Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / mailbox / bcm-pdc-mailbox.c
blob4fe7be0bdd11f2e836897e9783b3c7fec8a7534d
1 /*
2 * Copyright 2016 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
18 * Broadcom PDC Mailbox Driver
19 * The PDC provides a ring based programming interface to one or more hardware
20 * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21 * cryptographic offload hardware. In some chips the PDC is referred to as MDE,
22 * and in others the FA2/FA+ hardware is used with this PDC driver.
24 * The PDC driver registers with the Linux mailbox framework as a mailbox
25 * controller, once for each PDC instance. Ring 0 for each PDC is registered as
26 * a mailbox channel. The PDC driver uses interrupts to determine when data
27 * transfers to and from an offload engine are complete. The PDC driver uses
28 * threaded IRQs so that response messages are handled outside of interrupt
29 * context.
31 * The PDC driver allows multiple messages to be pending in the descriptor
32 * rings. The tx_msg_start descriptor index indicates where the last message
33 * starts. The txin_numd value at this index indicates how many descriptor
34 * indexes make up the message. Similar state is kept on the receive side. When
35 * an rx interrupt indicates a response is ready, the PDC driver processes numd
36 * descriptors from the tx and rx ring, thus processing one response at a time.
39 #include <linux/errno.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/slab.h>
43 #include <linux/debugfs.h>
44 #include <linux/interrupt.h>
45 #include <linux/wait.h>
46 #include <linux/platform_device.h>
47 #include <linux/io.h>
48 #include <linux/of.h>
49 #include <linux/of_device.h>
50 #include <linux/of_address.h>
51 #include <linux/of_irq.h>
52 #include <linux/mailbox_controller.h>
53 #include <linux/mailbox/brcm-message.h>
54 #include <linux/scatterlist.h>
55 #include <linux/dma-direction.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/dmapool.h>
59 #define PDC_SUCCESS 0
61 #define RING_ENTRY_SIZE sizeof(struct dma64dd)
63 /* # entries in PDC dma ring */
64 #define PDC_RING_ENTRIES 512
66 * Minimum number of ring descriptor entries that must be free to tell mailbox
67 * framework that it can submit another request
69 #define PDC_RING_SPACE_MIN 15
71 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
72 /* Rings are 8k aligned */
73 #define RING_ALIGN_ORDER 13
74 #define RING_ALIGN BIT(RING_ALIGN_ORDER)
76 #define RX_BUF_ALIGN_ORDER 5
77 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
79 /* descriptor bumping macros */
80 #define XXD(x, max_mask) ((x) & (max_mask))
81 #define TXD(x, max_mask) XXD((x), (max_mask))
82 #define RXD(x, max_mask) XXD((x), (max_mask))
83 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
84 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
85 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
86 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
87 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
88 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
90 /* Length of BCM header at start of SPU msg, in bytes */
91 #define BCM_HDR_LEN 8
94 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
95 * not currently support use of multiple ringsets on a single PDC engine.
97 #define PDC_RINGSET 0
100 * Interrupt mask and status definitions. Enable interrupts for tx and rx on
101 * ring 0
103 #define PDC_RCVINT_0 (16 + PDC_RINGSET)
104 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
105 #define PDC_INTMASK (PDC_RCVINTEN_0)
106 #define PDC_LAZY_FRAMECOUNT 1
107 #define PDC_LAZY_TIMEOUT 10000
108 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
109 #define PDC_INTMASK_OFFSET 0x24
110 #define PDC_INTSTATUS_OFFSET 0x20
111 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
112 #define FA_RCVLAZY0_OFFSET 0x100
115 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
116 * before frame
118 #define PDC_SPU2_RESP_HDR_LEN 17
119 #define PDC_CKSUM_CTRL BIT(27)
120 #define PDC_CKSUM_CTRL_OFFSET 0x400
122 #define PDC_SPUM_RESP_HDR_LEN 32
125 * Sets the following bits for write to transmit control reg:
126 * 11 - PtyChkDisable - parity check is disabled
127 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
129 #define PDC_TX_CTL 0x000C0800
131 /* Bit in tx control reg to enable tx channel */
132 #define PDC_TX_ENABLE 0x1
135 * Sets the following bits for write to receive control reg:
136 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf
137 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors
138 * that have StartOfFrame set
139 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
140 * remaining bytes in current frame, report error
141 * in rx frame status for current frame
142 * 11 - PtyChkDisable - parity check is disabled
143 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
145 #define PDC_RX_CTL 0x000C0E00
147 /* Bit in rx control reg to enable rx channel */
148 #define PDC_RX_ENABLE 0x1
150 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
152 /* descriptor flags */
153 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */
154 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */
155 #define D64_CTRL1_EOF BIT(30) /* end of frame */
156 #define D64_CTRL1_SOF BIT(31) /* start of frame */
158 #define RX_STATUS_OVERFLOW 0x00800000
159 #define RX_STATUS_LEN 0x0000FFFF
161 #define PDC_TXREGS_OFFSET 0x200
162 #define PDC_RXREGS_OFFSET 0x220
164 /* Maximum size buffer the DMA engine can handle */
165 #define PDC_DMA_BUF_MAX 16384
167 enum pdc_hw {
168 FA_HW, /* FA2/FA+ hardware (i.e. Northstar Plus) */
169 PDC_HW /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */
172 struct pdc_dma_map {
173 void *ctx; /* opaque context associated with frame */
