update PDP
415 * registers and point the unallocated PDPs to scratch page.
416 * PML4 is allocated during ppgtt init, so this is not needed
417 * in 48-bit mode.
419 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
420 execlists_update_context_pdps(ppgtt, reg_state);
422 return ce->lrc_desc;
425 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
427 writel(upper_32_bits(desc), elsp);
428 writel(lower_32_bits(desc), elsp);
431 static void execlists_submit_ports(struct intel_engine_cs *engine)
433 struct execlist_port *port = engine->execlists.port;
434 unsigned int n;
436 for (n = execlists_num_ports(&engine->execlists); n--; ) {
437 struct drm_i915_gem_request *rq;
438 unsigned int count;
439 u64 desc;
441 rq = port_unpack(&port[n], &count);
442 if (rq) {
443 GEM_BUG_ON(count > !n);
444 if (!count++)
445 execlists_context_schedule_in(rq);
446 port_set(&port[n], port_pack(rq, count));
447 desc = execlists_update_context(rq);
448 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
450 GEM_TRACE("%s in[%d]: ctx=%d.%d, seqno=%x\n",
451 engine->name, n,
452 port[n].context_id, count,
453 rq->global_seqno);
454 } else {
455 GEM_BUG_ON(!n);
456 desc = 0;
459 elsp_write(desc, engine->execlists.elsp);
461 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
464 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
466 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
467 i915_gem_context_force_single_submission(ctx));
470 static bool can_merge_ctx(const struct i915_gem_context *prev,
471 const struct i915_gem_context *next)
473 if (prev != next)
474 return false;
476 if (ctx_single_port_submission(prev))
477 return false;
479 return true;
482 static void port_assign(struct execlist_port *port,
483 struct drm_i915_gem_request *rq)
485 GEM_BUG_ON(rq == port_request(port));
487 if (port_isset(port))
488 i915_gem_request_put(port_request(port));
490 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
493 static void inject_preempt_context(struct intel_engine_cs *engine)
495 struct intel_context *ce =
496 &engine->i915->preempt_context->engine[engine->id];
497 unsigned int n;
499 GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
500 GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
502 memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
503 ce->ring->tail += WA_TAIL_BYTES;
504 ce->ring->tail &= (ce->ring->size - 1);
505 ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
507 GEM_TRACE("%s\n", engine->name);
508 for (n = execlists_num_ports(&engine->execlists); --n; )
509 elsp_write(0, engine->execlists.elsp);
511 elsp_write(ce->lrc_desc, engine->execlists.elsp);
512 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
515 static void execlists_dequeue(struct intel_engine_cs *engine)
517 struct intel_engine_execlists * const execlists = &engine->execlists;
518 struct execlist_port *port = execlists->port;
519 const struct execlist_port * const last_port =
520 &execlists->port[execlists->port_mask];
521 struct drm_i915_gem_request *last = port_request(port);
522 struct rb_node *rb;
523 bool submit = false;
525 /* Hardware submission is through 2 ports. Conceptually each port
526 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
527 * static for a context, and unique to each, so we only execute
528 * requests belonging to a single context from each ring. RING_HEAD
529 * is maintained by the CS in the context image, it marks the place
530 * where it got up to last time, and through RING_TAIL we tell the CS
531 * where we want to execute up to this time.
533 * In this list the requests are in order of execution. Consecutive
534 * requests from the same context are adjacent in the ringbuffer. We
535 * can combine these requests into a single RING_TAIL update:
537 * RING_HEAD...req1...req2
538 * ^- RING_TAIL
539 * since to execute req2 the CS must first execute req1.
541 * Our goal then is to point each port to the end of a consecutive
542 * sequence of requests as being the most optimal (fewest wake ups
543 * and context switches) submission.
546 spin_lock_irq(&engine->timeline->lock);
547 rb = execlists->first;
548 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
549 if (!rb)
550 goto unlock;
552 if (last) {
554 * Don't resubmit or switch until all outstanding
555 * preemptions (lite-restore) are seen. Then we
556 * know the next preemption status we see corresponds
557 * to this ELSP update.
559 GEM_BUG_ON(!port_count(&port[0]));
560 if (port_count(&port[0]) > 1)
561 goto unlock;
564 * If we write to ELSP a second time before the HW has had
565 * a chance to respond to the previous write, we can confuse
566 * the HW and hit "undefined behaviour". After writing to ELSP,
567 * we must then wait until we see a context-switch event from
568 * the HW to indicate that it has had a chance to respond.
570 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
571 goto unlock;
573 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
574 rb_entry(rb, struct i915_priolist, node)->priority >
575 max(last->priotree.priority, 0)) {
577 * Switch to our empty preempt context so
578 * the state of the GPU is known (idle).
580 inject_preempt_context(engine);
581 execlists_set_active(execlists,
582 EXECLISTS_ACTIVE_PREEMPT);
583 goto unlock;
584 } else {
586 * In theory, we could coalesce more requests onto
587 * the second port (the first port is active, with
588 * no preemptions pending). However, that means we
589 * then have to deal with the possible lite-restore
590 * of the second port (as we submit the ELSP, there
591 * may be a context-switch) but also we may complete
592 * the resubmission before the context-switch. Ergo,
593 * coalescing onto the second port will cause a
594 * preemption event, but we cannot predict whether
595 * that will affect port[0] or port[1].
597 * If the second port is already active, we can wait
598 * until the next context-switch before contemplating
599 * new requests. The GPU will be busy and we should be
600 * able to resubmit the new ELSP before it idles,
601 * avoiding pipeline bubbles (momentary pauses where
602 * the driver is unable to keep up the supply of new
603 * work).
605 if (port_count(&port[1]))
606 goto unlock;
608 /* WaIdleLiteRestore:bdw,skl
609 * Apply the wa NOOPs to prevent
610 * ring:HEAD == req:TAIL as we resubmit the
611 * request. See gen8_emit_breadcrumb() for
612 * where we prepare the padding after the
613 * end of the request.
615 last->tail = last->wa_tail;
619 do {
620 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
621 struct drm_i915_gem_request *rq, *rn;
623 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
625 * Can we combine this request with the current port?
626 * It has to be the same context/ringbuffer and not
627 * have any exceptions (e.g. GVT saying never to
628 * combine contexts).
630 * If we can combine the requests, we can execute both
631 * by updating the RING_TAIL to point to the end of the
632 * second request, and so we never need to tell the
633 * hardware about the first.
635 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
637 * If we are on the second port and cannot
638 * combine this request with the last, then we
639 * are done.
