Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / mtd / nand / s3c2410.c
blob4c383eeec6f6f74aeb2c5894dd221b6ee41a1b73
1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42 #include <linux/of.h>
43 #include <linux/of_device.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/rawnand.h>
47 #include <linux/mtd/nand_ecc.h>
48 #include <linux/mtd/partitions.h>
50 #include <linux/platform_data/mtd-nand-s3c2410.h>
52 #define S3C2410_NFREG(x) (x)
54 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
55 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
56 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
57 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
58 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
59 #define S3C2410_NFECC S3C2410_NFREG(0x14)
60 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
61 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
62 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
63 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
64 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
65 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
66 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
67 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
68 #define S3C2410_NFCONF_EN (1<<15)
69 #define S3C2410_NFCONF_INITECC (1<<12)
70 #define S3C2410_NFCONF_nFCE (1<<11)
71 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
72 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
73 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
74 #define S3C2410_NFSTAT_BUSY (1<<0)
75 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
76 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
77 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
78 #define S3C2440_NFCONT_INITECC (1<<4)
79 #define S3C2440_NFCONT_nFCE (1<<1)
80 #define S3C2440_NFCONT_ENABLE (1<<0)
81 #define S3C2440_NFSTAT_READY (1<<0)
82 #define S3C2412_NFCONF_NANDBOOT (1<<31)
83 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
84 #define S3C2412_NFCONT_nFCE0 (1<<1)
85 #define S3C2412_NFSTAT_READY (1<<0)
87 /* new oob placement block for use with hardware ecc generation
89 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
90 struct mtd_oob_region *oobregion)
92 if (section)
93 return -ERANGE;
95 oobregion->offset = 0;
96 oobregion->length = 3;
98 return 0;
101 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
102 struct mtd_oob_region *oobregion)
104 if (section)
105 return -ERANGE;
107 oobregion->offset = 8;
108 oobregion->length = 8;
110 return 0;
113 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
114 .ecc = s3c2410_ooblayout_ecc,
115 .free = s3c2410_ooblayout_free,
118 /* controller and mtd information */
120 struct s3c2410_nand_info;
123 * struct s3c2410_nand_mtd - driver MTD structure
124 * @mtd: The MTD instance to pass to the MTD layer.
125 * @chip: The NAND chip information.
126 * @set: The platform information supplied for this set of NAND chips.
127 * @info: Link back to the hardware information.
128 * @scan_res: The result from calling nand_scan_ident().
130 struct s3c2410_nand_mtd {
131 struct nand_chip chip;
132 struct s3c2410_nand_set *set;
133 struct s3c2410_nand_info *info;
134 int scan_res;
137 enum s3c_cpu_type {
138 TYPE_S3C2410,
139 TYPE_S3C2412,
140 TYPE_S3C2440,
143 enum s3c_nand_clk_state {
144 CLOCK_DISABLE = 0,
145 CLOCK_ENABLE,
146 CLOCK_SUSPEND,
149 /* overview of the s3c2410 nand state */
152 * struct s3c2410_nand_info - NAND controller state.
153 * @mtds: An array of MTD instances on this controoler.
154 * @platform: The platform data for this board.
155 * @device: The platform device we bound to.
156 * @clk: The clock resource for this controller.
157 * @regs: The area mapped for the hardware registers.
158 * @sel_reg: Pointer to the register controlling the NAND selection.
159 * @sel_bit: The bit in @sel_reg to select the NAND chip.
160 * @mtd_count: The number of MTDs created from this controller.
161 * @save_sel: The contents of @sel_reg to be saved over suspend.
162 * @clk_rate: The clock rate from @clk.
163 * @clk_state: The current clock state.
164 * @cpu_type: The exact type of this controller.
