Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / media / i2c / ir-kbd-i2c.c
blob193020d64e519e6659df15eb5259152a3f7aea07
1 /*
3 * keyboard input driver for i2c IR remote controls
5 * Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org>
6 * modified for PixelView (BT878P+W/FM) by
7 * Michal Kochanowicz <mkochano@pld.org.pl>
8 * Christoph Bartelmus <lirc@bartelmus.de>
9 * modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
10 * Ulrich Mueller <ulrich.mueller42@web.de>
11 * modified for em2820 based USB TV tuners by
12 * Markus Rechberger <mrechberger@gmail.com>
13 * modified for DViCO Fusion HDTV 5 RT GOLD by
14 * Chaogui Zhang <czhang1974@gmail.com>
15 * modified for MSI TV@nywhere Plus by
16 * Henry Wong <henry@stuffedcow.net>
17 * Mark Schultz <n9xmj@yahoo.com>
18 * Brian Rogers <brian_rogers@comcast.net>
19 * modified for AVerMedia Cardbus by
20 * Oldrich Jedlicka <oldium.pro@seznam.cz>
21 * Zilog Transmitter portions/ideas were derived from GPLv2+ sources:
22 * - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product
23 * Copyright 2011 Hauppauge Computer works
24 * - drivers/staging/media/lirc/lirc_zilog.c
25 * Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
26 * Michal Kochanowicz <mkochano@pld.org.pl>
27 * Christoph Bartelmus <lirc@bartelmus.de>
28 * Ulrich Mueller <ulrich.mueller42@web.de>
29 * Stefan Jahn <stefan@lkcc.org>
30 * Jerome Brock <jbrock@users.sourceforge.net>
31 * Thomas Reitmayr (treitmayr@yahoo.com)
32 * Mark Weaver <mark@npsl.co.uk>
33 * Jarod Wilson <jarod@redhat.com>
34 * Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
36 * This program is free software; you can redistribute it and/or modify
37 * it under the terms of the GNU General Public License as published by
38 * the Free Software Foundation; either version 2 of the License, or
39 * (at your option) any later version.
41 * This program is distributed in the hope that it will be useful,
42 * but WITHOUT ANY WARRANTY; without even the implied warranty of
43 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
44 * GNU General Public License for more details.
48 #include <asm/unaligned.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 #include <linux/kernel.h>
52 #include <linux/string.h>
53 #include <linux/timer.h>
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/slab.h>
57 #include <linux/i2c.h>
58 #include <linux/workqueue.h>
60 #include <media/rc-core.h>
61 #include <media/i2c/ir-kbd-i2c.h>
63 #define FLAG_TX 1
64 #define FLAG_HDPVR 2
66 static bool enable_hdpvr;
67 module_param(enable_hdpvr, bool, 0644);
69 static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol,
70 u32 *scancode, u8 *ptoggle, int size)
72 unsigned char buf[6];
73 int start, range, toggle, dev, code, ircode, vendor;
75 /* poll IR chip */
76 if (size != i2c_master_recv(ir->c, buf, size))
77 return -EIO;
79 if (buf[0] & 0x80) {
80 int offset = (size == 6) ? 3 : 0;
82 /* split rc5 data block ... */
83 start = (buf[offset] >> 7) & 1;
84 range = (buf[offset] >> 6) & 1;
85 toggle = (buf[offset] >> 5) & 1;
86 dev = buf[offset] & 0x1f;
87 code = (buf[offset+1] >> 2) & 0x3f;
89 /* rc5 has two start bits
90 * the first bit must be one