641 if (port == last_port) {
642 __list_del_many(&p->requests,
643 &rq->priotree.link);
644 goto done;
648 * If GVT overrides us we only ever submit
649 * port[0], leaving port[1] empty. Note that we
650 * also have to be careful that we don't queue
651 * the same context (even though a different
652 * request) to the second port.
654 if (ctx_single_port_submission(last->ctx) ||
655 ctx_single_port_submission(rq->ctx)) {
656 __list_del_many(&p->requests,
657 &rq->priotree.link);
658 goto done;
661 GEM_BUG_ON(last->ctx == rq->ctx);
663 if (submit)
664 port_assign(port, last);
665 port++;
667 GEM_BUG_ON(port_isset(port));
670 INIT_LIST_HEAD(&rq->priotree.link);
671 __i915_gem_request_submit(rq);
672 trace_i915_gem_request_in(rq, port_index(port, execlists));
673 last = rq;
674 submit = true;
677 rb = rb_next(rb);
678 rb_erase(&p->node, &execlists->queue);
679 INIT_LIST_HEAD(&p->requests);
680 if (p->priority != I915_PRIORITY_NORMAL)
681 kmem_cache_free(engine->i915->priorities, p);
682 } while (rb);
683 done:
684 execlists->first = rb;
685 if (submit)
686 port_assign(port, last);
687 unlock:
688 spin_unlock_irq(&engine->timeline->lock);
690 if (submit) {
691 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
692 execlists_submit_ports(engine);
696 void
697 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
699 struct execlist_port *port = execlists->port;
700 unsigned int num_ports = execlists_num_ports(execlists);
702 while (num_ports-- && port_isset(port)) {
703 struct drm_i915_gem_request *rq = port_request(port);
705 GEM_BUG_ON(!execlists->active);
706 intel_engine_context_out(rq->engine);
707 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
708 i915_gem_request_put(rq);
710 memset(port, 0, sizeof(*port));
711 port++;
715 static void execlists_cancel_requests(struct intel_engine_cs *engine)
717 struct intel_engine_execlists * const execlists = &engine->execlists;
718 struct drm_i915_gem_request *rq, *rn;
719 struct rb_node *rb;
720 unsigned long flags;
722 spin_lock_irqsave(&engine->timeline->lock, flags);
724 /* Cancel the requests on the HW and clear the ELSP tracker. */
725 execlists_cancel_port_requests(execlists);
727 /* Mark all executing requests as skipped. */
728 list_for_each_entry(rq, &engine->timeline->requests, link) {
729 GEM_BUG_ON(!rq->global_seqno);
730 if (!i915_gem_request_completed(rq))
731 dma_fence_set_error(&rq->fence, -EIO);
734 /* Flush the queued requests to the timeline list (for retiring). */
735 rb = execlists->first;
736 while (rb) {
737 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
739 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
740 INIT_LIST_HEAD(&rq->priotree.link);
742 dma_fence_set_error(&rq->fence, -EIO);
743 __i915_gem_request_submit(rq);
746 rb = rb_next(rb);
747 rb_erase(&p->node, &execlists->queue);
748 INIT_LIST_HEAD(&p->requests);
749 if (p->priority != I915_PRIORITY_NORMAL)
750 kmem_cache_free(engine->i915->priorities, p);
753 /* Remaining _unready_ requests will be nop'ed when submitted */
756 execlists->queue = RB_ROOT;
757 execlists->first = NULL;
758 GEM_BUG_ON(port_isset(execlists->port));
761 * The port is checked prior to scheduling a tasklet, but
762 * just in case we have suspended the tasklet to do the
763 * wedging make sure that when it wakes, it decides there
764 * is no work to do by clearing the irq_posted bit.
766 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
768 spin_unlock_irqrestore(&engine->timeline->lock, flags);
772 * Check the unread Context Status Buffers and manage the submission of new
773 * contexts to the ELSP accordingly.
775 static void execlists_submission_tasklet(unsigned long data)
777 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
778 struct intel_engine_execlists * const execlists = &engine->execlists;
779 struct execlist_port * const port = execlists->port;
780 struct drm_i915_private *dev_priv = engine->i915;
782 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
783 * on our behalf by the request (see i915_gem_mark_busy()) and it will
784 * not be relinquished until the device is idle (see
785 * i915_gem_idle_work_handler()). As a precaution, we make sure
786 * that all ELSP are drained i.e. we have processed the CSB,
787 * before allowing ourselves to idle and calling intel_runtime_pm_put().
789 GEM_BUG_ON(!dev_priv->gt.awake);
791 intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
793 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
794 * imposing the cost of a locked atomic transaction when submitting a
795 * new request (outside of the context-switch interrupt).
797 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
798 /* The HWSP contains a (cacheable) mirror of the CSB */
799 const u32 *buf =
800 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
801 unsigned int head, tail;
803 if (unlikely(execlists->csb_use_mmio)) {
804 buf = (u32 * __force)
805 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
806 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
809 /* The write will be ordered by the uncached read (itself
810 * a memory barrier), so we do not need another in the form
811 * of a locked instruction. The race between the interrupt
812 * handler and the split test/clear is harmless as we order
813 * our clear before the CSB read. If the interrupt arrived
814 * first between the test and the clear, we read the updated
815 * CSB and clear the bit. If the interrupt arrives as we read
816 * the CSB or later (i.e. after we had cleared the bit) the bit
817 * is set and we do a new loop.
819 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
820 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
821 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
822 tail = GEN8_CSB_WRITE_PTR(head);
823 head = GEN8_CSB_READ_PTR(head);
824 execlists->csb_head = head;
825 } else {
826 const int write_idx =
827 intel_hws_csb_write_index(dev_priv) -
828 I915_HWS_CSB_BUF0_INDEX;
830 head = execlists->csb_head;
831 tail = READ_ONCE(buf[write_idx]);
833 GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
834 engine->name,
835 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
836 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
838 while (head != tail) {
839 struct drm_i915_gem_request *rq;
840 unsigned int status;
841 unsigned int count;
843 if (++head == GEN8_CSB_ENTRIES)
844 head = 0;
846 /* We are flying near dragons again.
848 * We hold a reference to the request in execlist_port[]
849 * but no more than that. We are operating in softirq
850 * context and so cannot hold any mutex or sleep. That
851 * prevents us stopping the requests we are processing
852 * in port[] from being retired simultaneously (the
853 * breadcrumb will be complete before we see the
854 * context-switch). As we only hold the reference to the
855 * request, any pointer chasing underneath the request
856 * is subject to a potential use-after-free. Thus we
857 * store all of the bookkeeping within port[] as
858 * required, and avoid using unguarded pointers beneath
859 * request itself. The same applies to the atomic
860 * status notifier.
