Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / gpu / drm / tegra / dc.c
blobb8403ed48285288c277d224e253285caebed3adb
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
17 #include <soc/tegra/pmc.h>
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 #include "hub.h"
23 #include "plane.h"
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
31 stats->frames = 0;
32 stats->vblank = 0;
33 stats->underflow = 0;
34 stats->overflow = 0;
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
40 u32 value;
42 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 value = tegra_dc_readl(dc, offset);
44 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
46 return value;
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50 unsigned int offset)
52 if (offset >= 0x500 && offset <= 0x638) {
53 offset = 0x000 + (offset - 0x500);
54 return plane->offset + offset;
57 if (offset >= 0x700 && offset <= 0x719) {
58 offset = 0x180 + (offset - 0x700);
59 return plane->offset + offset;
62 if (offset >= 0x800 && offset <= 0x839) {
63 offset = 0x1c0 + (offset - 0x800);
64 return plane->offset + offset;
67 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
69 return plane->offset + offset;
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73 unsigned int offset)
75 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79 unsigned int offset)
81 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
86 struct device_node *np = dc->dev->of_node;
87 struct of_phandle_iterator it;
88 int err;
90 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 if (it.node == dev->of_node)
92 return true;
94 return false;
98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100 * Latching happens mmediately if the display controller is in STOP mode or
101 * on the next frame boundary otherwise.
103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106 * into the ACTIVE copy, either immediately if the display controller is in
107 * STOP mode, or at the next frame boundary otherwise.
109 void tegra_dc_commit(struct tegra_dc *dc)
111 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116 unsigned int bpp)
118 fixed20_12 outf = dfixed_init(out);
119 fixed20_12 inf = dfixed_init(in);
120 u32 dda_inc;
121 int max;
123 if (v)
124 max = 15;
125 else {
126 switch (bpp) {
127 case 2:
128 max = 8;
129 break;
131 default:
132 WARN_ON_ONCE(1);
133 /* fallthrough */
134 case 4:
135 max = 4;
136 break;
140 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 inf.full -= dfixed_const(1);
143 dda_inc = dfixed_div(inf, outf);
144 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
146 return dda_inc;
149 static inline u32 compute_initial_dda(unsigned int in)
151 fixed20_12 inf = dfixed_init(in);
152 return dfixed_frac(inf);
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
157 u32 background[3] = {
158 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
162 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 BLEND_COLOR_KEY_NONE;
164 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 struct tegra_plane_state *state;
166 unsigned int i;
168 state = to_tegra_plane_state(plane->base.state);
170 /* alpha contribution is 1 minus sum of overlapping windows */
171 for (i = 0; i < 3; i++) {
172 if (state->dependent[i])
173 background[i] |= BLEND_CONTROL_DEPENDENT;
176 /* enable alpha blending if pixel format has an alpha component */
177 if (!state->opaque)
178 foreground |= BLEND_CONTROL_ALPHA;
181 * Disable blending and assume Window A is the bottom-most window,
182 * Window C is the top-most window and Window B is in the middle.
184 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
185 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
187 switch (plane->index) {
188 case 0:
189 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
190 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
191 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
192 break;
194 case 1:
195 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
196 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
197 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
198 break;
200 case 2:
201 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
202 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
203 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
204 break;
208 static void tegra_plane_setup_blending(struct tegra_plane *plane,
209 const struct tegra_dc_window *window)
211 u32 value;
213 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
214 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
215 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
216 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
218 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
219 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
220 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
221 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
223 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
224 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
227 static void tegra_dc_setup_window(struct tegra_plane *plane,
228 const struct tegra_dc_window *window)
230 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
231 struct tegra_dc *dc = plane->dc;
232 bool yuv, planar;
233 u32 value;
236 * For YUV planar modes, the number of bytes per pixel takes into
237 * account only the luma component and therefore is 1.
239 yuv = tegra_plane_format_is_yuv(window->format, &planar);
240 if (!yuv)
241 bpp = window->bits_per_pixel / 8;
242 else
243 bpp = planar ? 1 : 2;
245 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
246 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
248 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
249 tegra_plane_writel(plane, value, DC_WIN_POSITION);
251 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
252 tegra_plane_writel(plane, value, DC_WIN_SIZE);
254 h_offset = window->src.x * bpp;
255 v_offset = window->src.y;
256 h_size = window->src.w * bpp;
257 v_size = window->src.h;
259 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
260 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
263 * For DDA computations the number of bytes per pixel for YUV planar
264 * modes needs to take into account all Y, U and V components.
266 if (yuv && planar)
267 bpp = 2;
269 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
270 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
272 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
273 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
275 h_dda = compute_initial_dda(window->src.x);
276 v_dda = compute_initial_dda(window->src.y);
278 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
279 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
281 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
282 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
284 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
286 if (yuv && planar) {
287 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
288 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
289 value = window->stride[1] << 16 | window->stride[0];
290 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
291 } else {
292 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
295 if (window->bottom_up)
296 v_offset += window->src.h - 1;
298 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
299 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
301 if (dc->soc->supports_block_linear) {
302 unsigned long height = window->tiling.value;
304 switch (window->tiling.mode) {
305 case TEGRA_BO_TILING_MODE_PITCH:
306 value = DC_WINBUF_SURFACE_KIND_PITCH;
307 break;
309 case TEGRA_BO_TILING_MODE_TILED:
310 value = DC_WINBUF_SURFACE_KIND_TILED;
311 break;
313 case TEGRA_BO_TILING_MODE_BLOCK:
314 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
315 DC_WINBUF_SURFACE_KIND_BLOCK;
316 break;
319 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
320 } else {
321 switch (window->tiling.mode) {
322 case TEGRA_BO_TILING_MODE_PITCH:
323 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
324 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
325 break;
327 case TEGRA_BO_TILING_MODE_TILED:
328 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
329 DC_WIN_BUFFER_ADDR_MODE_TILE;
330 break;
332 case TEGRA_BO_TILING_MODE_BLOCK:
334 * No need to handle this here because ->atomic_check
335 * will already have filtered it out.
