Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / iio / adc / stm32-adc.c
blob9a2583caedaaefd8c028081ff947c04a5f612496
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
28 #include "stm32-adc-core.h"
30 /* STM32F4 - Registers for each ADC instance */
31 #define STM32F4_ADC_SR 0x00
32 #define STM32F4_ADC_CR1 0x04
33 #define STM32F4_ADC_CR2 0x08
34 #define STM32F4_ADC_SMPR1 0x0C
35 #define STM32F4_ADC_SMPR2 0x10
36 #define STM32F4_ADC_HTR 0x24
37 #define STM32F4_ADC_LTR 0x28
38 #define STM32F4_ADC_SQR1 0x2C
39 #define STM32F4_ADC_SQR2 0x30
40 #define STM32F4_ADC_SQR3 0x34
41 #define STM32F4_ADC_JSQR 0x38
42 #define STM32F4_ADC_JDR1 0x3C
43 #define STM32F4_ADC_JDR2 0x40
44 #define STM32F4_ADC_JDR3 0x44
45 #define STM32F4_ADC_JDR4 0x48
46 #define STM32F4_ADC_DR 0x4C
48 /* STM32F4_ADC_SR - bit fields */
49 #define STM32F4_STRT BIT(4)
50 #define STM32F4_EOC BIT(1)
52 /* STM32F4_ADC_CR1 - bit fields */
53 #define STM32F4_RES_SHIFT 24
54 #define STM32F4_RES_MASK GENMASK(25, 24)
55 #define STM32F4_SCAN BIT(8)
56 #define STM32F4_EOCIE BIT(5)
58 /* STM32F4_ADC_CR2 - bit fields */
59 #define STM32F4_SWSTART BIT(30)
60 #define STM32F4_EXTEN_SHIFT 28
61 #define STM32F4_EXTEN_MASK GENMASK(29, 28)
62 #define STM32F4_EXTSEL_SHIFT 24
63 #define STM32F4_EXTSEL_MASK GENMASK(27, 24)
64 #define STM32F4_EOCS BIT(10)
65 #define STM32F4_DDS BIT(9)
66 #define STM32F4_DMA BIT(8)
67 #define STM32F4_ADON BIT(0)
69 /* STM32H7 - Registers for each ADC instance */
70 #define STM32H7_ADC_ISR 0x00
71 #define STM32H7_ADC_IER 0x04
72 #define STM32H7_ADC_CR 0x08
73 #define STM32H7_ADC_CFGR 0x0C
74 #define STM32H7_ADC_SMPR1 0x14
75 #define STM32H7_ADC_SMPR2 0x18
76 #define STM32H7_ADC_PCSEL 0x1C
77 #define STM32H7_ADC_SQR1 0x30
78 #define STM32H7_ADC_SQR2 0x34
79 #define STM32H7_ADC_SQR3 0x38
80 #define STM32H7_ADC_SQR4 0x3C
81 #define STM32H7_ADC_DR 0x40
82 #define STM32H7_ADC_DIFSEL 0xC0
83 #define STM32H7_ADC_CALFACT 0xC4
84 #define STM32H7_ADC_CALFACT2 0xC8
86 /* STM32H7_ADC_ISR - bit fields */
87 #define STM32H7_EOC BIT(2)
88 #define STM32H7_ADRDY BIT(0)
90 /* STM32H7_ADC_IER - bit fields */
91 #define STM32H7_EOCIE STM32H7_EOC
93 /* STM32H7_ADC_CR - bit fields */
94 #define STM32H7_ADCAL BIT(31)
95 #define STM32H7_ADCALDIF BIT(30)
96 #define STM32H7_DEEPPWD BIT(29)
97 #define STM32H7_ADVREGEN BIT(28)
98 #define STM32H7_LINCALRDYW6 BIT(27)
99 #define STM32H7_LINCALRDYW5 BIT(26)
100 #define STM32H7_LINCALRDYW4 BIT(25)
101 #define STM32H7_LINCALRDYW3 BIT(24)
102 #define STM32H7_LINCALRDYW2 BIT(23)
103 #define STM32H7_LINCALRDYW1 BIT(22)
104 #define STM32H7_ADCALLIN BIT(16)
105 #define STM32H7_BOOST BIT(8)
106 #define STM32H7_ADSTP BIT(4)
107 #define STM32H7_ADSTART BIT(2)
108 #define STM32H7_ADDIS BIT(1)
109 #define STM32H7_ADEN BIT(0)
111 /* STM32H7_ADC_CFGR bit fields */
112 #define STM32H7_EXTEN_SHIFT 10
113 #define STM32H7_EXTEN_MASK GENMASK(11, 10)
114 #define STM32H7_EXTSEL_SHIFT 5
115 #define STM32H7_EXTSEL_MASK GENMASK(9, 5)
116 #define STM32H7_RES_SHIFT 2
117 #define STM32H7_RES_MASK GENMASK(4, 2)
118 #define STM32H7_DMNGT_SHIFT 0
119 #define STM32H7_DMNGT_MASK GENMASK(1, 0)
121 enum stm32h7_adc_dmngt {
122 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
123 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
124 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
125 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
128 /* STM32H7_ADC_CALFACT - bit fields */
129 #define STM32H7_CALFACT_D_SHIFT 16
130 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
131 #define STM32H7_CALFACT_S_SHIFT 0
132 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
134 /* STM32H7_ADC_CALFACT2 - bit fields */
135 #define STM32H7_LINCALFACT_SHIFT 0
136 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
138 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
139 #define STM32H7_LINCALFACT_NUM 6
141 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
142 #define STM32H7_BOOST_CLKRATE 20000000UL
144 #define STM32_ADC_CH_MAX 20 /* max number of channels */
145 #define STM32_ADC_CH_SZ 10 /* max channel name size */
146 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
147 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
148 #define STM32_ADC_TIMEOUT_US 100000
149 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
151 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
153 /* External trigger enable */
154 enum stm32_adc_exten {
155 STM32_EXTEN_SWTRIG,
156 STM32_EXTEN_HWTRIG_RISING_EDGE,
157 STM32_EXTEN_HWTRIG_FALLING_EDGE,
158 STM32_EXTEN_HWTRIG_BOTH_EDGES,
161 /* extsel - trigger mux selection value */
162 enum stm32_adc_extsel {
163 STM32_EXT0,
164 STM32_EXT1,
165 STM32_EXT2,
166 STM32_EXT3,
167 STM32_EXT4,
168 STM32_EXT5,
169 STM32_EXT6,
170 STM32_EXT7,
171 STM32_EXT8,
172 STM32_EXT9,
173 STM32_EXT10,
174 STM32_EXT11,
175 STM32_EXT12,
176 STM32_EXT13,
177 STM32_EXT14,
178 STM32_EXT15,
179 STM32_EXT16,
180 STM32_EXT17,
181 STM32_EXT18,
182 STM32_EXT19,
183 STM32_EXT20,
187 * struct stm32_adc_trig_info - ADC trigger info
188 * @name: name of the trigger, corresponding to its source
189 * @extsel: trigger selection
191 struct stm32_adc_trig_info {
192 const char *name;
193 enum stm32_adc_extsel extsel;
197 * struct stm32_adc_calib - optional adc calibration data
198 * @calfact_s: Calibration offset for single ended channels
199 * @calfact_d: Calibration offset in differential
200 * @lincalfact: Linearity calibration factor
202 struct stm32_adc_calib {
203 u32 calfact_s;
204 u32 calfact_d;
205 u32 lincalfact[STM32H7_LINCALFACT_NUM];
209 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
210 * @reg: register offset
211 * @mask: bitfield mask
212 * @shift: left shift
214 struct stm32_adc_regs {
215 int reg;
216 int mask;
217 int shift;
221 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
222 * @dr: data register offset
223 * @ier_eoc: interrupt enable register & eocie bitfield
224 * @isr_eoc: interrupt status register & eoc bitfield
225 * @sqr: reference to sequence registers array
226 * @exten: trigger control register & bitfield
227 * @extsel: trigger selection register & bitfield
228 * @res: resolution selection register & bitfield
229 * @smpr: smpr1 & smpr2 registers offset array
