Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
blobe2085820b586bfd722765ef6bb79022ca719af78
1 /*
2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
40 /* Rough estimate of the typical request size, performing a flush,
41 * set-context and then emitting the batch.
43 #define LEGACY_REQUEST_SIZE 200
45 static unsigned int __intel_ring_space(unsigned int head,
46 unsigned int tail,
47 unsigned int size)
50 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
51 * same cacheline, the Head Pointer must not be greater than the Tail
52 * Pointer."
54 GEM_BUG_ON(!is_power_of_2(size));
55 return (head - tail - CACHELINE_BYTES) & (size - 1);
58 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 unsigned int space;
62 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64 ring->space = space;
65 return space;
68 static int
69 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
71 u32 cmd, *cs;
73 cmd = MI_FLUSH;
75 if (mode & EMIT_INVALIDATE)
76 cmd |= MI_READ_FLUSH;
78 cs = intel_ring_begin(req, 2);
79 if (IS_ERR(cs))
80 return PTR_ERR(cs);
82 *cs++ = cmd;
83 *cs++ = MI_NOOP;
84 intel_ring_advance(req, cs);
86 return 0;
89 static int
90 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
92 u32 cmd, *cs;
95 * read/write caches:
97 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
98 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
99 * also flushed at 2d versus 3d pipeline switches.
101 * read-only caches:
103 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
104 * MI_READ_FLUSH is set, and is always flushed on 965.
106 * I915_GEM_DOMAIN_COMMAND may not exist?
108 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
109 * invalidated when MI_EXE_FLUSH is set.
111 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
112 * invalidated with every MI_FLUSH.
114 * TLBs:
116 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
117 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
118 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
119 * are flushed at any MI_FLUSH.
122 cmd = MI_FLUSH;
123 if (mode & EMIT_INVALIDATE) {
124 cmd |= MI_EXE_FLUSH;
125 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
126 cmd |= MI_INVALIDATE_ISP;
129 cs = intel_ring_begin(req, 2);
130 if (IS_ERR(cs))
131 return PTR_ERR(cs);
133 *cs++ = cmd;
134 *cs++ = MI_NOOP;
135 intel_ring_advance(req, cs);
137 return 0;
141 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
142 * implementing two workarounds on gen6. From section 1.4.7.1
143 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
145 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
146 * produced by non-pipelined state commands), software needs to first
147 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
148 * 0.
150 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
151 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
153 * And the workaround for these two requires this workaround first:
155 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
156 * BEFORE the pipe-control with a post-sync op and no write-cache
157 * flushes.
159 * And this last workaround is tricky because of the requirements on
160 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
161 * volume 2 part 1:
163 * "1 of the following must also be set:
164 * - Render Target Cache Flush Enable ([12] of DW1)
165 * - Depth Cache Flush Enable ([0] of DW1)
166 * - Stall at Pixel Scoreboard ([1] of DW1)
167 * - Depth Stall ([13] of DW1)
168 * - Post-Sync Operation ([13] of DW1)
169 * - Notify Enable ([8] of DW1)"
171 * The cache flushes require the workaround flush that triggered this
172 * one, so we can't use it. Depth stall would trigger the same.
173 * Post-sync nonzero is what triggered this second workaround, so we
174 * can't use that one either. Notify enable is IRQs, which aren't
175 * really our business. That leaves only stall at scoreboard.
177 static int
178 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
180 u32 scratch_addr =
181 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
182 u32 *cs;
184 cs = intel_ring_begin(req, 6);
185 if (IS_ERR(cs))
186 return PTR_ERR(cs);
188 *cs++ = GFX_OP_PIPE_CONTROL(5);
189 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
190 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
191 *cs++ = 0; /* low dword */
192 *cs++ = 0; /* high dword */
193 *cs++ = MI_NOOP;
194 intel_ring_advance(req, cs);
196 cs = intel_ring_begin(req, 6);
197 if (IS_ERR(cs))
198 return PTR_ERR(cs);
200 *cs++ = GFX_OP_PIPE_CONTROL(5);
201 *cs++ = PIPE_CONTROL_QW_WRITE;
202 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
203 *cs++ = 0;
204 *cs++ = 0;
205 *cs++ = MI_NOOP;
206 intel_ring_advance(req, cs);
208 return 0;
211 static int
212 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
214 u32 scratch_addr =
215 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 u32 *cs, flags = 0;
217 int ret;
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
221 if (ret)
222 return ret;
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
226 * impact.
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
235 flags |= PIPE_CONTROL_CS_STALL;
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 * TLB invalidate requires a post-sync write.
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
250 cs = intel_ring_begin(req, 4);
251 if (IS_ERR(cs))
252 return PTR_ERR(cs);
254 *cs++ = GFX_OP_PIPE_CONTROL(4);
255 *cs++ = flags;
256 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
257 *cs++ = 0;
258 intel_ring_advance(req, cs);
260 return 0;
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
266 u32 *cs;
268 cs = intel_ring_begin(req, 4);
269 if (IS_ERR(cs))
270 return PTR_ERR(cs);
272 *cs++ = GFX_OP_PIPE_CONTROL(4);
273 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
274 *cs++ = 0;
275 *cs++ = 0;
276 intel_ring_advance(req, cs);
278 return 0;
281 static int
282 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
284 u32 scratch_addr =
285 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
286 u32 *cs, flags = 0;
289 * Ensure that any following seqno writes only happen when the render
290 * cache is indeed flushed.
292 * Workaround: 4th PIPE_CONTROL command (except the ones with only
293 * read-cache invalidate bits set) must have the CS_STALL bit set. We
294 * don't try to be clever and just set it unconditionally.
296 flags |= PIPE_CONTROL_CS_STALL;
298 /* Just flush everything. Experiments have shown that reducing the
299 * number of bits based on the write domains has little performance
300 * impact.
302 if (mode & EMIT_FLUSH) {
303 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
304 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
306 flags |= PIPE_CONTROL_FLUSH_ENABLE;
308 if (mode & EMIT_INVALIDATE) {
309 flags |= PIPE_CONTROL_TLB_INVALIDATE;
310 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
311 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317 * TLB invalidate requires a post-sync write.
319 flags |= PIPE_CONTROL_QW_WRITE;
320 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
324 /* Workaround: we must issue a pipe_control with CS-stall bit
325 * set before a pipe_control command that has the state cache
326 * invalidate bit set. */
327 gen7_render_ring_cs_stall_wa(req);
330 cs = intel_ring_begin(req, 4);
331 if (IS_ERR(cs))
332 return PTR_ERR(cs);
334 *cs++ = GFX_OP_PIPE_CONTROL(4);
335 *cs++ = flags;
336 *cs++ = scratch_addr;
337 *cs++ = 0;
338 intel_ring_advance(req, cs);
340 return 0;
343 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345 struct drm_i915_private *dev_priv = engine->i915;
346 u32 addr;
348 addr = dev_priv->status_page_dmah->busaddr;
349 if (INTEL_GEN(dev_priv) >= 4)
350 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
351 I915_WRITE(HWS_PGA, addr);
354 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356 struct drm_i915_private *dev_priv = engine->i915;
357 i915_reg_t mmio;
359 /* The ring status page addresses are no longer next to the rest of
360 * the ring registers as of gen7.