91 * the second bit defines the command range:
92 * 1 = 0-63, 0 = 64 - 127
94 if (!start)
95 /* no key pressed */
96 return 0;
98 /* filter out invalid key presses */
99 ircode = (start << 12) | (toggle << 11) | (dev << 6) | code;
100 if ((ircode & 0x1fff) == 0x1fff)
101 return 0;
103 if (!range)
104 code += 64;
106 dev_dbg(&ir->rc->dev,
107 "ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n",
108 start, range, toggle, dev, code);
110 *protocol = RC_PROTO_RC5;
111 *scancode = RC_SCANCODE_RC5(dev, code);
112 *ptoggle = toggle;
114 return 1;
115 } else if (size == 6 && (buf[0] & 0x40)) {
116 code = buf[4];
117 dev = buf[3];
118 vendor = get_unaligned_be16(buf + 1);
120 if (vendor == 0x800f) {
121 *ptoggle = (dev & 0x80) != 0;
122 *protocol = RC_PROTO_RC6_MCE;
123 dev &= 0x7f;
124 dev_dbg(&ir->rc->dev,
125 "ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n",
126 *ptoggle, vendor, dev, code);
127 } else {
128 *ptoggle = 0;
129 *protocol = RC_PROTO_RC6_6A_32;
130 dev_dbg(&ir->rc->dev,
131 "ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n",
132 vendor, dev, code);
135 *scancode = RC_SCANCODE_RC6_6A(vendor, dev, code);
137 return 1;
140 return 0;
143 static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol,
144 u32 *scancode, u8 *toggle)
146 return get_key_haup_common(ir, protocol, scancode, toggle, 3);
149 static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol,
150 u32 *scancode, u8 *toggle)
152 int ret;
153 unsigned char buf[1] = { 0 };
156 * This is the same apparent "are you ready?" poll command observed
157 * watching Windows driver traffic and implemented in lirc_zilog. With
158 * this added, we get far saner remote behavior with z8 chips on usb
159 * connected devices, even with the default polling interval of 100ms.
161 ret = i2c_master_send(ir->c, buf, 1);
162 if (ret != 1)
163 return (ret < 0) ? ret : -EINVAL;
165 return get_key_haup_common(ir, protocol, scancode, toggle, 6);
168 static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol,
169 u32 *scancode, u8 *toggle)
171 unsigned char b;
173 /* poll IR chip */
174 if (1 != i2c_master_recv(ir->c, &b, 1)) {
175 dev_dbg(&ir->rc->dev, "read error\n");
176 return -EIO;
179 *protocol = RC_PROTO_OTHER;
180 *scancode = b;
181 *toggle = 0;
182 return 1;
185 static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol,
186 u32 *scancode, u8 *toggle)
188 unsigned char buf[4];
190 /* poll IR chip */
191 if (4 != i2c_master_recv(ir->c, buf, 4)) {
192 dev_dbg(&ir->rc->dev, "read error\n");
193 return -EIO;
196 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0)
197 dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf);
199 /* no key pressed or signal from other ir remote */
200 if(buf[0] != 0x1 || buf[1] != 0xfe)
201 return 0;
203 *protocol = RC_PROTO_UNKNOWN;
204 *scancode = buf[2];
205 *toggle = 0;
206 return 1;
209 static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol,
210 u32 *scancode, u8 *toggle)
212 unsigned char b;
214 /* poll IR chip */
215 if (1 != i2c_master_recv(ir->c, &b, 1)) {
216 dev_dbg(&ir->rc->dev, "read error\n");
217 return -EIO;
220 /* it seems that 0xFE indicates that a button is still hold
221 down, while 0xff indicates that no button is hold
