1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 #include <linux/types.h>
29 #include <linux/if_ether.h>
32 #include "e1000_i210.h"
34 static s32
igb_update_flash_i210(struct e1000_hw
*hw
);
37 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
38 * @hw: pointer to the HW structure
40 * Acquire the HW semaphore to access the PHY or NVM
42 static s32
igb_get_hw_semaphore_i210(struct e1000_hw
*hw
)
45 s32 timeout
= hw
->nvm
.word_size
+ 1;
48 /* Get the SW semaphore */
50 swsm
= rd32(E1000_SWSM
);
51 if (!(swsm
& E1000_SWSM_SMBI
))
59 /* In rare circumstances, the SW semaphore may already be held
60 * unintentionally. Clear the semaphore once before giving up.
62 if (hw
->dev_spec
._82575
.clear_semaphore_once
) {
63 hw
->dev_spec
._82575
.clear_semaphore_once
= false;
64 igb_put_hw_semaphore(hw
);
65 for (i
= 0; i
< timeout
; i
++) {
66 swsm
= rd32(E1000_SWSM
);
67 if (!(swsm
& E1000_SWSM_SMBI
))
74 /* If we do not have the semaphore here, we have to give up. */
76 hw_dbg("Driver can't access device - SMBI bit is set.\n");
77 return -E1000_ERR_NVM
;
81 /* Get the FW semaphore. */
82 for (i
= 0; i
< timeout
; i
++) {
83 swsm
= rd32(E1000_SWSM
);
84 wr32(E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
86 /* Semaphore acquired if bit latched */
87 if (rd32(E1000_SWSM
) & E1000_SWSM_SWESMBI
)
94 /* Release semaphores */
95 igb_put_hw_semaphore(hw
);
96 hw_dbg("Driver can't access the NVM\n");
97 return -E1000_ERR_NVM
;
104 * igb_acquire_nvm_i210 - Request for access to EEPROM
105 * @hw: pointer to the HW structure
107 * Acquire the necessary semaphores for exclusive access to the EEPROM.
108 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
109 * Return successful if access grant bit set, else clear the request for
110 * EEPROM access and return -E1000_ERR_NVM (-1).
112 static s32
igb_acquire_nvm_i210(struct e1000_hw
*hw
)
114 return igb_acquire_swfw_sync_i210(hw
, E1000_SWFW_EEP_SM
);
118 * igb_release_nvm_i210 - Release exclusive access to EEPROM
119 * @hw: pointer to the HW structure
121 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
122 * then release the semaphores acquired.
124 static void igb_release_nvm_i210(struct e1000_hw
*hw
)
126 igb_release_swfw_sync_i210(hw
, E1000_SWFW_EEP_SM
);
130 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
131 * @hw: pointer to the HW structure
132 * @mask: specifies which semaphore to acquire
134 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
135 * will also specify which port we're acquiring the lock for.
137 s32
igb_acquire_swfw_sync_i210(struct e1000_hw
*hw
, u16 mask
)
141 u32 fwmask
= mask
<< 16;
143 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
145 while (i
< timeout
) {
146 if (igb_get_hw_semaphore_i210(hw
)) {
147 ret_val
= -E1000_ERR_SWFW_SYNC
;
151 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
152 if (!(swfw_sync
& (fwmask
| swmask
)))
155 /* Firmware currently using resource (fwmask) */
156 igb_put_hw_semaphore(hw
);
162 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
163 ret_val
= -E1000_ERR_SWFW_SYNC
;
168 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
170 igb_put_hw_semaphore(hw
);
176 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
177 * @hw: pointer to the HW structure
178 * @mask: specifies which semaphore to acquire
180 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
181 * will also specify which port we're releasing the lock for.
183 void igb_release_swfw_sync_i210(struct e1000_hw
*hw
, u16 mask
)
187 while (igb_get_hw_semaphore_i210(hw
))
190 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
192 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
194 igb_put_hw_semaphore(hw
);
198 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
199 * @hw: pointer to the HW structure
200 * @offset: offset of word in the Shadow Ram to read
201 * @words: number of words to read
202 * @data: word read from the Shadow Ram
204 * Reads a 16 bit word from the Shadow Ram using the EERD register.
205 * Uses necessary synchronization semaphores.