166 struct s3c2410_nand_info {
167 /* mtd info */
168 struct nand_hw_control controller;
169 struct s3c2410_nand_mtd *mtds;
170 struct s3c2410_platform_nand *platform;
172 /* device info */
173 struct device *device;
174 struct clk *clk;
175 void __iomem *regs;
176 void __iomem *sel_reg;
177 int sel_bit;
178 int mtd_count;
179 unsigned long save_sel;
180 unsigned long clk_rate;
181 enum s3c_nand_clk_state clk_state;
183 enum s3c_cpu_type cpu_type;
185 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
186 struct notifier_block freq_transition;
187 #endif
190 struct s3c24XX_nand_devtype_data {
191 enum s3c_cpu_type type;
194 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
195 .type = TYPE_S3C2410,
198 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
199 .type = TYPE_S3C2412,
202 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
203 .type = TYPE_S3C2440,
206 /* conversion functions */
208 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
210 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
211 chip);
214 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
216 return s3c2410_nand_mtd_toours(mtd)->info;
219 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
221 return platform_get_drvdata(dev);
224 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
226 return dev_get_platdata(&dev->dev);
229 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
231 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
232 return 1;
233 #else
234 return 0;
235 #endif
239 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
240 * @info: The controller instance.
241 * @new_state: State to which clock should be set.
243 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
244 enum s3c_nand_clk_state new_state)
246 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
247 return;
249 if (info->clk_state == CLOCK_ENABLE) {
250 if (new_state != CLOCK_ENABLE)
251 clk_disable_unprepare(info->clk);
252 } else {
253 if (new_state == CLOCK_ENABLE)
254 clk_prepare_enable(info->clk);
257 info->clk_state = new_state;
260 /* timing calculations */
262 #define NS_IN_KHZ 1000000
265 * s3c_nand_calc_rate - calculate timing data.
266 * @wanted: The cycle time in nanoseconds.
267 * @clk: The clock rate in kHz.
268 * @max: The maximum divider value.
270 * Calculate the timing value from the given parameters.
272 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
274 int result;
276 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
278 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
280 if (result > max) {
281 pr_err("%d ns is too big for current clock rate %ld\n",
282 wanted, clk);
283 return -1;
286 if (result < 1)
287 result = 1;
289 return result;
292 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
294 /* controller setup */
297 * s3c2410_nand_setrate - setup controller timing information.
298 * @info: The controller instance.
300 * Given the information supplied by the platform, calculate and set
301 * the necessary timing registers in the hardware to generate the
302 * necessary timing cycles to the hardware.
304 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
306 struct s3c2410_platform_nand *plat = info->platform;
307 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
308 int tacls, twrph0, twrph1;
309 unsigned long clkrate = clk_get_rate(info->clk);
310 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
311 unsigned long flags;
313 /* calculate the timing information for the controller */
315 info->clk_rate = clkrate;
316 clkrate /= 1000; /* turn clock into kHz for ease of use */
318 if (plat != NULL) {
319 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
320 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
321 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
322 } else {
323 /* default timings */
324 tacls = tacls_max;
325 twrph0 = 8;
326 twrph1 = 8;
329 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
330 dev_err(info->device, "cannot get suitable timings\n");
331 return -EINVAL;
334 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
335 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
336 twrph1, to_ns(twrph1, clkrate));
338 switch (info->cpu_type) {
339 case TYPE_S3C2410:
340 mask = (S3C2410_NFCONF_TACLS(3) |
341 S3C2410_NFCONF_TWRPH0(7) |
342 S3C2410_NFCONF_TWRPH1(7));
343 set = S3C2410_NFCONF_EN;
344 set |= S3C2410_NFCONF_TACLS(tacls - 1);
345 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
346 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
347 break;
349 case TYPE_S3C2440:
350 case TYPE_S3C2412:
351 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
352 S3C2440_NFCONF_TWRPH0(7) |
353 S3C2440_NFCONF_TWRPH1(7));
355 set = S3C2440_NFCONF_TACLS(tacls - 1);
356 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
357 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
358 break;
360 default:
361 BUG();
364 local_irq_save(flags);
366 cfg = readl(info->regs + S3C2410_NFCONF);
367 cfg &= ~mask;
368 cfg |= set;
369 writel(cfg, info->regs + S3C2410_NFCONF);
371 local_irq_restore(flags);
373 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
375 return 0;
379 * s3c2410_nand_inithw - basic hardware initialisation
380 * @info: The hardware state.
382 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
383 * to setup the hardware access speeds and set the controller to be enabled.
385 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
387 int ret;
389 ret = s3c2410_nand_setrate(info);
390 if (ret < 0)
391 return ret;
393 switch (info->cpu_type) {
394 case TYPE_S3C2410:
395 default:
396 break;
398 case TYPE_S3C2440:
399 case TYPE_S3C2412:
400 /* enable the controller and de-assert nFCE */
402 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
405 return 0;
409 * s3c2410_nand_select_chip - select the given nand chip
410 * @mtd: The MTD instance for this chip.