176 /* dma descriptor */
177 struct dma64dd {
178 u32 ctrl1; /* misc control bits */
179 u32 ctrl2; /* buffer count and address extension */
180 u32 addrlow; /* memory address of the date buffer, bits 31:0 */
181 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */
184 /* dma registers per channel(xmt or rcv) */
185 struct dma64_regs {
186 u32 control; /* enable, et al */
187 u32 ptr; /* last descriptor posted to chip */
188 u32 addrlow; /* descriptor ring base address low 32-bits */
189 u32 addrhigh; /* descriptor ring base address bits 63:32 */
190 u32 status0; /* last rx descriptor written by hw */
191 u32 status1; /* driver does not use */
194 /* cpp contortions to concatenate w/arg prescan */
195 #ifndef PAD
196 #define _PADLINE(line) pad ## line
197 #define _XSTR(line) _PADLINE(line)
198 #define PAD _XSTR(__LINE__)
199 #endif /* PAD */
201 /* dma registers. matches hw layout. */
202 struct dma64 {
203 struct dma64_regs dmaxmt; /* dma tx */
204 u32 PAD[2];
205 struct dma64_regs dmarcv; /* dma rx */
206 u32 PAD[2];
209 /* PDC registers */
210 struct pdc_regs {
211 u32 devcontrol; /* 0x000 */
212 u32 devstatus; /* 0x004 */
213 u32 PAD;
214 u32 biststatus; /* 0x00c */
215 u32 PAD[4];
216 u32 intstatus; /* 0x020 */
217 u32 intmask; /* 0x024 */
218 u32 gptimer; /* 0x028 */
220 u32 PAD;
221 u32 intrcvlazy_0; /* 0x030 (Only in PDC, not FA2) */
222 u32 intrcvlazy_1; /* 0x034 (Only in PDC, not FA2) */
223 u32 intrcvlazy_2; /* 0x038 (Only in PDC, not FA2) */
224 u32 intrcvlazy_3; /* 0x03c (Only in PDC, not FA2) */
226 u32 PAD[48];
227 u32 fa_intrecvlazy; /* 0x100 (Only in FA2, not PDC) */
228 u32 flowctlthresh; /* 0x104 */
229 u32 wrrthresh; /* 0x108 */
230 u32 gmac_idle_cnt_thresh; /* 0x10c */
232 u32 PAD[4];
233 u32 ifioaccessaddr; /* 0x120 */
234 u32 ifioaccessbyte; /* 0x124 */
235 u32 ifioaccessdata; /* 0x128 */
237 u32 PAD[21];
238 u32 phyaccess; /* 0x180 */
239 u32 PAD;
240 u32 phycontrol; /* 0x188 */
241 u32 txqctl; /* 0x18c */
242 u32 rxqctl; /* 0x190 */
243 u32 gpioselect; /* 0x194 */
244 u32 gpio_output_en; /* 0x198 */
245 u32 PAD; /* 0x19c */
246 u32 txq_rxq_mem_ctl; /* 0x1a0 */
247 u32 memory_ecc_status; /* 0x1a4 */
248 u32 serdes_ctl; /* 0x1a8 */
249 u32 serdes_status0; /* 0x1ac */
250 u32 serdes_status1; /* 0x1b0 */
251 u32 PAD[11]; /* 0x1b4-1dc */
252 u32 clk_ctl_st; /* 0x1e0 */
253 u32 hw_war; /* 0x1e4 (Only in PDC, not FA2) */
254 u32 pwrctl; /* 0x1e8 */
255 u32 PAD[5];
257 #define PDC_NUM_DMA_RINGS 4
258 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */
260 /* more registers follow, but we don't use them */
263 /* structure for allocating/freeing DMA rings */
264 struct pdc_ring_alloc {
265 dma_addr_t dmabase; /* DMA address of start of ring */
266 void *vbase; /* base kernel virtual address of ring */
267 u32 size; /* ring allocation size in bytes */
271 * context associated with a receive descriptor.
272 * @rxp_ctx: opaque context associated with frame that starts at each
273 * rx ring index.
274 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring
275 * index. Retained in order to unmap each sg after reply is processed.
276 * @rxin_numd: Number of rx descriptors associated with the message that starts
277 * at a descriptor index. Not set for every index. For example,
278 * if descriptor index i points to a scatterlist with 4 entries,
279 * then the next three descriptor indexes don't have a value set.
280 * @resp_hdr: Virtual address of buffer used to catch DMA rx status
281 * @resp_hdr_daddr: physical address of DMA rx status buffer
283 struct pdc_rx_ctx {
284 void *rxp_ctx;
285 struct scatterlist *dst_sg;
286 u32 rxin_numd;
287 void *resp_hdr;
288 dma_addr_t resp_hdr_daddr;
291 /* PDC state structure */
292 struct pdc_state {
293 /* Index of the PDC whose state is in this structure instance */
294 u8 pdc_idx;
296 /* Platform device for this PDC instance */
297 struct platform_device *pdev;
300 * Each PDC instance has a mailbox controller. PDC receives request
301 * messages through mailboxes, and sends response messages through the
302 * mailbox framework.
304 struct mbox_controller mbc;
306 unsigned int pdc_irq;
308 /* tasklet for deferred processing after DMA rx interrupt */
309 struct tasklet_struct rx_tasklet;
311 /* Number of bytes of receive status prior to each rx frame */
312 u32 rx_status_len;
313 /* Whether a BCM header is prepended to each frame */
314 bool use_bcm_hdr;
315 /* Sum of length of BCM header and rx status header */
316 u32 pdc_resp_hdr_len;
318 /* The base virtual address of DMA hw registers */
319 void __iomem *pdc_reg_vbase;
321 /* Pool for allocation of DMA rings */
322 struct dma_pool *ring_pool;
324 /* Pool for allocation of metadata buffers for response messages */
325 struct dma_pool *rx_buf_pool;
328 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
329 * DMA address and size of ring allocation.
331 struct pdc_ring_alloc tx_ring_alloc;
332 struct pdc_ring_alloc rx_ring_alloc;
334 struct pdc_regs *regs; /* start of PDC registers */
336 struct dma64_regs *txregs_64; /* dma tx engine registers */
337 struct dma64_regs *rxregs_64; /* dma rx engine registers */
340 * Arrays of PDC_RING_ENTRIES descriptors
341 * To use multiple ringsets, this needs to be extended
343 struct dma64dd *txd_64; /* tx descriptor ring */
344 struct dma64dd *rxd_64; /* rx descriptor ring */
346 /* descriptor ring sizes */
347 u32 ntxd; /* # tx descriptors */
348 u32 nrxd; /* # rx descriptors */
349 u32 nrxpost; /* # rx buffers to keep posted */
350 u32 ntxpost; /* max number of tx buffers that can be posted */
353 * Index of next tx descriptor to reclaim. That is, the descriptor
354 * index of the oldest tx buffer for which the host has yet to process
355 * the corresponding response.