230 * @smp_bits: smpr1 & smpr2 index and bitfields
232 struct stm32_adc_regspec {
233 const u32 dr;
234 const struct stm32_adc_regs ier_eoc;
235 const struct stm32_adc_regs isr_eoc;
236 const struct stm32_adc_regs *sqr;
237 const struct stm32_adc_regs exten;
238 const struct stm32_adc_regs extsel;
239 const struct stm32_adc_regs res;
240 const u32 smpr[2];
241 const struct stm32_adc_regs *smp_bits;
244 struct stm32_adc;
247 * stm32_adc_cfg - stm32 compatible configuration data
248 * @regs: registers descriptions
249 * @adc_info: per instance input channels definitions
250 * @trigs: external trigger sources
251 * @clk_required: clock is required
252 * @selfcalib: optional routine for self-calibration
253 * @prepare: optional prepare routine (power-up, enable)
254 * @start_conv: routine to start conversions
255 * @stop_conv: routine to stop conversions
256 * @unprepare: optional unprepare routine (disable, power-down)
257 * @smp_cycles: programmable sampling time (ADC clock cycles)
259 struct stm32_adc_cfg {
260 const struct stm32_adc_regspec *regs;
261 const struct stm32_adc_info *adc_info;
262 struct stm32_adc_trig_info *trigs;
263 bool clk_required;
264 int (*selfcalib)(struct stm32_adc *);
265 int (*prepare)(struct stm32_adc *);
266 void (*start_conv)(struct stm32_adc *, bool dma);
267 void (*stop_conv)(struct stm32_adc *);
268 void (*unprepare)(struct stm32_adc *);
269 const unsigned int *smp_cycles;
273 * struct stm32_adc - private data of each ADC IIO instance
274 * @common: reference to ADC block common data
275 * @offset: ADC instance register offset in ADC block
276 * @cfg: compatible configuration data
277 * @completion: end of single conversion completion
278 * @buffer: data buffer
279 * @clk: clock for this adc instance
280 * @irq: interrupt for this adc instance
281 * @lock: spinlock
282 * @bufi: data buffer index
283 * @num_conv: expected number of scan conversions
284 * @res: data resolution (e.g. RES bitfield value)
285 * @trigger_polarity: external trigger polarity (e.g. exten)
286 * @dma_chan: dma channel
287 * @rx_buf: dma rx buffer cpu address
288 * @rx_dma_buf: dma rx buffer bus address
289 * @rx_buf_sz: dma rx buffer size
290 * @difsel bitmask to set single-ended/differential channel
291 * @pcsel bitmask to preselect channels on some devices
292 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
293 * @cal: optional calibration data on some devices
294 * @chan_name: channel name array
296 struct stm32_adc {
297 struct stm32_adc_common *common;
298 u32 offset;
299 const struct stm32_adc_cfg *cfg;
300 struct completion completion;
301 u16 buffer[STM32_ADC_MAX_SQ];
302 struct clk *clk;
303 int irq;
304 spinlock_t lock; /* interrupt lock */
305 unsigned int bufi;
306 unsigned int num_conv;
307 u32 res;
308 u32 trigger_polarity;
309 struct dma_chan *dma_chan;
310 u8 *rx_buf;
311 dma_addr_t rx_dma_buf;
312 unsigned int rx_buf_sz;
313 u32 difsel;
314 u32 pcsel;
315 u32 smpr_val[2];
316 struct stm32_adc_calib cal;
317 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
320 struct stm32_adc_diff_channel {
321 u32 vinp;
322 u32 vinn;
326 * struct stm32_adc_info - stm32 ADC, per instance config data
327 * @max_channels: Number of channels
328 * @resolutions: available resolutions
329 * @num_res: number of available resolutions
331 struct stm32_adc_info {
332 int max_channels;
333 const unsigned int *resolutions;
334 const unsigned int num_res;
337 static const unsigned int stm32f4_adc_resolutions[] = {
338 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
339 12, 10, 8, 6,
342 /* stm32f4 can have up to 16 channels */
343 static const struct stm32_adc_info stm32f4_adc_info = {
344 .max_channels = 16,
345 .resolutions = stm32f4_adc_resolutions,
346 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
349 static const unsigned int stm32h7_adc_resolutions[] = {
350 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
351 16, 14, 12, 10, 8,
354 /* stm32h7 can have up to 20 channels */
355 static const struct stm32_adc_info stm32h7_adc_info = {
356 .max_channels = STM32_ADC_CH_MAX,
357 .resolutions = stm32h7_adc_resolutions,
358 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
362 * stm32f4_sq - describe regular sequence registers
363 * - L: sequence len (register & bit field)
364 * - SQ1..SQ16: sequence entries (register & bit field)
366 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
367 /* L: len bit field description to be kept as first element */
368 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
369 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
370 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
371 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
372 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
373 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
374 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
375 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
376 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
377 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
378 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
379 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
380 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
381 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
382 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
383 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
384 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
385 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
388 /* STM32F4 external trigger sources for all instances */
389 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
390 { TIM1_CH1, STM32_EXT0 },
391 { TIM1_CH2, STM32_EXT1 },
392 { TIM1_CH3, STM32_EXT2 },
393 { TIM2_CH2, STM32_EXT3 },
394 { TIM2_CH3, STM32_EXT4 },
395 { TIM2_CH4, STM32_EXT5 },
396 { TIM2_TRGO, STM32_EXT6 },
397 { TIM3_CH1, STM32_EXT7 },
398 { TIM3_TRGO, STM32_EXT8 },
399 { TIM4_CH4, STM32_EXT9 },
400 { TIM5_CH1, STM32_EXT10 },
401 { TIM5_CH2, STM32_EXT11 },
402 { TIM5_CH3, STM32_EXT12 },
403 { TIM8_CH1, STM32_EXT13 },
404 { TIM8_TRGO, STM32_EXT14 },
405 {}, /* sentinel */
409 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
410 * Sorted so it can be indexed by channel number.