411 * @chip: The chip number.
413 * This is called by the MTD layer to either select a given chip for the
414 * @mtd instance, or to indicate that the access has finished and the
415 * chip can be de-selected.
417 * The routine ensures that the nFCE line is correctly setup, and any
418 * platform specific selection code is called to route nFCE to the specific
419 * chip.
421 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
423 struct s3c2410_nand_info *info;
424 struct s3c2410_nand_mtd *nmtd;
425 struct nand_chip *this = mtd_to_nand(mtd);
426 unsigned long cur;
428 nmtd = nand_get_controller_data(this);
429 info = nmtd->info;
431 if (chip != -1)
432 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
434 cur = readl(info->sel_reg);
436 if (chip == -1) {
437 cur |= info->sel_bit;
438 } else {
439 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
440 dev_err(info->device, "invalid chip %d\n", chip);
441 return;
444 if (info->platform != NULL) {
445 if (info->platform->select_chip != NULL)
446 (info->platform->select_chip) (nmtd->set, chip);
449 cur &= ~info->sel_bit;
452 writel(cur, info->sel_reg);
454 if (chip == -1)
455 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
458 /* s3c2410_nand_hwcontrol
460 * Issue command and address cycles to the chip
463 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
464 unsigned int ctrl)
466 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
468 if (cmd == NAND_CMD_NONE)
469 return;
471 if (ctrl & NAND_CLE)
472 writeb(cmd, info->regs + S3C2410_NFCMD);
473 else
474 writeb(cmd, info->regs + S3C2410_NFADDR);
477 /* command and control functions */
479 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
480 unsigned int ctrl)
482 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
484 if (cmd == NAND_CMD_NONE)
485 return;
487 if (ctrl & NAND_CLE)
488 writeb(cmd, info->regs + S3C2440_NFCMD);
489 else
490 writeb(cmd, info->regs + S3C2440_NFADDR);
493 /* s3c2410_nand_devready()
495 * returns 0 if the nand is busy, 1 if it is ready
498 static int s3c2410_nand_devready(struct mtd_info *mtd)
500 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
504 static int s3c2440_nand_devready(struct mtd_info *mtd)
506 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
507 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
510 static int s3c2412_nand_devready(struct mtd_info *mtd)
512 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
513 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
516 /* ECC handling functions */
518 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
519 u_char *read_ecc, u_char *calc_ecc)
521 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
522 unsigned int diff0, diff1, diff2;
523 unsigned int bit, byte;
525 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
527 diff0 = read_ecc[0] ^ calc_ecc[0];
528 diff1 = read_ecc[1] ^ calc_ecc[1];
529 diff2 = read_ecc[2] ^ calc_ecc[2];
531 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
532 __func__, 3, read_ecc, 3, calc_ecc,
533 diff0, diff1, diff2);
535 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
536 return 0; /* ECC is ok */
538 /* sometimes people do not think about using the ECC, so check
539 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
540 * the error, on the assumption that this is an un-eccd page.
542 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
543 && info->platform->ignore_unset_ecc)
544 return 0;
546 /* Can we correct this ECC (ie, one row and column change).