863 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
864 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
865 engine->name, head,
866 status, buf[2*head + 1],
867 execlists->active);
869 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
870 GEN8_CTX_STATUS_PREEMPTED))
871 execlists_set_active(execlists,
872 EXECLISTS_ACTIVE_HWACK);
873 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
874 execlists_clear_active(execlists,
875 EXECLISTS_ACTIVE_HWACK);
877 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
878 continue;
880 /* We should never get a COMPLETED | IDLE_ACTIVE! */
881 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
883 if (status & GEN8_CTX_STATUS_COMPLETE &&
884 buf[2*head + 1] == PREEMPT_ID) {
885 GEM_TRACE("%s preempt-idle\n", engine->name);
887 execlists_cancel_port_requests(execlists);
888 execlists_unwind_incomplete_requests(execlists);
890 GEM_BUG_ON(!execlists_is_active(execlists,
891 EXECLISTS_ACTIVE_PREEMPT));
892 execlists_clear_active(execlists,
893 EXECLISTS_ACTIVE_PREEMPT);
894 continue;
897 if (status & GEN8_CTX_STATUS_PREEMPTED &&
898 execlists_is_active(execlists,
899 EXECLISTS_ACTIVE_PREEMPT))
900 continue;
902 GEM_BUG_ON(!execlists_is_active(execlists,
903 EXECLISTS_ACTIVE_USER));
905 /* Check the context/desc id for this event matches */
906 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
908 rq = port_unpack(port, &count);
909 GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
910 engine->name,
911 port->context_id, count,
912 rq ? rq->global_seqno : 0);
913 GEM_BUG_ON(count == 0);
914 if (--count == 0) {
915 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
916 GEM_BUG_ON(port_isset(&port[1]) &&
917 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
918 GEM_BUG_ON(!i915_gem_request_completed(rq));
919 execlists_context_schedule_out(rq);
920 trace_i915_gem_request_out(rq);
921 i915_gem_request_put(rq);
923 execlists_port_complete(execlists, port);
924 } else {
925 port_set(port, port_pack(rq, count));
928 /* After the final element, the hw should be idle */
929 GEM_BUG_ON(port_count(port) == 0 &&
930 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
931 if (port_count(port) == 0)
932 execlists_clear_active(execlists,
933 EXECLISTS_ACTIVE_USER);
936 if (head != execlists->csb_head) {
937 execlists->csb_head = head;
938 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
939 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
943 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
944 execlists_dequeue(engine);
946 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
949 static void insert_request(struct intel_engine_cs *engine,
950 struct i915_priotree *pt,
951 int prio)
953 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
955 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
956 if (ptr_unmask_bits(p, 1))
957 tasklet_hi_schedule(&engine->execlists.tasklet);
960 static void execlists_submit_request(struct drm_i915_gem_request *request)
962 struct intel_engine_cs *engine = request->engine;
963 unsigned long flags;
965 /* Will be called from irq-context when using foreign fences. */
966 spin_lock_irqsave(&engine->timeline->lock, flags);
968 insert_request(engine, &request->priotree, request->priotree.priority);
970 GEM_BUG_ON(!engine->execlists.first);
971 GEM_BUG_ON(list_empty(&request->priotree.link));
973 spin_unlock_irqrestore(&engine->timeline->lock, flags);
976 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
978 return container_of(pt, struct drm_i915_gem_request, priotree);
981 static struct intel_engine_cs *
982 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
984 struct intel_engine_cs *engine = pt_to_request(pt)->engine;
986 GEM_BUG_ON(!locked);
988 if (engine != locked) {
989 spin_unlock(&locked->timeline->lock);
990 spin_lock(&engine->timeline->lock);
993 return engine;
996 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
998 struct intel_engine_cs *engine;
999 struct i915_dependency *dep, *p;
1000 struct i915_dependency stack;
1001 LIST_HEAD(dfs);
1003 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1005 if (i915_gem_request_completed(request))
1006 return;
1008 if (prio <= READ_ONCE(request->priotree.priority))
1009 return;
1011 /* Need BKL in order to use the temporary link inside i915_dependency */
1012 lockdep_assert_held(&request->i915->drm.struct_mutex);
1014 stack.signaler = &request->priotree;
1015 list_add(&stack.dfs_link, &dfs);
1017 /* Recursively bump all dependent priorities to match the new request.
1019 * A naive approach would be to use recursion:
1020 * static void update_priorities(struct i915_priotree *pt, prio) {
1021 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
1022 * update_priorities(dep->signal, prio)
1023 * insert_request(pt);
1025 * but that may have unlimited recursion depth and so runs a very
1026 * real risk of overunning the kernel stack. Instead, we build
1027 * a flat list of all dependencies starting with the current request.
1028 * As we walk the list of dependencies, we add all of its dependencies
1029 * to the end of the list (this may include an already visited
1030 * request) and continue to walk onwards onto the new dependencies. The
1031 * end result is a topological list of requests in reverse order, the
1032 * last element in the list is the request we must execute first.
1034 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1035 struct i915_priotree *pt = dep->signaler;
1037 /* Within an engine, there can be no cycle, but we may
1038 * refer to the same dependency chain multiple times
1039 * (redundant dependencies are not eliminated) and across
1040 * engines.
1042 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1043 if (i915_gem_request_completed(pt_to_request(p->signaler)))
1044 continue;
1046 GEM_BUG_ON(p->signaler->priority < pt->priority);
1047 if (prio > READ_ONCE(p->signaler->priority))
1048 list_move_tail(&p->dfs_link, &dfs);
1051 list_safe_reset_next(dep, p, dfs_link);
1054 /* If we didn't need to bump any existing priorities, and we haven't
1055 * yet submitted this request (i.e. there is no potential race with
1056 * execlists_submit_request()), we can set our own priority and skip
1057 * acquiring the engine locks.