362 if (IS_GEN7(dev_priv)) {
363 switch (engine->id) {
365 * No more rings exist on Gen7. Default case is only to shut up
366 * gcc switch check warning.
368 default:
369 GEM_BUG_ON(engine->id);
370 case RCS:
371 mmio = RENDER_HWS_PGA_GEN7;
372 break;
373 case BCS:
374 mmio = BLT_HWS_PGA_GEN7;
375 break;
376 case VCS:
377 mmio = BSD_HWS_PGA_GEN7;
378 break;
379 case VECS:
380 mmio = VEBOX_HWS_PGA_GEN7;
381 break;
383 } else if (IS_GEN6(dev_priv)) {
384 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
385 } else {
386 mmio = RING_HWS_PGA(engine->mmio_base);
389 if (INTEL_GEN(dev_priv) >= 6)
390 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
392 I915_WRITE(mmio, engine->status_page.ggtt_offset);
393 POSTING_READ(mmio);
395 /* Flush the TLB for this page */
396 if (IS_GEN(dev_priv, 6, 7)) {
397 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
399 /* ring should be idle before issuing a sync flush*/
400 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
402 I915_WRITE(reg,
403 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
404 INSTPM_SYNC_FLUSH));
405 if (intel_wait_for_register(dev_priv,
406 reg, INSTPM_SYNC_FLUSH, 0,
407 1000))
408 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
409 engine->name);
413 static bool stop_ring(struct intel_engine_cs *engine)
415 struct drm_i915_private *dev_priv = engine->i915;
417 if (INTEL_GEN(dev_priv) > 2) {
418 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
419 if (intel_wait_for_register(dev_priv,
420 RING_MI_MODE(engine->mmio_base),
421 MODE_IDLE,
422 MODE_IDLE,
423 1000)) {
424 DRM_ERROR("%s : timed out trying to stop ring\n",
425 engine->name);
426 /* Sometimes we observe that the idle flag is not
427 * set even though the ring is empty. So double
428 * check before giving up.
430 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
431 return false;
435 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
437 I915_WRITE_HEAD(engine, 0);
438 I915_WRITE_TAIL(engine, 0);
440 /* The ring must be empty before it is disabled */
441 I915_WRITE_CTL(engine, 0);
443 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
446 static int init_ring_common(struct intel_engine_cs *engine)
448 struct drm_i915_private *dev_priv = engine->i915;
449 struct intel_ring *ring = engine->buffer;
450 int ret = 0;
452 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
454 if (!stop_ring(engine)) {
455 /* G45 ring initialization often fails to reset head to zero */
456 DRM_DEBUG_KMS("%s head not reset to zero "
457 "ctl %08x head %08x tail %08x start %08x\n",
458 engine->name,
459 I915_READ_CTL(engine),
460 I915_READ_HEAD(engine),
461 I915_READ_TAIL(engine),
462 I915_READ_START(engine));
464 if (!stop_ring(engine)) {
465 DRM_ERROR("failed to set %s head to zero "
466 "ctl %08x head %08x tail %08x start %08x\n",
467 engine->name,
468 I915_READ_CTL(engine),
469 I915_READ_HEAD(engine),
470 I915_READ_TAIL(engine),
471 I915_READ_START(engine));
472 ret = -EIO;
473 goto out;
477 if (HWS_NEEDS_PHYSICAL(dev_priv))
478 ring_setup_phys_status_page(engine);
479 else
480 intel_ring_setup_status_page(engine);
482 intel_engine_reset_breadcrumbs(engine);
484 /* Enforce ordering by reading HEAD register back */
485 I915_READ_HEAD(engine);
487 /* Initialize the ring. This must happen _after_ we've cleared the ring
488 * registers with the above sequence (the readback of the HEAD registers
489 * also enforces ordering), otherwise the hw might lose the new ring
490 * register values. */
491 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
493 /* WaClearRingBufHeadRegAtInit:ctg,elk */
494 if (I915_READ_HEAD(engine))
495 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
496 engine->name, I915_READ_HEAD(engine));
498 intel_ring_update_space(ring);
499 I915_WRITE_HEAD(engine, ring->head);
500 I915_WRITE_TAIL(engine, ring->tail);
501 (void)I915_READ_TAIL(engine);
503 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
505 /* If the head is still not zero, the ring is dead */
506 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
507 RING_VALID, RING_VALID,
508 50)) {
509 DRM_ERROR("%s initialization failed "
510 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
511 engine->name,
512 I915_READ_CTL(engine),
513 I915_READ_CTL(engine) & RING_VALID,
514 I915_READ_HEAD(engine), ring->head,
515 I915_READ_TAIL(engine), ring->tail,
516 I915_READ_START(engine),
517 i915_ggtt_offset(ring->vma));
518 ret = -EIO;
519 goto out;
522 intel_engine_init_hangcheck(engine);
524 if (INTEL_GEN(dev_priv) > 2)
525 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
527 out:
528 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
530 return ret;
533 static void reset_ring_common(struct intel_engine_cs *engine,
534 struct drm_i915_gem_request *request)
537 * RC6 must be prevented until the reset is complete and the engine
538 * reinitialised. If it occurs in the middle of this sequence, the
539 * state written to/loaded from the power context is ill-defined (e.g.
540 * the PP_BASE_DIR may be lost).
542 assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
545 * Try to restore the logical GPU state to match the continuation
546 * of the request queue. If we skip the context/PD restore, then
547 * the next request may try to execute assuming that its context
548 * is valid and loaded on the GPU and so may try to access invalid
549 * memory, prompting repeated GPU hangs.
551 * If the request was guilty, we still restore the logical state
552 * in case the next request requires it (e.g. the aliasing ppgtt),
553 * but skip over the hung batch.
555 * If the request was innocent, we try to replay the request with
556 * the restored context.