547 * Note, this is similar to the 256 error code on smartmedia */
549 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
550 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
551 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
552 /* calculate the bit position of the error */
554 bit = ((diff2 >> 3) & 1) |
555 ((diff2 >> 4) & 2) |
556 ((diff2 >> 5) & 4);
558 /* calculate the byte position of the error */
560 byte = ((diff2 << 7) & 0x100) |
561 ((diff1 << 0) & 0x80) |
562 ((diff1 << 1) & 0x40) |
563 ((diff1 << 2) & 0x20) |
564 ((diff1 << 3) & 0x10) |
565 ((diff0 >> 4) & 0x08) |
566 ((diff0 >> 3) & 0x04) |
567 ((diff0 >> 2) & 0x02) |
568 ((diff0 >> 1) & 0x01);
570 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
571 bit, byte);
573 dat[byte] ^= (1 << bit);
574 return 1;
577 /* if there is only one bit difference in the ECC, then
578 * one of only a row or column parity has changed, which
579 * means the error is most probably in the ECC itself */
581 diff0 |= (diff1 << 8);
582 diff0 |= (diff2 << 16);
584 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
585 if ((diff0 & (diff0 - 1)) == 0)
586 return 1;
588 return -1;
591 /* ECC functions
593 * These allow the s3c2410 and s3c2440 to use the controller's ECC
594 * generator block to ECC the data as it passes through]
597 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
599 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
600 unsigned long ctrl;
602 ctrl = readl(info->regs + S3C2410_NFCONF);
603 ctrl |= S3C2410_NFCONF_INITECC;
604 writel(ctrl, info->regs + S3C2410_NFCONF);
607 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
609 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
610 unsigned long ctrl;
612 ctrl = readl(info->regs + S3C2440_NFCONT);
613 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
614 info->regs + S3C2440_NFCONT);
617 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
619 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
620 unsigned long ctrl;
622 ctrl = readl(info->regs + S3C2440_NFCONT);
623 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
626 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
627 u_char *ecc_code)
629 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
631 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
632 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
633 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
635 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
637 return 0;
640 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
641 u_char *ecc_code)
643 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
646 ecc_code[0] = ecc;
647 ecc_code[1] = ecc >> 8;
648 ecc_code[2] = ecc >> 16;
650 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
652 return 0;
655 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
656 u_char *ecc_code)
658 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
659 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
661 ecc_code[0] = ecc;
662 ecc_code[1] = ecc >> 8;
663 ecc_code[2] = ecc >> 16;
665 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
667 return 0;
670 /* over-ride the standard functions for a little more speed. We can
671 * use read/write block to move the data buffers to/from the controller
674 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
676 struct nand_chip *this = mtd_to_nand(mtd);
677 readsb(this->IO_ADDR_R, buf, len);
680 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
682 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
684 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
686 /* cleanup if we've got less than a word to do */
687 if (len & 3) {
688 buf += len & ~3;
690 for (; len & 3; len--)
691 *buf++ = readb(info->regs + S3C2440_NFDATA);
695 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
696 int len)
698 struct nand_chip *this = mtd_to_nand(mtd);
699 writesb(this->IO_ADDR_W, buf, len);
702 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
703 int len)
705 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
707 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
709 /* cleanup any fractional write */
710 if (len & 3) {
711 buf += len & ~3;
713 for (; len & 3; len--, buf++)
714 writeb(*buf, info->regs + S3C2440_NFDATA);
718 /* cpufreq driver support */
720 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
722 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
723 unsigned long val, void *data)
725 struct s3c2410_nand_info *info;
726 unsigned long newclk;
728 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
729 newclk = clk_get_rate(info->clk);
731 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
732 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
733 s3c2410_nand_setrate(info);
736 return 0;
739 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
741 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
743 return cpufreq_register_notifier(&info->freq_transition,
744 CPUFREQ_TRANSITION_NOTIFIER);
747 static inline void
748 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
750 cpufreq_unregister_notifier(&info->freq_transition,
751 CPUFREQ_TRANSITION_NOTIFIER);
754 #else
755 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
757 return 0;
760 static inline void
761 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
764 #endif
766 /* device management functions */
768 static int s3c24xx_nand_remove(struct platform_device *pdev)
770 struct s3c2410_nand_info *info = to_nand_info(pdev);
772 if (info == NULL)
773 return 0;
775 s3c2410_nand_cpufreq_deregister(info);
777 /* Release all our mtds and their partitions, then go through
778 * freeing the resources used
781 if (info->mtds != NULL) {
782 struct s3c2410_nand_mtd *ptr = info->mtds;
783 int mtdno;
785 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
786 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
787 nand_release(nand_to_mtd(&ptr->chip));
791 /* free the common resources */
793 if (!IS_ERR(info->clk))
794 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
796 return 0;
799 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
800 struct s3c2410_nand_mtd *mtd,
801 struct s3c2410_nand_set *set)
803 if (set) {
804 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
806 mtdinfo->name = set->name;
808 return mtd_device_parse_register(mtdinfo, NULL, NULL,
809 set->partitions, set->nr_partitions);
812 return -ENODEV;
815 static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
816 const struct nand_data_interface *conf)
818 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
819 struct s3c2410_platform_nand *pdata = info->platform;
820 const struct nand_sdr_timings *timings;
821 int tacls;
823 timings = nand_get_sdr_timings(conf);
824 if (IS_ERR(timings))
825 return -ENOTSUPP;
827 tacls = timings->tCLS_min - timings->tWP_min;
828 if (tacls < 0)
829 tacls = 0;
831 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
832 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
833 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
835 return s3c2410_nand_setrate(info);
839 * s3c2410_nand_init_chip - initialise a single instance of an chip
840 * @info: The base NAND controller the chip is on.