1059 if (request->priotree.priority == I915_PRIORITY_INVALID) {
1060 GEM_BUG_ON(!list_empty(&request->priotree.link));
1061 request->priotree.priority = prio;
1062 if (stack.dfs_link.next == stack.dfs_link.prev)
1063 return;
1064 __list_del_entry(&stack.dfs_link);
1067 engine = request->engine;
1068 spin_lock_irq(&engine->timeline->lock);
1070 /* Fifo and depth-first replacement ensure our deps execute before us */
1071 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1072 struct i915_priotree *pt = dep->signaler;
1074 INIT_LIST_HEAD(&dep->dfs_link);
1076 engine = pt_lock_engine(pt, engine);
1078 if (prio <= pt->priority)
1079 continue;
1081 pt->priority = prio;
1082 if (!list_empty(&pt->link)) {
1083 __list_del_entry(&pt->link);
1084 insert_request(engine, pt, prio);
1088 spin_unlock_irq(&engine->timeline->lock);
1091 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1093 unsigned int flags;
1094 int err;
1097 * Clear this page out of any CPU caches for coherent swap-in/out.
1098 * We only want to do this on the first bind so that we do not stall
1099 * on an active context (which by nature is already on the GPU).
1101 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1102 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1103 if (err)
1104 return err;
1107 flags = PIN_GLOBAL | PIN_HIGH;
1108 if (ctx->ggtt_offset_bias)
1109 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1111 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1114 static struct intel_ring *
1115 execlists_context_pin(struct intel_engine_cs *engine,
1116 struct i915_gem_context *ctx)
1118 struct intel_context *ce = &ctx->engine[engine->id];
1119 void *vaddr;
1120 int ret;
1122 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1124 if (likely(ce->pin_count++))
1125 goto out;
1126 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1128 if (!ce->state) {
1129 ret = execlists_context_deferred_alloc(ctx, engine);
1130 if (ret)
1131 goto err;
1133 GEM_BUG_ON(!ce->state);
1135 ret = __context_pin(ctx, ce->state);
1136 if (ret)
1137 goto err;
1139 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1140 if (IS_ERR(vaddr)) {
1141 ret = PTR_ERR(vaddr);
1142 goto unpin_vma;
1145 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1146 if (ret)
1147 goto unpin_map;
1149 intel_lr_context_descriptor_update(ctx, engine);
1151 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1152 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1153 i915_ggtt_offset(ce->ring->vma);
1155 ce->state->obj->pin_global++;
1156 i915_gem_context_get(ctx);
1157 out:
1158 return ce->ring;
1160 unpin_map:
1161 i915_gem_object_unpin_map(ce->state->obj);
1162 unpin_vma:
1163 __i915_vma_unpin(ce->state);
1164 err:
1165 ce->pin_count = 0;
1166 return ERR_PTR(ret);
1169 static void execlists_context_unpin(struct intel_engine_cs *engine,
1170 struct i915_gem_context *ctx)
1172 struct intel_context *ce = &ctx->engine[engine->id];
1174 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1175 GEM_BUG_ON(ce->pin_count == 0);
1177 if (--ce->pin_count)
1178 return;
1180 intel_ring_unpin(ce->ring);
1182 ce->state->obj->pin_global--;
1183 i915_gem_object_unpin_map(ce->state->obj);
1184 i915_vma_unpin(ce->state);
1186 i915_gem_context_put(ctx);
1189 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1191 struct intel_engine_cs *engine = request->engine;
1192 struct intel_context *ce = &request->ctx->engine[engine->id];
1193 int ret;
1195 GEM_BUG_ON(!ce->pin_count);
1197 /* Flush enough space to reduce the likelihood of waiting after
1198 * we start building the request - in which case we will just
1199 * have to repeat work.
1201 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1203 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1204 if (ret)
1205 return ret;
1207 /* Note that after this point, we have committed to using
1208 * this request as it is being used to both track the
1209 * state of engine initialisation and liveness of the
1210 * golden renderstate above. Think twice before you try
1211 * to cancel/unwind this request now.
1214 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1215 return 0;
1219 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1220 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1221 * but there is a slight complication as this is applied in WA batch where the
1222 * values are only initialized once so we cannot take register value at the
1223 * beginning and reuse it further; hence we save its value to memory, upload a
1224 * constant value with bit21 set and then we restore it back with the saved value.
1225 * To simplify the WA, a constant value is formed by using the default value
1226 * of this register. This shouldn't be a problem because we are only modifying
1227 * it for a short period and this batch in non-premptible. We can ofcourse
1228 * use additional instructions that read the actual value of the register
1229 * at that time and set our bit of interest but it makes the WA complicated.
1231 * This WA is also required for Gen9 so extracting as a function avoids
1232 * code duplication.
1234 static u32 *
1235 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1237 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1238 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1239 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1240 *batch++ = 0;
1242 *batch++ = MI_LOAD_REGISTER_IMM(1);
1243 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1244 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1246 batch = gen8_emit_pipe_control(batch,
1247 PIPE_CONTROL_CS_STALL |
1248 PIPE_CONTROL_DC_FLUSH_ENABLE,
1251 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1252 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1253 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1254 *batch++ = 0;
1256 return batch;
1260 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1261 * initialized at the beginning and shared across all contexts but this field
1262 * helps us to have multiple batches at different offsets and select them based
1263 * on a criteria. At the moment this batch always start at the beginning of the page
1264 * and at this point we don't have multiple wa_ctx batch buffers.
1266 * The number of WA applied are not known at the beginning; we use this field
1267 * to return the no of DWORDS written.
1269 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1270 * so it adds NOOPs as padding to make it cacheline aligned.
1271 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1272 * makes a complete batch buffer.