222 down. 0xfe sequences are sometimes interrupted by 0xFF */
224 dev_dbg(&ir->rc->dev, "key %02x\n", b);
226 if (b == 0xff)
227 return 0;
229 if (b == 0xfe)
230 /* keep old data */
231 return 1;
233 *protocol = RC_PROTO_UNKNOWN;
234 *scancode = b;
235 *toggle = 0;
236 return 1;
239 static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol,
240 u32 *scancode, u8 *toggle)
242 unsigned char subaddr, key, keygroup;
243 struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0,
244 .buf = &subaddr, .len = 1},
245 { .addr = ir->c->addr, .flags = I2C_M_RD,
246 .buf = &key, .len = 1} };
247 subaddr = 0x0d;
248 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
249 dev_dbg(&ir->rc->dev, "read error\n");
250 return -EIO;
253 if (key == 0xff)
254 return 0;
256 subaddr = 0x0b;
257 msg[1].buf = &keygroup;
258 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
259 dev_dbg(&ir->rc->dev, "read error\n");
260 return -EIO;
263 if (keygroup == 0xff)
264 return 0;
266 dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup);
267 if (keygroup < 2 || keygroup > 4) {
268 dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n",
269 keygroup, key);
271 key |= (keygroup & 1) << 6;
273 *protocol = RC_PROTO_UNKNOWN;
274 *scancode = key;
275 if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */
276 *scancode |= keygroup << 8;
277 *toggle = 0;
278 return 1;
281 /* ----------------------------------------------------------------------- */
283 static int ir_key_poll(struct IR_i2c *ir)
285 enum rc_proto protocol;
286 u32 scancode;
287 u8 toggle;
288 int rc;
290 dev_dbg(&ir->rc->dev, "%s\n", __func__);
291 rc = ir->get_key(ir, &protocol, &scancode, &toggle);
292 if (rc < 0) {
293 dev_warn(&ir->rc->dev, "error %d\n", rc);
294 return rc;
297 if (rc) {
298 dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n",
299 __func__, protocol, scancode);
300 rc_keydown(ir->rc, protocol, scancode, toggle);
302 return 0;
305 static void ir_work(struct work_struct *work)
307 int rc;
308 struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work);
311 * If the transmit code is holding the lock, skip polling for
312 * IR, we'll get it to it next time round
314 if (mutex_trylock(&ir->lock)) {
315 rc = ir_key_poll(ir);
316 mutex_unlock(&ir->lock);
317 if (rc == -ENODEV) {
318 rc_unregister_device(ir->rc);
319 ir->rc = NULL;
320 return;
324 schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval));
327 static int ir_open(struct rc_dev *dev)
329 struct IR_i2c *ir = dev->priv;
331 schedule_delayed_work(&ir->work, 0);
333 return 0;
336 static void ir_close(struct rc_dev *dev)
338 struct IR_i2c *ir = dev->priv;
340 cancel_delayed_work_sync(&ir->work);
343 /* Zilog Transmit Interface */
344 #define XTAL_FREQ 18432000
346 #define ZILOG_SEND 0x80
347 #define ZILOG_UIR_END 0x40
348 #define ZILOG_INIT_END 0x20
349 #define ZILOG_LIR_END 0x10
351 #define ZILOG_STATUS_OK 0x80
352 #define ZILOG_STATUS_TX 0x40
353 #define ZILOG_STATUS_SET 0x20
356 * As you can see here, very few different lengths of pulse and space
357 * can be encoded. This means that the hardware does not work well with
358 * recorded IR. It's best to work with generated IR, like from ir-ctl or
359 * the in-kernel encoders.