558 if (request) {
559 struct drm_i915_private *dev_priv = request->i915;
560 struct intel_context *ce = &request->ctx->engine[engine->id];
561 struct i915_hw_ppgtt *ppgtt;
563 if (ce->state) {
564 I915_WRITE(CCID,
565 i915_ggtt_offset(ce->state) |
566 BIT(8) /* must be set! */ |
567 CCID_EXTENDED_STATE_SAVE |
568 CCID_EXTENDED_STATE_RESTORE |
569 CCID_EN);
572 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
573 if (ppgtt) {
574 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
576 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
577 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
579 /* Wait for the PD reload to complete */
580 if (intel_wait_for_register(dev_priv,
581 RING_PP_DIR_BASE(engine),
582 BIT(0), 0,
583 10))
584 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
586 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
589 /* If the rq hung, jump to its breadcrumb and skip the batch */
590 if (request->fence.error == -EIO)
591 request->ring->head = request->postfix;
592 } else {
593 engine->legacy_active_context = NULL;
594 engine->legacy_active_ppgtt = NULL;
598 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
600 int ret;
602 ret = intel_ring_workarounds_emit(req);
603 if (ret != 0)
604 return ret;
606 ret = i915_gem_render_state_emit(req);
607 if (ret)
608 return ret;
610 return 0;
613 static int init_render_ring(struct intel_engine_cs *engine)
615 struct drm_i915_private *dev_priv = engine->i915;
616 int ret = init_ring_common(engine);
617 if (ret)
618 return ret;
620 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
621 if (IS_GEN(dev_priv, 4, 6))
622 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
624 /* We need to disable the AsyncFlip performance optimisations in order
625 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
626 * programmed to '1' on all products.
628 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
630 if (IS_GEN(dev_priv, 6, 7))
631 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
633 /* Required for the hardware to program scanline values for waiting */
634 /* WaEnableFlushTlbInvalidationMode:snb */
635 if (IS_GEN6(dev_priv))
636 I915_WRITE(GFX_MODE,
637 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
639 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
640 if (IS_GEN7(dev_priv))
641 I915_WRITE(GFX_MODE_GEN7,
642 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
643 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
645 if (IS_GEN6(dev_priv)) {
646 /* From the Sandybridge PRM, volume 1 part 3, page 24:
647 * "If this bit is set, STCunit will have LRA as replacement
648 * policy. [...] This bit must be reset. LRA replacement
649 * policy is not supported."
651 I915_WRITE(CACHE_MODE_0,
652 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
655 if (IS_GEN(dev_priv, 6, 7))
656 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
658 if (INTEL_INFO(dev_priv)->gen >= 6)
659 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
661 return init_workarounds_ring(engine);
664 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
666 struct drm_i915_private *dev_priv = req->i915;
667 struct intel_engine_cs *engine;
668 enum intel_engine_id id;
669 int num_rings = 0;
671 for_each_engine(engine, dev_priv, id) {
672 i915_reg_t mbox_reg;
674 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
675 continue;
677 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
678 if (i915_mmio_reg_valid(mbox_reg)) {
679 *cs++ = MI_LOAD_REGISTER_IMM(1);
680 *cs++ = i915_mmio_reg_offset(mbox_reg);
681 *cs++ = req->global_seqno;
682 num_rings++;
685 if (num_rings & 1)
686 *cs++ = MI_NOOP;
688 return cs;
691 static void cancel_requests(struct intel_engine_cs *engine)
693 struct drm_i915_gem_request *request;
694 unsigned long flags;
696 spin_lock_irqsave(&engine->timeline->lock, flags);
698 /* Mark all submitted requests as skipped. */
699 list_for_each_entry(request, &engine->timeline->requests, link) {
700 GEM_BUG_ON(!request->global_seqno);
701 if (!i915_gem_request_completed(request))
702 dma_fence_set_error(&request->fence, -EIO);
704 /* Remaining _unready_ requests will be nop'ed when submitted */
706 spin_unlock_irqrestore(&engine->timeline->lock, flags);
709 static void i9xx_submit_request(struct drm_i915_gem_request *request)
711 struct drm_i915_private *dev_priv = request->i915;
713 i915_gem_request_submit(request);
715 I915_WRITE_TAIL(request->engine,
716 intel_ring_set_tail(request->ring, request->tail));
719 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
721 *cs++ = MI_STORE_DWORD_INDEX;
722 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
723 *cs++ = req->global_seqno;
724 *cs++ = MI_USER_INTERRUPT;
726 req->tail = intel_ring_offset(req, cs);
727 assert_ring_tail_valid(req->ring, req->tail);
730 static const int i9xx_emit_breadcrumb_sz = 4;
733 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
735 * @request - request to write to the ring
737 * Update the mailbox registers in the *other* rings with the current seqno.
738 * This acts like a signal in the canonical semaphore.
740 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
742 return i9xx_emit_breadcrumb(req,
743 req->engine->semaphore.signal(req, cs));
746 static int
747 gen6_ring_sync_to(struct drm_i915_gem_request *req,
748 struct drm_i915_gem_request *signal)
750 u32 dw1 = MI_SEMAPHORE_MBOX |
751 MI_SEMAPHORE_COMPARE |
752 MI_SEMAPHORE_REGISTER;
753 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
754 u32 *cs;
756 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
758 cs = intel_ring_begin(req, 4);
759 if (IS_ERR(cs))
760 return PTR_ERR(cs);
762 *cs++ = dw1 | wait_mbox;
763 /* Throughout all of the GEM code, seqno passed implies our current
764 * seqno is >= the last seqno executed. However for hardware the
765 * comparison is strictly greater than.
767 *cs++ = signal->global_seqno - 1;
768 *cs++ = 0;
769 *cs++ = MI_NOOP;
770 intel_ring_advance(req, cs);
772 return 0;
775 static void
776 gen5_seqno_barrier(struct intel_engine_cs *engine)
778 /* MI_STORE are internally buffered by the GPU and not flushed
779 * either by MI_FLUSH or SyncFlush or any other combination of
780 * MI commands.
782 * "Only the submission of the store operation is guaranteed.
783 * The write result will be complete (coherent) some time later
784 * (this is practically a finite period but there is no guaranteed
785 * latency)."
787 * Empirically, we observe that we need a delay of at least 75us to
788 * be sure that the seqno write is visible by the CPU.
790 usleep_range(125, 250);
793 static void
794 gen6_seqno_barrier(struct intel_engine_cs *engine)
796 struct drm_i915_private *dev_priv = engine->i915;
798 /* Workaround to force correct ordering between irq and seqno writes on
799 * ivb (and maybe also on snb) by reading from a CS register (like
800 * ACTHD) before reading the status page.
802 * Note that this effectively stalls the read by the time it takes to
803 * do a memory transaction, which more or less ensures that the write
804 * from the GPU has sufficient time to invalidate the CPU cacheline.
805 * Alternatively we could delay the interrupt from the CS ring to give
806 * the write time to land, but that would incur a delay after every
807 * batch i.e. much more frequent than a delay when waiting for the
808 * interrupt (with the same net latency).
810 * Also note that to prevent whole machine hangs on gen7, we have to
811 * take the spinlock to guard against concurrent cacheline access.