412 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
413 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
414 { 1, GENMASK(2, 0), 0 },
415 { 1, GENMASK(5, 3), 3 },
416 { 1, GENMASK(8, 6), 6 },
417 { 1, GENMASK(11, 9), 9 },
418 { 1, GENMASK(14, 12), 12 },
419 { 1, GENMASK(17, 15), 15 },
420 { 1, GENMASK(20, 18), 18 },
421 { 1, GENMASK(23, 21), 21 },
422 { 1, GENMASK(26, 24), 24 },
423 { 1, GENMASK(29, 27), 27 },
424 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
425 { 0, GENMASK(2, 0), 0 },
426 { 0, GENMASK(5, 3), 3 },
427 { 0, GENMASK(8, 6), 6 },
428 { 0, GENMASK(11, 9), 9 },
429 { 0, GENMASK(14, 12), 12 },
430 { 0, GENMASK(17, 15), 15 },
431 { 0, GENMASK(20, 18), 18 },
432 { 0, GENMASK(23, 21), 21 },
433 { 0, GENMASK(26, 24), 24 },
436 /* STM32F4 programmable sampling time (ADC clock cycles) */
437 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
438 3, 15, 28, 56, 84, 112, 144, 480,
441 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
442 .dr = STM32F4_ADC_DR,
443 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
444 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
445 .sqr = stm32f4_sq,
446 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
447 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
448 STM32F4_EXTSEL_SHIFT },
449 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
450 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
451 .smp_bits = stm32f4_smp_bits,
454 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
455 /* L: len bit field description to be kept as first element */
456 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
457 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
458 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
459 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
460 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
461 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
462 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
463 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
464 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
465 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
466 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
467 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
468 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
469 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
470 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
471 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
472 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
473 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
476 /* STM32H7 external trigger sources for all instances */
477 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
478 { TIM1_CH1, STM32_EXT0 },
479 { TIM1_CH2, STM32_EXT1 },
480 { TIM1_CH3, STM32_EXT2 },
481 { TIM2_CH2, STM32_EXT3 },
482 { TIM3_TRGO, STM32_EXT4 },
483 { TIM4_CH4, STM32_EXT5 },
484 { TIM8_TRGO, STM32_EXT7 },
485 { TIM8_TRGO2, STM32_EXT8 },
486 { TIM1_TRGO, STM32_EXT9 },
487 { TIM1_TRGO2, STM32_EXT10 },
488 { TIM2_TRGO, STM32_EXT11 },
489 { TIM4_TRGO, STM32_EXT12 },
490 { TIM6_TRGO, STM32_EXT13 },
491 { TIM15_TRGO, STM32_EXT14 },
492 { TIM3_CH4, STM32_EXT15 },
493 { LPTIM1_OUT, STM32_EXT18 },
494 { LPTIM2_OUT, STM32_EXT19 },
495 { LPTIM3_OUT, STM32_EXT20 },
500 * stm32h7_smp_bits - describe sampling time register index & bit fields
501 * Sorted so it can be indexed by channel number.
503 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
504 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
505 { 0, GENMASK(2, 0), 0 },
506 { 0, GENMASK(5, 3), 3 },
507 { 0, GENMASK(8, 6), 6 },
508 { 0, GENMASK(11, 9), 9 },
509 { 0, GENMASK(14, 12), 12 },
510 { 0, GENMASK(17, 15), 15 },
511 { 0, GENMASK(20, 18), 18 },
512 { 0, GENMASK(23, 21), 21 },
513 { 0, GENMASK(26, 24), 24 },
514 { 0, GENMASK(29, 27), 27 },
515 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
516 { 1, GENMASK(2, 0), 0 },
517 { 1, GENMASK(5, 3), 3 },
518 { 1, GENMASK(8, 6), 6 },
519 { 1, GENMASK(11, 9), 9 },
520 { 1, GENMASK(14, 12), 12 },
521 { 1, GENMASK(17, 15), 15 },
522 { 1, GENMASK(20, 18), 18 },
523 { 1, GENMASK(23, 21), 21 },
524 { 1, GENMASK(26, 24), 24 },
525 { 1, GENMASK(29, 27), 27 },
528 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
529 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
530 1, 2, 8, 16, 32, 64, 387, 810,
533 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
534 .dr = STM32H7_ADC_DR,
535 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
536 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
537 .sqr = stm32h7_sq,
538 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
539 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
540 STM32H7_EXTSEL_SHIFT },
541 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
542 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 .smp_bits = stm32h7_smp_bits,
547 * STM32 ADC registers access routines
548 * @adc: stm32 adc instance
549 * @reg: reg offset in adc instance
551 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
552 * for adc1, adc2 and adc3.
554 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
556 return readl_relaxed(adc->common->base + adc->offset + reg);
559 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
561 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
562 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
563 cond, sleep_us, timeout_us)
565 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
567 return readw_relaxed(adc->common->base + adc->offset + reg);
570 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
572 writel_relaxed(val, adc->common->base + adc->offset + reg);
575 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
577 unsigned long flags;
579 spin_lock_irqsave(&adc->lock, flags);
580 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
581 spin_unlock_irqrestore(&adc->lock, flags);
584 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
586 unsigned long flags;
588 spin_lock_irqsave(&adc->lock, flags);
589 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
590 spin_unlock_irqrestore(&adc->lock, flags);
594 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
595 * @adc: stm32 adc instance
597 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
599 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 adc->cfg->regs->ier_eoc.mask);
604 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
605 * @adc: stm32 adc instance
607 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
609 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
610 adc->cfg->regs->ier_eoc.mask);
613 static void stm32_adc_set_res(struct stm32_adc *adc)
615 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
616 u32 val;
618 val = stm32_adc_readl(adc, res->reg);
619 val = (val & ~res->mask) | (adc->res << res->shift);
620 stm32_adc_writel(adc, res->reg, val);
624 * stm32f4_adc_start_conv() - Start conversions for regular channels.
625 * @adc: stm32 adc instance
626 * @dma: use dma to transfer conversion result
628 * Start conversions for regular channels.