337 break;
340 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
343 value = WIN_ENABLE;
345 if (yuv) {
346 /* setup default colorspace conversion coefficients */
347 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
348 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
349 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
350 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
351 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
352 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
353 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
354 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
356 value |= CSC_ENABLE;
357 } else if (window->bits_per_pixel < 24) {
358 value |= COLOR_EXPAND;
361 if (window->bottom_up)
362 value |= V_DIRECTION;
364 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
366 if (dc->soc->supports_blending)
367 tegra_plane_setup_blending(plane, window);
368 else
369 tegra_plane_setup_blending_legacy(plane);
372 static const u32 tegra20_primary_formats[] = {
373 DRM_FORMAT_ARGB4444,
374 DRM_FORMAT_ARGB1555,
375 DRM_FORMAT_RGB565,
376 DRM_FORMAT_RGBA5551,
377 DRM_FORMAT_ABGR8888,
378 DRM_FORMAT_ARGB8888,
379 /* non-native formats */
380 DRM_FORMAT_XRGB1555,
381 DRM_FORMAT_RGBX5551,
382 DRM_FORMAT_XBGR8888,
383 DRM_FORMAT_XRGB8888,
386 static const u32 tegra114_primary_formats[] = {
387 DRM_FORMAT_ARGB4444,
388 DRM_FORMAT_ARGB1555,
389 DRM_FORMAT_RGB565,
390 DRM_FORMAT_RGBA5551,
391 DRM_FORMAT_ABGR8888,
392 DRM_FORMAT_ARGB8888,
393 /* new on Tegra114 */
394 DRM_FORMAT_ABGR4444,
395 DRM_FORMAT_ABGR1555,
396 DRM_FORMAT_BGRA5551,
397 DRM_FORMAT_XRGB1555,
398 DRM_FORMAT_RGBX5551,
399 DRM_FORMAT_XBGR1555,
400 DRM_FORMAT_BGRX5551,
401 DRM_FORMAT_BGR565,
402 DRM_FORMAT_BGRA8888,
403 DRM_FORMAT_RGBA8888,
404 DRM_FORMAT_XRGB8888,
405 DRM_FORMAT_XBGR8888,
408 static const u32 tegra124_primary_formats[] = {
409 DRM_FORMAT_ARGB4444,
410 DRM_FORMAT_ARGB1555,
411 DRM_FORMAT_RGB565,
412 DRM_FORMAT_RGBA5551,
413 DRM_FORMAT_ABGR8888,
414 DRM_FORMAT_ARGB8888,
415 /* new on Tegra114 */
416 DRM_FORMAT_ABGR4444,
417 DRM_FORMAT_ABGR1555,
418 DRM_FORMAT_BGRA5551,
419 DRM_FORMAT_XRGB1555,
420 DRM_FORMAT_RGBX5551,
421 DRM_FORMAT_XBGR1555,
422 DRM_FORMAT_BGRX5551,
423 DRM_FORMAT_BGR565,
424 DRM_FORMAT_BGRA8888,
425 DRM_FORMAT_RGBA8888,
426 DRM_FORMAT_XRGB8888,
427 DRM_FORMAT_XBGR8888,
428 /* new on Tegra124 */
429 DRM_FORMAT_RGBX8888,
430 DRM_FORMAT_BGRX8888,
433 static int tegra_plane_atomic_check(struct drm_plane *plane,
434 struct drm_plane_state *state)
436 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
437 struct tegra_bo_tiling *tiling = &plane_state->tiling;
438 struct tegra_plane *tegra = to_tegra_plane(plane);
439 struct tegra_dc *dc = to_tegra_dc(state->crtc);
440 unsigned int format;
441 int err;
443 /* no need for further checks if the plane is being disabled */
444 if (!state->crtc)
445 return 0;
447 err = tegra_plane_format(state->fb->format->format, &format,
448 &plane_state->swap);
449 if (err < 0)
450 return err;
453 * Tegra20 and Tegra30 are special cases here because they support
454 * only variants of specific formats with an alpha component, but not
455 * the corresponding opaque formats. However, the opaque formats can
456 * be emulated by disabling alpha blending for the plane.
458 if (!dc->soc->supports_blending) {
459 if (!tegra_plane_format_has_alpha(format)) {
460 err = tegra_plane_format_get_alpha(format, &format);
461 if (err < 0)
462 return err;
464 plane_state->opaque = true;
465 } else {
466 plane_state->opaque = false;
469 tegra_plane_check_dependent(tegra, plane_state);
472 plane_state->format = format;
474 err = tegra_fb_get_tiling(state->fb, tiling);
475 if (err < 0)
476 return err;
478 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
479 !dc->soc->supports_block_linear) {
480 DRM_ERROR("hardware doesn't support block linear mode\n");
481 return -EINVAL;
485 * Tegra doesn't support different strides for U and V planes so we
486 * error out if the user tries to display a framebuffer with such a
487 * configuration.
489 if (state->fb->format->num_planes > 2) {
490 if (state->fb->pitches[2] != state->fb->pitches[1]) {
491 DRM_ERROR("unsupported UV-plane configuration\n");
492 return -EINVAL;
496 err = tegra_plane_state_add(tegra, state);
497 if (err < 0)
498 return err;
500 return 0;
503 static void tegra_plane_atomic_disable(struct drm_plane *plane,
504 struct drm_plane_state *old_state)
506 struct tegra_plane *p = to_tegra_plane(plane);
507 u32 value;
509 /* rien ne va plus */
510 if (!old_state || !old_state->crtc)
511 return;
513 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
514 value &= ~WIN_ENABLE;
515 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
518 static void tegra_plane_atomic_update(struct drm_plane *plane,
519 struct drm_plane_state *old_state)
521 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
522 struct drm_framebuffer *fb = plane->state->fb;
523 struct tegra_plane *p = to_tegra_plane(plane);
524 struct tegra_dc_window window;
525 unsigned int i;
527 /* rien ne va plus */
528 if (!plane->state->crtc || !plane->state->fb)
529 return;
531 if (!plane->state->visible)
532 return tegra_plane_atomic_disable(plane, old_state);
534 memset(&window, 0, sizeof(window));
535 window.src.x = plane->state->src.x1 >> 16;
536 window.src.y = plane->state->src.y1 >> 16;
537 window.src.w = drm_rect_width(&plane->state->src) >> 16;
538 window.src.h = drm_rect_height(&plane->state->src) >> 16;
539 window.dst.x = plane->state->dst.x1;
540 window.dst.y = plane->state->dst.y1;
541 window.dst.w = drm_rect_width(&plane->state->dst);
542 window.dst.h = drm_rect_height(&plane->state->dst);
543 window.bits_per_pixel = fb->format->cpp[0] * 8;
544 window.bottom_up = tegra_fb_is_bottom_up(fb);
546 /* copy from state */
547 window.zpos = plane->state->normalized_zpos;
548 window.tiling = state->tiling;
549 window.format = state->format;
550 window.swap = state->swap;
552 for (i = 0; i < fb->format->num_planes; i++) {
553 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
555 window.base[i] = bo->paddr + fb->offsets[i];
558 * Tegra uses a shared stride for UV planes. Framebuffers are
559 * already checked for this in the tegra_plane_atomic_check()
560 * function, so it's safe to ignore the V-plane pitch here.
562 if (i < 2)
563 window.stride[i] = fb->pitches[i];
566 tegra_dc_setup_window(p, &window);
569 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
570 .atomic_check = tegra_plane_atomic_check,
571 .atomic_disable = tegra_plane_atomic_disable,
572 .atomic_update = tegra_plane_atomic_update,
575 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
578 * Ideally this would use drm_crtc_mask(), but that would require the
579 * CRTC to already be in the mode_config's list of CRTCs. However, it
580 * will only be added to that list in the drm_crtc_init_with_planes()
581 * (in tegra_dc_init()), which in turn requires registration of these
582 * planes. So we have ourselves a nice little chicken and egg problem
583 * here.