357 u32 txin;
360 * Index of the first receive descriptor for the sequence of
361 * message fragments currently under construction. Used to build up
362 * the rxin_numd count for a message. Updated to rxout when the host
363 * starts a new sequence of rx buffers for a new message.
365 u32 tx_msg_start;
367 /* Index of next tx descriptor to post. */
368 u32 txout;
371 * Number of tx descriptors associated with the message that starts
372 * at this tx descriptor index.
374 u32 txin_numd[PDC_RING_ENTRIES];
377 * Index of next rx descriptor to reclaim. This is the index of
378 * the next descriptor whose data has yet to be processed by the host.
380 u32 rxin;
383 * Index of the first receive descriptor for the sequence of
384 * message fragments currently under construction. Used to build up
385 * the rxin_numd count for a message. Updated to rxout when the host
386 * starts a new sequence of rx buffers for a new message.
388 u32 rx_msg_start;
391 * Saved value of current hardware rx descriptor index.
392 * The last rx buffer written by the hw is the index previous to
393 * this one.
395 u32 last_rx_curr;
397 /* Index of next rx descriptor to post. */
398 u32 rxout;
400 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
403 * Scatterlists used to form request and reply frames beginning at a
404 * given ring index. Retained in order to unmap each sg after reply
405 * is processed
407 struct scatterlist *src_sg[PDC_RING_ENTRIES];
409 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */
411 /* counters */
412 u32 pdc_requests; /* number of request messages submitted */
413 u32 pdc_replies; /* number of reply messages received */
414 u32 last_tx_not_done; /* too few tx descriptors to indicate done */
415 u32 tx_ring_full; /* unable to accept msg because tx ring full */
416 u32 rx_ring_full; /* unable to accept msg because rx ring full */
417 u32 txnobuf; /* unable to create tx descriptor */
418 u32 rxnobuf; /* unable to create rx descriptor */
419 u32 rx_oflow; /* count of rx overflows */
421 /* hardware type - FA2 or PDC/MDE */
422 enum pdc_hw hw_type;
425 /* Global variables */
427 struct pdc_globals {
428 /* Actual number of SPUs in hardware, as reported by device tree */
429 u32 num_spu;
432 static struct pdc_globals pdcg;
434 /* top level debug FS directory for PDC driver */
435 static struct dentry *debugfs_dir;
437 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
438 size_t count, loff_t *offp)
440 struct pdc_state *pdcs;
441 char *buf;
442 ssize_t ret, out_offset, out_count;
444 out_count = 512;
446 buf = kmalloc(out_count, GFP_KERNEL);
447 if (!buf)
448 return -ENOMEM;
450 pdcs = filp->private_data;
451 out_offset = 0;
452 out_offset += snprintf(buf + out_offset, out_count - out_offset,
453 "SPU %u stats:\n", pdcs->pdc_idx);
454 out_offset += snprintf(buf + out_offset, out_count - out_offset,
455 "PDC requests....................%u\n",
456 pdcs->pdc_requests);
457 out_offset += snprintf(buf + out_offset, out_count - out_offset,
458 "PDC responses...................%u\n",
459 pdcs->pdc_replies);
460 out_offset += snprintf(buf + out_offset, out_count - out_offset,
461 "Tx not done.....................%u\n",
462 pdcs->last_tx_not_done);
463 out_offset += snprintf(buf + out_offset, out_count - out_offset,
464 "Tx ring full....................%u\n",
465 pdcs->tx_ring_full);
466 out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 "Rx ring full....................%u\n",
468 pdcs->rx_ring_full);
469 out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 "Tx desc write fail. Ring full...%u\n",
471 pdcs->txnobuf);
472 out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 "Rx desc write fail. Ring full...%u\n",
474 pdcs->rxnobuf);
475 out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 "Receive overflow................%u\n",
477 pdcs->rx_oflow);
478 out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 "Num frags in rx ring............%u\n",
480 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
481 pdcs->nrxpost));
483 if (out_offset > out_count)
484 out_offset = out_count;
486 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
487 kfree(buf);
488 return ret;
491 static const struct file_operations pdc_debugfs_stats = {
492 .owner = THIS_MODULE,
493 .open = simple_open,
494 .read = pdc_debugfs_read,
498 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
499 * directory has not yet been created, create it now. Create a stats file in
500 * this directory for a SPU.
501 * @pdcs: PDC state structure
503 static void pdc_setup_debugfs(struct pdc_state *pdcs)
505 char spu_stats_name[16];
507 if (!debugfs_initialized())
508 return;
510 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
511 if (!debugfs_dir)
512 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
514 /* S_IRUSR == 0400 */
515 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
516 debugfs_dir, pdcs,
517 &pdc_debugfs_stats);
520 static void pdc_free_debugfs(void)
522 debugfs_remove_recursive(debugfs_dir);
523 debugfs_dir = NULL;
527 * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
528 * @pdcs: PDC state for SPU that will generate result
529 * @dma_addr: DMA address of buffer that descriptor is being built for
530 * @buf_len: Length of the receive buffer, in bytes
531 * @flags: Flags to be stored in descriptor
533 static inline void
534 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
535 u32 buf_len, u32 flags)
537 struct device *dev = &pdcs->pdev->dev;
538 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
540 dev_dbg(dev,
541 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
542 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
544 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
545 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
546 rxd->ctrl1 = cpu_to_le32(flags);
547 rxd->ctrl2 = cpu_to_le32(buf_len);
549 /* bump ring index and return */
550 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
554 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
555 * hardware.