629 * Also take care of normal or DMA mode. Circular DMA may be used for regular
630 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
631 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
633 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
635 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
637 if (dma)
638 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
639 STM32F4_DMA | STM32F4_DDS);
641 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
643 /* Wait for Power-up time (tSTAB from datasheet) */
644 usleep_range(2, 3);
646 /* Software start ? (e.g. trigger detection disabled ?) */
647 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
648 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
651 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
653 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
654 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
656 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
657 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
658 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
661 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
663 enum stm32h7_adc_dmngt dmngt;
664 unsigned long flags;
665 u32 val;
667 if (dma)
668 dmngt = STM32H7_DMNGT_DMA_CIRC;
669 else
670 dmngt = STM32H7_DMNGT_DR_ONLY;
672 spin_lock_irqsave(&adc->lock, flags);
673 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
674 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
675 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
676 spin_unlock_irqrestore(&adc->lock, flags);
678 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
681 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
683 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
684 int ret;
685 u32 val;
687 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
689 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
690 !(val & (STM32H7_ADSTART)),
691 100, STM32_ADC_TIMEOUT_US);
692 if (ret)
693 dev_warn(&indio_dev->dev, "stop failed\n");
695 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
698 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
700 /* Exit deep power down, then enable ADC voltage regulator */
701 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
702 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
704 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
705 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
707 /* Wait for startup time */
708 usleep_range(10, 20);
711 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
713 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
715 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
716 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
719 static int stm32h7_adc_enable(struct stm32_adc *adc)
721 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
722 int ret;
723 u32 val;
725 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
727 /* Poll for ADRDY to be set (after adc startup time) */
728 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
729 val & STM32H7_ADRDY,
730 100, STM32_ADC_TIMEOUT_US);
731 if (ret) {
732 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
733 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
734 } else {
735 /* Clear ADRDY by writing one */
736 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
739 return ret;
742 static void stm32h7_adc_disable(struct stm32_adc *adc)
744 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
745 int ret;
746 u32 val;
748 /* Disable ADC and wait until it's effectively disabled */
749 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
750 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
751 !(val & STM32H7_ADEN), 100,
752 STM32_ADC_TIMEOUT_US);
753 if (ret)
754 dev_warn(&indio_dev->dev, "Failed to disable\n");
758 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
759 * @adc: stm32 adc instance
761 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
763 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
764 int i, ret;
765 u32 lincalrdyw_mask, val;
767 /* Enable adc so LINCALRDYW1..6 bits are writable */
768 ret = stm32h7_adc_enable(adc);
769 if (ret)
770 return ret;
772 /* Read linearity calibration */
773 lincalrdyw_mask = STM32H7_LINCALRDYW6;
774 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
775 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
778 /* Poll: wait calib data to be ready in CALFACT2 register */
779 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
780 !(val & lincalrdyw_mask),
781 100, STM32_ADC_TIMEOUT_US);
782 if (ret) {
783 dev_err(&indio_dev->dev, "Failed to read calfact\n");
784 goto disable;
787 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
788 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
789 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
791 lincalrdyw_mask >>= 1;
794 /* Read offset calibration */
795 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
796 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
797 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
798 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
799 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
801 disable:
802 stm32h7_adc_disable(adc);
804 return ret;
808 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
809 * @adc: stm32 adc instance
810 * Note: ADC must be enabled, with no on-going conversions.
812 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
814 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
815 int i, ret;
816 u32 lincalrdyw_mask, val;
818 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
819 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
820 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
822 lincalrdyw_mask = STM32H7_LINCALRDYW6;
823 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
825 * Write saved calibration data to shadow registers:
826 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
827 * data write. Then poll to wait for complete transfer.
829 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
830 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
831 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
832 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
833 val & lincalrdyw_mask,
834 100, STM32_ADC_TIMEOUT_US);
835 if (ret) {
836 dev_err(&indio_dev->dev, "Failed to write calfact\n");
837 return ret;
841 * Read back calibration data, has two effects:
842 * - It ensures bits LINCALRDYW[6..1] are kept cleared
843 * for next time calibration needs to be restored.
844 * - BTW, bit clear triggers a read, then check data has been
845 * correctly written.
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
848 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
849 !(val & lincalrdyw_mask),
850 100, STM32_ADC_TIMEOUT_US);
851 if (ret) {
852 dev_err(&indio_dev->dev, "Failed to read calfact\n");
853 return ret;
855 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
856 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
857 dev_err(&indio_dev->dev, "calfact not consistent\n");
858 return -EIO;
861 lincalrdyw_mask >>= 1;
864 return 0;
868 * Fixed timeout value for ADC calibration.
869 * worst cases:
870 * - low clock frequency
871 * - maximum prescalers
872 * Calibration requires:
873 * - 131,072 ADC clock cycle for the linear calibration
874 * - 20 ADC clock cycle for the offset calibration
876 * Set to 100ms for now
878 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
881 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
882 * @adc: stm32 adc instance
883 * Exit from power down, calibrate ADC, then return to power down.
885 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
887 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
888 int ret;
889 u32 val;
891 stm32h7_adc_exit_pwr_down(adc);
894 * Select calibration mode:
895 * - Offset calibration for single ended inputs
896 * - No linearity calibration (do it later, before reading it)
898 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
899 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
901 /* Start calibration, then wait for completion */
902 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
903 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
904 !(val & STM32H7_ADCAL), 100,
905 STM32H7_ADC_CALIB_TIMEOUT_US);
906 if (ret) {
907 dev_err(&indio_dev->dev, "calibration failed\n");
908 goto pwr_dwn;
912 * Select calibration mode, then start calibration:
913 * - Offset calibration for differential input
914 * - Linearity calibration (needs to be done only once for single/diff)
915 * will run simultaneously with offset calibration.
917 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
918 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
919 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
920 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
921 !(val & STM32H7_ADCAL), 100,
922 STM32H7_ADC_CALIB_TIMEOUT_US);
923 if (ret) {
924 dev_err(&indio_dev->dev, "calibration failed\n");
925 goto pwr_dwn;
928 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
929 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
931 /* Read calibration result for future reference */
932 ret = stm32h7_adc_read_selfcalib(adc);
934 pwr_dwn:
935 stm32h7_adc_enter_pwr_down(adc);
937 return ret;
941 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
942 * @adc: stm32 adc instance
943 * Leave power down mode.
944 * Configure channels as single ended or differential before enabling ADC.
945 * Enable ADC.
946 * Restore calibration data.
947 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
948 * - Only one input is selected for single ended (e.g. 'vinp')
949 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
951 static int stm32h7_adc_prepare(struct stm32_adc *adc)
953 int ret;
955 stm32h7_adc_exit_pwr_down(adc);
956 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
958 ret = stm32h7_adc_enable(adc);
959 if (ret)
960 goto pwr_dwn;
962 ret = stm32h7_adc_restore_selfcalib(adc);
963 if (ret)
964 goto disable;
966 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
968 return 0;
970 disable:
971 stm32h7_adc_disable(adc);
972 pwr_dwn:
973 stm32h7_adc_enter_pwr_down(adc);
975 return ret;
978 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
980 stm32h7_adc_disable(adc);
981 stm32h7_adc_enter_pwr_down(adc);
985 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
986 * @indio_dev: IIO device
987 * @scan_mask: channels to be converted
989 * Conversion sequence :
990 * Apply sampling time settings for all channels.
