Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / isdn / hisax / avm_pci.c
bloba18b605fb4f23e97d863b6bc64db924ad58053eb
1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
3 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
5 * Author Karsten Keil
6 * Copyright by Karsten Keil <keil@isdn4linux.de>
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
11 * Thanks to AVM, Berlin for information
15 #include <linux/init.h>
16 #include "hisax.h"
17 #include "isac.h"
18 #include "isdnl1.h"
19 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/isapnp.h>
22 #include <linux/interrupt.h>
24 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
26 #define AVM_FRITZ_PCI 1
27 #define AVM_FRITZ_PNP 2
29 #define HDLC_FIFO 0x0
30 #define HDLC_STATUS 0x4
32 #define AVM_HDLC_1 0x00
33 #define AVM_HDLC_2 0x01
34 #define AVM_ISAC_FIFO 0x02
35 #define AVM_ISAC_REG_LOW 0x04
36 #define AVM_ISAC_REG_HIGH 0x06
38 #define AVM_STATUS0_IRQ_ISAC 0x01
39 #define AVM_STATUS0_IRQ_HDLC 0x02
40 #define AVM_STATUS0_IRQ_TIMER 0x04
41 #define AVM_STATUS0_IRQ_MASK 0x07
43 #define AVM_STATUS0_RESET 0x01
44 #define AVM_STATUS0_DIS_TIMER 0x02
45 #define AVM_STATUS0_RES_TIMER 0x04
46 #define AVM_STATUS0_ENA_IRQ 0x08
47 #define AVM_STATUS0_TESTBIT 0x10
49 #define AVM_STATUS1_INT_SEL 0x0f
50 #define AVM_STATUS1_ENA_IOM 0x80
52 #define HDLC_MODE_ITF_FLG 0x01
53 #define HDLC_MODE_TRANS 0x02
54 #define HDLC_MODE_CCR_7 0x04
55 #define HDLC_MODE_CCR_16 0x08
56 #define HDLC_MODE_TESTLOOP 0x80
58 #define HDLC_INT_XPR 0x80
59 #define HDLC_INT_XDU 0x40
60 #define HDLC_INT_RPR 0x20
61 #define HDLC_INT_MASK 0xE0
63 #define HDLC_STAT_RME 0x01
64 #define HDLC_STAT_RDO 0x10
65 #define HDLC_STAT_CRCVFRRAB 0x0E
66 #define HDLC_STAT_CRCVFR 0x06
67 #define HDLC_STAT_RML_MASK 0x3f00
69 #define HDLC_CMD_XRS 0x80
70 #define HDLC_CMD_XME 0x01
71 #define HDLC_CMD_RRS 0x20
72 #define HDLC_CMD_XML_MASK 0x3f00
75 /* Interface functions */
77 static u_char
78 ReadISAC(struct IsdnCardState *cs, u_char offset)
80 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
81 register u_char val;
83 outb(idx, cs->hw.avm.cfg_reg + 4);
84 val = inb(cs->hw.avm.isac + (offset & 0xf));
85 return (val);
88 static void
89 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
91 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
93 outb(idx, cs->hw.avm.cfg_reg + 4);
94 outb(value, cs->hw.avm.isac + (offset & 0xf));
97 static void
98 ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
100 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
101 insb(cs->hw.avm.isac, data, size);
104 static void
105 WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
107 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
108 outsb(cs->hw.avm.isac, data, size);
111 static inline u_int
112 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
114 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
115 register u_int val;
117 outl(idx, cs->hw.avm.cfg_reg + 4);
118 val = inl(cs->hw.avm.isac + offset);
119 return (val);
122 static inline void
123 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
125 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
127 outl(idx, cs->hw.avm.cfg_reg + 4);
128 outl(value, cs->hw.avm.isac + offset);
131 static inline u_char
132 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
134 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
135 register u_char val;
137 outb(idx, cs->hw.avm.cfg_reg + 4);
138 val = inb(cs->hw.avm.isac + offset);
139 return (val);
142 static inline void
143 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