1274 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1276 /* WaDisableCtxRestoreArbitration:bdw,chv */
1277 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1279 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1280 if (IS_BROADWELL(engine->i915))
1281 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1283 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1284 /* Actual scratch location is at 128 bytes offset */
1285 batch = gen8_emit_pipe_control(batch,
1286 PIPE_CONTROL_FLUSH_L3 |
1287 PIPE_CONTROL_GLOBAL_GTT_IVB |
1288 PIPE_CONTROL_CS_STALL |
1289 PIPE_CONTROL_QW_WRITE,
1290 i915_ggtt_offset(engine->scratch) +
1291 2 * CACHELINE_BYTES);
1293 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1295 /* Pad to end of cacheline */
1296 while ((unsigned long)batch % CACHELINE_BYTES)
1297 *batch++ = MI_NOOP;
1300 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1301 * execution depends on the length specified in terms of cache lines
1302 * in the register CTX_RCS_INDIRECT_CTX
1305 return batch;
1308 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1310 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1312 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1313 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1315 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1316 *batch++ = MI_LOAD_REGISTER_IMM(1);
1317 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1318 *batch++ = _MASKED_BIT_DISABLE(
1319 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1320 *batch++ = MI_NOOP;
1322 /* WaClearSlmSpaceAtContextSwitch:kbl */
1323 /* Actual scratch location is at 128 bytes offset */
1324 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1325 batch = gen8_emit_pipe_control(batch,
1326 PIPE_CONTROL_FLUSH_L3 |
1327 PIPE_CONTROL_GLOBAL_GTT_IVB |
1328 PIPE_CONTROL_CS_STALL |
1329 PIPE_CONTROL_QW_WRITE,
1330 i915_ggtt_offset(engine->scratch)
1331 + 2 * CACHELINE_BYTES);
1334 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1335 if (HAS_POOLED_EU(engine->i915)) {
1337 * EU pool configuration is setup along with golden context
1338 * during context initialization. This value depends on
1339 * device type (2x6 or 3x6) and needs to be updated based
1340 * on which subslice is disabled especially for 2x6
1341 * devices, however it is safe to load default
1342 * configuration of 3x6 device instead of masking off
1343 * corresponding bits because HW ignores bits of a disabled
1344 * subslice and drops down to appropriate config. Please
1345 * see render_state_setup() in i915_gem_render_state.c for
1346 * possible configurations, to avoid duplication they are
1347 * not shown here again.
1349 *batch++ = GEN9_MEDIA_POOL_STATE;
1350 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1351 *batch++ = 0x00777000;
1352 *batch++ = 0;
1353 *batch++ = 0;
1354 *batch++ = 0;
1357 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1359 /* Pad to end of cacheline */
1360 while ((unsigned long)batch % CACHELINE_BYTES)
1361 *batch++ = MI_NOOP;
1363 return batch;
1366 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1368 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1370 struct drm_i915_gem_object *obj;
1371 struct i915_vma *vma;
1372 int err;
1374 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1375 if (IS_ERR(obj))
1376 return PTR_ERR(obj);
1378 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1379 if (IS_ERR(vma)) {
1380 err = PTR_ERR(vma);
1381 goto err;
1384 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1385 if (err)
1386 goto err;
1388 engine->wa_ctx.vma = vma;
1389 return 0;
1391 err:
1392 i915_gem_object_put(obj);
1393 return err;
1396 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1398 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1401 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1403 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1405 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1406 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1407 &wa_ctx->per_ctx };
1408 wa_bb_func_t wa_bb_fn[2];
1409 struct page *page;
1410 void *batch, *batch_ptr;
1411 unsigned int i;
1412 int ret;
1414 if (WARN_ON(engine->id != RCS || !engine->scratch))
1415 return -EINVAL;
1417 switch (INTEL_GEN(engine->i915)) {
1418 case 10:
1419 return 0;
1420 case 9:
1421 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1422 wa_bb_fn[1] = NULL;
1423 break;
1424 case 8:
1425 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1426 wa_bb_fn[1] = NULL;
1427 break;
1428 default:
1429 MISSING_CASE(INTEL_GEN(engine->i915));
1430 return 0;
1433 ret = lrc_setup_wa_ctx(engine);
1434 if (ret) {
1435 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1436 return ret;
1439 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1440 batch = batch_ptr = kmap_atomic(page);
1443 * Emit the two workaround batch buffers, recording the offset from the
1444 * start of the workaround batch buffer object for each and their
1445 * respective sizes.
1447 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1448 wa_bb[i]->offset = batch_ptr - batch;
1449 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1450 ret = -EINVAL;
1451 break;
1453 if (wa_bb_fn[i])
1454 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1455 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1458 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1460 kunmap_atomic(batch);
1461 if (ret)
1462 lrc_destroy_wa_ctx(engine);
1464 return ret;
1467 static u8 gtiir[] = {
1468 [RCS] = 0,
1469 [BCS] = 0,
1470 [VCS] = 1,
1471 [VCS2] = 1,
1472 [VECS] = 3,
1475 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1477 struct drm_i915_private *dev_priv = engine->i915;
1478 struct intel_engine_execlists * const execlists = &engine->execlists;
1479 int ret;
1481 ret = intel_mocs_init_engine(engine);
1482 if (ret)
1483 return ret;
1485 intel_engine_reset_breadcrumbs(engine);
1486 intel_engine_init_hangcheck(engine);
1488 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1489 I915_WRITE(RING_MODE_GEN7(engine),
1490 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1491 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1492 engine->status_page.ggtt_offset);
1493 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1495 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1497 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1500 * Clear any pending interrupt state.
1502 * We do it twice out of paranoia that some of the IIR are double
1503 * buffered, and if we only reset it once there may still be
1504 * an interrupt pending.
1506 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1507 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1508 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1509 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1510 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1511 execlists->csb_head = -1;
1512 execlists->active = 0;
1514 execlists->elsp =
1515 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
1517 /* After a GPU reset, we may have requests to replay */
1518 if (execlists->first)
1519 tasklet_schedule(&execlists->tasklet);
1521 return 0;
1524 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1526 struct drm_i915_private *dev_priv = engine->i915;
1527 int ret;
1529 ret = gen8_init_common_ring(engine);
1530 if (ret)
1531 return ret;
1533 /* We need to disable the AsyncFlip performance optimisations in order
1534 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1535 * programmed to '1' on all products.
1537 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1539 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1541 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1543 return init_workarounds_ring(engine);
1546 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1548 int ret;
1550 ret = gen8_init_common_ring(engine);
1551 if (ret)
1552 return ret;
1554 return init_workarounds_ring(engine);
1557 static void reset_common_ring(struct intel_engine_cs *engine,
1558 struct drm_i915_gem_request *request)
1560 struct intel_engine_execlists * const execlists = &engine->execlists;
1561 struct intel_context *ce;
1562 unsigned long flags;
1564 GEM_TRACE("%s seqno=%x\n",
1565 engine->name, request ? request->global_seqno : 0);
1566 spin_lock_irqsave(&engine->timeline->lock, flags);
1569 * Catch up with any missed context-switch interrupts.
1571 * Ideally we would just read the remaining CSB entries now that we
1572 * know the gpu is idle. However, the CSB registers are sometimes^W
1573 * often trashed across a GPU reset! Instead we have to rely on
1574 * guessing the missed context-switch events by looking at what
1575 * requests were completed.
1577 execlists_cancel_port_requests(execlists);
1579 /* Push back any incomplete requests for replay after the reset. */
1580 __unwind_incomplete_requests(engine);
1582 spin_unlock_irqrestore(&engine->timeline->lock, flags);
1584 /* If the request was innocent, we leave the request in the ELSP
1585 * and will try to replay it on restarting. The context image may
1586 * have been corrupted by the reset, in which case we may have
1587 * to service a new GPU hang, but more likely we can continue on
1588 * without impact.