585 * We work around this by manually creating the mask from the number
586 * of CRTCs that have been registered, and should therefore always be
587 * the same as drm_crtc_index() after registration.
589 return 1 << drm->mode_config.num_crtc;
592 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
593 struct tegra_dc *dc)
595 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
596 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
597 struct tegra_plane *plane;
598 unsigned int num_formats;
599 const u32 *formats;
600 int err;
602 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
603 if (!plane)
604 return ERR_PTR(-ENOMEM);
606 /* Always use window A as primary window */
607 plane->offset = 0xa00;
608 plane->index = 0;
609 plane->dc = dc;
611 num_formats = dc->soc->num_primary_formats;
612 formats = dc->soc->primary_formats;
614 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
615 &tegra_plane_funcs, formats,
616 num_formats, NULL, type, NULL);
617 if (err < 0) {
618 kfree(plane);
619 return ERR_PTR(err);
622 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
624 if (dc->soc->supports_blending)
625 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
627 return &plane->base;
630 static const u32 tegra_cursor_plane_formats[] = {
631 DRM_FORMAT_RGBA8888,
634 static int tegra_cursor_atomic_check(struct drm_plane *plane,
635 struct drm_plane_state *state)
637 struct tegra_plane *tegra = to_tegra_plane(plane);
638 int err;
640 /* no need for further checks if the plane is being disabled */
641 if (!state->crtc)
642 return 0;
644 /* scaling not supported for cursor */
645 if ((state->src_w >> 16 != state->crtc_w) ||
646 (state->src_h >> 16 != state->crtc_h))
647 return -EINVAL;
649 /* only square cursors supported */
650 if (state->src_w != state->src_h)
651 return -EINVAL;
653 if (state->crtc_w != 32 && state->crtc_w != 64 &&
654 state->crtc_w != 128 && state->crtc_w != 256)
655 return -EINVAL;
657 err = tegra_plane_state_add(tegra, state);
658 if (err < 0)
659 return err;
661 return 0;
664 static void tegra_cursor_atomic_update(struct drm_plane *plane,
665 struct drm_plane_state *old_state)
667 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
668 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
669 struct drm_plane_state *state = plane->state;
670 u32 value = CURSOR_CLIP_DISPLAY;
672 /* rien ne va plus */
673 if (!plane->state->crtc || !plane->state->fb)
674 return;
676 switch (state->crtc_w) {
677 case 32:
678 value |= CURSOR_SIZE_32x32;
679 break;
681 case 64:
682 value |= CURSOR_SIZE_64x64;
683 break;
685 case 128:
686 value |= CURSOR_SIZE_128x128;
687 break;
689 case 256:
690 value |= CURSOR_SIZE_256x256;
691 break;
693 default:
694 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
695 state->crtc_h);
696 return;
699 value |= (bo->paddr >> 10) & 0x3fffff;
700 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
702 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
703 value = (bo->paddr >> 32) & 0x3;
704 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
705 #endif
707 /* enable cursor and set blend mode */
708 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
709 value |= CURSOR_ENABLE;
710 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
712 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
713 value &= ~CURSOR_DST_BLEND_MASK;
714 value &= ~CURSOR_SRC_BLEND_MASK;
715 value |= CURSOR_MODE_NORMAL;
716 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
717 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
718 value |= CURSOR_ALPHA;
719 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
721 /* position the cursor */
722 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
723 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
726 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
727 struct drm_plane_state *old_state)
729 struct tegra_dc *dc;
730 u32 value;
732 /* rien ne va plus */
733 if (!old_state || !old_state->crtc)
734 return;
736 dc = to_tegra_dc(old_state->crtc);
738 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
739 value &= ~CURSOR_ENABLE;
740 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
743 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
744 .atomic_check = tegra_cursor_atomic_check,
745 .atomic_update = tegra_cursor_atomic_update,
746 .atomic_disable = tegra_cursor_atomic_disable,
749 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
750 struct tegra_dc *dc)
752 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
753 struct tegra_plane *plane;
754 unsigned int num_formats;
755 const u32 *formats;
756 int err;
758 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
759 if (!plane)
760 return ERR_PTR(-ENOMEM);
763 * This index is kind of fake. The cursor isn't a regular plane, but
764 * its update and activation request bits in DC_CMD_STATE_CONTROL do
765 * use the same programming. Setting this fake index here allows the
766 * code in tegra_add_plane_state() to do the right thing without the
767 * need to special-casing the cursor plane.
769 plane->index = 6;
770 plane->dc = dc;
772 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
773 formats = tegra_cursor_plane_formats;
775 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
776 &tegra_plane_funcs, formats,
777 num_formats, NULL,
778 DRM_PLANE_TYPE_CURSOR, NULL);
779 if (err < 0) {
780 kfree(plane);
781 return ERR_PTR(err);
784 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
786 return &plane->base;
789 static const u32 tegra20_overlay_formats[] = {
790 DRM_FORMAT_ARGB4444,
791 DRM_FORMAT_ARGB1555,
792 DRM_FORMAT_RGB565,
793 DRM_FORMAT_RGBA5551,
794 DRM_FORMAT_ABGR8888,
795 DRM_FORMAT_ARGB8888,
796 /* non-native formats */
797 DRM_FORMAT_XRGB1555,
798 DRM_FORMAT_RGBX5551,
799 DRM_FORMAT_XBGR8888,
800 DRM_FORMAT_XRGB8888,
801 /* planar formats */
802 DRM_FORMAT_UYVY,
803 DRM_FORMAT_YUYV,
804 DRM_FORMAT_YUV420,
805 DRM_FORMAT_YUV422,
808 static const u32 tegra114_overlay_formats[] = {
809 DRM_FORMAT_ARGB4444,
810 DRM_FORMAT_ARGB1555,
811 DRM_FORMAT_RGB565,
812 DRM_FORMAT_RGBA5551,
813 DRM_FORMAT_ABGR8888,
814 DRM_FORMAT_ARGB8888,
815 /* new on Tegra114 */
816 DRM_FORMAT_ABGR4444,
817 DRM_FORMAT_ABGR1555,
818 DRM_FORMAT_BGRA5551,
819 DRM_FORMAT_XRGB1555,
820 DRM_FORMAT_RGBX5551,
821 DRM_FORMAT_XBGR1555,
822 DRM_FORMAT_BGRX5551,
823 DRM_FORMAT_BGR565,
824 DRM_FORMAT_BGRA8888,
825 DRM_FORMAT_RGBA8888,
826 DRM_FORMAT_XRGB8888,
827 DRM_FORMAT_XBGR8888,
828 /* planar formats */
829 DRM_FORMAT_UYVY,
830 DRM_FORMAT_YUYV,
831 DRM_FORMAT_YUV420,
832 DRM_FORMAT_YUV422,
835 static const u32 tegra124_overlay_formats[] = {
836 DRM_FORMAT_ARGB4444,
837 DRM_FORMAT_ARGB1555,
838 DRM_FORMAT_RGB565,
839 DRM_FORMAT_RGBA5551,
840 DRM_FORMAT_ABGR8888,
841 DRM_FORMAT_ARGB8888,
842 /* new on Tegra114 */
843 DRM_FORMAT_ABGR4444,
844 DRM_FORMAT_ABGR1555,
845 DRM_FORMAT_BGRA5551,
846 DRM_FORMAT_XRGB1555,
847 DRM_FORMAT_RGBX5551,
848 DRM_FORMAT_XBGR1555,
849 DRM_FORMAT_BGRX5551,
850 DRM_FORMAT_BGR565,
851 DRM_FORMAT_BGRA8888,
852 DRM_FORMAT_RGBA8888,
853 DRM_FORMAT_XRGB8888,
854 DRM_FORMAT_XBGR8888,
855 /* new on Tegra124 */
856 DRM_FORMAT_RGBX8888,
857 DRM_FORMAT_BGRX8888,
858 /* planar formats */
859 DRM_FORMAT_UYVY,
860 DRM_FORMAT_YUYV,
861 DRM_FORMAT_YUV420,
862 DRM_FORMAT_YUV422,
865 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
866 struct tegra_dc *dc,
867 unsigned int index)
869 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
870 struct tegra_plane *plane;
871 unsigned int num_formats;
872 const u32 *formats;
873 int err;
875 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 if (!plane)
877 return ERR_PTR(-ENOMEM);
879 plane->offset = 0xa00 + 0x200 * index;
880 plane->index = index;
881 plane->dc = dc;
883 num_formats = dc->soc->num_overlay_formats;
884 formats = dc->soc->overlay_formats;
886 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
887 &tegra_plane_funcs, formats,
888 num_formats, NULL,
889 DRM_PLANE_TYPE_OVERLAY, NULL);
890 if (err < 0) {
891 kfree(plane);
892 return ERR_PTR(err);
895 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
897 if (dc->soc->supports_blending)
898 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
900 return &plane->base;
903 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
904 struct tegra_dc *dc)
906 struct drm_plane *plane, *primary = NULL;
907 unsigned int i, j;
909 for (i = 0; i < dc->soc->num_wgrps; i++) {
910 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
912 if (wgrp->dc == dc->pipe) {
913 for (j = 0; j < wgrp->num_windows; j++) {
914 unsigned int index = wgrp->windows[j];
916 plane = tegra_shared_plane_create(drm, dc,
917 wgrp->index,
918 index);
919 if (IS_ERR(plane))
920 return plane;
923 * Choose the first shared plane owned by this
924 * head as the primary plane.
926 if (!primary) {
927 plane->type = DRM_PLANE_TYPE_PRIMARY;
928 primary = plane;
934 return primary;
937 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
938 struct tegra_dc *dc)
940 struct drm_plane *planes[2], *primary;
941 unsigned int i;
942 int err;
944 primary = tegra_primary_plane_create(drm, dc);
945 if (IS_ERR(primary))
946 return primary;
948 for (i = 0; i < 2; i++) {
949 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
950 if (IS_ERR(planes[i])) {
951 err = PTR_ERR(planes[i]);
953 while (i--)
954 tegra_plane_funcs.destroy(planes[i]);
956 tegra_plane_funcs.destroy(primary);
957 return ERR_PTR(err);
961 return primary;
964 static void tegra_dc_destroy(struct drm_crtc *crtc)
966 drm_crtc_cleanup(crtc);
969 static void tegra_crtc_reset(struct drm_crtc *crtc)
971 struct tegra_dc_state *state;
973 if (crtc->state)
974 __drm_atomic_helper_crtc_destroy_state(crtc->state);
976 kfree(crtc->state);
977 crtc->state = NULL;
979 state = kzalloc(sizeof(*state), GFP_KERNEL);
980 if (state) {
981 crtc->state = &state->base;
982 crtc->state->crtc = crtc;
985 drm_crtc_vblank_reset(crtc);
988 static struct drm_crtc_state *