991 * Configure ADC scan sequence based on selected channels in scan_mask.
992 * Add channels to SQR registers, from scan_mask LSB to MSB, then
993 * program sequence len.
995 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
996 const unsigned long *scan_mask)
998 struct stm32_adc *adc = iio_priv(indio_dev);
999 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1000 const struct iio_chan_spec *chan;
1001 u32 val, bit;
1002 int i = 0;
1004 /* Apply sampling time settings */
1005 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1006 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1008 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1009 chan = indio_dev->channels + bit;
1011 * Assign one channel per SQ entry in regular
1012 * sequence, starting with SQ1.
1014 i++;
1015 if (i > STM32_ADC_MAX_SQ)
1016 return -EINVAL;
1018 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1019 __func__, chan->channel, i);
1021 val = stm32_adc_readl(adc, sqr[i].reg);
1022 val &= ~sqr[i].mask;
1023 val |= chan->channel << sqr[i].shift;
1024 stm32_adc_writel(adc, sqr[i].reg, val);
1027 if (!i)
1028 return -EINVAL;
1030 /* Sequence len */
1031 val = stm32_adc_readl(adc, sqr[0].reg);
1032 val &= ~sqr[0].mask;
1033 val |= ((i - 1) << sqr[0].shift);
1034 stm32_adc_writel(adc, sqr[0].reg, val);
1036 return 0;
1040 * stm32_adc_get_trig_extsel() - Get external trigger selection
1041 * @trig: trigger
1043 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1045 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1046 struct iio_trigger *trig)
1048 struct stm32_adc *adc = iio_priv(indio_dev);
1049 int i;
1051 /* lookup triggers registered by stm32 timer trigger driver */
1052 for (i = 0; adc->cfg->trigs[i].name; i++) {
1054 * Checking both stm32 timer trigger type and trig name
1055 * should be safe against arbitrary trigger names.
1057 if ((is_stm32_timer_trigger(trig) ||
1058 is_stm32_lptim_trigger(trig)) &&
1059 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1060 return adc->cfg->trigs[i].extsel;
1064 return -EINVAL;
1068 * stm32_adc_set_trig() - Set a regular trigger
1069 * @indio_dev: IIO device
1070 * @trig: IIO trigger
1072 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1073 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1074 * - if HW trigger enabled, set source & polarity
1076 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1077 struct iio_trigger *trig)
1079 struct stm32_adc *adc = iio_priv(indio_dev);
1080 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1081 unsigned long flags;
1082 int ret;
1084 if (trig) {
1085 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1086 if (ret < 0)
1087 return ret;
1089 /* set trigger source and polarity (default to rising edge) */
1090 extsel = ret;
1091 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1094 spin_lock_irqsave(&adc->lock, flags);
1095 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1096 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1097 val |= exten << adc->cfg->regs->exten.shift;
1098 val |= extsel << adc->cfg->regs->extsel.shift;
1099 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1100 spin_unlock_irqrestore(&adc->lock, flags);
1102 return 0;
1105 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1106 const struct iio_chan_spec *chan,
1107 unsigned int type)
1109 struct stm32_adc *adc = iio_priv(indio_dev);
1111 adc->trigger_polarity = type;
1113 return 0;
1116 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1117 const struct iio_chan_spec *chan)
1119 struct stm32_adc *adc = iio_priv(indio_dev);
1121 return adc->trigger_polarity;
1124 static const char * const stm32_trig_pol_items[] = {
1125 "rising-edge", "falling-edge", "both-edges",
1128 static const struct iio_enum stm32_adc_trig_pol = {
1129 .items = stm32_trig_pol_items,
1130 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1131 .get = stm32_adc_get_trig_pol,
1132 .set = stm32_adc_set_trig_pol,
1136 * stm32_adc_single_conv() - Performs a single conversion
1137 * @indio_dev: IIO device
1138 * @chan: IIO channel
1139 * @res: conversion result
1141 * The function performs a single conversion on a given channel:
1142 * - Apply sampling time settings
1143 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1144 * - Use SW trigger
1145 * - Start conversion, then wait for interrupt completion.
1147 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1148 const struct iio_chan_spec *chan,
1149 int *res)
1151 struct stm32_adc *adc = iio_priv(indio_dev);
1152 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1153 long timeout;
1154 u32 val;
1155 int ret;
1157 reinit_completion(&adc->completion);
1159 adc->bufi = 0;
1161 if (adc->cfg->prepare) {
1162 ret = adc->cfg->prepare(adc);
1163 if (ret)
1164 return ret;
1167 /* Apply sampling time settings */
1168 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1169 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1171 /* Program chan number in regular sequence (SQ1) */
1172 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1173 val &= ~regs->sqr[1].mask;
1174 val |= chan->channel << regs->sqr[1].shift;
1175 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1177 /* Set regular sequence len (0 for 1 conversion) */
1178 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1180 /* Trigger detection disabled (conversion can be launched in SW) */
1181 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1183 stm32_adc_conv_irq_enable(adc);
1185 adc->cfg->start_conv(adc, false);
1187 timeout = wait_for_completion_interruptible_timeout(
1188 &adc->completion, STM32_ADC_TIMEOUT);
1189 if (timeout == 0) {
1190 ret = -ETIMEDOUT;
1191 } else if (timeout < 0) {
1192 ret = timeout;
1193 } else {
1194 *res = adc->buffer[0];
1195 ret = IIO_VAL_INT;
1198 adc->cfg->stop_conv(adc);
1200 stm32_adc_conv_irq_disable(adc);
1202 if (adc->cfg->unprepare)
1203 adc->cfg->unprepare(adc);
1205 return ret;
1208 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1209 struct iio_chan_spec const *chan,
1210 int *val, int *val2, long mask)
1212 struct stm32_adc *adc = iio_priv(indio_dev);
1213 int ret;
1215 switch (mask) {
1216 case IIO_CHAN_INFO_RAW:
1217 ret = iio_device_claim_direct_mode(indio_dev);
1218 if (ret)
1219 return ret;
1220 if (chan->type == IIO_VOLTAGE)
1221 ret = stm32_adc_single_conv(indio_dev, chan, val);
1222 else
1223 ret = -EINVAL;
1224 iio_device_release_direct_mode(indio_dev);
1225 return ret;
1227 case IIO_CHAN_INFO_SCALE:
1228 if (chan->differential) {
1229 *val = adc->common->vref_mv * 2;
1230 *val2 = chan->scan_type.realbits;
1231 } else {
1232 *val = adc->common->vref_mv;
1233 *val2 = chan->scan_type.realbits;
1235 return IIO_VAL_FRACTIONAL_LOG2;
1237 case IIO_CHAN_INFO_OFFSET:
1238 if (chan->differential)
1239 /* ADC_full_scale / 2 */
1240 *val = -((1 << chan->scan_type.realbits) / 2);
1241 else
1242 *val = 0;
1243 return IIO_VAL_INT;
1245 default:
1246 return -EINVAL;
1250 static irqreturn_t stm32_adc_isr(int irq, void *data)
1252 struct stm32_adc *adc = data;
1253 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1254 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1255 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1257 if (status & regs->isr_eoc.mask) {
1258 /* Reading DR also clears EOC status flag */
1259 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1260 if (iio_buffer_enabled(indio_dev)) {
1261 adc->bufi++;
1262 if (adc->bufi >= adc->num_conv) {
1263 stm32_adc_conv_irq_disable(adc);
1264 iio_trigger_poll(indio_dev->trig);
1266 } else {
1267 complete(&adc->completion);
1269 return IRQ_HANDLED;
1272 return IRQ_NONE;
1276 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1277 * @indio_dev: IIO device
1278 * @trig: new trigger
1280 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1281 * driver, -EINVAL otherwise.