813 spin_lock_irq(&dev_priv->uncore.lock);
814 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
815 spin_unlock_irq(&dev_priv->uncore.lock);
818 static void
819 gen5_irq_enable(struct intel_engine_cs *engine)
821 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
824 static void
825 gen5_irq_disable(struct intel_engine_cs *engine)
827 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
830 static void
831 i9xx_irq_enable(struct intel_engine_cs *engine)
833 struct drm_i915_private *dev_priv = engine->i915;
835 dev_priv->irq_mask &= ~engine->irq_enable_mask;
836 I915_WRITE(IMR, dev_priv->irq_mask);
837 POSTING_READ_FW(RING_IMR(engine->mmio_base));
840 static void
841 i9xx_irq_disable(struct intel_engine_cs *engine)
843 struct drm_i915_private *dev_priv = engine->i915;
845 dev_priv->irq_mask |= engine->irq_enable_mask;
846 I915_WRITE(IMR, dev_priv->irq_mask);
849 static void
850 i8xx_irq_enable(struct intel_engine_cs *engine)
852 struct drm_i915_private *dev_priv = engine->i915;
854 dev_priv->irq_mask &= ~engine->irq_enable_mask;
855 I915_WRITE16(IMR, dev_priv->irq_mask);
856 POSTING_READ16(RING_IMR(engine->mmio_base));
859 static void
860 i8xx_irq_disable(struct intel_engine_cs *engine)
862 struct drm_i915_private *dev_priv = engine->i915;
864 dev_priv->irq_mask |= engine->irq_enable_mask;
865 I915_WRITE16(IMR, dev_priv->irq_mask);
868 static int
869 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
871 u32 *cs;
873 cs = intel_ring_begin(req, 2);
874 if (IS_ERR(cs))
875 return PTR_ERR(cs);
877 *cs++ = MI_FLUSH;
878 *cs++ = MI_NOOP;
879 intel_ring_advance(req, cs);
880 return 0;
883 static void
884 gen6_irq_enable(struct intel_engine_cs *engine)
886 struct drm_i915_private *dev_priv = engine->i915;
888 I915_WRITE_IMR(engine,
889 ~(engine->irq_enable_mask |
890 engine->irq_keep_mask));
891 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
894 static void
895 gen6_irq_disable(struct intel_engine_cs *engine)
897 struct drm_i915_private *dev_priv = engine->i915;
899 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
900 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
903 static void
904 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
906 struct drm_i915_private *dev_priv = engine->i915;
908 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
909 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
912 static void
913 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
915 struct drm_i915_private *dev_priv = engine->i915;
917 I915_WRITE_IMR(engine, ~0);
918 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
921 static int
922 i965_emit_bb_start(struct drm_i915_gem_request *req,
923 u64 offset, u32 length,
924 unsigned int dispatch_flags)
926 u32 *cs;
928 cs = intel_ring_begin(req, 2);
929 if (IS_ERR(cs))
930 return PTR_ERR(cs);
932 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
933 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
934 *cs++ = offset;
935 intel_ring_advance(req, cs);
937 return 0;
940 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
941 #define I830_BATCH_LIMIT (256*1024)
942 #define I830_TLB_ENTRIES (2)
943 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
944 static int
945 i830_emit_bb_start(struct drm_i915_gem_request *req,
946 u64 offset, u32 len,
947 unsigned int dispatch_flags)
949 u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
951 cs = intel_ring_begin(req, 6);
952 if (IS_ERR(cs))
953 return PTR_ERR(cs);
955 /* Evict the invalid PTE TLBs */
956 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
957 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
958 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
959 *cs++ = cs_offset;
960 *cs++ = 0xdeadbeef;
961 *cs++ = MI_NOOP;
962 intel_ring_advance(req, cs);
964 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
965 if (len > I830_BATCH_LIMIT)
966 return -ENOSPC;
968 cs = intel_ring_begin(req, 6 + 2);
969 if (IS_ERR(cs))
970 return PTR_ERR(cs);
972 /* Blit the batch (which has now all relocs applied) to the
973 * stable batch scratch bo area (so that the CS never
974 * stumbles over its tlb invalidation bug) ...
976 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
977 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
978 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
979 *cs++ = cs_offset;
980 *cs++ = 4096;
981 *cs++ = offset;
983 *cs++ = MI_FLUSH;
984 *cs++ = MI_NOOP;
985 intel_ring_advance(req, cs);
987 /* ... and execute it. */
988 offset = cs_offset;
991 cs = intel_ring_begin(req, 2);
992 if (IS_ERR(cs))
993 return PTR_ERR(cs);
995 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
996 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
997 MI_BATCH_NON_SECURE);
998 intel_ring_advance(req, cs);
1000 return 0;
1003 static int
1004 i915_emit_bb_start(struct drm_i915_gem_request *req,
1005 u64 offset, u32 len,
1006 unsigned int dispatch_flags)
1008 u32 *cs;
1010 cs = intel_ring_begin(req, 2);
1011 if (IS_ERR(cs))
1012 return PTR_ERR(cs);
1014 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1015 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1016 MI_BATCH_NON_SECURE);
1017 intel_ring_advance(req, cs);
1019 return 0;
1024 int intel_ring_pin(struct intel_ring *ring,
1025 struct drm_i915_private *i915,
1026 unsigned int offset_bias)
1028 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1029 struct i915_vma *vma = ring->vma;
1030 unsigned int flags;
1031 void *addr;
1032 int ret;
1034 GEM_BUG_ON(ring->vaddr);
1037 flags = PIN_GLOBAL;
1038 if (offset_bias)
1039 flags |= PIN_OFFSET_BIAS | offset_bias;
1040 if (vma->obj->stolen)
1041 flags |= PIN_MAPPABLE;
1043 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1044 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1045 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1046 else
1047 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1048 if (unlikely(ret))
1049 return ret;
1052 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1053 if (unlikely(ret))
1054 return ret;
1056 if (i915_vma_is_map_and_fenceable(vma))
1057 addr = (void __force *)i915_vma_pin_iomap(vma);
1058 else
1059 addr = i915_gem_object_pin_map(vma->obj, map);
1060 if (IS_ERR(addr))
1061 goto err;
1063 vma->obj->pin_global++;
1065 ring->vaddr = addr;
1066 return 0;
1068 err:
1069 i915_vma_unpin(vma);
1070 return PTR_ERR(addr);
1073 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1075 GEM_BUG_ON(!list_empty(&ring->request_list));
1076 ring->tail = tail;
1077 ring->head = tail;
1078 ring->emit = tail;
1079 intel_ring_update_space(ring);
1082 void intel_ring_unpin(struct intel_ring *ring)
1084 GEM_BUG_ON(!ring->vma);
1085 GEM_BUG_ON(!ring->vaddr);
1087 /* Discard any unused bytes beyond that submitted to hw. */
1088 intel_ring_reset(ring, ring->tail);
1090 if (i915_vma_is_map_and_fenceable(ring->vma))
1091 i915_vma_unpin_iomap(ring->vma);
1092 else
1093 i915_gem_object_unpin_map(ring->vma->obj);
1094 ring->vaddr = NULL;
1096 ring->vma->obj->pin_global--;
1097 i915_vma_unpin(ring->vma);
1100 static struct i915_vma *
1101 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1103 struct drm_i915_gem_object *obj;
1104 struct i915_vma *vma;
1106 obj = i915_gem_object_create_stolen(dev_priv, size);
1107 if (!obj)
1108 obj = i915_gem_object_create_internal(dev_priv, size);
1109 if (IS_ERR(obj))
1110 return ERR_CAST(obj);
1112 /* mark ring buffers as read-only from GPU side by default */
1113 obj->gt_ro = 1;
1115 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1116 if (IS_ERR(vma))
1117 goto err;
1119 return vma;
1121 err:
1122 i915_gem_object_put(obj);
1123 return vma;
1126 struct intel_ring *
1127 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1129 struct intel_ring *ring;
1130 struct i915_vma *vma;
1132 GEM_BUG_ON(!is_power_of_2(size));
1133 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1135 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1136 if (!ring)
1137 return ERR_PTR(-ENOMEM);
1139 INIT_LIST_HEAD(&ring->request_list);
1141 ring->size = size;
1142 /* Workaround an erratum on the i830 which causes a hang if
1143 * the TAIL pointer points to within the last 2 cachelines
1144 * of the buffer.