207 static s32
igb_read_nvm_srrd_i210(struct e1000_hw
*hw
, u16 offset
, u16 words
,
213 /* We cannot hold synchronization semaphores for too long,
214 * because of forceful takeover procedure. However it is more efficient
215 * to read in bursts than synchronizing access for each word.
217 for (i
= 0; i
< words
; i
+= E1000_EERD_EEWR_MAX_COUNT
) {
218 count
= (words
- i
) / E1000_EERD_EEWR_MAX_COUNT
> 0 ?
219 E1000_EERD_EEWR_MAX_COUNT
: (words
- i
);
220 if (!(hw
->nvm
.ops
.acquire(hw
))) {
221 status
= igb_read_nvm_eerd(hw
, offset
, count
,
223 hw
->nvm
.ops
.release(hw
);
225 status
= E1000_ERR_SWFW_SYNC
;
236 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
237 * @hw: pointer to the HW structure
238 * @offset: offset within the Shadow Ram to be written to
239 * @words: number of words to write
240 * @data: 16 bit word(s) to be written to the Shadow Ram
242 * Writes data to Shadow Ram at offset using EEWR register.
244 * If igb_update_nvm_checksum is not called after this function , the
245 * Shadow Ram will most likely contain an invalid checksum.
247 static s32
igb_write_nvm_srwr(struct e1000_hw
*hw
, u16 offset
, u16 words
,
250 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
252 u32 attempts
= 100000;
255 /* A check for invalid values: offset too large, too many words,
256 * too many words for the offset, and not enough words.
258 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
260 hw_dbg("nvm parameter(s) out of bounds\n");
261 ret_val
= -E1000_ERR_NVM
;
265 for (i
= 0; i
< words
; i
++) {
266 eewr
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
267 (data
[i
] << E1000_NVM_RW_REG_DATA
) |
268 E1000_NVM_RW_REG_START
;
270 wr32(E1000_SRWR
, eewr
);
272 for (k
= 0; k
< attempts
; k
++) {
273 if (E1000_NVM_RW_REG_DONE
&
282 hw_dbg("Shadow RAM write EEWR timed out\n");
292 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
293 * @hw: pointer to the HW structure
294 * @offset: offset within the Shadow RAM to be written to
295 * @words: number of words to write
296 * @data: 16 bit word(s) to be written to the Shadow RAM
298 * Writes data to Shadow RAM at offset using EEWR register.
300 * If e1000_update_nvm_checksum is not called after this function , the
301 * data will not be committed to FLASH and also Shadow RAM will most likely
302 * contain an invalid checksum.
304 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
307 static s32
igb_write_nvm_srwr_i210(struct e1000_hw
*hw
, u16 offset
, u16 words
,
313 /* We cannot hold synchronization semaphores for too long,
314 * because of forceful takeover procedure. However it is more efficient
315 * to write in bursts than synchronizing access for each word.
317 for (i
= 0; i
< words
; i
+= E1000_EERD_EEWR_MAX_COUNT
) {
318 count
= (words
- i
) / E1000_EERD_EEWR_MAX_COUNT
> 0 ?
319 E1000_EERD_EEWR_MAX_COUNT
: (words
- i
);
320 if (!(hw
->nvm
.ops
.acquire(hw
))) {
321 status
= igb_write_nvm_srwr(hw
, offset
, count
,
323 hw
->nvm
.ops
.release(hw
);
325 status
= E1000_ERR_SWFW_SYNC
;
336 * igb_read_invm_word_i210 - Reads OTP
337 * @hw: pointer to the HW structure
338 * @address: the word address (aka eeprom offset) to read
339 * @data: pointer to the data read
341 * Reads 16-bit words from the OTP. Return error when the word is not
344 static s32
igb_read_invm_word_i210(struct e1000_hw
*hw
, u8 address
, u16
*data
)
346 s32 status
= -E1000_ERR_INVM_VALUE_NOT_FOUND
;
349 u8 record_type
, word_address
;
351 for (i
= 0; i
< E1000_INVM_SIZE
; i
++) {
352 invm_dword
= rd32(E1000_INVM_DATA_REG(i
));
353 /* Get record type */
354 record_type
= INVM_DWORD_TO_RECORD_TYPE(invm_dword
);
355 if (record_type
== E1000_INVM_UNINITIALIZED_STRUCTURE
)
357 if (record_type
== E1000_INVM_CSR_AUTOLOAD_STRUCTURE
)
358 i
+= E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS
;
359 if (record_type
== E1000_INVM_RSA_KEY_SHA256_STRUCTURE
)
360 i
+= E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS
;
361 if (record_type
== E1000_INVM_WORD_AUTOLOAD_STRUCTURE
) {
362 word_address
= INVM_DWORD_TO_WORD_ADDRESS(invm_dword
);
363 if (word_address
== address
) {
364 *data
= INVM_DWORD_TO_WORD_DATA(invm_dword
);
365 hw_dbg("Read INVM Word 0x%02x = %x\n",
373 hw_dbg("Requested word 0x%02x not found in OTP\n", address
);
378 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
379 * @hw: pointer to the HW structure
380 * @words: number of words to read
381 * @data: pointer to the data read
383 * Wrapper function to return data formerly found in the NVM.