841 * @nmtd: The new controller MTD instance to fill in.
842 * @set: The information passed from the board specific platform data.
844 * Initialise the given @nmtd from the information in @info and @set. This
845 * readies the structure for use with the MTD layer functions by ensuring
846 * all pointers are setup and the necessary control routines selected.
848 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
849 struct s3c2410_nand_mtd *nmtd,
850 struct s3c2410_nand_set *set)
852 struct device_node *np = info->device->of_node;
853 struct nand_chip *chip = &nmtd->chip;
854 void __iomem *regs = info->regs;
856 nand_set_flash_node(chip, set->of_node);
858 chip->write_buf = s3c2410_nand_write_buf;
859 chip->read_buf = s3c2410_nand_read_buf;
860 chip->select_chip = s3c2410_nand_select_chip;
861 chip->chip_delay = 50;
862 nand_set_controller_data(chip, nmtd);
863 chip->options = set->options;
864 chip->controller = &info->controller;
867 * let's keep behavior unchanged for legacy boards booting via pdata and
868 * auto-detect timings only when booting with a device tree.
870 if (np)
871 chip->setup_data_interface = s3c2410_nand_setup_data_interface;
873 switch (info->cpu_type) {
874 case TYPE_S3C2410:
875 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
876 info->sel_reg = regs + S3C2410_NFCONF;
877 info->sel_bit = S3C2410_NFCONF_nFCE;
878 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
879 chip->dev_ready = s3c2410_nand_devready;
880 break;
882 case TYPE_S3C2440:
883 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
884 info->sel_reg = regs + S3C2440_NFCONT;
885 info->sel_bit = S3C2440_NFCONT_nFCE;
886 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
887 chip->dev_ready = s3c2440_nand_devready;
888 chip->read_buf = s3c2440_nand_read_buf;
889 chip->write_buf = s3c2440_nand_write_buf;
890 break;
892 case TYPE_S3C2412:
893 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
894 info->sel_reg = regs + S3C2440_NFCONT;
895 info->sel_bit = S3C2412_NFCONT_nFCE0;
896 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
897 chip->dev_ready = s3c2412_nand_devready;
899 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
900 dev_info(info->device, "System booted from NAND\n");
902 break;
905 chip->IO_ADDR_R = chip->IO_ADDR_W;
907 nmtd->info = info;
908 nmtd->set = set;
910 chip->ecc.mode = info->platform->ecc_mode;
913 * If you use u-boot BBT creation code, specifying this flag will
914 * let the kernel fish out the BBT from the NAND.
916 if (set->flash_bbt)
917 chip->bbt_options |= NAND_BBT_USE_FLASH;
921 * s3c2410_nand_update_chip - post probe update
922 * @info: The controller instance.
923 * @nmtd: The driver version of the MTD instance.
925 * This routine is called after the chip probe has successfully completed
926 * and the relevant per-chip information updated. This call ensure that
927 * we update the internal state accordingly.
929 * The internal state is currently limited to the ECC state information.
931 static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
932 struct s3c2410_nand_mtd *nmtd)
934 struct nand_chip *chip = &nmtd->chip;
936 switch (chip->ecc.mode) {
938 case NAND_ECC_NONE:
939 dev_info(info->device, "ECC disabled\n");
940 break;
942 case NAND_ECC_SOFT:
944 * This driver expects Hamming based ECC when ecc_mode is set
945 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
946 * avoid adding an extra ecc_algo field to
947 * s3c2410_platform_nand.