145 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
147 outb(idx, cs->hw.avm.cfg_reg + 4);
148 outb(value, cs->hw.avm.isac + offset);
151 static u_char
152 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
154 return (0xff & ReadHDLCPCI(cs, chan, offset));
157 static void
158 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
160 WriteHDLCPCI(cs, chan, offset, value);
163 static inline
164 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
166 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
167 return (&cs->bcs[0]);
168 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
169 return (&cs->bcs[1]);
170 else
171 return (NULL);
174 static void
175 write_ctrl(struct BCState *bcs, int which) {
177 if (bcs->cs->debug & L1_DEB_HSCX)
178 debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
179 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
180 if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
181 WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
182 } else {
183 if (which & 4)
184 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
185 bcs->hw.hdlc.ctrl.sr.mode);
186 if (which & 2)
187 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
188 bcs->hw.hdlc.ctrl.sr.xml);
189 if (which & 1)
190 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
191 bcs->hw.hdlc.ctrl.sr.cmd);
195 static void
196 modehdlc(struct BCState *bcs, int mode, int bc)
198 struct IsdnCardState *cs = bcs->cs;
199 int hdlc = bcs->channel;
201 if (cs->debug & L1_DEB_HSCX)
202 debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
203 'A' + hdlc, bcs->mode, mode, hdlc, bc);
204 bcs->hw.hdlc.ctrl.ctrl = 0;
205 switch (mode) {
206 case (-1): /* used for init */
207 bcs->mode = 1;
208 bcs->channel = bc;
209 bc = 0;
210 case (L1_MODE_NULL):
211 if (bcs->mode == L1_MODE_NULL)
212 return;
213 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
214 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
215 write_ctrl(bcs, 5);
216 bcs->mode = L1_MODE_NULL;
217 bcs->channel = bc;
218 break;
219 case (L1_MODE_TRANS):
220 bcs->mode = mode;
221 bcs->channel = bc;
222 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
223 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
224 write_ctrl(bcs, 5);
225 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
226 write_ctrl(bcs, 1);
227 bcs->hw.hdlc.ctrl.sr.cmd = 0;
228 schedule_event(bcs, B_XMTBUFREADY);
229 break;
230 case (L1_MODE_HDLC):
231 bcs->mode = mode;
232 bcs->channel = bc;
233 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
234 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
235 write_ctrl(bcs, 5);
236 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
237 write_ctrl(bcs, 1);
238 bcs->hw.hdlc.ctrl.sr.cmd = 0;
239 schedule_event(bcs, B_XMTBUFREADY);
240 break;
244 static inline void
245 hdlc_empty_fifo(struct BCState *bcs, int count)
247 register u_int *ptr;
248 u_char *p;
249 u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
250 int cnt = 0;
251 struct IsdnCardState *cs = bcs->cs;
253 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
254 debugl1(cs, "hdlc_empty_fifo %d", count);
255 if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
256 if (cs->debug & L1_DEB_WARN)
257 debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
258 return;
260 p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
261 ptr = (u_int *)p;
262 bcs->hw.hdlc.rcvidx += count;
263 if (cs->subtyp == AVM_FRITZ_PCI) {
264 outl(idx, cs->hw.avm.cfg_reg + 4);
265 while (cnt < count) {
266 #ifdef __powerpc__
267 *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac + _IO_BASE));
268 #else