1283 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1284 struct iio_trigger *trig)
1286 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1289 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1291 struct stm32_adc *adc = iio_priv(indio_dev);
1292 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1293 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1296 * dma cyclic transfers are used, buffer is split into two periods.
1297 * There should be :
1298 * - always one buffer (period) dma is working on
1299 * - one buffer (period) driver can push with iio_trigger_poll().
1301 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1302 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1304 return 0;
1307 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1308 const unsigned long *scan_mask)
1310 struct stm32_adc *adc = iio_priv(indio_dev);
1311 int ret;
1313 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1315 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1316 if (ret)
1317 return ret;
1319 return 0;
1322 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1323 const struct of_phandle_args *iiospec)
1325 int i;
1327 for (i = 0; i < indio_dev->num_channels; i++)
1328 if (indio_dev->channels[i].channel == iiospec->args[0])
1329 return i;
1331 return -EINVAL;
1335 * stm32_adc_debugfs_reg_access - read or write register value
1337 * To read a value from an ADC register:
1338 * echo [ADC reg offset] > direct_reg_access
1339 * cat direct_reg_access
1341 * To write a value in a ADC register:
1342 * echo [ADC_reg_offset] [value] > direct_reg_access
1344 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1345 unsigned reg, unsigned writeval,
1346 unsigned *readval)
1348 struct stm32_adc *adc = iio_priv(indio_dev);
1350 if (!readval)
1351 stm32_adc_writel(adc, reg, writeval);
1352 else
1353 *readval = stm32_adc_readl(adc, reg);
1355 return 0;
1358 static const struct iio_info stm32_adc_iio_info = {
1359 .read_raw = stm32_adc_read_raw,
1360 .validate_trigger = stm32_adc_validate_trigger,
1361 .hwfifo_set_watermark = stm32_adc_set_watermark,
1362 .update_scan_mode = stm32_adc_update_scan_mode,
1363 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1364 .of_xlate = stm32_adc_of_xlate,
1367 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1369 struct dma_tx_state state;
1370 enum dma_status status;
1372 status = dmaengine_tx_status(adc->dma_chan,
1373 adc->dma_chan->cookie,
1374 &state);
1375 if (status == DMA_IN_PROGRESS) {
1376 /* Residue is size in bytes from end of buffer */
1377 unsigned int i = adc->rx_buf_sz - state.residue;
1378 unsigned int size;
1380 /* Return available bytes */
1381 if (i >= adc->bufi)
1382 size = i - adc->bufi;
1383 else
1384 size = adc->rx_buf_sz + i - adc->bufi;
1386 return size;
1389 return 0;
1392 static void stm32_adc_dma_buffer_done(void *data)
1394 struct iio_dev *indio_dev = data;
1396 iio_trigger_poll_chained(indio_dev->trig);
1399 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1401 struct stm32_adc *adc = iio_priv(indio_dev);
1402 struct dma_async_tx_descriptor *desc;
1403 dma_cookie_t cookie;
1404 int ret;
1406 if (!adc->dma_chan)
1407 return 0;
1409 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1410 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1412 /* Prepare a DMA cyclic transaction */
1413 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1414 adc->rx_dma_buf,
1415 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1416 DMA_DEV_TO_MEM,
1417 DMA_PREP_INTERRUPT);
1418 if (!desc)
1419 return -EBUSY;
1421 desc->callback = stm32_adc_dma_buffer_done;
1422 desc->callback_param = indio_dev;
1424 cookie = dmaengine_submit(desc);
1425 ret = dma_submit_error(cookie);
1426 if (ret) {
1427 dmaengine_terminate_all(adc->dma_chan);
1428 return ret;
1431 /* Issue pending DMA requests */
1432 dma_async_issue_pending(adc->dma_chan);
1434 return 0;
1437 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1439 struct stm32_adc *adc = iio_priv(indio_dev);
1440 int ret;
1442 if (adc->cfg->prepare) {
1443 ret = adc->cfg->prepare(adc);
1444 if (ret)
1445 return ret;
1448 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1449 if (ret) {
1450 dev_err(&indio_dev->dev, "Can't set trigger\n");
1451 goto err_unprepare;
1454 ret = stm32_adc_dma_start(indio_dev);
1455 if (ret) {
1456 dev_err(&indio_dev->dev, "Can't start dma\n");
1457 goto err_clr_trig;
1460 ret = iio_triggered_buffer_postenable(indio_dev);
1461 if (ret < 0)
1462 goto err_stop_dma;
1464 /* Reset adc buffer index */
1465 adc->bufi = 0;
1467 if (!adc->dma_chan)
1468 stm32_adc_conv_irq_enable(adc);
1470 adc->cfg->start_conv(adc, !!adc->dma_chan);
1472 return 0;
1474 err_stop_dma:
1475 if (adc->dma_chan)
1476 dmaengine_terminate_all(adc->dma_chan);
1477 err_clr_trig:
1478 stm32_adc_set_trig(indio_dev, NULL);
1479 err_unprepare:
1480 if (adc->cfg->unprepare)
1481 adc->cfg->unprepare(adc);
1483 return ret;
1486 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1488 struct stm32_adc *adc = iio_priv(indio_dev);
1489 int ret;
1491 adc->cfg->stop_conv(adc);
1492 if (!adc->dma_chan)
1493 stm32_adc_conv_irq_disable(adc);
1495 ret = iio_triggered_buffer_predisable(indio_dev);
1496 if (ret < 0)
1497 dev_err(&indio_dev->dev, "predisable failed\n");
1499 if (adc->dma_chan)
1500 dmaengine_terminate_all(adc->dma_chan);
1502 if (stm32_adc_set_trig(indio_dev, NULL))
1503 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1505 if (adc->cfg->unprepare)
1506 adc->cfg->unprepare(adc);
1508 return ret;
1511 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1512 .postenable = &stm32_adc_buffer_postenable,
1513 .predisable = &stm32_adc_buffer_predisable,
1516 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1518 struct iio_poll_func *pf = p;
1519 struct iio_dev *indio_dev = pf->indio_dev;
1520 struct stm32_adc *adc = iio_priv(indio_dev);
1522 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1524 if (!adc->dma_chan) {
1525 /* reset buffer index */
1526 adc->bufi = 0;
1527 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1528 pf->timestamp);
1529 } else {