1146 ring->effective_size = size;
1147 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1148 ring->effective_size -= 2 * CACHELINE_BYTES;
1150 intel_ring_update_space(ring);
1152 vma = intel_ring_create_vma(engine->i915, size);
1153 if (IS_ERR(vma)) {
1154 kfree(ring);
1155 return ERR_CAST(vma);
1157 ring->vma = vma;
1159 return ring;
1162 void
1163 intel_ring_free(struct intel_ring *ring)
1165 struct drm_i915_gem_object *obj = ring->vma->obj;
1167 i915_vma_close(ring->vma);
1168 __i915_gem_object_release_unless_active(obj);
1170 kfree(ring);
1173 static int context_pin(struct i915_gem_context *ctx)
1175 struct i915_vma *vma = ctx->engine[RCS].state;
1176 int ret;
1179 * Clear this page out of any CPU caches for coherent swap-in/out.
1180 * We only want to do this on the first bind so that we do not stall
1181 * on an active context (which by nature is already on the GPU).
1183 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1184 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1185 if (ret)
1186 return ret;
1189 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1190 PIN_GLOBAL | PIN_HIGH);
1193 static struct i915_vma *
1194 alloc_context_vma(struct intel_engine_cs *engine)
1196 struct drm_i915_private *i915 = engine->i915;
1197 struct drm_i915_gem_object *obj;
1198 struct i915_vma *vma;
1199 int err;
1201 obj = i915_gem_object_create(i915, engine->context_size);
1202 if (IS_ERR(obj))
1203 return ERR_CAST(obj);
1205 if (engine->default_state) {
1206 void *defaults, *vaddr;
1208 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1209 if (IS_ERR(vaddr)) {
1210 err = PTR_ERR(vaddr);
1211 goto err_obj;
1214 defaults = i915_gem_object_pin_map(engine->default_state,
1215 I915_MAP_WB);
1216 if (IS_ERR(defaults)) {
1217 err = PTR_ERR(defaults);
1218 goto err_map;
1221 memcpy(vaddr, defaults, engine->context_size);
1223 i915_gem_object_unpin_map(engine->default_state);
1224 i915_gem_object_unpin_map(obj);
1228 * Try to make the context utilize L3 as well as LLC.
1230 * On VLV we don't have L3 controls in the PTEs so we
1231 * shouldn't touch the cache level, especially as that
1232 * would make the object snooped which might have a
1233 * negative performance impact.
1235 * Snooping is required on non-llc platforms in execlist
1236 * mode, but since all GGTT accesses use PAT entry 0 we
1237 * get snooping anyway regardless of cache_level.
1239 * This is only applicable for Ivy Bridge devices since
1240 * later platforms don't have L3 control bits in the PTE.
1242 if (IS_IVYBRIDGE(i915)) {
1243 /* Ignore any error, regard it as a simple optimisation */
1244 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1247 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1248 if (IS_ERR(vma)) {
1249 err = PTR_ERR(vma);
1250 goto err_obj;
1253 return vma;
1255 err_map:
1256 i915_gem_object_unpin_map(obj);
1257 err_obj:
1258 i915_gem_object_put(obj);
1259 return ERR_PTR(err);
1262 static struct intel_ring *
1263 intel_ring_context_pin(struct intel_engine_cs *engine,
1264 struct i915_gem_context *ctx)
1266 struct intel_context *ce = &ctx->engine[engine->id];
1267 int ret;
1269 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1271 if (likely(ce->pin_count++))
1272 goto out;
1273 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1275 if (!ce->state && engine->context_size) {
1276 struct i915_vma *vma;
1278 vma = alloc_context_vma(engine);
1279 if (IS_ERR(vma)) {
1280 ret = PTR_ERR(vma);
1281 goto err;
1284 ce->state = vma;
1287 if (ce->state) {
1288 ret = context_pin(ctx);
1289 if (ret)
1290 goto err;
1292 ce->state->obj->pin_global++;
1295 i915_gem_context_get(ctx);
1297 out:
1298 /* One ringbuffer to rule them all */
1299 return engine->buffer;
1301 err:
1302 ce->pin_count = 0;
1303 return ERR_PTR(ret);
1306 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1307 struct i915_gem_context *ctx)
1309 struct intel_context *ce = &ctx->engine[engine->id];
1311 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1312 GEM_BUG_ON(ce->pin_count == 0);
1314 if (--ce->pin_count)
1315 return;
1317 if (ce->state) {
1318 ce->state->obj->pin_global--;
1319 i915_vma_unpin(ce->state);
1322 i915_gem_context_put(ctx);
1325 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1327 struct intel_ring *ring;
1328 int err;
1330 intel_engine_setup_common(engine);
1332 err = intel_engine_init_common(engine);
1333 if (err)
1334 goto err;
1336 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1337 if (IS_ERR(ring)) {
1338 err = PTR_ERR(ring);
1339 goto err;
1342 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1343 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1344 if (err)
1345 goto err_ring;
1347 GEM_BUG_ON(engine->buffer);
1348 engine->buffer = ring;
1350 return 0;
1352 err_ring:
1353 intel_ring_free(ring);
1354 err:
1355 intel_engine_cleanup_common(engine);
1356 return err;
1359 void intel_engine_cleanup(struct intel_engine_cs *engine)
1361 struct drm_i915_private *dev_priv = engine->i915;
1363 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1364 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1366 intel_ring_unpin(engine->buffer);
1367 intel_ring_free(engine->buffer);
1369 if (engine->cleanup)
1370 engine->cleanup(engine);
1372 intel_engine_cleanup_common(engine);
1374 dev_priv->engine[engine->id] = NULL;
1375 kfree(engine);
1378 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1380 struct intel_engine_cs *engine;
1381 enum intel_engine_id id;
1383 /* Restart from the beginning of the rings for convenience */
1384 for_each_engine(engine, dev_priv, id)
1385 intel_ring_reset(engine->buffer, 0);
1388 static inline int mi_set_context(struct drm_i915_gem_request *rq, u32 flags)
1390 struct drm_i915_private *i915 = rq->i915;
1391 struct intel_engine_cs *engine = rq->engine;
1392 enum intel_engine_id id;
1393 const int num_rings =
1394 /* Use an extended w/a on gen7 if signalling from other rings */
1395 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1396 INTEL_INFO(i915)->num_rings - 1 :
1398 int len;
1399 u32 *cs;
1401 flags |= MI_MM_SPACE_GTT;
1402 if (IS_HASWELL(i915))
1403 /* These flags are for resource streamer on HSW+ */
1404 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1405 else
1406 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1408 len = 4;
1409 if (IS_GEN7(i915))
1410 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1412 cs = intel_ring_begin(rq, len);
1413 if (IS_ERR(cs))
1414 return PTR_ERR(cs);
1416 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1417 if (IS_GEN7(i915)) {
1418 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1419 if (num_rings) {