1590 * If the request was guilty, we presume the context is corrupt
1591 * and have to at least restore the RING register in the context
1592 * image back to the expected values to skip over the guilty request.
1594 if (!request || request->fence.error != -EIO)
1595 return;
1597 /* We want a simple context + ring to execute the breadcrumb update.
1598 * We cannot rely on the context being intact across the GPU hang,
1599 * so clear it and rebuild just what we need for the breadcrumb.
1600 * All pending requests for this context will be zapped, and any
1601 * future request will be after userspace has had the opportunity
1602 * to recreate its own state.
1604 ce = &request->ctx->engine[engine->id];
1605 execlists_init_reg_state(ce->lrc_reg_state,
1606 request->ctx, engine, ce->ring);
1608 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1609 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1610 i915_ggtt_offset(ce->ring->vma);
1611 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1613 request->ring->head = request->postfix;
1614 intel_ring_update_space(request->ring);
1616 /* Reset WaIdleLiteRestore:bdw,skl as well */
1617 unwind_wa_tail(request);
1620 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1622 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1623 struct intel_engine_cs *engine = req->engine;
1624 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1625 u32 *cs;
1626 int i;
1628 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1629 if (IS_ERR(cs))
1630 return PTR_ERR(cs);
1632 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1633 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1634 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1636 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1637 *cs++ = upper_32_bits(pd_daddr);
1638 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1639 *cs++ = lower_32_bits(pd_daddr);
1642 *cs++ = MI_NOOP;
1643 intel_ring_advance(req, cs);
1645 return 0;
1648 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1649 u64 offset, u32 len,
1650 const unsigned int flags)
1652 u32 *cs;
1653 int ret;
1655 /* Don't rely in hw updating PDPs, specially in lite-restore.
1656 * Ideally, we should set Force PD Restore in ctx descriptor,
1657 * but we can't. Force Restore would be a second option, but
1658 * it is unsafe in case of lite-restore (because the ctx is
1659 * not idle). PML4 is allocated during ppgtt init so this is
1660 * not needed in 48-bit.*/
1661 if (req->ctx->ppgtt &&
1662 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1663 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1664 !intel_vgpu_active(req->i915)) {
1665 ret = intel_logical_ring_emit_pdps(req);
1666 if (ret)
1667 return ret;
1669 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1672 cs = intel_ring_begin(req, 4);
1673 if (IS_ERR(cs))
1674 return PTR_ERR(cs);
1677 * WaDisableCtxRestoreArbitration:bdw,chv
1679 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1680 * particular all the gen that do not need the w/a at all!), if we
1681 * took care to make sure that on every switch into this context
1682 * (both ordinary and for preemption) that arbitrartion was enabled
1683 * we would be fine. However, there doesn't seem to be a downside to
1684 * being paranoid and making sure it is set before each batch and
1685 * every context-switch.
1687 * Note that if we fail to enable arbitration before the request
1688 * is complete, then we do not see the context-switch interrupt and
1689 * the engine hangs (with RING_HEAD == RING_TAIL).
1691 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1693 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1695 /* FIXME(BDW): Address space and security selectors. */
1696 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1697 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1698 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1699 *cs++ = lower_32_bits(offset);
1700 *cs++ = upper_32_bits(offset);
1701 intel_ring_advance(req, cs);
1703 return 0;
1706 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1708 struct drm_i915_private *dev_priv = engine->i915;
1709 I915_WRITE_IMR(engine,
1710 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1711 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1714 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1716 struct drm_i915_private *dev_priv = engine->i915;
1717 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1720 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1722 u32 cmd, *cs;
1724 cs = intel_ring_begin(request, 4);
1725 if (IS_ERR(cs))
1726 return PTR_ERR(cs);
1728 cmd = MI_FLUSH_DW + 1;
1730 /* We always require a command barrier so that subsequent
1731 * commands, such as breadcrumb interrupts, are strictly ordered
1732 * wrt the contents of the write cache being flushed to memory
1733 * (and thus being coherent from the CPU).
1735 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1737 if (mode & EMIT_INVALIDATE) {
1738 cmd |= MI_INVALIDATE_TLB;
1739 if (request->engine->id == VCS)
1740 cmd |= MI_INVALIDATE_BSD;
1743 *cs++ = cmd;
1744 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1745 *cs++ = 0; /* upper addr */
1746 *cs++ = 0; /* value */
1747 intel_ring_advance(request, cs);
1749 return 0;
1752 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1753 u32 mode)
1755 struct intel_engine_cs *engine = request->engine;
1756 u32 scratch_addr =
1757 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1758 bool vf_flush_wa = false, dc_flush_wa = false;
1759 u32 *cs, flags = 0;
1760 int len;
1762 flags |= PIPE_CONTROL_CS_STALL;
1764 if (mode & EMIT_FLUSH) {
1765 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1766 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1767 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1768 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1771 if (mode & EMIT_INVALIDATE) {
1772 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1773 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1774 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1775 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1776 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1777 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1778 flags |= PIPE_CONTROL_QW_WRITE;
1779 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1782 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1783 * pipe control.
1785 if (IS_GEN9(request->i915))
1786 vf_flush_wa = true;
1788 /* WaForGAMHang:kbl */
1789 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1790 dc_flush_wa = true;
1793 len = 6;
1795 if (vf_flush_wa)
1796 len += 6;
1798 if (dc_flush_wa)
1799 len += 12;
1801 cs = intel_ring_begin(request, len);
1802 if (IS_ERR(cs))
1803 return PTR_ERR(cs);
1805 if (vf_flush_wa)
1806 cs = gen8_emit_pipe_control(cs, 0, 0);
1808 if (dc_flush_wa)
1809 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1812 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1814 if (dc_flush_wa)
1815 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1817 intel_ring_advance(request, cs);
1819 return 0;
1823 * Reserve space for 2 NOOPs at the end of each request to be
1824 * used as a workaround for not being allowed to do lite
1825 * restore with HEAD==TAIL (WaIdleLiteRestore).