1530 int residue = stm32_adc_dma_residue(adc);
1532 while (residue >= indio_dev->scan_bytes) {
1533 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1535 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1536 pf->timestamp);
1537 residue -= indio_dev->scan_bytes;
1538 adc->bufi += indio_dev->scan_bytes;
1539 if (adc->bufi >= adc->rx_buf_sz)
1540 adc->bufi = 0;
1544 iio_trigger_notify_done(indio_dev->trig);
1546 /* re-enable eoc irq */
1547 if (!adc->dma_chan)
1548 stm32_adc_conv_irq_enable(adc);
1550 return IRQ_HANDLED;
1553 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1554 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1556 .name = "trigger_polarity_available",
1557 .shared = IIO_SHARED_BY_ALL,
1558 .read = iio_enum_available_read,
1559 .private = (uintptr_t)&stm32_adc_trig_pol,
1564 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1566 struct device_node *node = indio_dev->dev.of_node;
1567 struct stm32_adc *adc = iio_priv(indio_dev);
1568 unsigned int i;
1569 u32 res;
1571 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1572 res = adc->cfg->adc_info->resolutions[0];
1574 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1575 if (res == adc->cfg->adc_info->resolutions[i])
1576 break;
1577 if (i >= adc->cfg->adc_info->num_res) {
1578 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1579 return -EINVAL;
1582 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1583 adc->res = i;
1585 return 0;
1588 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1590 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1591 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1592 unsigned int smp, r = smpr->reg;
1594 /* Determine sampling time (ADC clock cycles) */
1595 period_ns = NSEC_PER_SEC / adc->common->rate;
1596 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1597 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1598 break;
1599 if (smp > STM32_ADC_MAX_SMP)
1600 smp = STM32_ADC_MAX_SMP;
1602 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1603 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1606 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1607 struct iio_chan_spec *chan, u32 vinp,
1608 u32 vinn, int scan_index, bool differential)
1610 struct stm32_adc *adc = iio_priv(indio_dev);
1611 char *name = adc->chan_name[vinp];
1613 chan->type = IIO_VOLTAGE;
1614 chan->channel = vinp;
1615 if (differential) {
1616 chan->differential = 1;
1617 chan->channel2 = vinn;
1618 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1619 } else {
1620 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1622 chan->datasheet_name = name;
1623 chan->scan_index = scan_index;
1624 chan->indexed = 1;
1625 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1626 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1627 BIT(IIO_CHAN_INFO_OFFSET);
1628 chan->scan_type.sign = 'u';
1629 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1630 chan->scan_type.storagebits = 16;
1631 chan->ext_info = stm32_adc_ext_info;
1633 /* pre-build selected channels mask */
1634 adc->pcsel |= BIT(chan->channel);
1635 if (differential) {
1636 /* pre-build diff channels mask */
1637 adc->difsel |= BIT(chan->channel);
1638 /* Also add negative input to pre-selected channels */
1639 adc->pcsel |= BIT(chan->channel2);
1643 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1645 struct device_node *node = indio_dev->dev.of_node;
1646 struct stm32_adc *adc = iio_priv(indio_dev);
1647 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1648 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1649 struct property *prop;
1650 const __be32 *cur;
1651 struct iio_chan_spec *channels;
1652 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1653 u32 val, smp = 0;
1655 ret = of_property_count_u32_elems(node, "st,adc-channels");
1656 if (ret > adc_info->max_channels) {
1657 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1658 return -EINVAL;
1659 } else if (ret > 0) {
1660 num_channels += ret;
1663 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1664 sizeof(*diff));
1665 if (ret > adc_info->max_channels) {
1666 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1667 return -EINVAL;
1668 } else if (ret > 0) {
1669 int size = ret * sizeof(*diff) / sizeof(u32);
1671 num_diff = ret;
1672 num_channels += ret;
1673 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1674 (u32 *)diff, size);
1675 if (ret)
1676 return ret;
1679 if (!num_channels) {
1680 dev_err(&indio_dev->dev, "No channels configured\n");
1681 return -ENODATA;
1684 /* Optional sample time is provided either for each, or all channels */
1685 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1686 if (ret > 1 && ret != num_channels) {
1687 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1688 return -EINVAL;
1691 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1692 sizeof(struct iio_chan_spec), GFP_KERNEL);
1693 if (!channels)
1694 return -ENOMEM;
1696 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1697 if (val >= adc_info->max_channels) {
1698 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1699 return -EINVAL;
1702 /* Channel can't be configured both as single-ended & diff */
1703 for (i = 0; i < num_diff; i++) {
1704 if (val == diff[i].vinp) {
1705 dev_err(&indio_dev->dev,
1706 "channel %d miss-configured\n", val);
1707 return -EINVAL;
1710 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1711 0, scan_index, false);
1712 scan_index++;
1715 for (i = 0; i < num_diff; i++) {
1716 if (diff[i].vinp >= adc_info->max_channels ||
1717 diff[i].vinn >= adc_info->max_channels) {
1718 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1719 diff[i].vinp, diff[i].vinn);
1720 return -EINVAL;
1722 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1723 diff[i].vinp, diff[i].vinn, scan_index,
1724 true);
1725 scan_index++;
1728 for (i = 0; i < scan_index; i++) {
1730 * Using of_property_read_u32_index(), smp value will only be
1731 * modified if valid u32 value can be decoded. This allows to
1732 * get either no value, 1 shared value for all indexes, or one
1733 * value per channel.