556 * @pdcs: PDC state for the SPU that will process this request
557 * @dma_addr: DMA address of packet to be transmitted
558 * @buf_len: Length of tx buffer, in bytes
559 * @flags: Flags to be stored in descriptor
561 static inline void
562 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
563 u32 flags)
565 struct device *dev = &pdcs->pdev->dev;
566 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
568 dev_dbg(dev,
569 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
570 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
572 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
573 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
574 txd->ctrl1 = cpu_to_le32(flags);
575 txd->ctrl2 = cpu_to_le32(buf_len);
577 /* bump ring index and return */
578 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
582 * pdc_receive_one() - Receive a response message from a given SPU.
583 * @pdcs: PDC state for the SPU to receive from
585 * When the return code indicates success, the response message is available in
586 * the receive buffers provided prior to submission of the request.
588 * Return: PDC_SUCCESS if one or more receive descriptors was processed
589 * -EAGAIN indicates that no response message is available
590 * -EIO an error occurred
592 static int
593 pdc_receive_one(struct pdc_state *pdcs)
595 struct device *dev = &pdcs->pdev->dev;
596 struct mbox_controller *mbc;
597 struct mbox_chan *chan;
598 struct brcm_message mssg;
599 u32 len, rx_status;
600 u32 num_frags;
601 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */
602 u32 frags_rdy; /* number of fragments ready to read */
603 u32 rx_idx; /* ring index of start of receive frame */
604 dma_addr_t resp_hdr_daddr;
605 struct pdc_rx_ctx *rx_ctx;
607 mbc = &pdcs->mbc;
608 chan = &mbc->chans[0];
609 mssg.type = BRCM_MESSAGE_SPU;
612 * return if a complete response message is not yet ready.
613 * rxin_numd[rxin] is the number of fragments in the next msg
614 * to read.
616 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
617 if ((frags_rdy == 0) ||
618 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
619 /* No response ready */
620 return -EAGAIN;
622 num_frags = pdcs->txin_numd[pdcs->txin];
623 WARN_ON(num_frags == 0);
625 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
626 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
628 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
630 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
631 pdcs->pdc_idx, num_frags);
633 rx_idx = pdcs->rxin;
634 rx_ctx = &pdcs->rx_ctx[rx_idx];
635 num_frags = rx_ctx->rxin_numd;
636 /* Return opaque context with result */
637 mssg.ctx = rx_ctx->rxp_ctx;
638 rx_ctx->rxp_ctx = NULL;
639 resp_hdr = rx_ctx->resp_hdr;
640 resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
641 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
642 DMA_FROM_DEVICE);
644 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
646 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
647 pdcs->pdc_idx, num_frags);
649 dev_dbg(dev,
650 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
651 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
652 pdcs->rxout, pdcs->last_rx_curr);
654 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
656 * For SPU-M, get length of response msg and rx overflow status.
658 rx_status = *((u32 *)resp_hdr);
659 len = rx_status & RX_STATUS_LEN;
660 dev_dbg(dev,
661 "SPU response length %u bytes", len);
662 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
663 if (rx_status & RX_STATUS_OVERFLOW) {
664 dev_err_ratelimited(dev,
665 "crypto receive overflow");
666 pdcs->rx_oflow++;
667 } else {
668 dev_info_ratelimited(dev, "crypto rx len = 0");
670 return -EIO;
674 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
676 mbox_chan_received_data(chan, &mssg);
678 pdcs->pdc_replies++;
679 return PDC_SUCCESS;
683 * pdc_receive() - Process as many responses as are available in the rx ring.
684 * @pdcs: PDC state
686 * Called within the hard IRQ.
687 * Return:
689 static int
690 pdc_receive(struct pdc_state *pdcs)
692 int rx_status;
694 /* read last_rx_curr from register once */
695 pdcs->last_rx_curr =
696 (ioread32(&pdcs->rxregs_64->status0) &
697 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
699 do {
700 /* Could be many frames ready */
701 rx_status = pdc_receive_one(pdcs);
702 } while (rx_status == PDC_SUCCESS);
704 return 0;
708 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
709 * descriptors for a given SPU. The scatterlist buffers contain the data for a
710 * SPU request message.
711 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu)
712 * @sg: Scatterlist whose buffers contain part of the SPU request
714 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
715 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
717 * Return: PDC_SUCCESS if successful
718 * < 0 otherwise
720 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
722 u32 flags = 0;
723 u32 eot;
724 u32 tx_avail;
727 * Num descriptors needed. Conservatively assume we need a descriptor
728 * for every entry in sg.
730 u32 num_desc;
731 u32 desc_w = 0; /* Number of tx descriptors written */
732 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
733 dma_addr_t databufptr; /* DMA address to put in descriptor */
735 num_desc = (u32)sg_nents(sg);
737 /* check whether enough tx descriptors are available */
738 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
739 pdcs->ntxpost);
740 if (unlikely(num_desc > tx_avail)) {
741 pdcs->txnobuf++;
742 return -ENOSPC;
745 /* build tx descriptors */
746 if (pdcs->tx_msg_start == pdcs->txout) {
747 /* Start of frame */
748 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
749 pdcs->src_sg[pdcs->txout] = sg;
750 flags = D64_CTRL1_SOF;
753 while (sg) {
754 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
755 eot = D64_CTRL1_EOT;
756 else
757 eot = 0;
760 * If sg buffer larger than PDC limit, split across
761 * multiple descriptors
763 bufcnt = sg_dma_len(sg);
764 databufptr = sg_dma_address(sg);
765 while (bufcnt > PDC_DMA_BUF_MAX) {
766 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
767 flags | eot);
768 desc_w++;
769 bufcnt -= PDC_DMA_BUF_MAX;
770 databufptr += PDC_DMA_BUF_MAX;
771 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
772 eot = D64_CTRL1_EOT;
773 else
774 eot = 0;
776 sg = sg_next(sg);
777 if (!sg)
778 /* Writing last descriptor for frame */
779 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
780 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
781 desc_w++;
782 /* Clear start of frame after first descriptor */
783 flags &= ~D64_CTRL1_SOF;
785 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
787 return PDC_SUCCESS;
791 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
792 * ring.
793 * @pdcs: PDC state for SPU to process the request
795 * Sets the index of the last descriptor written in both the rx and tx ring.