361 struct code_block {
362 u8 length;
363 u16 pulse[7]; /* not aligned */
364 u8 carrier_pulse;
365 u8 carrier_space;
366 u16 space[8]; /* not aligned */
367 u8 codes[61];
368 u8 csum[2];
369 } __packed;
371 static int send_data_block(struct IR_i2c *ir, int cmd,
372 struct code_block *code_block)
374 int i, j, ret;
375 u8 buf[5], *p;
377 p = &code_block->length;
378 for (i = 0; p < code_block->csum; i++)
379 code_block->csum[i & 1] ^= *p++;
381 p = &code_block->length;
383 for (i = 0; i < sizeof(*code_block);) {
384 int tosend = sizeof(*code_block) - i;
386 if (tosend > 4)
387 tosend = 4;
388 buf[0] = i + 1;
389 for (j = 0; j < tosend; ++j)
390 buf[1 + j] = p[i + j];
391 dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf);
392 ret = i2c_master_send(ir->tx_c, buf, tosend + 1);
393 if (ret != tosend + 1) {
394 dev_dbg(&ir->rc->dev,
395 "i2c_master_send failed with %d\n", ret);
396 return ret < 0 ? ret : -EIO;
398 i += tosend;
401 buf[0] = 0;
402 buf[1] = cmd;
403 ret = i2c_master_send(ir->tx_c, buf, 2);
404 if (ret != 2) {
405 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
406 return ret < 0 ? ret : -EIO;
409 usleep_range(2000, 5000);
411 ret = i2c_master_send(ir->tx_c, buf, 1);
412 if (ret != 1) {
413 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
414 return ret < 0 ? ret : -EIO;
417 return 0;
420 static int zilog_init(struct IR_i2c *ir)
422 struct code_block code_block = { .length = sizeof(code_block) };
423 u8 buf[4];
424 int ret;
426 put_unaligned_be16(0x1000, &code_block.pulse[3]);
428 ret = send_data_block(ir, ZILOG_INIT_END, &code_block);
429 if (ret)
430 return ret;
432 ret = i2c_master_recv(ir->tx_c, buf, 4);
433 if (ret != 4) {
434 dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n",
435 ret);
436 return ret < 0 ? ret : -EIO;
439 dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n",
440 buf[1], buf[2], buf[3]);
442 return 0;
446 * If the last slot for pulse is the same as the current slot for pulse,
447 * then use slot no 7.
449 static void copy_codes(u8 *dst, u8 *src, unsigned int count)
451 u8 c, last = 0xff;
453 while (count--) {
454 c = *src++;
455 if ((c & 0xf0) == last) {
456 *dst++ = 0x70 | (c & 0xf);
457 } else {
458 *dst++ = c;
459 last = c & 0xf0;
465 * When looking for repeats, we don't care about the trailing space. This
466 * is set to the shortest possible anyway.
468 static int cmp_no_trail(u8 *a, u8 *b, unsigned int count)
470 while (--count) {
471 if (*a++ != *b++)
472 return 1;
475 return (*a & 0xf0) - (*b & 0xf0);
478 static int find_slot(u16 *array, unsigned int size, u16 val)
480 int i;
482 for (i = 0; i < size; i++) {
483 if (get_unaligned_be16(&array[i]) == val) {
484 return i;
485 } else if (!array[i]) {
486 put_unaligned_be16(val, &array[i]);
487 return i;
491 return -1;
494 static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf,
495 unsigned int count, struct code_block *code_block)
497 struct IR_i2c *ir = rcdev->priv;
498 int rep, i, l, p = 0, s, c = 0;
499 bool repeating;
500 u8 codes[174];
502 code_block->carrier_pulse = DIV_ROUND_CLOSEST(
503 ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier);
504 code_block->carrier_space = DIV_ROUND_CLOSEST(
505 (100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier);
507 for (i = 0; i < count; i++) {
508 if (c >= ARRAY_SIZE(codes) - 1) {
509 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
510 return -EINVAL;
514 * Lengths more than 142220us cannot be encoded; also
515 * this checks for multiply overflow
517 if (txbuf[i] > 142220)
518 return -EINVAL;
520 l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000);
522 if (i & 1) {
523 s = find_slot(code_block->space,
524 ARRAY_SIZE(code_block->space), l);
525 if (s == -1) {
526 dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit");
527 return -EINVAL;
530 /* We have a pulse and space */
531 codes[c++] = (p << 4) | s;
532 } else {
533 p = find_slot(code_block->pulse,
534 ARRAY_SIZE(code_block->pulse), l);
535 if (p == -1) {
536 dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit");
537 return -EINVAL;
542 /* We have to encode the trailing pulse. Find the shortest space */
543 s = 0;
544 for (i = 1; i < ARRAY_SIZE(code_block->space); i++) {
545 u16 d = get_unaligned_be16(&code_block->space[i]);
547 if (get_unaligned_be16(&code_block->space[s]) > d)
548 s = i;
551 codes[c++] = (p << 4) | s;
553 dev_dbg(&rcdev->dev, "generated %d codes\n", c);
556 * Are the last N codes (so pulse + space) repeating 3 times?