1735 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1736 i, &smp);
1737 /* Prepare sampling time settings */
1738 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1741 indio_dev->num_channels = scan_index;
1742 indio_dev->channels = channels;
1744 return 0;
1747 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1749 struct stm32_adc *adc = iio_priv(indio_dev);
1750 struct dma_slave_config config;
1751 int ret;
1753 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1754 if (!adc->dma_chan)
1755 return 0;
1757 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1758 STM32_DMA_BUFFER_SIZE,
1759 &adc->rx_dma_buf, GFP_KERNEL);
1760 if (!adc->rx_buf) {
1761 ret = -ENOMEM;
1762 goto err_release;
1765 /* Configure DMA channel to read data register */
1766 memset(&config, 0, sizeof(config));
1767 config.src_addr = (dma_addr_t)adc->common->phys_base;
1768 config.src_addr += adc->offset + adc->cfg->regs->dr;
1769 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1771 ret = dmaengine_slave_config(adc->dma_chan, &config);
1772 if (ret)
1773 goto err_free;
1775 return 0;
1777 err_free:
1778 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1779 adc->rx_buf, adc->rx_dma_buf);
1780 err_release:
1781 dma_release_channel(adc->dma_chan);
1783 return ret;
1786 static int stm32_adc_probe(struct platform_device *pdev)
1788 struct iio_dev *indio_dev;
1789 struct device *dev = &pdev->dev;
1790 struct stm32_adc *adc;
1791 int ret;
1793 if (!pdev->dev.of_node)
1794 return -ENODEV;
1796 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1797 if (!indio_dev)
1798 return -ENOMEM;
1800 adc = iio_priv(indio_dev);
1801 adc->common = dev_get_drvdata(pdev->dev.parent);
1802 spin_lock_init(&adc->lock);
1803 init_completion(&adc->completion);
1804 adc->cfg = (const struct stm32_adc_cfg *)
1805 of_match_device(dev->driver->of_match_table, dev)->data;
1807 indio_dev->name = dev_name(&pdev->dev);
1808 indio_dev->dev.parent = &pdev->dev;
1809 indio_dev->dev.of_node = pdev->dev.of_node;
1810 indio_dev->info = &stm32_adc_iio_info;
1811 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1813 platform_set_drvdata(pdev, adc);
1815 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1816 if (ret != 0) {
1817 dev_err(&pdev->dev, "missing reg property\n");
1818 return -EINVAL;
1821 adc->irq = platform_get_irq(pdev, 0);
1822 if (adc->irq < 0) {
1823 dev_err(&pdev->dev, "failed to get irq\n");
1824 return adc->irq;
1827 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1828 0, pdev->name, adc);
1829 if (ret) {
1830 dev_err(&pdev->dev, "failed to request IRQ\n");
1831 return ret;
1834 adc->clk = devm_clk_get(&pdev->dev, NULL);
1835 if (IS_ERR(adc->clk)) {
1836 ret = PTR_ERR(adc->clk);
1837 if (ret == -ENOENT && !adc->cfg->clk_required) {
1838 adc->clk = NULL;
1839 } else {
1840 dev_err(&pdev->dev, "Can't get clock\n");
1841 return ret;
1845 if (adc->clk) {
1846 ret = clk_prepare_enable(adc->clk);
1847 if (ret < 0) {
1848 dev_err(&pdev->dev, "clk enable failed\n");
1849 return ret;
1853 ret = stm32_adc_of_get_resolution(indio_dev);
1854 if (ret < 0)
1855 goto err_clk_disable;
1856 stm32_adc_set_res(adc);
1858 if (adc->cfg->selfcalib) {
1859 ret = adc->cfg->selfcalib(adc);
1860 if (ret)
1861 goto err_clk_disable;
1864 ret = stm32_adc_chan_of_init(indio_dev);
1865 if (ret < 0)
1866 goto err_clk_disable;
1868 ret = stm32_adc_dma_request(indio_dev);
1869 if (ret < 0)
1870 goto err_clk_disable;
1872 ret = iio_triggered_buffer_setup(indio_dev,
1873 &iio_pollfunc_store_time,
1874 &stm32_adc_trigger_handler,
1875 &stm32_adc_buffer_setup_ops);
1876 if (ret) {
1877 dev_err(&pdev->dev, "buffer setup failed\n");
1878 goto err_dma_disable;
1881 ret = iio_device_register(indio_dev);
1882 if (ret) {
1883 dev_err(&pdev->dev, "iio dev register failed\n");
1884 goto err_buffer_cleanup;
1887 return 0;
1889 err_buffer_cleanup:
1890 iio_triggered_buffer_cleanup(indio_dev);
1892 err_dma_disable:
1893 if (adc->dma_chan) {
1894 dma_free_coherent(adc->dma_chan->device->dev,
1895 STM32_DMA_BUFFER_SIZE,
1896 adc->rx_buf, adc->rx_dma_buf);
1897 dma_release_channel(adc->dma_chan);
1899 err_clk_disable:
1900 if (adc->clk)
1901 clk_disable_unprepare(adc->clk);
1903 return ret;
1906 static int stm32_adc_remove(struct platform_device *pdev)
1908 struct stm32_adc *adc = platform_get_drvdata(pdev);
1909 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1911 iio_device_unregister(indio_dev);
1912 iio_triggered_buffer_cleanup(indio_dev);
1913 if (adc->dma_chan) {
1914 dma_free_coherent(adc->dma_chan->device->dev,
1915 STM32_DMA_BUFFER_SIZE,
1916 adc->rx_buf, adc->rx_dma_buf);
1917 dma_release_channel(adc->dma_chan);
1919 if (adc->clk)
1920 clk_disable_unprepare(adc->clk);
1922 return 0;
1925 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1926 .regs = &stm32f4_adc_regspec,
1927 .adc_info = &stm32f4_adc_info,
1928 .trigs = stm32f4_adc_trigs,
1929 .clk_required = true,
1930 .start_conv = stm32f4_adc_start_conv,
1931 .stop_conv = stm32f4_adc_stop_conv,
1932 .smp_cycles = stm32f4_adc_smp_cycles,
1935 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1936 .regs = &stm32h7_adc_regspec,
1937 .adc_info = &stm32h7_adc_info,
1938 .trigs = stm32h7_adc_trigs,
1939 .selfcalib = stm32h7_adc_selfcalib,
1940 .start_conv = stm32h7_adc_start_conv,
1941 .stop_conv = stm32h7_adc_stop_conv,
1942 .prepare = stm32h7_adc_prepare,
1943 .unprepare = stm32h7_adc_unprepare,
1944 .smp_cycles = stm32h7_adc_smp_cycles,
1947 static const struct of_device_id stm32_adc_of_match[] = {
1948 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1949 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1952 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1954 static struct platform_driver stm32_adc_driver = {
1955 .probe = stm32_adc_probe,
1956 .remove = stm32_adc_remove,
1957 .driver = {
1958 .name = "stm32-adc",
1959 .of_match_table = stm32_adc_of_match,
1962 module_platform_driver(stm32_adc_driver);
1964 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1965 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1966 MODULE_LICENSE("GPL v2");
1967 MODULE_ALIAS("platform:stm32-adc");