989 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
991 struct tegra_dc_state *state = to_dc_state(crtc->state);
992 struct tegra_dc_state *copy;
994 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
995 if (!copy)
996 return NULL;
998 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
999 copy->clk = state->clk;
1000 copy->pclk = state->pclk;
1001 copy->div = state->div;
1002 copy->planes = state->planes;
1004 return &copy->base;
1007 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1008 struct drm_crtc_state *state)
1010 __drm_atomic_helper_crtc_destroy_state(state);
1011 kfree(state);
1014 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1016 static const struct debugfs_reg32 tegra_dc_regs[] = {
1017 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1018 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1019 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1020 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1021 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1022 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1023 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1024 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1025 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1026 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1027 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1028 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1029 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1030 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1031 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1032 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1033 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1034 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1035 DEBUGFS_REG32(DC_CMD_INT_MASK),
1036 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1037 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1038 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1039 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1040 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1041 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1042 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1043 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1044 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1045 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1046 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1047 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1048 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1049 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1050 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1051 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1052 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1053 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1054 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1055 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1056 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1057 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1058 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1059 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1060 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1061 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1062 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1063 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1064 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1065 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1066 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1067 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1068 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1069 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1070 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1071 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1072 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1073 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1074 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1075 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1076 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1077 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1078 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1079 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1080 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1081 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1082 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1083 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1084 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1085 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1086 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1087 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1088 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1089 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1090 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1091 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1092 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1093 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1094 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1095 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1096 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1097 DEBUGFS_REG32(DC_DISP_ACTIVE),
1098 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1099 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1100 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1101 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1102 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1103 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1104 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1105 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1106 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1107 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1108 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1109 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1110 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1111 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1112 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1113 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1114 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1115 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1116 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1117 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1118 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1119 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1120 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1121 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1122 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1123 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1124 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1125 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1126 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1127 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1128 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1129 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1130 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1131 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1132 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1133 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1134 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1135 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1136 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1137 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1138 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1139 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1140 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1141 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1142 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1143 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1144 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1145 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1146 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1147 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1148 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1149 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1150 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1151 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1152 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1153 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1154 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1155 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1156 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1157 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1158 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1159 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1160 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1161 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1162 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1163 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1164 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1165 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1166 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1167 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1168 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1169 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1170 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1171 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1172 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1173 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1174 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1175 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1176 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1177 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1178 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1179 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1180 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1181 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1182 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1183 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1184 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1185 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1186 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1187 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1188 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1189 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1190 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1191 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1192 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1193 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1194 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1195 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1196 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1197 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1198 DEBUGFS_REG32(DC_WIN_POSITION),