949 chip->ecc.algo = NAND_ECC_HAMMING;
950 dev_info(info->device, "soft ECC\n");
951 break;
953 case NAND_ECC_HW:
954 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
955 chip->ecc.correct = s3c2410_nand_correct_data;
956 chip->ecc.strength = 1;
958 switch (info->cpu_type) {
959 case TYPE_S3C2410:
960 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
961 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
962 break;
964 case TYPE_S3C2412:
965 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
966 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
967 break;
969 case TYPE_S3C2440:
970 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
971 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
972 break;
975 dev_dbg(info->device, "chip %p => page shift %d\n",
976 chip, chip->page_shift);
978 /* change the behaviour depending on whether we are using
979 * the large or small page nand device */
980 if (chip->page_shift > 10) {
981 chip->ecc.size = 256;
982 chip->ecc.bytes = 3;
983 } else {
984 chip->ecc.size = 512;
985 chip->ecc.bytes = 3;
986 mtd_set_ooblayout(nand_to_mtd(chip),
987 &s3c2410_ooblayout_ops);
990 dev_info(info->device, "hardware ECC\n");
991 break;
993 default:
994 dev_err(info->device, "invalid ECC mode!\n");
995 return -EINVAL;
998 if (chip->bbt_options & NAND_BBT_USE_FLASH)
999 chip->options |= NAND_SKIP_BBTSCAN;
1001 return 0;
1004 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1006 .compatible = "samsung,s3c2410-nand",
1007 .data = &s3c2410_nand_devtype_data,
1008 }, {
1009 /* also compatible with s3c6400 */
1010 .compatible = "samsung,s3c2412-nand",
1011 .data = &s3c2412_nand_devtype_data,
1012 }, {
1013 .compatible = "samsung,s3c2440-nand",
1014 .data = &s3c2440_nand_devtype_data,
1016 { /* sentinel */ }
1018 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1020 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1022 const struct s3c24XX_nand_devtype_data *devtype_data;
1023 struct s3c2410_platform_nand *pdata;
1024 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025 struct device_node *np = pdev->dev.of_node, *child;
1026 struct s3c2410_nand_set *sets;
1028 devtype_data = of_device_get_match_data(&pdev->dev);
1029 if (!devtype_data)
1030 return -ENODEV;
1032 info->cpu_type = devtype_data->type;
1034 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035 if (!pdata)
1036 return -ENOMEM;
1038 pdev->dev.platform_data = pdata;
1040 pdata->nr_sets = of_get_child_count(np);
1041 if (!pdata->nr_sets)
1042 return 0;
1044 sets = devm_kzalloc(&pdev->dev, sizeof(*sets) * pdata->nr_sets,
1045 GFP_KERNEL);
1046 if (!sets)
1047 return -ENOMEM;
1049 pdata->sets = sets;
1051 for_each_available_child_of_node(np, child) {
1052 sets->name = (char *)child->name;
1053 sets->of_node = child;
1054 sets->nr_chips = 1;
1056 of_node_get(child);
1058 sets++;
1061 return 0;
1064 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1066 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1068 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1070 return 0;
1073 /* s3c24xx_nand_probe
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1080 static int s3c24xx_nand_probe(struct platform_device *pdev)
1082 struct s3c2410_platform_nand *plat;
1083 struct s3c2410_nand_info *info;
1084 struct s3c2410_nand_mtd *nmtd;
1085 struct s3c2410_nand_set *sets;
1086 struct resource *res;
1087 int err = 0;
1088 int size;
1089 int nr_sets;
1090 int setno;
1092 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093 if (info == NULL) {
1094 err = -ENOMEM;
1095 goto exit_error;
1098 platform_set_drvdata(pdev, info);
1100 nand_hw_control_init(&info->controller);
1102 /* get the clock source and enable it */
1104 info->clk = devm_clk_get(&pdev->dev, "nand");
1105 if (IS_ERR(info->clk)) {
1106 dev_err(&pdev->dev, "failed to get clock\n");
1107 err = -ENOENT;
1108 goto exit_error;
1111 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1113 if (pdev->dev.of_node)
1114 err = s3c24xx_nand_probe_dt(pdev);
1115 else
1116 err = s3c24xx_nand_probe_pdata(pdev);
1118 if (err)
1119 goto exit_error;
1121 plat = to_nand_plat(pdev);