797 * Return: PDC_SUCCESS
799 static int pdc_tx_list_final(struct pdc_state *pdcs)
802 * write barrier to ensure all register writes are complete
803 * before chip starts to process new request
805 wmb();
806 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
807 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
808 pdcs->pdc_requests++;
810 return PDC_SUCCESS;
814 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
815 * @pdcs: PDC state for SPU handling request
816 * @dst_sg: scatterlist providing rx buffers for response to be returned to
817 * mailbox client
818 * @ctx: Opaque context for this request
820 * Posts a single receive descriptor to hold the metadata that precedes a
821 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
822 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
823 * rx to indicate the start of a new message.
825 * Return: PDC_SUCCESS if successful
826 * < 0 if an error (e.g., rx ring is full)
828 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
829 void *ctx)
831 u32 flags = 0;
832 u32 rx_avail;
833 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */
834 dma_addr_t daddr;
835 void *vaddr;
836 struct pdc_rx_ctx *rx_ctx;
838 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
839 pdcs->nrxpost);
840 if (unlikely(rx_pkt_cnt > rx_avail)) {
841 pdcs->rxnobuf++;
842 return -ENOSPC;
845 /* allocate a buffer for the dma rx status */
846 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
847 if (unlikely(!vaddr))
848 return -ENOMEM;
851 * Update msg_start indexes for both tx and rx to indicate the start
852 * of a new sequence of descriptor indexes that contain the fragments
853 * of the same message.
855 pdcs->rx_msg_start = pdcs->rxout;
856 pdcs->tx_msg_start = pdcs->txout;
858 /* This is always the first descriptor in the receive sequence */
859 flags = D64_CTRL1_SOF;
860 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
862 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
863 flags |= D64_CTRL1_EOT;
865 rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
866 rx_ctx->rxp_ctx = ctx;
867 rx_ctx->dst_sg = dst_sg;
868 rx_ctx->resp_hdr = vaddr;
869 rx_ctx->resp_hdr_daddr = daddr;
870 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
871 return PDC_SUCCESS;
875 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
876 * descriptors for a given SPU. The caller must have already DMA mapped the
877 * scatterlist.
878 * @spu_idx: Indicates which SPU the buffers are for
879 * @sg: Scatterlist whose buffers are added to the receive ring
881 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
882 * multiple receive descriptors are written, each with a buffer <=
883 * PDC_DMA_BUF_MAX.
885 * Return: PDC_SUCCESS if successful
886 * < 0 otherwise (e.g., receive ring is full)
888 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
890 u32 flags = 0;
891 u32 rx_avail;
894 * Num descriptors needed. Conservatively assume we need a descriptor
895 * for every entry from our starting point in the scatterlist.
897 u32 num_desc;
898 u32 desc_w = 0; /* Number of tx descriptors written */
899 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
900 dma_addr_t databufptr; /* DMA address to put in descriptor */
902 num_desc = (u32)sg_nents(sg);
904 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
905 pdcs->nrxpost);
906 if (unlikely(num_desc > rx_avail)) {
907 pdcs->rxnobuf++;
908 return -ENOSPC;
911 while (sg) {
912 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
913 flags = D64_CTRL1_EOT;
914 else
915 flags = 0;
918 * If sg buffer larger than PDC limit, split across
919 * multiple descriptors
921 bufcnt = sg_dma_len(sg);
922 databufptr = sg_dma_address(sg);
923 while (bufcnt > PDC_DMA_BUF_MAX) {
924 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
925 desc_w++;
926 bufcnt -= PDC_DMA_BUF_MAX;
927 databufptr += PDC_DMA_BUF_MAX;
928 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
929 flags = D64_CTRL1_EOT;
930 else
931 flags = 0;
933 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
934 desc_w++;
935 sg = sg_next(sg);
937 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
939 return PDC_SUCCESS;
943 * pdc_irq_handler() - Interrupt handler called in interrupt context.
944 * @irq: Interrupt number that has fired
945 * @data: device struct for DMA engine that generated the interrupt
947 * We have to clear the device interrupt status flags here. So cache the
948 * status for later use in the thread function. Other than that, just return
949 * WAKE_THREAD to invoke the thread function.
951 * Return: IRQ_WAKE_THREAD if interrupt is ours
952 * IRQ_NONE otherwise
954 static irqreturn_t pdc_irq_handler(int irq, void *data)
956 struct device *dev = (struct device *)data;
957 struct pdc_state *pdcs = dev_get_drvdata(dev);
958 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
960 if (unlikely(intstatus == 0))
961 return IRQ_NONE;
963 /* Disable interrupts until soft handler runs */
964 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
966 /* Clear interrupt flags in device */
967 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
969 /* Wakeup IRQ thread */
970 tasklet_schedule(&pdcs->rx_tasklet);
971 return IRQ_HANDLED;
975 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
976 * a DMA receive interrupt. Reenables the receive interrupt.
977 * @data: PDC state structure
979 static void pdc_tasklet_cb(unsigned long data)
981 struct pdc_state *pdcs = (struct pdc_state *)data;
983 pdc_receive(pdcs);
985 /* reenable interrupts */
986 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
990 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
991 * descriptors in one ringset.