1199 DEBUGFS_REG32(DC_WIN_SIZE),
1200 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1201 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1202 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1203 DEBUGFS_REG32(DC_WIN_DDA_INC),
1204 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1205 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1206 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1207 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1208 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1209 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1210 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1211 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1212 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1213 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1214 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1215 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1216 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1217 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1218 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1219 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1220 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1221 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1222 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1223 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1224 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1225 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1226 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1227 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1228 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1231 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1233 struct drm_info_node *node = s->private;
1234 struct tegra_dc *dc = node->info_ent->data;
1235 unsigned int i;
1236 int err = 0;
1238 drm_modeset_lock(&dc->base.mutex, NULL);
1240 if (!dc->base.state->active) {
1241 err = -EBUSY;
1242 goto unlock;
1245 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1246 unsigned int offset = tegra_dc_regs[i].offset;
1248 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1249 offset, tegra_dc_readl(dc, offset));
1252 unlock:
1253 drm_modeset_unlock(&dc->base.mutex);
1254 return err;
1257 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1259 struct drm_info_node *node = s->private;
1260 struct tegra_dc *dc = node->info_ent->data;
1261 int err = 0;
1262 u32 value;
1264 drm_modeset_lock(&dc->base.mutex, NULL);
1266 if (!dc->base.state->active) {
1267 err = -EBUSY;
1268 goto unlock;
1271 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1272 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1273 tegra_dc_commit(dc);
1275 drm_crtc_wait_one_vblank(&dc->base);
1276 drm_crtc_wait_one_vblank(&dc->base);
1278 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1279 seq_printf(s, "%08x\n", value);
1281 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1283 unlock:
1284 drm_modeset_unlock(&dc->base.mutex);
1285 return err;
1288 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1290 struct drm_info_node *node = s->private;
1291 struct tegra_dc *dc = node->info_ent->data;
1293 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1294 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1295 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1296 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1298 return 0;
1301 static struct drm_info_list debugfs_files[] = {
1302 { "regs", tegra_dc_show_regs, 0, NULL },
1303 { "crc", tegra_dc_show_crc, 0, NULL },
1304 { "stats", tegra_dc_show_stats, 0, NULL },
1307 static int tegra_dc_late_register(struct drm_crtc *crtc)
1309 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1310 struct drm_minor *minor = crtc->dev->primary;
1311 struct dentry *root;
1312 struct tegra_dc *dc = to_tegra_dc(crtc);
1313 int err;
1315 #ifdef CONFIG_DEBUG_FS
1316 root = crtc->debugfs_entry;
1317 #else
1318 root = NULL;
1319 #endif
1321 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1322 GFP_KERNEL);
1323 if (!dc->debugfs_files)
1324 return -ENOMEM;
1326 for (i = 0; i < count; i++)
1327 dc->debugfs_files[i].data = dc;
1329 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1330 if (err < 0)
1331 goto free;
1333 return 0;
1335 free:
1336 kfree(dc->debugfs_files);
1337 dc->debugfs_files = NULL;
1339 return err;
1342 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1344 unsigned int count = ARRAY_SIZE(debugfs_files);
1345 struct drm_minor *minor = crtc->dev->primary;
1346 struct tegra_dc *dc = to_tegra_dc(crtc);
1348 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1349 kfree(dc->debugfs_files);
1350 dc->debugfs_files = NULL;
1353 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1355 struct tegra_dc *dc = to_tegra_dc(crtc);
1357 /* XXX vblank syncpoints don't work with nvdisplay yet */
1358 if (dc->syncpt && !dc->soc->has_nvdisplay)
1359 return host1x_syncpt_read(dc->syncpt);
1361 /* fallback to software emulated VBLANK counter */
1362 return drm_crtc_vblank_count(&dc->base);
1365 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1367 struct tegra_dc *dc = to_tegra_dc(crtc);
1368 u32 value;
1370 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1371 value |= VBLANK_INT;
1372 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1374 return 0;
1377 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1379 struct tegra_dc *dc = to_tegra_dc(crtc);
1380 u32 value;
1382 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1383 value &= ~VBLANK_INT;
1384 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1387 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1388 .page_flip = drm_atomic_helper_page_flip,
1389 .set_config = drm_atomic_helper_set_config,
1390 .destroy = tegra_dc_destroy,
1391 .reset = tegra_crtc_reset,
1392 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1393 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1394 .late_register = tegra_dc_late_register,
1395 .early_unregister = tegra_dc_early_unregister,
1396 .get_vblank_counter = tegra_dc_get_vblank_counter,
1397 .enable_vblank = tegra_dc_enable_vblank,
1398 .disable_vblank = tegra_dc_disable_vblank,
1401 static int tegra_dc_set_timings(struct tegra_dc *dc,
1402 struct drm_display_mode *mode)
1404 unsigned int h_ref_to_sync = 1;
1405 unsigned int v_ref_to_sync = 1;
1406 unsigned long value;
1408 if (!dc->soc->has_nvdisplay) {
1409 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1411 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1412 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1415 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1416 ((mode->hsync_end - mode->hsync_start) << 0);
1417 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1419 value = ((mode->vtotal - mode->vsync_end) << 16) |
1420 ((mode->htotal - mode->hsync_end) << 0);
1421 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1423 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1424 ((mode->hsync_start - mode->hdisplay) << 0);
1425 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1427 value = (mode->vdisplay << 16) | mode->hdisplay;
1428 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1430 return 0;
1434 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1435 * state
1436 * @dc: display controller
1437 * @crtc_state: CRTC atomic state
1438 * @clk: parent clock for display controller
1439 * @pclk: pixel clock
1440 * @div: shift clock divider
1442 * Returns:
1443 * 0 on success or a negative error-code on failure.
1445 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1446 struct drm_crtc_state *crtc_state,
1447 struct clk *clk, unsigned long pclk,
1448 unsigned int div)
1450 struct tegra_dc_state *state = to_dc_state(crtc_state);
1452 if (!clk_has_parent(dc->clk, clk))
1453 return -EINVAL;
1455 state->clk = clk;
1456 state->pclk = pclk;
1457 state->div = div;
1459 return 0;
1462 static void tegra_dc_commit_state(struct tegra_dc *dc,
1463 struct tegra_dc_state *state)
1465 u32 value;
1466 int err;
1468 err = clk_set_parent(dc->clk, state->clk);
1469 if (err < 0)
1470 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1473 * Outputs may not want to change the parent clock rate. This is only
1474 * relevant to Tegra20 where only a single display PLL is available.
1475 * Since that PLL would typically be used for HDMI, an internal LVDS
1476 * panel would need to be driven by some other clock such as PLL_P
1477 * which is shared with other peripherals. Changing the clock rate
1478 * should therefore be avoided.