1420 struct intel_engine_cs *signaller;
1422 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1423 for_each_engine(signaller, i915, id) {
1424 if (signaller == engine)
1425 continue;
1427 *cs++ = i915_mmio_reg_offset(
1428 RING_PSMI_CTL(signaller->mmio_base));
1429 *cs++ = _MASKED_BIT_ENABLE(
1430 GEN6_PSMI_SLEEP_MSG_DISABLE);
1435 *cs++ = MI_NOOP;
1436 *cs++ = MI_SET_CONTEXT;
1437 *cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
1439 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1440 * WaMiSetContext_Hang:snb,ivb,vlv
1442 *cs++ = MI_NOOP;
1444 if (IS_GEN7(i915)) {
1445 if (num_rings) {
1446 struct intel_engine_cs *signaller;
1447 i915_reg_t last_reg = {}; /* keep gcc quiet */
1449 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1450 for_each_engine(signaller, i915, id) {
1451 if (signaller == engine)
1452 continue;
1454 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1455 *cs++ = i915_mmio_reg_offset(last_reg);
1456 *cs++ = _MASKED_BIT_DISABLE(
1457 GEN6_PSMI_SLEEP_MSG_DISABLE);
1460 /* Insert a delay before the next switch! */
1461 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1462 *cs++ = i915_mmio_reg_offset(last_reg);
1463 *cs++ = i915_ggtt_offset(engine->scratch);
1464 *cs++ = MI_NOOP;
1466 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1469 intel_ring_advance(rq, cs);
1471 return 0;
1474 static int remap_l3(struct drm_i915_gem_request *rq, int slice)
1476 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1477 int i;
1479 if (!remap_info)
1480 return 0;
1482 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1483 if (IS_ERR(cs))
1484 return PTR_ERR(cs);
1487 * Note: We do not worry about the concurrent register cacheline hang
1488 * here because no other code should access these registers other than
1489 * at initialization time.
1491 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1492 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1493 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1494 *cs++ = remap_info[i];
1496 *cs++ = MI_NOOP;
1497 intel_ring_advance(rq, cs);
1499 return 0;
1502 static int switch_context(struct drm_i915_gem_request *rq)
1504 struct intel_engine_cs *engine = rq->engine;
1505 struct i915_gem_context *to_ctx = rq->ctx;
1506 struct i915_hw_ppgtt *to_mm =
1507 to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1508 struct i915_gem_context *from_ctx = engine->legacy_active_context;
1509 struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1510 u32 hw_flags = 0;
1511 int ret, i;
1513 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1514 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1516 if (to_mm != from_mm ||
1517 (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1518 trace_switch_mm(engine, to_ctx);
1519 ret = to_mm->switch_mm(to_mm, rq);
1520 if (ret)
1521 goto err;
1523 to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1524 engine->legacy_active_ppgtt = to_mm;
1525 hw_flags = MI_FORCE_RESTORE;
1528 if (to_ctx->engine[engine->id].state &&
1529 (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1530 GEM_BUG_ON(engine->id != RCS);
1533 * The kernel context(s) is treated as pure scratch and is not
1534 * expected to retain any state (as we sacrifice it during
1535 * suspend and on resume it may be corrupted). This is ok,
1536 * as nothing actually executes using the kernel context; it
1537 * is purely used for flushing user contexts.
1539 if (i915_gem_context_is_kernel(to_ctx))
1540 hw_flags = MI_RESTORE_INHIBIT;
1542 ret = mi_set_context(rq, hw_flags);
1543 if (ret)
1544 goto err_mm;
1546 engine->legacy_active_context = to_ctx;
1549 if (to_ctx->remap_slice) {
1550 for (i = 0; i < MAX_L3_SLICES; i++) {
1551 if (!(to_ctx->remap_slice & BIT(i)))
1552 continue;
1554 ret = remap_l3(rq, i);
1555 if (ret)
1556 goto err_ctx;
1559 to_ctx->remap_slice = 0;
1562 return 0;
1564 err_ctx:
1565 engine->legacy_active_context = from_ctx;
1566 err_mm:
1567 engine->legacy_active_ppgtt = from_mm;
1568 err:
1569 return ret;
1572 static int ring_request_alloc(struct drm_i915_gem_request *request)
1574 int ret;
1576 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1578 /* Flush enough space to reduce the likelihood of waiting after
1579 * we start building the request - in which case we will just
1580 * have to repeat work.
1582 request->reserved_space += LEGACY_REQUEST_SIZE;
1584 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1585 if (ret)
1586 return ret;
1588 ret = switch_context(request);
1589 if (ret)
1590 return ret;
1592 request->reserved_space -= LEGACY_REQUEST_SIZE;
1593 return 0;
1596 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1598 struct drm_i915_gem_request *target;
1599 long timeout;
1601 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1603 if (intel_ring_update_space(ring) >= bytes)
1604 return 0;
1606 list_for_each_entry(target, &ring->request_list, ring_link) {
1607 /* Would completion of this request free enough space? */
1608 if (bytes <= __intel_ring_space(target->postfix,
1609 ring->emit, ring->size))
1610 break;
1613 if (WARN_ON(&target->ring_link == &ring->request_list))
1614 return -ENOSPC;
1616 timeout = i915_wait_request(target,
1617 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1618 MAX_SCHEDULE_TIMEOUT);
1619 if (timeout < 0)
1620 return timeout;
1622 i915_gem_request_retire_upto(target);
1624 intel_ring_update_space(ring);
1625 GEM_BUG_ON(ring->space < bytes);
1626 return 0;
1629 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1631 GEM_BUG_ON(bytes > ring->effective_size);
1632 if (unlikely(bytes > ring->effective_size - ring->emit))
1633 bytes += ring->size - ring->emit;
1635 if (unlikely(bytes > ring->space)) {
1636 int ret = wait_for_space(ring, bytes);
1637 if (unlikely(ret))
1638 return ret;
1641 GEM_BUG_ON(ring->space < bytes);
1642 return 0;
1645 u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1646 unsigned int num_dwords)
1648 struct intel_ring *ring = req->ring;
1649 const unsigned int remain_usable = ring->effective_size - ring->emit;
1650 const unsigned int bytes = num_dwords * sizeof(u32);
1651 unsigned int need_wrap = 0;
1652 unsigned int total_bytes;
1653 u32 *cs;
1655 /* Packets must be qword aligned. */
1656 GEM_BUG_ON(num_dwords & 1);
1658 total_bytes = bytes + req->reserved_space;
1659 GEM_BUG_ON(total_bytes > ring->effective_size);
1661 if (unlikely(total_bytes > remain_usable)) {
1662 const int remain_actual = ring->size - ring->emit;
1664 if (bytes > remain_usable) {
1666 * Not enough space for the basic request. So need to
1667 * flush out the remainder and then wait for
1668 * base + reserved.