992 * @pdcs: PDC instance state
993 * @ringset: index of ringset being used
995 * Return: PDC_SUCCESS if ring initialized
996 * < 0 otherwise
998 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
1000 int i;
1001 int err = PDC_SUCCESS;
1002 struct dma64 *dma_reg;
1003 struct device *dev = &pdcs->pdev->dev;
1004 struct pdc_ring_alloc tx;
1005 struct pdc_ring_alloc rx;
1007 /* Allocate tx ring */
1008 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
1009 if (unlikely(!tx.vbase)) {
1010 err = -ENOMEM;
1011 goto done;
1014 /* Allocate rx ring */
1015 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1016 if (unlikely(!rx.vbase)) {
1017 err = -ENOMEM;
1018 goto fail_dealloc;
1021 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase);
1022 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
1023 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase);
1024 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
1026 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1027 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1029 pdcs->rxin = 0;
1030 pdcs->rx_msg_start = 0;
1031 pdcs->last_rx_curr = 0;
1032 pdcs->rxout = 0;
1033 pdcs->txin = 0;
1034 pdcs->tx_msg_start = 0;
1035 pdcs->txout = 0;
1037 /* Set descriptor array base addresses */
1038 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1039 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1041 /* Tell device the base DMA address of each ring */
1042 dma_reg = &pdcs->regs->dmaregs[ringset];
1044 /* But first disable DMA and set curptr to 0 for both TX & RX */
1045 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1046 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1047 &dma_reg->dmarcv.control);
1048 iowrite32(0, &dma_reg->dmaxmt.ptr);
1049 iowrite32(0, &dma_reg->dmarcv.ptr);
1051 /* Set base DMA addresses */
1052 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1053 &dma_reg->dmaxmt.addrlow);
1054 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1055 &dma_reg->dmaxmt.addrhigh);
1057 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1058 &dma_reg->dmarcv.addrlow);
1059 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1060 &dma_reg->dmarcv.addrhigh);
1062 /* Re-enable DMA */
1063 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1064 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1065 &dma_reg->dmarcv.control);
1067 /* Initialize descriptors */
1068 for (i = 0; i < PDC_RING_ENTRIES; i++) {
1069 /* Every tx descriptor can be used for start of frame. */
1070 if (i != pdcs->ntxpost) {
1071 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1072 &pdcs->txd_64[i].ctrl1);
1073 } else {
1074 /* Last descriptor in ringset. Set End of Table. */
1075 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1076 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1079 /* Every rx descriptor can be used for start of frame */
1080 if (i != pdcs->nrxpost) {
1081 iowrite32(D64_CTRL1_SOF,
1082 &pdcs->rxd_64[i].ctrl1);
1083 } else {
1084 /* Last descriptor in ringset. Set End of Table. */
1085 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1086 &pdcs->rxd_64[i].ctrl1);
1089 return PDC_SUCCESS;
1091 fail_dealloc:
1092 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1093 done:
1094 return err;
1097 static void pdc_ring_free(struct pdc_state *pdcs)
1099 if (pdcs->tx_ring_alloc.vbase) {
1100 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1101 pdcs->tx_ring_alloc.dmabase);
1102 pdcs->tx_ring_alloc.vbase = NULL;
1105 if (pdcs->rx_ring_alloc.vbase) {
1106 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1107 pdcs->rx_ring_alloc.dmabase);
1108 pdcs->rx_ring_alloc.vbase = NULL;
1113 * pdc_desc_count() - Count the number of DMA descriptors that will be required
1114 * for a given scatterlist. Account for the max length of a DMA buffer.
1115 * @sg: Scatterlist to be DMA'd
1116 * Return: Number of descriptors required
1118 static u32 pdc_desc_count(struct scatterlist *sg)
1120 u32 cnt = 0;
1122 while (sg) {
1123 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1124 sg = sg_next(sg);
1126 return cnt;
1130 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1131 * and the rx ring has room for rx_cnt descriptors.
1132 * @pdcs: PDC state
1133 * @tx_cnt: The number of descriptors required in the tx ring
1134 * @rx_cnt: The number of descriptors required i the rx ring
1136 * Return: true if one of the rings does not have enough space
1137 * false if sufficient space is available in both rings
1139 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1141 u32 rx_avail;
1142 u32 tx_avail;
1143 bool full = false;
1145 /* Check if the tx and rx rings are likely to have enough space */
1146 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1147 pdcs->nrxpost);
1148 if (unlikely(rx_cnt > rx_avail)) {
1149 pdcs->rx_ring_full++;
1150 full = true;
1153 if (likely(!full)) {
1154 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1155 pdcs->ntxpost);
1156 if (unlikely(tx_cnt > tx_avail)) {
1157 pdcs->tx_ring_full++;
1158 full = true;
1161 return full;
1165 * pdc_last_tx_done() - If both the tx and rx rings have at least
1166 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1167 * framework can submit another message.
1168 * @chan: mailbox channel to check
1169 * Return: true if PDC can accept another message on this channel
1171 static bool pdc_last_tx_done(struct mbox_chan *chan)
1173 struct pdc_state *pdcs = chan->con_priv;
1174 bool ret;
1176 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1177 PDC_RING_SPACE_MIN))) {
1178 pdcs->last_tx_not_done++;
1179 ret = false;
1180 } else {
1181 ret = true;
1183 return ret;
1187 * pdc_send_data() - mailbox send_data function
1188 * @chan: The mailbox channel on which the data is sent. The channel
1189 * corresponds to a DMA ringset.
1190 * @data: The mailbox message to be sent. The message must be a
1191 * brcm_message structure.
1193 * This function is registered as the send_data function for the mailbox
1194 * controller. From the destination scatterlist in the mailbox message, it
1195 * creates a sequence of receive descriptors in the rx ring. From the source
1196 * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1197 * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1198 * initiate the DMA transfer.
1200 * This function does the DMA map and unmap of the src and dst scatterlists in
1201 * the mailbox message.
1203 * Return: 0 if successful
1204 * -ENOTSUPP if the mailbox message is a type this driver does not
1205 * support
1206 * < 0 if an error
1208 static int pdc_send_data(struct mbox_chan *chan, void *data)
1210 struct pdc_state *pdcs = chan->con_priv;
1211 struct device *dev = &pdcs->pdev->dev;
1212 struct brcm_message *mssg = data;
1213 int err = PDC_SUCCESS;
1214 int src_nent;
1215 int dst_nent;
1216 int nent;
1217 u32 tx_desc_req;
1218 u32 rx_desc_req;
1220 if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1221 return -ENOTSUPP;
1223 src_nent = sg_nents(mssg->spu.src);
1224 if (likely(src_nent)) {
1225 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1226 if (unlikely(nent == 0))
1227 return -EIO;
1230 dst_nent = sg_nents(mssg->spu.dst);
1231 if (likely(dst_nent)) {
1232 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1233 DMA_FROM_DEVICE);
1234 if (unlikely(nent == 0)) {
1235 dma_unmap_sg(dev, mssg->spu.src, src_nent,
1236 DMA_TO_DEVICE);
1237 return -EIO;
1242 * Check if the tx and rx rings have enough space. Do this prior to
1243 * writing any tx or rx descriptors. Need to ensure that we do not write
1244 * a partial set of descriptors, or write just rx descriptors but
1245 * corresponding tx descriptors don't fit. Note that we want this check
1246 * and the entire sequence of descriptor to happen without another
1247 * thread getting in. The channel spin lock in the mailbox framework
1248 * ensures this.