1480 if (state->pclk > 0) {
1481 err = clk_set_rate(state->clk, state->pclk);
1482 if (err < 0)
1483 dev_err(dc->dev,
1484 "failed to set clock rate to %lu Hz\n",
1485 state->pclk);
1488 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1489 state->div);
1490 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1492 if (!dc->soc->has_nvdisplay) {
1493 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1494 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1497 err = clk_set_rate(dc->clk, state->pclk);
1498 if (err < 0)
1499 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1500 dc->clk, state->pclk, err);
1503 static void tegra_dc_stop(struct tegra_dc *dc)
1505 u32 value;
1507 /* stop the display controller */
1508 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1509 value &= ~DISP_CTRL_MODE_MASK;
1510 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1512 tegra_dc_commit(dc);
1515 static bool tegra_dc_idle(struct tegra_dc *dc)
1517 u32 value;
1519 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1521 return (value & DISP_CTRL_MODE_MASK) == 0;
1524 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1526 timeout = jiffies + msecs_to_jiffies(timeout);
1528 while (time_before(jiffies, timeout)) {
1529 if (tegra_dc_idle(dc))
1530 return 0;
1532 usleep_range(1000, 2000);
1535 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1536 return -ETIMEDOUT;
1539 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1540 struct drm_crtc_state *old_state)
1542 struct tegra_dc *dc = to_tegra_dc(crtc);
1543 u32 value;
1545 if (!tegra_dc_idle(dc)) {
1546 tegra_dc_stop(dc);
1549 * Ignore the return value, there isn't anything useful to do
1550 * in case this fails.
1552 tegra_dc_wait_idle(dc, 100);
1556 * This should really be part of the RGB encoder driver, but clearing
1557 * these bits has the side-effect of stopping the display controller.
1558 * When that happens no VBLANK interrupts will be raised. At the same
1559 * time the encoder is disabled before the display controller, so the
1560 * above code is always going to timeout waiting for the controller
1561 * to go idle.
1563 * Given the close coupling between the RGB encoder and the display
1564 * controller doing it here is still kind of okay. None of the other
1565 * encoder drivers require these bits to be cleared.
1567 * XXX: Perhaps given that the display controller is switched off at
1568 * this point anyway maybe clearing these bits isn't even useful for
1569 * the RGB encoder?
1571 if (dc->rgb) {
1572 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1573 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1574 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1575 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1578 tegra_dc_stats_reset(&dc->stats);
1579 drm_crtc_vblank_off(crtc);
1581 spin_lock_irq(&crtc->dev->event_lock);
1583 if (crtc->state->event) {
1584 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1585 crtc->state->event = NULL;
1588 spin_unlock_irq(&crtc->dev->event_lock);
1590 pm_runtime_put_sync(dc->dev);
1593 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1594 struct drm_crtc_state *old_state)
1596 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1597 struct tegra_dc_state *state = to_dc_state(crtc->state);
1598 struct tegra_dc *dc = to_tegra_dc(crtc);
1599 u32 value;
1601 pm_runtime_get_sync(dc->dev);
1603 /* initialize display controller */
1604 if (dc->syncpt) {
1605 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1607 if (dc->soc->has_nvdisplay)
1608 enable = 1 << 31;
1609 else
1610 enable = 1 << 8;
1612 value = SYNCPT_CNTRL_NO_STALL;
1613 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1615 value = enable | syncpt;
1616 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1619 if (dc->soc->has_nvdisplay) {
1620 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1621 DSC_OBUF_UF_INT;
1622 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1624 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1625 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1626 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1627 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1628 VBLANK_INT | FRAME_END_INT;
1629 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1631 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1632 FRAME_END_INT;
1633 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1635 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1636 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1638 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1639 } else {
1640 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1641 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1642 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1644 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1645 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1646 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1648 /* initialize timer */
1649 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1650 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1651 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1653 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1654 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1655 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1657 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1658 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1659 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1661 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1662 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1663 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1666 if (dc->soc->supports_background_color)
1667 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1668 else
1669 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1671 /* apply PLL and pixel clock changes */
1672 tegra_dc_commit_state(dc, state);
1674 /* program display mode */
1675 tegra_dc_set_timings(dc, mode);
1677 /* interlacing isn't supported yet, so disable it */
1678 if (dc->soc->supports_interlacing) {
1679 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1680 value &= ~INTERLACE_ENABLE;
1681 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1684 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1685 value &= ~DISP_CTRL_MODE_MASK;
1686 value |= DISP_CTRL_MODE_C_DISPLAY;
1687 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1689 if (!dc->soc->has_nvdisplay) {
1690 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1691 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1692 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1693 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1696 /* enable underflow reporting and display red for missing pixels */
1697 if (dc->soc->has_nvdisplay) {
1698 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1699 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1702 tegra_dc_commit(dc);
1704 drm_crtc_vblank_on(crtc);
1707 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1708 struct drm_crtc_state *state)
1710 struct tegra_atomic_state *s = to_tegra_atomic_state(state->state);
1711 struct tegra_dc_state *tegra = to_dc_state(state);
1714 * The display hub display clock needs to be fed by the display clock
1715 * with the highest frequency to ensure proper functioning of all the
1716 * displays.
1718 * Note that this isn't used before Tegra186, but it doesn't hurt and
1719 * conditionalizing it would make the code less clean.
1721 if (state->active) {
1722 if (!s->clk_disp || tegra->pclk > s->rate) {
1723 s->dc = to_tegra_dc(crtc);
1724 s->clk_disp = s->dc->clk;
1725 s->rate = tegra->pclk;
1729 return 0;
1732 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1733 struct drm_crtc_state *old_crtc_state)
1735 unsigned long flags;
1737 if (crtc->state->event) {
1738 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1740 if (drm_crtc_vblank_get(crtc) != 0)
1741 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1742 else
1743 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1745 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1747 crtc->state->event = NULL;
1751 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1752 struct drm_crtc_state *old_crtc_state)
1754 struct tegra_dc_state *state = to_dc_state(crtc->state);
1755 struct tegra_dc *dc = to_tegra_dc(crtc);
1756 u32 value;
1758 value = state->planes << 8 | GENERAL_UPDATE;
1759 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1760 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1762 value = state->planes | GENERAL_ACT_REQ;
1763 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1764 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1767 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1768 .atomic_check = tegra_crtc_atomic_check,
1769 .atomic_begin = tegra_crtc_atomic_begin,
1770 .atomic_flush = tegra_crtc_atomic_flush,
1771 .atomic_enable = tegra_crtc_atomic_enable,
1772 .atomic_disable = tegra_crtc_atomic_disable,
1775 static irqreturn_t tegra_dc_irq(int irq, void *data)
1777 struct tegra_dc *dc = data;
1778 unsigned long status;
1780 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1781 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1783 if (status & FRAME_END_INT) {
1785 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1787 dc->stats.frames++;
1790 if (status & VBLANK_INT) {
1792 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1794 drm_crtc_handle_vblank(&dc->base);
1795 dc->stats.vblank++;
1798 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1800 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1802 dc->stats.underflow++;
1805 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1807 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1809 dc->stats.overflow++;
1812 if (status & HEAD_UF_INT) {
1813 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1814 dc->stats.underflow++;
1817 return IRQ_HANDLED;
1820 static int tegra_dc_init(struct host1x_client *client)
1822 struct drm_device *drm = dev_get_drvdata(client->parent);
1823 struct iommu_group *group = iommu_group_get(client->dev);
1824 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1825 struct tegra_dc *dc = host1x_client_to_dc(client);
1826 struct tegra_drm *tegra = drm->dev_private;
1827 struct drm_plane *primary = NULL;
1828 struct drm_plane *cursor = NULL;
1829 int err;
1831 dc->syncpt = host1x_syncpt_request(client, flags);
1832 if (!dc->syncpt)
1833 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1835 if (group && tegra->domain) {
1836 if (group != tegra->group) {
1837 err = iommu_attach_group(tegra->domain, group);
1838 if (err < 0) {
1839 dev_err(dc->dev,
1840 "failed to attach to domain: %d\n",
1841 err);
1842 return err;
1845 tegra->group = group;
1848 dc->domain = tegra->domain;
1851 if (dc->soc->wgrps)
1852 primary = tegra_dc_add_shared_planes(drm, dc);
1853 else
1854 primary = tegra_dc_add_planes(drm, dc);
1856 if (IS_ERR(primary)) {
1857 err = PTR_ERR(primary);
1858 goto cleanup;
1861 if (dc->soc->supports_cursor) {
1862 cursor = tegra_dc_cursor_plane_create(drm, dc);
1863 if (IS_ERR(cursor)) {
1864 err = PTR_ERR(cursor);
1865 goto cleanup;
1869 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1870 &tegra_crtc_funcs, NULL);
1871 if (err < 0)
1872 goto cleanup;
1874 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1877 * Keep track of the minimum pitch alignment across all display
1878 * controllers.