557 * if so we can shorten the codes list and use code 0xc0 to repeat
558 * them.
560 repeating = false;
562 for (rep = c / 3; rep >= 1; rep--) {
563 if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) &&
564 !cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) {
565 repeating = true;
566 break;
570 if (repeating) {
571 /* first copy any leading non-repeating */
572 int leading = c - rep * 3;
574 if (leading + rep >= ARRAY_SIZE(code_block->codes) - 3) {
575 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
576 return -EINVAL;
579 dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep);
580 copy_codes(code_block->codes, codes, leading);
581 code_block->codes[leading] = 0x82;
582 copy_codes(code_block->codes + leading + 1, codes + leading,
583 rep);
584 c = leading + 1 + rep;
585 code_block->codes[c++] = 0xc0;
586 } else {
587 if (c >= ARRAY_SIZE(code_block->codes) - 3) {
588 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
589 return -EINVAL;
592 dev_dbg(&rcdev->dev, "found no trailing repeat\n");
593 code_block->codes[0] = 0x82;
594 copy_codes(code_block->codes + 1, codes, c);
595 c++;
596 code_block->codes[c++] = 0xc4;
599 while (c < ARRAY_SIZE(code_block->codes))
600 code_block->codes[c++] = 0x83;
602 return 0;
605 static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf,
606 unsigned int count)
608 struct IR_i2c *ir = rcdev->priv;
609 struct code_block code_block = { .length = sizeof(code_block) };
610 u8 buf[2];
611 int ret, i;
613 ret = zilog_ir_format(rcdev, txbuf, count, &code_block);
614 if (ret)
615 return ret;
617 ret = mutex_lock_interruptible(&ir->lock);
618 if (ret)
619 return ret;
621 ret = send_data_block(ir, ZILOG_UIR_END, &code_block);
622 if (ret)
623 goto out_unlock;
625 ret = i2c_master_recv(ir->tx_c, buf, 1);
626 if (ret != 1) {
627 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
628 goto out_unlock;
631 dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]);
633 if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) {
634 dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n",
635 buf[0]);
636 ret = -EIO;
637 goto out_unlock;
640 buf[0] = 0x00;
641 buf[1] = ZILOG_SEND;
643 ret = i2c_master_send(ir->tx_c, buf, 2);
644 if (ret != 2) {
645 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
646 if (ret >= 0)
647 ret = -EIO;
648 goto out_unlock;
651 dev_dbg(&ir->rc->dev, "send command sent\n");
654 * This bit NAKs until the device is ready, so we retry it
655 * sleeping a bit each time. This seems to be what the windows
656 * driver does, approximately.
657 * Try for up to 1s.