1827 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1829 /* Ensure there's always at least one preemption point per-request. */
1830 *cs++ = MI_ARB_CHECK;
1831 *cs++ = MI_NOOP;
1832 request->wa_tail = intel_ring_offset(request, cs);
1835 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1837 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1838 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1840 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1841 intel_hws_seqno_address(request->engine));
1842 *cs++ = MI_USER_INTERRUPT;
1843 *cs++ = MI_NOOP;
1844 request->tail = intel_ring_offset(request, cs);
1845 assert_ring_tail_valid(request->ring, request->tail);
1847 gen8_emit_wa_tail(request, cs);
1849 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1851 static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1852 u32 *cs)
1854 /* We're using qword write, seqno should be aligned to 8 bytes. */
1855 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1857 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1858 intel_hws_seqno_address(request->engine));
1859 *cs++ = MI_USER_INTERRUPT;
1860 *cs++ = MI_NOOP;
1861 request->tail = intel_ring_offset(request, cs);
1862 assert_ring_tail_valid(request->ring, request->tail);
1864 gen8_emit_wa_tail(request, cs);
1866 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1868 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1870 int ret;
1872 ret = intel_ring_workarounds_emit(req);
1873 if (ret)
1874 return ret;
1876 ret = intel_rcs_context_init_mocs(req);
1878 * Failing to program the MOCS is non-fatal.The system will not
1879 * run at peak performance. So generate an error and carry on.
1881 if (ret)
1882 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1884 return i915_gem_render_state_emit(req);
1888 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1889 * @engine: Engine Command Streamer.
1891 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1893 struct drm_i915_private *dev_priv;
1896 * Tasklet cannot be active at this point due intel_mark_active/idle
1897 * so this is just for documentation.
1899 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1900 &engine->execlists.tasklet.state)))
1901 tasklet_kill(&engine->execlists.tasklet);
1903 dev_priv = engine->i915;
1905 if (engine->buffer) {
1906 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1909 if (engine->cleanup)
1910 engine->cleanup(engine);
1912 intel_engine_cleanup_common(engine);
1914 lrc_destroy_wa_ctx(engine);
1915 engine->i915 = NULL;
1916 dev_priv->engine[engine->id] = NULL;
1917 kfree(engine);
1920 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1922 engine->submit_request = execlists_submit_request;
1923 engine->cancel_requests = execlists_cancel_requests;
1924 engine->schedule = execlists_schedule;
1925 engine->execlists.tasklet.func = execlists_submission_tasklet;
1927 engine->park = NULL;
1928 engine->unpark = NULL;
1930 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1933 static void
1934 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1936 /* Default vfuncs which can be overriden by each engine. */
1937 engine->init_hw = gen8_init_common_ring;
1938 engine->reset_hw = reset_common_ring;
1940 engine->context_pin = execlists_context_pin;
1941 engine->context_unpin = execlists_context_unpin;
1943 engine->request_alloc = execlists_request_alloc;
1945 engine->emit_flush = gen8_emit_flush;
1946 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1947 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1949 engine->set_default_submission = execlists_set_default_submission;
1951 engine->irq_enable = gen8_logical_ring_enable_irq;
1952 engine->irq_disable = gen8_logical_ring_disable_irq;
1953 engine->emit_bb_start = gen8_emit_bb_start;
1956 static inline void
1957 logical_ring_default_irqs(struct intel_engine_cs *engine)
1959 unsigned shift = engine->irq_shift;
1960 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1961 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1964 static void
1965 logical_ring_setup(struct intel_engine_cs *engine)
1967 struct drm_i915_private *dev_priv = engine->i915;
1968 enum forcewake_domains fw_domains;
1970 intel_engine_setup_common(engine);
1972 /* Intentionally left blank. */
1973 engine->buffer = NULL;
1975 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1976 RING_ELSP(engine),
1977 FW_REG_WRITE);
1979 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1980 RING_CONTEXT_STATUS_PTR(engine),
1981 FW_REG_READ | FW_REG_WRITE);
1983 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1984 RING_CONTEXT_STATUS_BUF_BASE(engine),
1985 FW_REG_READ);
1987 engine->execlists.fw_domains = fw_domains;
1989 tasklet_init(&engine->execlists.tasklet,
1990 execlists_submission_tasklet, (unsigned long)engine);
1992 logical_ring_default_vfuncs(engine);
1993 logical_ring_default_irqs(engine);
1996 static int logical_ring_init(struct intel_engine_cs *engine)
1998 int ret;
2000 ret = intel_engine_init_common(engine);
2001 if (ret)
2002 goto error;
2004 return 0;
2006 error:
2007 intel_logical_ring_cleanup(engine);
2008 return ret;
2011 int logical_render_ring_init(struct intel_engine_cs *engine)
2013 struct drm_i915_private *dev_priv = engine->i915;
2014 int ret;
2016 logical_ring_setup(engine);
2018 if (HAS_L3_DPF(dev_priv))
2019 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2021 /* Override some for render ring. */
2022 if (INTEL_GEN(dev_priv) >= 9)
2023 engine->init_hw = gen9_init_render_ring;
2024 else
2025 engine->init_hw = gen8_init_render_ring;
2026 engine->init_context = gen8_init_rcs_context;
2027 engine->emit_flush = gen8_emit_flush_render;
2028 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2029 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2031 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2032 if (ret)
2033 return ret;
2035 ret = intel_init_workaround_bb(engine);
2036 if (ret) {
2038 * We continue even if we fail to initialize WA batch
2039 * because we only expect rare glitches but nothing
2040 * critical to prevent us from using GPU
2042 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2043 ret);
2046 return logical_ring_init(engine);
2049 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2051 logical_ring_setup(engine);
2053 return logical_ring_init(engine);
2056 static u32
2057 make_rpcs(struct drm_i915_private *dev_priv)
2059 u32 rpcs = 0;
2062 * No explicit RPCS request is needed to ensure full
2063 * slice/subslice/EU enablement prior to Gen9.
2065 if (INTEL_GEN(dev_priv) < 9)
2066 return 0;
2069 * Starting in Gen9, render power gating can leave
2070 * slice/subslice/EU in a partially enabled state. We
2071 * must make an explicit request through RPCS for full
2072 * enablement.