385 static s32
igb_read_invm_i210(struct e1000_hw
*hw
, u16 offset
,
386 u16 words __always_unused
, u16
*data
)
390 /* Only the MAC addr is required to be present in the iNVM */
393 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, &data
[0]);
394 ret_val
|= igb_read_invm_word_i210(hw
, (u8
)offset
+1,
396 ret_val
|= igb_read_invm_word_i210(hw
, (u8
)offset
+2,
399 hw_dbg("MAC Addr not found in iNVM\n");
401 case NVM_INIT_CTRL_2
:
402 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
404 *data
= NVM_INIT_CTRL_2_DEFAULT_I211
;
408 case NVM_INIT_CTRL_4
:
409 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
411 *data
= NVM_INIT_CTRL_4_DEFAULT_I211
;
416 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
418 *data
= NVM_LED_1_CFG_DEFAULT_I211
;
422 case NVM_LED_0_2_CFG
:
423 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
425 *data
= NVM_LED_0_2_CFG_DEFAULT_I211
;
429 case NVM_ID_LED_SETTINGS
:
430 ret_val
= igb_read_invm_word_i210(hw
, (u8
)offset
, data
);
432 *data
= ID_LED_RESERVED_FFFF
;
437 *data
= hw
->subsystem_device_id
;
440 *data
= hw
->subsystem_vendor_id
;
443 *data
= hw
->device_id
;
446 *data
= hw
->vendor_id
;
449 hw_dbg("NVM word 0x%02x is not mapped.\n", offset
);
450 *data
= NVM_RESERVED_WORD
;
457 * igb_read_invm_version - Reads iNVM version and image type
458 * @hw: pointer to the HW structure
459 * @invm_ver: version structure for the version read
461 * Reads iNVM version and image type.
463 s32
igb_read_invm_version(struct e1000_hw
*hw
,
464 struct e1000_fw_version
*invm_ver
) {
466 u32
*next_record
= NULL
;
469 u32 invm_blocks
= E1000_INVM_SIZE
- (E1000_INVM_ULT_BYTES_SIZE
/
470 E1000_INVM_RECORD_SIZE_IN_BYTES
);
471 u32 buffer
[E1000_INVM_SIZE
];
472 s32 status
= -E1000_ERR_INVM_VALUE_NOT_FOUND
;
475 /* Read iNVM memory */
476 for (i
= 0; i
< E1000_INVM_SIZE
; i
++) {
477 invm_dword
= rd32(E1000_INVM_DATA_REG(i
));
478 buffer
[i
] = invm_dword
;
481 /* Read version number */
482 for (i
= 1; i
< invm_blocks
; i
++) {
483 record
= &buffer
[invm_blocks
- i
];
484 next_record
= &buffer
[invm_blocks
- i
+ 1];
486 /* Check if we have first version location used */
487 if ((i
== 1) && ((*record
& E1000_INVM_VER_FIELD_ONE
) == 0)) {
492 /* Check if we have second version location used */
494 ((*record
& E1000_INVM_VER_FIELD_TWO
) == 0)) {
495 version
= (*record
& E1000_INVM_VER_FIELD_ONE
) >> 3;
499 /* Check if we have odd version location
500 * used and it is the last one used
502 else if ((((*record
& E1000_INVM_VER_FIELD_ONE
) == 0) &&
503 ((*record
& 0x3) == 0)) || (((*record
& 0x3) != 0) &&
505 version
= (*next_record
& E1000_INVM_VER_FIELD_TWO
)
510 /* Check if we have even version location
511 * used and it is the last one used
513 else if (((*record
& E1000_INVM_VER_FIELD_TWO
) == 0) &&
514 ((*record
& 0x3) == 0)) {
515 version
= (*record
& E1000_INVM_VER_FIELD_ONE
) >> 3;
522 invm_ver
->invm_major
= (version
& E1000_INVM_MAJOR_MASK
)
523 >> E1000_INVM_MAJOR_SHIFT
;
524 invm_ver
->invm_minor
= version