1670 total_bytes += remain_actual;
1671 need_wrap = remain_actual | 1;
1672 } else {
1674 * The base request will fit but the reserved space
1675 * falls off the end. So we don't need an immediate
1676 * wrap and only need to effectively wait for the
1677 * reserved size from the start of ringbuffer.
1679 total_bytes = req->reserved_space + remain_actual;
1683 if (unlikely(total_bytes > ring->space)) {
1684 int ret;
1687 * Space is reserved in the ringbuffer for finalising the
1688 * request, as that cannot be allowed to fail. During request
1689 * finalisation, reserved_space is set to 0 to stop the
1690 * overallocation and the assumption is that then we never need
1691 * to wait (which has the risk of failing with EINTR).
1693 * See also i915_gem_request_alloc() and i915_add_request().
1695 GEM_BUG_ON(!req->reserved_space);
1697 ret = wait_for_space(ring, total_bytes);
1698 if (unlikely(ret))
1699 return ERR_PTR(ret);
1702 if (unlikely(need_wrap)) {
1703 need_wrap &= ~1;
1704 GEM_BUG_ON(need_wrap > ring->space);
1705 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1707 /* Fill the tail with MI_NOOP */
1708 memset(ring->vaddr + ring->emit, 0, need_wrap);
1709 ring->emit = 0;
1710 ring->space -= need_wrap;
1713 GEM_BUG_ON(ring->emit > ring->size - bytes);
1714 GEM_BUG_ON(ring->space < bytes);
1715 cs = ring->vaddr + ring->emit;
1716 GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1717 ring->emit += bytes;
1718 ring->space -= bytes;
1720 return cs;
1723 /* Align the ring tail to a cacheline boundary */
1724 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1726 int num_dwords =
1727 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1728 u32 *cs;
1730 if (num_dwords == 0)
1731 return 0;
1733 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1734 cs = intel_ring_begin(req, num_dwords);
1735 if (IS_ERR(cs))
1736 return PTR_ERR(cs);
1738 while (num_dwords--)
1739 *cs++ = MI_NOOP;
1741 intel_ring_advance(req, cs);
1743 return 0;
1746 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1748 struct drm_i915_private *dev_priv = request->i915;
1750 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1752 /* Every tail move must follow the sequence below */
1754 /* Disable notification that the ring is IDLE. The GT
1755 * will then assume that it is busy and bring it out of rc6.
1757 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1758 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1760 /* Clear the context id. Here be magic! */
1761 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1763 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1764 if (__intel_wait_for_register_fw(dev_priv,
1765 GEN6_BSD_SLEEP_PSMI_CONTROL,
1766 GEN6_BSD_SLEEP_INDICATOR,
1768 1000, 0, NULL))
1769 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1771 /* Now that the ring is fully powered up, update the tail */
1772 i9xx_submit_request(request);
1774 /* Let the ring send IDLE messages to the GT again,
1775 * and so let it sleep to conserve power when idle.
1777 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1778 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1780 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1783 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1785 u32 cmd, *cs;
1787 cs = intel_ring_begin(req, 4);
1788 if (IS_ERR(cs))
1789 return PTR_ERR(cs);
1791 cmd = MI_FLUSH_DW;
1793 /* We always require a command barrier so that subsequent
1794 * commands, such as breadcrumb interrupts, are strictly ordered
1795 * wrt the contents of the write cache being flushed to memory
1796 * (and thus being coherent from the CPU).
1798 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1801 * Bspec vol 1c.5 - video engine command streamer:
1802 * "If ENABLED, all TLBs will be invalidated once the flush
1803 * operation is complete. This bit is only valid when the
1804 * Post-Sync Operation field is a value of 1h or 3h."
1806 if (mode & EMIT_INVALIDATE)
1807 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1809 *cs++ = cmd;
1810 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1811 *cs++ = 0;
1812 *cs++ = MI_NOOP;
1813 intel_ring_advance(req, cs);
1814 return 0;
1817 static int
1818 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1819 u64 offset, u32 len,
1820 unsigned int dispatch_flags)
1822 u32 *cs;
1824 cs = intel_ring_begin(req, 2);
1825 if (IS_ERR(cs))
1826 return PTR_ERR(cs);
1828 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1829 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1830 (dispatch_flags & I915_DISPATCH_RS ?
1831 MI_BATCH_RESOURCE_STREAMER : 0);
1832 /* bit0-7 is the length on GEN6+ */
1833 *cs++ = offset;
1834 intel_ring_advance(req, cs);
1836 return 0;
1839 static int
1840 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1841 u64 offset, u32 len,
1842 unsigned int dispatch_flags)
1844 u32 *cs;
1846 cs = intel_ring_begin(req, 2);
1847 if (IS_ERR(cs))
1848 return PTR_ERR(cs);
1850 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1851 0 : MI_BATCH_NON_SECURE_I965);
1852 /* bit0-7 is the length on GEN6+ */
1853 *cs++ = offset;
1854 intel_ring_advance(req, cs);
1856 return 0;
1859 /* Blitter support (SandyBridge+) */
1861 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1863 u32 cmd, *cs;
1865 cs = intel_ring_begin(req, 4);
1866 if (IS_ERR(cs))
1867 return PTR_ERR(cs);
1869 cmd = MI_FLUSH_DW;
1871 /* We always require a command barrier so that subsequent
1872 * commands, such as breadcrumb interrupts, are strictly ordered
1873 * wrt the contents of the write cache being flushed to memory
1874 * (and thus being coherent from the CPU).
1876 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1879 * Bspec vol 1c.3 - blitter engine command streamer:
1880 * "If ENABLED, all TLBs will be invalidated once the flush
1881 * operation is complete. This bit is only valid when the
1882 * Post-Sync Operation field is a value of 1h or 3h."