2074 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2075 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2076 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2077 GEN8_RPCS_S_CNT_SHIFT;
2078 rpcs |= GEN8_RPCS_ENABLE;
2081 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2082 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2083 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2084 GEN8_RPCS_SS_CNT_SHIFT;
2085 rpcs |= GEN8_RPCS_ENABLE;
2088 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2089 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2090 GEN8_RPCS_EU_MIN_SHIFT;
2091 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2092 GEN8_RPCS_EU_MAX_SHIFT;
2093 rpcs |= GEN8_RPCS_ENABLE;
2096 return rpcs;
2099 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2101 u32 indirect_ctx_offset;
2103 switch (INTEL_GEN(engine->i915)) {
2104 default:
2105 MISSING_CASE(INTEL_GEN(engine->i915));
2106 /* fall through */
2107 case 10:
2108 indirect_ctx_offset =
2109 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2110 break;
2111 case 9:
2112 indirect_ctx_offset =
2113 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2114 break;
2115 case 8:
2116 indirect_ctx_offset =
2117 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2118 break;
2121 return indirect_ctx_offset;
2124 static void execlists_init_reg_state(u32 *regs,
2125 struct i915_gem_context *ctx,
2126 struct intel_engine_cs *engine,
2127 struct intel_ring *ring)
2129 struct drm_i915_private *dev_priv = engine->i915;
2130 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2131 u32 base = engine->mmio_base;
2132 bool rcs = engine->id == RCS;
2134 /* A context is actually a big batch buffer with several
2135 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2136 * values we are setting here are only for the first context restore:
2137 * on a subsequent save, the GPU will recreate this batchbuffer with new
2138 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2139 * we are not initializing here).
2141 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2142 MI_LRI_FORCE_POSTED;
2144 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2145 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2146 (HAS_RESOURCE_STREAMER(dev_priv) ?
2147 CTX_CTRL_RS_CTX_ENABLE : 0)));
2148 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2149 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2150 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2151 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2152 RING_CTL_SIZE(ring->size) | RING_VALID);
2153 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2154 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2155 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2156 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2157 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2158 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2159 if (rcs) {
2160 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2162 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2163 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2164 RING_INDIRECT_CTX_OFFSET(base), 0);
2165 if (wa_ctx->indirect_ctx.size) {
2166 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2168 regs[CTX_RCS_INDIRECT_CTX + 1] =
2169 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2170 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2172 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2173 intel_lr_indirect_ctx_offset(engine) << 6;
2176 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2177 if (wa_ctx->per_ctx.size) {
2178 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2180 regs[CTX_BB_PER_CTX_PTR + 1] =
2181 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2185 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2187 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2188 /* PDP values well be assigned later if needed */
2189 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2190 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2191 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2192 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2193 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2194 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2195 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2196 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2198 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2199 /* 64b PPGTT (48bit canonical)
2200 * PDP0_DESCRIPTOR contains the base address to PML4 and
2201 * other PDP Descriptors are ignored.
2203 ASSIGN_CTX_PML4(ppgtt, regs);
2206 if (rcs) {
2207 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2208 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2209 make_rpcs(dev_priv));
2211 i915_oa_init_reg_state(engine, ctx, regs);
2215 static int
2216 populate_lr_context(struct i915_gem_context *ctx,
2217 struct drm_i915_gem_object *ctx_obj,
2218 struct intel_engine_cs *engine,
2219 struct intel_ring *ring)
2221 void *vaddr;
2222 u32 *regs;
2223 int ret;
2225 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2226 if (ret) {
2227 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2228 return ret;
2231 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2232 if (IS_ERR(vaddr)) {
2233 ret = PTR_ERR(vaddr);
2234 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2235 return ret;
2237 ctx_obj->mm.dirty = true;
2239 if (engine->default_state) {
2241 * We only want to copy over the template context state;
2242 * skipping over the headers reserved for GuC communication,
2243 * leaving those as zero.
2245 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2246 void *defaults;
2248 defaults = i915_gem_object_pin_map(engine->default_state,
2249 I915_MAP_WB);
2250 if (IS_ERR(defaults))
2251 return PTR_ERR(defaults);
2253 memcpy(vaddr + start, defaults + start, engine->context_size);
2254 i915_gem_object_unpin_map(engine->default_state);
2257 /* The second page of the context object contains some fields which must
2258 * be set up prior to the first execution. */
2259 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2260 execlists_init_reg_state(regs, ctx, engine, ring);
2261 if (!engine->default_state)
2262 regs[CTX_CONTEXT_CONTROL + 1] |=
2263 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2265 i915_gem_object_unpin_map(ctx_obj);
2267 return 0;
2270 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2271 struct intel_engine_cs *engine)
2273 struct drm_i915_gem_object *ctx_obj;
2274 struct intel_context *ce = &ctx->engine[engine->id];
2275 struct i915_vma *vma;
2276 uint32_t context_size;
2277 struct intel_ring *ring;
2278 int ret;
2280 WARN_ON(ce->state);
2282 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2285 * Before the actual start of the context image, we insert a few pages
2286 * for our own use and for sharing with the GuC.
2288 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2290 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2291 if (IS_ERR(ctx_obj)) {
2292 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2293 return PTR_ERR(ctx_obj);
2296 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2297 if (IS_ERR(vma)) {
2298 ret = PTR_ERR(vma);
2299 goto error_deref_obj;
2302 ring = intel_engine_create_ring(engine, ctx->ring_size);
2303 if (IS_ERR(ring)) {
2304 ret = PTR_ERR(ring);
2305 goto error_deref_obj;
2308 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2309 if (ret) {
2310 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2311 goto error_ring_free;
2314 ce->ring = ring;
2315 ce->state = vma;
2317 return 0;
2319 error_ring_free:
2320 intel_ring_free(ring);
2321 error_deref_obj:
2322 i915_gem_object_put(ctx_obj);
2323 return ret;
2326 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2328 struct intel_engine_cs *engine;
2329 struct i915_gem_context *ctx;
2330 enum intel_engine_id id;
2332 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2333 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2334 * that stored in context. As we only write new commands from
2335 * ce->ring->tail onwards, everything before that is junk. If the GPU
2336 * starts reading from its RING_HEAD from the context, it may try to
2337 * execute that junk and die.
2339 * So to avoid that we reset the context images upon resume. For
2340 * simplicity, we just zero everything out.
2342 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2343 for_each_engine(engine, dev_priv, id) {
2344 struct intel_context *ce = &ctx->engine[engine->id];
2345 u32 *reg;
2347 if (!ce->state)
2348 continue;
2350 reg = i915_gem_object_pin_map(ce->state->obj,
2351 I915_MAP_WB);
2352 if (WARN_ON(IS_ERR(reg)))
2353 continue;
2355 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2356 reg[CTX_RING_HEAD+1] = 0;
2357 reg[CTX_RING_TAIL+1] = 0;
2359 ce->state->obj->mm.dirty = true;
2360 i915_gem_object_unpin_map(ce->state->obj);
2362 intel_ring_reset(ce->ring, 0);