269 *ptr++ = inl(cs->hw.avm.isac);
270 #endif /* __powerpc__ */
271 cnt += 4;
273 } else {
274 outb(idx, cs->hw.avm.cfg_reg + 4);
275 while (cnt < count) {
276 *p++ = inb(cs->hw.avm.isac);
277 cnt++;
280 if (cs->debug & L1_DEB_HSCX_FIFO) {
281 char *t = bcs->blog;
283 if (cs->subtyp == AVM_FRITZ_PNP)
284 p = (u_char *) ptr;
285 t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
286 bcs->channel ? 'B' : 'A', count);
287 QuickHex(t, p, count);
288 debugl1(cs, "%s", bcs->blog);
292 static inline void
293 hdlc_fill_fifo(struct BCState *bcs)
295 struct IsdnCardState *cs = bcs->cs;
296 int count, cnt = 0;
297 int fifo_size = 32;
298 u_char *p;
299 u_int *ptr;
301 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
302 debugl1(cs, "hdlc_fill_fifo");
303 if (!bcs->tx_skb)
304 return;
305 if (bcs->tx_skb->len <= 0)
306 return;
308 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
309 if (bcs->tx_skb->len > fifo_size) {
310 count = fifo_size;
311 } else {
312 count = bcs->tx_skb->len;
313 if (bcs->mode != L1_MODE_TRANS)
314 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
316 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
317 debugl1(cs, "hdlc_fill_fifo %d/%u", count, bcs->tx_skb->len);
318 p = bcs->tx_skb->data;
319 ptr = (u_int *)p;
320 skb_pull(bcs->tx_skb, count);
321 bcs->tx_cnt -= count;
322 bcs->hw.hdlc.count += count;
323 bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
324 write_ctrl(bcs, 3); /* sets the correct index too */
325 if (cs->subtyp == AVM_FRITZ_PCI) {
326 while (cnt < count) {
327 #ifdef __powerpc__
328 out_be32((unsigned *)(cs->hw.avm.isac + _IO_BASE), *ptr++);
329 #else
330 outl(*ptr++, cs->hw.avm.isac);
331 #endif /* __powerpc__ */
332 cnt += 4;
334 } else {
335 while (cnt < count) {
336 outb(*p++, cs->hw.avm.isac);
337 cnt++;
340 if (cs->debug & L1_DEB_HSCX_FIFO) {
341 char *t = bcs->blog;
343 if (cs->subtyp == AVM_FRITZ_PNP)
344 p = (u_char *) ptr;
345 t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
346 bcs->channel ? 'B' : 'A', count);
347 QuickHex(t, p, count);
348 debugl1(cs, "%s", bcs->blog);
352 static void
353 HDLC_irq(struct BCState *bcs, u_int stat) {
354 int len;
355 struct sk_buff *skb;
357 if (bcs->cs->debug & L1_DEB_HSCX)
358 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
359 if (stat & HDLC_INT_RPR) {
360 if (stat & HDLC_STAT_RDO) {
361 if (bcs->cs->debug & L1_DEB_HSCX)
362 debugl1(bcs->cs, "RDO");
363 else
364 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
365 bcs->hw.hdlc.ctrl.sr.xml = 0;
366 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
367 write_ctrl(bcs, 1);
368 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
369 write_ctrl(bcs, 1);
370 bcs->hw.hdlc.rcvidx = 0;
371 } else {
372 if (!(len = (stat & HDLC_STAT_RML_MASK) >> 8))
373 len = 32;
374 hdlc_empty_fifo(bcs, len);
375 if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
376 if (((stat & HDLC_STAT_CRCVFRRAB) == HDLC_STAT_CRCVFR) ||
377 (bcs->mode == L1_MODE_TRANS)) {
378 if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
379 printk(KERN_WARNING "HDLC: receive out of memory\n");
380 else {
381 skb_put_data(skb,
382 bcs->hw.hdlc.rcvbuf,
383 bcs->hw.hdlc.rcvidx);
384 skb_queue_tail(&bcs->rqueue, skb);
386 bcs->hw.hdlc.rcvidx = 0;
387 schedule_event(bcs, B_RCVBUFREADY);
388 } else {
389 if (bcs->cs->debug & L1_DEB_HSCX)
390 debugl1(bcs->cs, "invalid frame");
391 else
392 debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
393 bcs->hw.hdlc.rcvidx = 0;
398 if (stat & HDLC_INT_XDU) {
399 /* Here we lost an TX interrupt, so
400 * restart transmitting the whole frame.