1884 if (mode & EMIT_INVALIDATE)
1885 cmd |= MI_INVALIDATE_TLB;
1886 *cs++ = cmd;
1887 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1888 *cs++ = 0;
1889 *cs++ = MI_NOOP;
1890 intel_ring_advance(req, cs);
1892 return 0;
1895 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1896 struct intel_engine_cs *engine)
1898 int i;
1900 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1901 return;
1903 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1904 engine->semaphore.sync_to = gen6_ring_sync_to;
1905 engine->semaphore.signal = gen6_signal;
1908 * The current semaphore is only applied on pre-gen8
1909 * platform. And there is no VCS2 ring on the pre-gen8
1910 * platform. So the semaphore between RCS and VCS2 is
1911 * initialized as INVALID.
1913 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1914 static const struct {
1915 u32 wait_mbox;
1916 i915_reg_t mbox_reg;
1917 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1918 [RCS_HW] = {
1919 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
1920 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
1921 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1923 [VCS_HW] = {
1924 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
1925 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
1926 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1928 [BCS_HW] = {
1929 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
1930 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
1931 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1933 [VECS_HW] = {
1934 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1935 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1936 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1939 u32 wait_mbox;
1940 i915_reg_t mbox_reg;
1942 if (i == engine->hw_id) {
1943 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1944 mbox_reg = GEN6_NOSYNC;
1945 } else {
1946 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1947 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1950 engine->semaphore.mbox.wait[i] = wait_mbox;
1951 engine->semaphore.mbox.signal[i] = mbox_reg;
1955 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1956 struct intel_engine_cs *engine)
1958 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
1960 if (INTEL_GEN(dev_priv) >= 6) {
1961 engine->irq_enable = gen6_irq_enable;
1962 engine->irq_disable = gen6_irq_disable;
1963 engine->irq_seqno_barrier = gen6_seqno_barrier;
1964 } else if (INTEL_GEN(dev_priv) >= 5) {
1965 engine->irq_enable = gen5_irq_enable;
1966 engine->irq_disable = gen5_irq_disable;
1967 engine->irq_seqno_barrier = gen5_seqno_barrier;
1968 } else if (INTEL_GEN(dev_priv) >= 3) {
1969 engine->irq_enable = i9xx_irq_enable;
1970 engine->irq_disable = i9xx_irq_disable;
1971 } else {
1972 engine->irq_enable = i8xx_irq_enable;
1973 engine->irq_disable = i8xx_irq_disable;
1977 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1979 engine->submit_request = i9xx_submit_request;
1980 engine->cancel_requests = cancel_requests;
1982 engine->park = NULL;
1983 engine->unpark = NULL;
1986 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1988 i9xx_set_default_submission(engine);
1989 engine->submit_request = gen6_bsd_submit_request;
1992 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
1993 struct intel_engine_cs *engine)
1995 /* gen8+ are only supported with execlists */
1996 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
1998 intel_ring_init_irq(dev_priv, engine);
1999 intel_ring_init_semaphores(dev_priv, engine);
2001 engine->init_hw = init_ring_common;
2002 engine->reset_hw = reset_ring_common;
2004 engine->context_pin = intel_ring_context_pin;
2005 engine->context_unpin = intel_ring_context_unpin;
2007 engine->request_alloc = ring_request_alloc;
2009 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2010 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2011 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2012 int num_rings;
2014 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2016 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2017 engine->emit_breadcrumb_sz += num_rings * 3;
2018 if (num_rings & 1)
2019 engine->emit_breadcrumb_sz++;
2022 engine->set_default_submission = i9xx_set_default_submission;
2024 if (INTEL_GEN(dev_priv) >= 6)
2025 engine->emit_bb_start = gen6_emit_bb_start;
2026 else if (INTEL_GEN(dev_priv) >= 4)
2027 engine->emit_bb_start = i965_emit_bb_start;
2028 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2029 engine->emit_bb_start = i830_emit_bb_start;
2030 else
2031 engine->emit_bb_start = i915_emit_bb_start;
2034 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2036 struct drm_i915_private *dev_priv = engine->i915;
2037 int ret;
2039 intel_ring_default_vfuncs(dev_priv, engine);
2041 if (HAS_L3_DPF(dev_priv))
2042 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2044 if (INTEL_GEN(dev_priv) >= 6) {
2045 engine->init_context = intel_rcs_ctx_init;
2046 engine->emit_flush = gen7_render_ring_flush;
2047 if (IS_GEN6(dev_priv))
2048 engine->emit_flush = gen6_render_ring_flush;
2049 } else if (IS_GEN5(dev_priv)) {
2050 engine->emit_flush = gen4_render_ring_flush;
2051 } else {
2052 if (INTEL_GEN(dev_priv) < 4)
2053 engine->emit_flush = gen2_render_ring_flush;
2054 else
2055 engine->emit_flush = gen4_render_ring_flush;
2056 engine->irq_enable_mask = I915_USER_INTERRUPT;
2059 if (IS_HASWELL(dev_priv))
2060 engine->emit_bb_start = hsw_emit_bb_start;
2062 engine->init_hw = init_render_ring;
2064 ret = intel_init_ring_buffer(engine);
2065 if (ret)
2066 return ret;
2068 if (INTEL_GEN(dev_priv) >= 6) {
2069 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2070 if (ret)
2071 return ret;
2072 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2073 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2074 if (ret)
2075 return ret;
2078 return 0;
2081 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2083 struct drm_i915_private *dev_priv = engine->i915;
2085 intel_ring_default_vfuncs(dev_priv, engine);
2087 if (INTEL_GEN(dev_priv) >= 6) {
2088 /* gen6 bsd needs a special wa for tail updates */
2089 if (IS_GEN6(dev_priv))
2090 engine->set_default_submission = gen6_bsd_set_default_submission;
2091 engine->emit_flush = gen6_bsd_ring_flush;
2092 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2093 } else {
2094 engine->mmio_base = BSD_RING_BASE;
2095 engine->emit_flush = bsd_ring_flush;
2096 if (IS_GEN5(dev_priv))
2097 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2098 else
2099 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2102 return intel_init_ring_buffer(engine);
2105 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2107 struct drm_i915_private *dev_priv = engine->i915;
2109 intel_ring_default_vfuncs(dev_priv, engine);
2111 engine->emit_flush = gen6_ring_flush;
2112 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2114 return intel_init_ring_buffer(engine);
2117 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2119 struct drm_i915_private *dev_priv = engine->i915;
2121 intel_ring_default_vfuncs(dev_priv, engine);
2123 engine->emit_flush = gen6_ring_flush;
2124 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2125 engine->irq_enable = hsw_vebox_irq_enable;
2126 engine->irq_disable = hsw_vebox_irq_disable;
2128 return intel_init_ring_buffer(engine);