1123 /* allocate and map the resource */
1125 /* currently we assume we have the one resource */
1126 res = pdev->resource;
1127 size = resource_size(res);
1129 info->device = &pdev->dev;
1130 info->platform = plat;
1132 info->regs = devm_ioremap_resource(&pdev->dev, res);
1133 if (IS_ERR(info->regs)) {
1134 err = PTR_ERR(info->regs);
1135 goto exit_error;
1138 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1140 sets = (plat != NULL) ? plat->sets : NULL;
1141 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1143 info->mtd_count = nr_sets;
1145 /* allocate our information */
1147 size = nr_sets * sizeof(*info->mtds);
1148 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1149 if (info->mtds == NULL) {
1150 err = -ENOMEM;
1151 goto exit_error;
1154 /* initialise all possible chips */
1156 nmtd = info->mtds;
1158 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1159 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1161 pr_debug("initialising set %d (%p, info %p)\n",
1162 setno, nmtd, info);
1164 mtd->dev.parent = &pdev->dev;
1165 s3c2410_nand_init_chip(info, nmtd, sets);
1167 nmtd->scan_res = nand_scan_ident(mtd,
1168 (sets) ? sets->nr_chips : 1,
1169 NULL);
1171 if (nmtd->scan_res == 0) {
1172 err = s3c2410_nand_update_chip(info, nmtd);
1173 if (err < 0)
1174 goto exit_error;
1175 nand_scan_tail(mtd);
1176 s3c2410_nand_add_partition(info, nmtd, sets);
1179 if (sets != NULL)
1180 sets++;
1183 /* initialise the hardware */
1184 err = s3c2410_nand_inithw(info);
1185 if (err != 0)
1186 goto exit_error;
1188 err = s3c2410_nand_cpufreq_register(info);
1189 if (err < 0) {
1190 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1191 goto exit_error;
1194 if (allow_clk_suspend(info)) {
1195 dev_info(&pdev->dev, "clock idle support enabled\n");
1196 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1199 return 0;
1201 exit_error:
1202 s3c24xx_nand_remove(pdev);
1204 if (err == 0)
1205 err = -EINVAL;
1206 return err;
1209 /* PM Support */
1210 #ifdef CONFIG_PM
1212 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1214 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1216 if (info) {
1217 info->save_sel = readl(info->sel_reg);
1219 /* For the moment, we must ensure nFCE is high during
1220 * the time we are suspended. This really should be
1221 * handled by suspending the MTDs we are using, but
1222 * that is currently not the case. */
1224 writel(info->save_sel | info->sel_bit, info->sel_reg);
1226 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1229 return 0;
1232 static int s3c24xx_nand_resume(struct platform_device *dev)
1234 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1235 unsigned long sel;
1237 if (info) {
1238 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1239 s3c2410_nand_inithw(info);
1241 /* Restore the state of the nFCE line. */
1243 sel = readl(info->sel_reg);
1244 sel &= ~info->sel_bit;
1245 sel |= info->save_sel & info->sel_bit;
1246 writel(sel, info->sel_reg);
1248 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1251 return 0;
1254 #else
1255 #define s3c24xx_nand_suspend NULL
1256 #define s3c24xx_nand_resume NULL
1257 #endif
1259 /* driver device registration */
1261 static const struct platform_device_id s3c24xx_driver_ids[] = {
1263 .name = "s3c2410-nand",
1264 .driver_data = TYPE_S3C2410,
1265 }, {
1266 .name = "s3c2440-nand",
1267 .driver_data = TYPE_S3C2440,
1268 }, {
1269 .name = "s3c2412-nand",
1270 .driver_data = TYPE_S3C2412,
1271 }, {
1272 .name = "s3c6400-nand",
1273 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1278 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1280 static struct platform_driver s3c24xx_nand_driver = {
1281 .probe = s3c24xx_nand_probe,
1282 .remove = s3c24xx_nand_remove,
1283 .suspend = s3c24xx_nand_suspend,
1284 .resume = s3c24xx_nand_resume,
1285 .id_table = s3c24xx_driver_ids,
1286 .driver = {
1287 .name = "s3c24xx-nand",
1288 .of_match_table = s3c24xx_nand_dt_ids,
1292 module_platform_driver(s3c24xx_nand_driver);
1294 MODULE_LICENSE("GPL");
1295 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1296 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");