402 if (bcs->tx_skb) {
403 skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
404 bcs->tx_cnt += bcs->hw.hdlc.count;
405 bcs->hw.hdlc.count = 0;
406 if (bcs->cs->debug & L1_DEB_WARN)
407 debugl1(bcs->cs, "ch%d XDU", bcs->channel);
408 } else if (bcs->cs->debug & L1_DEB_WARN)
409 debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
410 bcs->hw.hdlc.ctrl.sr.xml = 0;
411 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
412 write_ctrl(bcs, 1);
413 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
414 write_ctrl(bcs, 1);
415 hdlc_fill_fifo(bcs);
416 } else if (stat & HDLC_INT_XPR) {
417 if (bcs->tx_skb) {
418 if (bcs->tx_skb->len) {
419 hdlc_fill_fifo(bcs);
420 return;
421 } else {
422 if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
423 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
424 u_long flags;
425 spin_lock_irqsave(&bcs->aclock, flags);
426 bcs->ackcnt += bcs->hw.hdlc.count;
427 spin_unlock_irqrestore(&bcs->aclock, flags);
428 schedule_event(bcs, B_ACKPENDING);
430 dev_kfree_skb_irq(bcs->tx_skb);
431 bcs->hw.hdlc.count = 0;
432 bcs->tx_skb = NULL;
435 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
436 bcs->hw.hdlc.count = 0;
437 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
438 hdlc_fill_fifo(bcs);
439 } else {
440 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
441 schedule_event(bcs, B_XMTBUFREADY);
446 static inline void
447 HDLC_irq_main(struct IsdnCardState *cs)
449 u_int stat;
450 struct BCState *bcs;
452 if (cs->subtyp == AVM_FRITZ_PCI) {
453 stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
454 } else {
455 stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
456 if (stat & HDLC_INT_RPR)
457 stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS + 1)) << 8;
459 if (stat & HDLC_INT_MASK) {
460 if (!(bcs = Sel_BCS(cs, 0))) {
461 if (cs->debug)
462 debugl1(cs, "hdlc spurious channel 0 IRQ");
463 } else
464 HDLC_irq(bcs, stat);
466 if (cs->subtyp == AVM_FRITZ_PCI) {
467 stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
468 } else {
469 stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
470 if (stat & HDLC_INT_RPR)
471 stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS + 1)) << 8;
473 if (stat & HDLC_INT_MASK) {
474 if (!(bcs = Sel_BCS(cs, 1))) {
475 if (cs->debug)
476 debugl1(cs, "hdlc spurious channel 1 IRQ");
477 } else
478 HDLC_irq(bcs, stat);
482 static void
483 hdlc_l2l1(struct PStack *st, int pr, void *arg)
485 struct BCState *bcs = st->l1.bcs;
486 struct sk_buff *skb = arg;
487 u_long flags;
489 switch (pr) {
490 case (PH_DATA | REQUEST):
491 spin_lock_irqsave(&bcs->cs->lock, flags);
492 if (bcs->tx_skb) {
493 skb_queue_tail(&bcs->squeue, skb);
494 } else {
495 bcs->tx_skb = skb;
496 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
497 bcs->hw.hdlc.count = 0;
498 bcs->cs->BC_Send_Data(bcs);
500 spin_unlock_irqrestore(&bcs->cs->lock, flags);
501 break;
502 case (PH_PULL | INDICATION):
503 spin_lock_irqsave(&bcs->cs->lock, flags);
504 if (bcs->tx_skb) {
505 printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
506 } else {
507 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
508 bcs->tx_skb = skb;
509 bcs->hw.hdlc.count = 0;
510 bcs->cs->BC_Send_Data(bcs);
512 spin_unlock_irqrestore(&bcs->cs->lock, flags);
513 break;
514 case (PH_PULL | REQUEST):
515 if (!bcs->tx_skb) {
516 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