1250 tx_desc_req = pdc_desc_count(mssg->spu.src);
1251 rx_desc_req = pdc_desc_count(mssg->spu.dst);
1252 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1253 return -ENOSPC;
1255 /* Create rx descriptors to SPU catch response */
1256 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1257 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1259 /* Create tx descriptors to submit SPU request */
1260 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1261 err |= pdc_tx_list_final(pdcs); /* initiate transfer */
1263 if (unlikely(err))
1264 dev_err(&pdcs->pdev->dev,
1265 "%s failed with error %d", __func__, err);
1267 return err;
1270 static int pdc_startup(struct mbox_chan *chan)
1272 return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1275 static void pdc_shutdown(struct mbox_chan *chan)
1277 struct pdc_state *pdcs = chan->con_priv;
1279 if (!pdcs)
1280 return;
1282 dev_dbg(&pdcs->pdev->dev,
1283 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1284 pdc_ring_free(pdcs);
1288 * pdc_hw_init() - Use the given initialization parameters to initialize the
1289 * state for one of the PDCs.
1290 * @pdcs: state of the PDC
1292 static
1293 void pdc_hw_init(struct pdc_state *pdcs)
1295 struct platform_device *pdev;
1296 struct device *dev;
1297 struct dma64 *dma_reg;
1298 int ringset = PDC_RINGSET;
1300 pdev = pdcs->pdev;
1301 dev = &pdev->dev;
1303 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1304 dev_dbg(dev, "state structure: %p",
1305 pdcs);
1306 dev_dbg(dev, " - base virtual addr of hw regs %p",
1307 pdcs->pdc_reg_vbase);
1309 /* initialize data structures */
1310 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1311 pdcs->txregs_64 = (struct dma64_regs *)
1312 (((u8 *)pdcs->pdc_reg_vbase) +
1313 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1314 pdcs->rxregs_64 = (struct dma64_regs *)
1315 (((u8 *)pdcs->pdc_reg_vbase) +
1316 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1318 pdcs->ntxd = PDC_RING_ENTRIES;
1319 pdcs->nrxd = PDC_RING_ENTRIES;
1320 pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1321 pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1322 iowrite32(0, &pdcs->regs->intmask);
1324 dma_reg = &pdcs->regs->dmaregs[ringset];
1326 /* Configure DMA but will enable later in pdc_ring_init() */
1327 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1329 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1330 &dma_reg->dmarcv.control);
1332 /* Reset current index pointers after making sure DMA is disabled */
1333 iowrite32(0, &dma_reg->dmaxmt.ptr);
1334 iowrite32(0, &dma_reg->dmarcv.ptr);
1336 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1337 iowrite32(PDC_CKSUM_CTRL,
1338 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1342 * pdc_hw_disable() - Disable the tx and rx control in the hw.
1343 * @pdcs: PDC state structure
1346 static void pdc_hw_disable(struct pdc_state *pdcs)
1348 struct dma64 *dma_reg;
1350 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1351 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1352 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1353 &dma_reg->dmarcv.control);
1357 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1358 * header returned with each response message.
1359 * @pdcs: PDC state structure
1361 * The metadata is not returned to the mailbox client. So the PDC driver
1362 * manages these buffers.
1364 * Return: PDC_SUCCESS
1365 * -ENOMEM if pool creation fails
1367 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1369 struct platform_device *pdev;
1370 struct device *dev;
1372 pdev = pdcs->pdev;
1373 dev = &pdev->dev;
1375 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1376 if (pdcs->use_bcm_hdr)
1377 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1379 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1380 pdcs->pdc_resp_hdr_len,
1381 RX_BUF_ALIGN, 0);
1382 if (!pdcs->rx_buf_pool)
1383 return -ENOMEM;
1385 return PDC_SUCCESS;
1389 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1390 * specify a threaded IRQ handler for deferred handling of interrupts outside of
1391 * interrupt context.
1392 * @pdcs: PDC state
1394 * Set the interrupt mask for transmit and receive done.
1395 * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1397 * Return: PDC_SUCCESS
1398 * <0 if threaded irq request fails
1400 static int pdc_interrupts_init(struct pdc_state *pdcs)
1402 struct platform_device *pdev = pdcs->pdev;
1403 struct device *dev = &pdev->dev;
1404 struct device_node *dn = pdev->dev.of_node;
1405 int err;
1407 /* interrupt configuration */
1408 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1410 if (pdcs->hw_type == FA_HW)
1411 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1412 FA_RCVLAZY0_OFFSET);
1413 else
1414 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1415 PDC_RCVLAZY0_OFFSET);
1417 /* read irq from device tree */
1418 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1419 dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1420 dev_name(dev), pdcs->pdc_irq, pdcs);
1422 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1423 dev_name(dev), dev);
1424 if (err) {
1425 dev_err(dev, "IRQ %u request failed with err %d\n",
1426 pdcs->pdc_irq, err);
1427 return err;
1429 return PDC_SUCCESS;
1432 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1433 .send_data = pdc_send_data,
1434 .last_tx_done = pdc_last_tx_done,
1435 .startup = pdc_startup,
1436 .shutdown = pdc_shutdown
1440 * pdc_mb_init() - Initialize the mailbox controller.
1441 * @pdcs: PDC state
1443 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1444 * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1445 * complete interrupt to determine when a mailbox message has successfully been
1446 * transmitted.