659 for (i = 0; i < 20; ++i) {
660 set_current_state(TASK_UNINTERRUPTIBLE);
661 schedule_timeout(msecs_to_jiffies(50));
662 ret = i2c_master_send(ir->tx_c, buf, 1);
663 if (ret == 1)
664 break;
665 dev_dbg(&ir->rc->dev,
666 "NAK expected: i2c_master_send failed with %d (try %d)\n",
667 ret, i + 1);
670 if (ret != 1) {
671 dev_err(&ir->rc->dev,
672 "IR TX chip never got ready: last i2c_master_send failed with %d\n",
673 ret);
674 if (ret >= 0)
675 ret = -EIO;
676 goto out_unlock;
679 i = i2c_master_recv(ir->tx_c, buf, 1);
680 if (i != 1) {
681 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
682 ret = -EIO;
683 goto out_unlock;
684 } else if (buf[0] != ZILOG_STATUS_OK) {
685 dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n",
686 buf[0]);
687 ret = -EIO;
688 goto out_unlock;
690 dev_dbg(&ir->rc->dev, "transmit complete\n");
692 /* Oh good, it worked */
693 ret = count;
694 out_unlock:
695 mutex_unlock(&ir->lock);
697 return ret;
700 static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier)
702 struct IR_i2c *ir = dev->priv;
704 if (carrier > 500000 || carrier < 20000)
705 return -EINVAL;
707 ir->carrier = carrier;
709 return 0;
712 static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle)
714 struct IR_i2c *ir = dev->priv;
716 ir->duty_cycle = duty_cycle;
718 return 0;
721 static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
723 char *ir_codes = NULL;
724 const char *name = NULL;
725 u64 rc_proto = RC_PROTO_BIT_UNKNOWN;
726 struct IR_i2c *ir;
727 struct rc_dev *rc = NULL;
728 struct i2c_adapter *adap = client->adapter;
729 unsigned short addr = client->addr;
730 int err;
732 if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) {
733 dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n");
734 return -ENODEV;
737 ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL);
738 if (!ir)
739 return -ENOMEM;
741 ir->c = client;
742 ir->polling_interval = DEFAULT_POLLING_INTERVAL;
743 i2c_set_clientdata(client, ir);
745 switch(addr) {
746 case 0x64:
747 name = "Pixelview";
748 ir->get_key = get_key_pixelview;
749 rc_proto = RC_PROTO_BIT_OTHER;
750 ir_codes = RC_MAP_EMPTY;
751 break;
752 case 0x18:
753 case 0x1f:
754 case 0x1a:
755 name = "Hauppauge";
756 ir->get_key = get_key_haup;
757 rc_proto = RC_PROTO_BIT_RC5;
758 ir_codes = RC_MAP_HAUPPAUGE;
759 break;
760 case 0x30:
761 name = "KNC One";
762 ir->get_key = get_key_knc1;
763 rc_proto = RC_PROTO_BIT_OTHER;
764 ir_codes = RC_MAP_EMPTY;
765 break;
766 case 0x6b:
767 name = "FusionHDTV";
768 ir->get_key = get_key_fusionhdtv;
769 rc_proto = RC_PROTO_BIT_UNKNOWN;
770 ir_codes = RC_MAP_FUSIONHDTV_MCE;
771 break;
772 case 0x40:
773 name = "AVerMedia Cardbus remote";
774 ir->get_key = get_key_avermedia_cardbus;
775 rc_proto = RC_PROTO_BIT_OTHER;
776 ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
777 break;
778 case 0x41:
779 name = "AVerMedia EM78P153";
780 ir->get_key = get_key_avermedia_cardbus;
781 rc_proto = RC_PROTO_BIT_OTHER;
782 /* RM-KV remote, seems to be same as RM-K6 */
783 ir_codes = RC_MAP_AVERMEDIA_M733A_RM_K6;
784 break;
785 case 0x71:
786 name = "Hauppauge/Zilog Z8";
787 ir->get_key = get_key_haup_xvr;
788 rc_proto = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
789 RC_PROTO_BIT_RC6_6A_32;
790 ir_codes = RC_MAP_HAUPPAUGE;
791 break;
794 /* Let the caller override settings */
795 if (client->dev.platform_data) {
796 const struct IR_i2c_init_data *init_data =
797 client->dev.platform_data;
799 ir_codes = init_data->ir_codes;
800 rc = init_data->rc_dev;
802 name = init_data->name;
803 if (init_data->type)
804 rc_proto = init_data->type;