517 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
518 } else
519 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
520 break;
521 case (PH_ACTIVATE | REQUEST):
522 spin_lock_irqsave(&bcs->cs->lock, flags);
523 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
524 modehdlc(bcs, st->l1.mode, st->l1.bc);
525 spin_unlock_irqrestore(&bcs->cs->lock, flags);
526 l1_msg_b(st, pr, arg);
527 break;
528 case (PH_DEACTIVATE | REQUEST):
529 l1_msg_b(st, pr, arg);
530 break;
531 case (PH_DEACTIVATE | CONFIRM):
532 spin_lock_irqsave(&bcs->cs->lock, flags);
533 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
534 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
535 modehdlc(bcs, 0, st->l1.bc);
536 spin_unlock_irqrestore(&bcs->cs->lock, flags);
537 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
538 break;
542 static void
543 close_hdlcstate(struct BCState *bcs)
545 modehdlc(bcs, 0, 0);
546 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
547 kfree(bcs->hw.hdlc.rcvbuf);
548 bcs->hw.hdlc.rcvbuf = NULL;
549 kfree(bcs->blog);
550 bcs->blog = NULL;
551 skb_queue_purge(&bcs->rqueue);
552 skb_queue_purge(&bcs->squeue);
553 if (bcs->tx_skb) {
554 dev_kfree_skb_any(bcs->tx_skb);
555 bcs->tx_skb = NULL;
556 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
561 static int
562 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
564 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
565 if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
566 printk(KERN_WARNING
567 "HiSax: No memory for hdlc.rcvbuf\n");
568 return (1);
570 if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
571 printk(KERN_WARNING
572 "HiSax: No memory for bcs->blog\n");
573 test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
574 kfree(bcs->hw.hdlc.rcvbuf);
575 bcs->hw.hdlc.rcvbuf = NULL;
576 return (2);
578 skb_queue_head_init(&bcs->rqueue);
579 skb_queue_head_init(&bcs->squeue);
581 bcs->tx_skb = NULL;
582 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
583 bcs->event = 0;
584 bcs->hw.hdlc.rcvidx = 0;
585 bcs->tx_cnt = 0;
586 return (0);
589 static int
590 setstack_hdlc(struct PStack *st, struct BCState *bcs)
592 bcs->channel = st->l1.bc;
593 if (open_hdlcstate(st->l1.hardware, bcs))
594 return (-1);
595 st->l1.bcs = bcs;
596 st->l2.l2l1 = hdlc_l2l1;
597 setstack_manager(st);
598 bcs->st = st;
599 setstack_l1_B(st);
600 return (0);
603 #if 0
604 void __init
605 clear_pending_hdlc_ints(struct IsdnCardState *cs)
607 u_int val;
609 if (cs->subtyp == AVM_FRITZ_PCI) {
610 val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
611 debugl1(cs, "HDLC 1 STA %x", val);
612 val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
613 debugl1(cs, "HDLC 2 STA %x", val);
614 } else {
615 val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
616 debugl1(cs, "HDLC 1 STA %x", val);
617 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
618 debugl1(cs, "HDLC 1 RML %x", val);
619 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
620 debugl1(cs, "HDLC 1 MODE %x", val);
621 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
622 debugl1(cs, "HDLC 1 VIN %x", val);
623 val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
624 debugl1(cs, "HDLC 2 STA %x", val);
625 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
626 debugl1(cs, "HDLC 2 RML %x", val);
627 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
628 debugl1(cs, "HDLC 2 MODE %x", val);