1448 * Return: 0 on success
1449 * < 0 if there is an allocation or registration failure
1451 static int pdc_mb_init(struct pdc_state *pdcs)
1453 struct device *dev = &pdcs->pdev->dev;
1454 struct mbox_controller *mbc;
1455 int chan_index;
1456 int err;
1458 mbc = &pdcs->mbc;
1459 mbc->dev = dev;
1460 mbc->ops = &pdc_mbox_chan_ops;
1461 mbc->num_chans = 1;
1462 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1463 GFP_KERNEL);
1464 if (!mbc->chans)
1465 return -ENOMEM;
1467 mbc->txdone_irq = false;
1468 mbc->txdone_poll = true;
1469 mbc->txpoll_period = 1;
1470 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1471 mbc->chans[chan_index].con_priv = pdcs;
1473 /* Register mailbox controller */
1474 err = mbox_controller_register(mbc);
1475 if (err) {
1476 dev_crit(dev,
1477 "Failed to register PDC mailbox controller. Error %d.",
1478 err);
1479 return err;
1481 return 0;
1484 /* Device tree API */
1485 static const int pdc_hw = PDC_HW;
1486 static const int fa_hw = FA_HW;
1488 static const struct of_device_id pdc_mbox_of_match[] = {
1489 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1490 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1491 { /* sentinel */ }
1493 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1496 * pdc_dt_read() - Read application-specific data from device tree.
1497 * @pdev: Platform device
1498 * @pdcs: PDC state
1500 * Reads the number of bytes of receive status that precede each received frame.
1501 * Reads whether transmit and received frames should be preceded by an 8-byte
1502 * BCM header.
1504 * Return: 0 if successful
1505 * -ENODEV if device not available
1507 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1509 struct device *dev = &pdev->dev;
1510 struct device_node *dn = pdev->dev.of_node;
1511 const struct of_device_id *match;
1512 const int *hw_type;
1513 int err;
1515 err = of_property_read_u32(dn, "brcm,rx-status-len",
1516 &pdcs->rx_status_len);
1517 if (err < 0)
1518 dev_err(dev,
1519 "%s failed to get DMA receive status length from device tree",
1520 __func__);
1522 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1524 pdcs->hw_type = PDC_HW;
1526 match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev);
1527 if (match != NULL) {
1528 hw_type = match->data;
1529 pdcs->hw_type = *hw_type;
1532 return 0;
1536 * pdc_probe() - Probe function for PDC driver.
1537 * @pdev: PDC platform device
1539 * Reserve and map register regions defined in device tree.
1540 * Allocate and initialize tx and rx DMA rings.
1541 * Initialize a mailbox controller for each PDC.
1543 * Return: 0 if successful
1544 * < 0 if an error
1546 static int pdc_probe(struct platform_device *pdev)
1548 int err = 0;
1549 struct device *dev = &pdev->dev;
1550 struct resource *pdc_regs;
1551 struct pdc_state *pdcs;
1553 /* PDC state for one SPU */
1554 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1555 if (!pdcs) {
1556 err = -ENOMEM;
1557 goto cleanup;
1560 pdcs->pdev = pdev;
1561 platform_set_drvdata(pdev, pdcs);
1562 pdcs->pdc_idx = pdcg.num_spu;
1563 pdcg.num_spu++;
1565 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1566 if (err) {
1567 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1568 goto cleanup;
1571 /* Create DMA pool for tx ring */
1572 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1573 RING_ALIGN, 0);
1574 if (!pdcs->ring_pool) {
1575 err = -ENOMEM;
1576 goto cleanup;
1579 err = pdc_dt_read(pdev, pdcs);
1580 if (err)
1581 goto cleanup_ring_pool;
1583 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1584 if (!pdc_regs) {
1585 err = -ENODEV;
1586 goto cleanup_ring_pool;
1588 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1589 &pdc_regs->start, &pdc_regs->end);
1591 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1592 if (IS_ERR(pdcs->pdc_reg_vbase)) {
1593 err = PTR_ERR(pdcs->pdc_reg_vbase);
1594 dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1595 goto cleanup_ring_pool;
1598 /* create rx buffer pool after dt read to know how big buffers are */
1599 err = pdc_rx_buf_pool_create(pdcs);
1600 if (err)
1601 goto cleanup_ring_pool;
1603 pdc_hw_init(pdcs);
1605 /* Init tasklet for deferred DMA rx processing */
1606 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1608 err = pdc_interrupts_init(pdcs);
1609 if (err)
1610 goto cleanup_buf_pool;
1612 /* Initialize mailbox controller */
1613 err = pdc_mb_init(pdcs);
1614 if (err)
1615 goto cleanup_buf_pool;
1617 pdcs->debugfs_stats = NULL;
1618 pdc_setup_debugfs(pdcs);
1620 dev_dbg(dev, "pdc_probe() successful");
1621 return PDC_SUCCESS;
1623 cleanup_buf_pool:
1624 tasklet_kill(&pdcs->rx_tasklet);
1625 dma_pool_destroy(pdcs->rx_buf_pool);
1627 cleanup_ring_pool:
1628 dma_pool_destroy(pdcs->ring_pool);
1630 cleanup:
1631 return err;
1634 static int pdc_remove(struct platform_device *pdev)
1636 struct pdc_state *pdcs = platform_get_drvdata(pdev);
1638 pdc_free_debugfs();
1640 tasklet_kill(&pdcs->rx_tasklet);
1642 pdc_hw_disable(pdcs);
1644 mbox_controller_unregister(&pdcs->mbc);
1646 dma_pool_destroy(pdcs->rx_buf_pool);
1647 dma_pool_destroy(pdcs->ring_pool);
1648 return 0;
1651 static struct platform_driver pdc_mbox_driver = {
1652 .probe = pdc_probe,
1653 .remove = pdc_remove,
1654 .driver = {
1655 .name = "brcm-iproc-pdc-mbox",
1656 .of_match_table = of_match_ptr(pdc_mbox_of_match),
1659 module_platform_driver(pdc_mbox_driver);
1661 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1662 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1663 MODULE_LICENSE("GPL v2");