806 if (init_data->polling_interval)
807 ir->polling_interval = init_data->polling_interval;
809 switch (init_data->internal_get_key_func) {
810 case IR_KBD_GET_KEY_CUSTOM:
811 /* The bridge driver provided us its own function */
812 ir->get_key = init_data->get_key;
813 break;
814 case IR_KBD_GET_KEY_PIXELVIEW:
815 ir->get_key = get_key_pixelview;
816 break;
817 case IR_KBD_GET_KEY_HAUP:
818 ir->get_key = get_key_haup;
819 break;
820 case IR_KBD_GET_KEY_KNC1:
821 ir->get_key = get_key_knc1;
822 break;
823 case IR_KBD_GET_KEY_FUSIONHDTV:
824 ir->get_key = get_key_fusionhdtv;
825 break;
826 case IR_KBD_GET_KEY_HAUP_XVR:
827 ir->get_key = get_key_haup_xvr;
828 break;
829 case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS:
830 ir->get_key = get_key_avermedia_cardbus;
831 break;
835 if (!rc) {
837 * If platform_data doesn't specify rc_dev, initialize it
838 * internally
840 rc = rc_allocate_device(RC_DRIVER_SCANCODE);
841 if (!rc)
842 return -ENOMEM;
844 ir->rc = rc;
846 /* Make sure we are all setup before going on */
847 if (!name || !ir->get_key || !rc_proto || !ir_codes) {
848 dev_warn(&client->dev, "Unsupported device at address 0x%02x\n",
849 addr);
850 err = -ENODEV;
851 goto err_out_free;
854 ir->ir_codes = ir_codes;
856 snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev),
857 dev_name(&client->dev));
860 * Initialize input_dev fields
861 * It doesn't make sense to allow overriding them via platform_data
863 rc->input_id.bustype = BUS_I2C;
864 rc->input_phys = ir->phys;
865 rc->device_name = name;
866 rc->dev.parent = &client->dev;
867 rc->priv = ir;
868 rc->open = ir_open;
869 rc->close = ir_close;
872 * Initialize the other fields of rc_dev
874 rc->map_name = ir->ir_codes;
875 rc->allowed_protocols = rc_proto;
876 if (!rc->driver_name)
877 rc->driver_name = KBUILD_MODNAME;
879 mutex_init(&ir->lock);
881 INIT_DELAYED_WORK(&ir->work, ir_work);
883 if (id->driver_data & FLAG_TX) {
884 ir->tx_c = i2c_new_dummy(client->adapter, 0x70);
885 if (!ir->tx_c) {
886 dev_err(&client->dev, "failed to setup tx i2c address");
887 } else if (!zilog_init(ir)) {
888 ir->carrier = 38000;
889 ir->duty_cycle = 40;
890 rc->tx_ir = zilog_tx;
891 rc->s_tx_carrier = zilog_tx_carrier;
892 rc->s_tx_duty_cycle = zilog_tx_duty_cycle;
896 err = rc_register_device(rc);
897 if (err)
898 goto err_out_free;
900 return 0;
902 err_out_free:
903 if (ir->tx_c)
904 i2c_unregister_device(ir->tx_c);
906 /* Only frees rc if it were allocated internally */
907 rc_free_device(rc);
908 return err;
911 static int ir_remove(struct i2c_client *client)
913 struct IR_i2c *ir = i2c_get_clientdata(client);
915 /* kill outstanding polls */
916 cancel_delayed_work_sync(&ir->work);
918 if (ir->tx_c)
919 i2c_unregister_device(ir->tx_c);
921 /* unregister device */
922 rc_unregister_device(ir->rc);
924 /* free memory */
925 return 0;
928 static const struct i2c_device_id ir_kbd_id[] = {
929 /* Generic entry for any IR receiver */
930 { "ir_video", 0 },
931 /* IR device specific entries should be added here */
932 { "ir_z8f0811_haup", FLAG_TX },
933 { "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR },
936 MODULE_DEVICE_TABLE(i2c, ir_kbd_id);
938 static struct i2c_driver ir_kbd_driver = {
939 .driver = {
940 .name = "ir-kbd-i2c",
942 .probe = ir_probe,
943 .remove = ir_remove,
944 .id_table = ir_kbd_id,
947 module_i2c_driver(ir_kbd_driver);
949 /* ----------------------------------------------------------------------- */
951 MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller");
952 MODULE_DESCRIPTION("input driver for i2c IR remote controls");
953 MODULE_LICENSE("GPL");