629 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
630 debugl1(cs, "HDLC 2 VIN %x", val);
633 #endif /* 0 */
635 static void
636 inithdlc(struct IsdnCardState *cs)
638 cs->bcs[0].BC_SetStack = setstack_hdlc;
639 cs->bcs[1].BC_SetStack = setstack_hdlc;
640 cs->bcs[0].BC_Close = close_hdlcstate;
641 cs->bcs[1].BC_Close = close_hdlcstate;
642 modehdlc(cs->bcs, -1, 0);
643 modehdlc(cs->bcs + 1, -1, 1);
646 static irqreturn_t
647 avm_pcipnp_interrupt(int intno, void *dev_id)
649 struct IsdnCardState *cs = dev_id;
650 u_long flags;
651 u_char val;
652 u_char sval;
654 spin_lock_irqsave(&cs->lock, flags);
655 sval = inb(cs->hw.avm.cfg_reg + 2);
656 if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
657 /* possible a shared IRQ reqest */
658 spin_unlock_irqrestore(&cs->lock, flags);
659 return IRQ_NONE;
661 if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
662 val = ReadISAC(cs, ISAC_ISTA);
663 isac_interrupt(cs, val);
665 if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
666 HDLC_irq_main(cs);
668 WriteISAC(cs, ISAC_MASK, 0xFF);
669 WriteISAC(cs, ISAC_MASK, 0x0);
670 spin_unlock_irqrestore(&cs->lock, flags);
671 return IRQ_HANDLED;
674 static void
675 reset_avmpcipnp(struct IsdnCardState *cs)
677 printk(KERN_INFO "AVM PCI/PnP: reset\n");
678 outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
679 mdelay(10);
680 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
681 outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
682 mdelay(10);
683 printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
686 static int
687 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
689 u_long flags;
691 switch (mt) {
692 case CARD_RESET:
693 spin_lock_irqsave(&cs->lock, flags);
694 reset_avmpcipnp(cs);
695 spin_unlock_irqrestore(&cs->lock, flags);
696 return (0);
697 case CARD_RELEASE:
698 outb(0, cs->hw.avm.cfg_reg + 2);
699 release_region(cs->hw.avm.cfg_reg, 32);
700 return (0);
701 case CARD_INIT:
702 spin_lock_irqsave(&cs->lock, flags);
703 reset_avmpcipnp(cs);
704 clear_pending_isac_ints(cs);
705 initisac(cs);
706 inithdlc(cs);
707 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
708 cs->hw.avm.cfg_reg + 2);
709 WriteISAC(cs, ISAC_MASK, 0);
710 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
711 AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
712 /* RESET Receiver and Transmitter */
713 WriteISAC(cs, ISAC_CMDR, 0x41);
714 spin_unlock_irqrestore(&cs->lock, flags);
715 return (0);
716 case CARD_TEST:
717 return (0);
719 return (0);
722 static int avm_setup_rest(struct IsdnCardState *cs)
724 u_int val, ver;
726 cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
727 if (!request_region(cs->hw.avm.cfg_reg, 32,
728 (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
729 printk(KERN_WARNING
730 "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
731 cs->hw.avm.cfg_reg,
732 cs->hw.avm.cfg_reg + 31);
733 return (0);
735 switch (cs->subtyp) {
736 case AVM_FRITZ_PCI:
737 val = inl(cs->hw.avm.cfg_reg);
738 printk(KERN_INFO "AVM PCI: stat %#x\n", val);
739 printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
740 val & 0xff, (val >> 8) & 0xff);
741 cs->BC_Read_Reg = &ReadHDLC_s;
742 cs->BC_Write_Reg = &WriteHDLC_s;
743 break;
744 case AVM_FRITZ_PNP:
745 val = inb(cs->hw.avm.cfg_reg);
746 ver = inb(cs->hw.avm.cfg_reg + 1);
747 printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