1880 if (dc->soc->pitch_align > tegra->pitch_align)
1881 tegra->pitch_align = dc->soc->pitch_align;
1883 err = tegra_dc_rgb_init(drm, dc);
1884 if (err < 0 && err != -ENODEV) {
1885 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1886 goto cleanup;
1889 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1890 dev_name(dc->dev), dc);
1891 if (err < 0) {
1892 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1893 err);
1894 goto cleanup;
1897 return 0;
1899 cleanup:
1900 if (!IS_ERR_OR_NULL(cursor))
1901 drm_plane_cleanup(cursor);
1903 if (!IS_ERR(primary))
1904 drm_plane_cleanup(primary);
1906 if (group && tegra->domain) {
1907 iommu_detach_group(tegra->domain, group);
1908 dc->domain = NULL;
1911 return err;
1914 static int tegra_dc_exit(struct host1x_client *client)
1916 struct iommu_group *group = iommu_group_get(client->dev);
1917 struct tegra_dc *dc = host1x_client_to_dc(client);
1918 int err;
1920 devm_free_irq(dc->dev, dc->irq, dc);
1922 err = tegra_dc_rgb_exit(dc);
1923 if (err) {
1924 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1925 return err;
1928 if (group && dc->domain) {
1929 iommu_detach_group(dc->domain, group);
1930 dc->domain = NULL;
1933 host1x_syncpt_free(dc->syncpt);
1935 return 0;
1938 static const struct host1x_client_ops dc_client_ops = {
1939 .init = tegra_dc_init,
1940 .exit = tegra_dc_exit,
1943 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1944 .supports_background_color = false,
1945 .supports_interlacing = false,
1946 .supports_cursor = false,
1947 .supports_block_linear = false,
1948 .supports_blending = false,
1949 .pitch_align = 8,
1950 .has_powergate = false,
1951 .coupled_pm = true,
1952 .has_nvdisplay = false,
1953 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1954 .primary_formats = tegra20_primary_formats,
1955 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1956 .overlay_formats = tegra20_overlay_formats,
1959 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1960 .supports_background_color = false,
1961 .supports_interlacing = false,
1962 .supports_cursor = false,
1963 .supports_block_linear = false,
1964 .supports_blending = false,
1965 .pitch_align = 8,
1966 .has_powergate = false,
1967 .coupled_pm = false,
1968 .has_nvdisplay = false,
1969 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1970 .primary_formats = tegra20_primary_formats,
1971 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1972 .overlay_formats = tegra20_overlay_formats,
1975 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1976 .supports_background_color = false,
1977 .supports_interlacing = false,
1978 .supports_cursor = false,
1979 .supports_block_linear = false,
1980 .supports_blending = false,
1981 .pitch_align = 64,
1982 .has_powergate = true,
1983 .coupled_pm = false,
1984 .has_nvdisplay = false,
1985 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
1986 .primary_formats = tegra114_primary_formats,
1987 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
1988 .overlay_formats = tegra114_overlay_formats,
1991 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1992 .supports_background_color = true,
1993 .supports_interlacing = true,
1994 .supports_cursor = true,
1995 .supports_block_linear = true,
1996 .supports_blending = true,
1997 .pitch_align = 64,
1998 .has_powergate = true,
1999 .coupled_pm = false,
2000 .has_nvdisplay = false,
2001 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2002 .primary_formats = tegra114_primary_formats,
2003 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2004 .overlay_formats = tegra114_overlay_formats,
2007 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2008 .supports_background_color = true,
2009 .supports_interlacing = true,
2010 .supports_cursor = true,
2011 .supports_block_linear = true,
2012 .supports_blending = true,
2013 .pitch_align = 64,
2014 .has_powergate = true,
2015 .coupled_pm = false,
2016 .has_nvdisplay = false,
2017 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2018 .primary_formats = tegra114_primary_formats,
2019 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2020 .overlay_formats = tegra114_overlay_formats,
2023 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2025 .index = 0,
2026 .dc = 0,
2027 .windows = (const unsigned int[]) { 0 },
2028 .num_windows = 1,
2029 }, {
2030 .index = 1,
2031 .dc = 1,
2032 .windows = (const unsigned int[]) { 1 },
2033 .num_windows = 1,
2034 }, {
2035 .index = 2,
2036 .dc = 1,
2037 .windows = (const unsigned int[]) { 2 },
2038 .num_windows = 1,
2039 }, {
2040 .index = 3,
2041 .dc = 2,
2042 .windows = (const unsigned int[]) { 3 },
2043 .num_windows = 1,
2044 }, {
2045 .index = 4,
2046 .dc = 2,
2047 .windows = (const unsigned int[]) { 4 },
2048 .num_windows = 1,
2049 }, {
2050 .index = 5,
2051 .dc = 2,
2052 .windows = (const unsigned int[]) { 5 },
2053 .num_windows = 1,
2057 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2058 .supports_background_color = true,
2059 .supports_interlacing = true,
2060 .supports_cursor = true,
2061 .supports_block_linear = true,
2062 .supports_blending = true,
2063 .pitch_align = 64,
2064 .has_powergate = false,
2065 .coupled_pm = false,
2066 .has_nvdisplay = true,
2067 .wgrps = tegra186_dc_wgrps,
2068 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2071 static const struct of_device_id tegra_dc_of_match[] = {
2073 .compatible = "nvidia,tegra186-dc",
2074 .data = &tegra186_dc_soc_info,
2075 }, {
2076 .compatible = "nvidia,tegra210-dc",
2077 .data = &tegra210_dc_soc_info,
2078 }, {
2079 .compatible = "nvidia,tegra124-dc",
2080 .data = &tegra124_dc_soc_info,
2081 }, {
2082 .compatible = "nvidia,tegra114-dc",
2083 .data = &tegra114_dc_soc_info,
2084 }, {
2085 .compatible = "nvidia,tegra30-dc",
2086 .data = &tegra30_dc_soc_info,
2087 }, {
2088 .compatible = "nvidia,tegra20-dc",
2089 .data = &tegra20_dc_soc_info,
2090 }, {
2091 /* sentinel */
2094 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2096 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2098 struct device_node *np;
2099 u32 value = 0;
2100 int err;
2102 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2103 if (err < 0) {
2104 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2107 * If the nvidia,head property isn't present, try to find the
2108 * correct head number by looking up the position of this
2109 * display controller's node within the device tree. Assuming
2110 * that the nodes are ordered properly in the DTS file and
2111 * that the translation into a flattened device tree blob
2112 * preserves that ordering this will actually yield the right
2113 * head number.