748 cs->BC_Read_Reg = &ReadHDLCPnP;
749 cs->BC_Write_Reg = &WriteHDLCPnP;
750 break;
751 default:
752 printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
753 return (0);
755 printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
756 (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
757 cs->irq, cs->hw.avm.cfg_reg);
759 setup_isac(cs);
760 cs->readisac = &ReadISAC;
761 cs->writeisac = &WriteISAC;
762 cs->readisacfifo = &ReadISACfifo;
763 cs->writeisacfifo = &WriteISACfifo;
764 cs->BC_Send_Data = &hdlc_fill_fifo;
765 cs->cardmsg = &AVM_card_msg;
766 cs->irq_func = &avm_pcipnp_interrupt;
767 cs->writeisac(cs, ISAC_MASK, 0xFF);
768 ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
769 return (1);
772 #ifndef __ISAPNP__
774 static int avm_pnp_setup(struct IsdnCardState *cs)
776 return (1); /* no-op: success */
779 #else
781 static struct pnp_card *pnp_avm_c = NULL;
783 static int avm_pnp_setup(struct IsdnCardState *cs)
785 struct pnp_dev *pnp_avm_d = NULL;
787 if (!isapnp_present())
788 return (1); /* no-op: success */
790 if ((pnp_avm_c = pnp_find_card(
791 ISAPNP_VENDOR('A', 'V', 'M'),
792 ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
793 if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
794 ISAPNP_VENDOR('A', 'V', 'M'),
795 ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
796 int err;
798 pnp_disable_dev(pnp_avm_d);
799 err = pnp_activate_dev(pnp_avm_d);
800 if (err < 0) {
801 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
802 __func__, err);
803 return (0);
805 cs->hw.avm.cfg_reg =
806 pnp_port_start(pnp_avm_d, 0);
807 cs->irq = pnp_irq(pnp_avm_d, 0);
808 if (cs->irq == -1) {
809 printk(KERN_ERR "FritzPnP:No IRQ\n");
810 return (0);
812 if (!cs->hw.avm.cfg_reg) {
813 printk(KERN_ERR "FritzPnP:No IO address\n");
814 return (0);
816 cs->subtyp = AVM_FRITZ_PNP;
818 return (2); /* goto 'ready' label */
822 return (1);
825 #endif /* __ISAPNP__ */
827 #ifndef CONFIG_PCI
829 static int avm_pci_setup(struct IsdnCardState *cs)
831 return (1); /* no-op: success */
834 #else
836 static struct pci_dev *dev_avm = NULL;
838 static int avm_pci_setup(struct IsdnCardState *cs)
840 if ((dev_avm = hisax_find_pci_device(PCI_VENDOR_ID_AVM,
841 PCI_DEVICE_ID_AVM_A1, dev_avm))) {
843 if (pci_enable_device(dev_avm))
844 return (0);
846 cs->irq = dev_avm->irq;
847 if (!cs->irq) {
848 printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
849 return (0);
852 cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
853 if (!cs->hw.avm.cfg_reg) {
854 printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
855 return (0);
858 cs->subtyp = AVM_FRITZ_PCI;
859 } else {
860 printk(KERN_WARNING "FritzPCI: No PCI card found\n");
861 return (0);
864 cs->irq_flags |= IRQF_SHARED;
866 return (1);
869 #endif /* CONFIG_PCI */
871 int setup_avm_pcipnp(struct IsdnCard *card)
873 struct IsdnCardState *cs = card->cs;
874 char tmp[64];
875 int rc;
877 strcpy(tmp, avm_pci_rev);
878 printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
880 if (cs->typ != ISDN_CTYPE_FRITZPCI)
881 return (0);
883 if (card->para[1]) {
884 /* old manual method */
885 cs->hw.avm.cfg_reg = card->para[1];
886 cs->irq = card->para[0];
887 cs->subtyp = AVM_FRITZ_PNP;
888 goto ready;
891 rc = avm_pnp_setup(cs);
892 if (rc < 1)
893 return (0);
894 if (rc == 2)
895 goto ready;
897 rc = avm_pci_setup(cs);
898 if (rc < 1)
899 return (0);
901 ready:
902 return avm_setup_rest(cs);