2115 * If those assumptions don't hold, this will still work for
2116 * cases where only a single display controller is used.
2118 for_each_matching_node(np, tegra_dc_of_match) {
2119 if (np == dc->dev->of_node) {
2120 of_node_put(np);
2121 break;
2124 value++;
2128 dc->pipe = value;
2130 return 0;
2133 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2135 struct tegra_dc *dc = dev_get_drvdata(dev);
2136 unsigned int pipe = (unsigned long)data;
2138 return dc->pipe == pipe;
2141 static int tegra_dc_couple(struct tegra_dc *dc)
2144 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2145 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2146 * POWER_CONTROL registers during CRTC enabling.
2148 if (dc->soc->coupled_pm && dc->pipe == 1) {
2149 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2150 struct device_link *link;
2151 struct device *partner;
2153 partner = driver_find_device(dc->dev->driver, NULL, 0,
2154 tegra_dc_match_by_pipe);
2155 if (!partner)
2156 return -EPROBE_DEFER;
2158 link = device_link_add(dc->dev, partner, flags);
2159 if (!link) {
2160 dev_err(dc->dev, "failed to link controllers\n");
2161 return -EINVAL;
2164 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2167 return 0;
2170 static int tegra_dc_probe(struct platform_device *pdev)
2172 struct resource *regs;
2173 struct tegra_dc *dc;
2174 int err;
2176 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2177 if (!dc)
2178 return -ENOMEM;
2180 dc->soc = of_device_get_match_data(&pdev->dev);
2182 INIT_LIST_HEAD(&dc->list);
2183 dc->dev = &pdev->dev;
2185 err = tegra_dc_parse_dt(dc);
2186 if (err < 0)
2187 return err;
2189 err = tegra_dc_couple(dc);
2190 if (err < 0)
2191 return err;
2193 dc->clk = devm_clk_get(&pdev->dev, NULL);
2194 if (IS_ERR(dc->clk)) {
2195 dev_err(&pdev->dev, "failed to get clock\n");
2196 return PTR_ERR(dc->clk);
2199 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2200 if (IS_ERR(dc->rst)) {
2201 dev_err(&pdev->dev, "failed to get reset\n");
2202 return PTR_ERR(dc->rst);
2205 /* assert reset and disable clock */
2206 err = clk_prepare_enable(dc->clk);
2207 if (err < 0)
2208 return err;
2210 usleep_range(2000, 4000);
2212 err = reset_control_assert(dc->rst);
2213 if (err < 0)
2214 return err;
2216 usleep_range(2000, 4000);
2218 clk_disable_unprepare(dc->clk);
2220 if (dc->soc->has_powergate) {
2221 if (dc->pipe == 0)
2222 dc->powergate = TEGRA_POWERGATE_DIS;
2223 else
2224 dc->powergate = TEGRA_POWERGATE_DISB;
2226 tegra_powergate_power_off(dc->powergate);
2229 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2230 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2231 if (IS_ERR(dc->regs))
2232 return PTR_ERR(dc->regs);
2234 dc->irq = platform_get_irq(pdev, 0);
2235 if (dc->irq < 0) {
2236 dev_err(&pdev->dev, "failed to get IRQ\n");
2237 return -ENXIO;
2240 err = tegra_dc_rgb_probe(dc);
2241 if (err < 0 && err != -ENODEV) {
2242 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2243 return err;
2246 platform_set_drvdata(pdev, dc);
2247 pm_runtime_enable(&pdev->dev);
2249 INIT_LIST_HEAD(&dc->client.list);
2250 dc->client.ops = &dc_client_ops;
2251 dc->client.dev = &pdev->dev;
2253 err = host1x_client_register(&dc->client);
2254 if (err < 0) {
2255 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2256 err);
2257 return err;
2260 return 0;
2263 static int tegra_dc_remove(struct platform_device *pdev)
2265 struct tegra_dc *dc = platform_get_drvdata(pdev);
2266 int err;
2268 err = host1x_client_unregister(&dc->client);
2269 if (err < 0) {
2270 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2271 err);
2272 return err;
2275 err = tegra_dc_rgb_remove(dc);
2276 if (err < 0) {
2277 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2278 return err;
2281 pm_runtime_disable(&pdev->dev);
2283 return 0;
2286 #ifdef CONFIG_PM
2287 static int tegra_dc_suspend(struct device *dev)
2289 struct tegra_dc *dc = dev_get_drvdata(dev);
2290 int err;
2292 err = reset_control_assert(dc->rst);
2293 if (err < 0) {
2294 dev_err(dev, "failed to assert reset: %d\n", err);
2295 return err;
2298 if (dc->soc->has_powergate)
2299 tegra_powergate_power_off(dc->powergate);
2301 clk_disable_unprepare(dc->clk);
2303 return 0;
2306 static int tegra_dc_resume(struct device *dev)
2308 struct tegra_dc *dc = dev_get_drvdata(dev);
2309 int err;
2311 if (dc->soc->has_powergate) {
2312 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2313 dc->rst);
2314 if (err < 0) {
2315 dev_err(dev, "failed to power partition: %d\n", err);
2316 return err;
2318 } else {
2319 err = clk_prepare_enable(dc->clk);
2320 if (err < 0) {
2321 dev_err(dev, "failed to enable clock: %d\n", err);
2322 return err;
2325 err = reset_control_deassert(dc->rst);
2326 if (err < 0) {
2327 dev_err(dev, "failed to deassert reset: %d\n", err);
2328 return err;
2332 return 0;
2334 #endif
2336 static const struct dev_pm_ops tegra_dc_pm_ops = {
2337 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2340 struct platform_driver tegra_dc_driver = {
2341 .driver = {
2342 .name = "tegra-dc",
2343 .of_match_table = tegra_dc_of_match,
2344 .pm = &tegra_dc_pm_ops,
2346 .probe = tegra_dc_probe,
2347 .remove = tegra_dc_remove,