& E1000_INVM_MINOR_MASK
;
526 /* Read Image Type */
527 for (i
= 1; i
< invm_blocks
; i
++) {
528 record
= &buffer
[invm_blocks
- i
];
529 next_record
= &buffer
[invm_blocks
- i
+ 1];
531 /* Check if we have image type in first location used */
532 if ((i
== 1) && ((*record
& E1000_INVM_IMGTYPE_FIELD
) == 0)) {
533 invm_ver
->invm_img_type
= 0;
537 /* Check if we have image type in first location used */
538 else if ((((*record
& 0x3) == 0) &&
539 ((*record
& E1000_INVM_IMGTYPE_FIELD
) == 0)) ||
540 ((((*record
& 0x3) != 0) && (i
!= 1)))) {
541 invm_ver
->invm_img_type
=
542 (*next_record
& E1000_INVM_IMGTYPE_FIELD
) >> 23;
551 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
552 * @hw: pointer to the HW structure
554 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
555 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
557 static s32
igb_validate_nvm_checksum_i210(struct e1000_hw
*hw
)
560 s32 (*read_op_ptr
)(struct e1000_hw
*, u16
, u16
, u16
*);
562 if (!(hw
->nvm
.ops
.acquire(hw
))) {
564 /* Replace the read function with semaphore grabbing with
565 * the one that skips this for a while.
566 * We have semaphore taken already here.
568 read_op_ptr
= hw
->nvm
.ops
.read
;
569 hw
->nvm
.ops
.read
= igb_read_nvm_eerd
;
571 status
= igb_validate_nvm_checksum(hw
);
573 /* Revert original read operation. */
574 hw
->nvm
.ops
.read
= read_op_ptr
;
576 hw
->nvm
.ops
.release(hw
);
578 status
= E1000_ERR_SWFW_SYNC
;
585 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
586 * @hw: pointer to the HW structure
588 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
589 * up to the checksum. Then calculates the EEPROM checksum and writes the
590 * value to the EEPROM. Next commit EEPROM data onto the Flash.
592 static s32
igb_update_nvm_checksum_i210(struct e1000_hw
*hw
)
598 /* Read the first word from the EEPROM. If this times out or fails, do
599 * not continue or we could be in for a very long wait while every
602 ret_val
= igb_read_nvm_eerd(hw
, 0, 1, &nvm_data
);
604 hw_dbg("EEPROM read failed\n");
608 if (!(hw
->nvm
.ops
.acquire(hw
))) {
609 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
610 * because we do not want to take the synchronization
611 * semaphores twice here.
614 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
615 ret_val
= igb_read_nvm_eerd(hw
, i
, 1, &nvm_data
);
617 hw
->nvm
.ops
.release(hw
);
618 hw_dbg("NVM Read Error while updating checksum.\n");
621 checksum
+= nvm_data
;
623 checksum
= (u16
) NVM_SUM
- checksum
;
624 ret_val
= igb_write_nvm_srwr(hw
, NVM_CHECKSUM_REG
, 1,
627 hw
->nvm
.ops
.release(hw
);
628 hw_dbg("NVM Write Error while updating checksum.\n");
632 hw
->nvm
.ops
.release(hw
);
634 ret_val
= igb_update_flash_i210(hw
);
636 ret_val
= -E1000_ERR_SWFW_SYNC
;
643 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
644 * @hw: pointer to the HW structure
647 static s32
igb_pool_flash_update_done_i210(struct e1000_hw
*hw
)
649 s32 ret_val
= -E1000_ERR_NVM
;
652 for (i
= 0; i
< E1000_FLUDONE_ATTEMPTS
; i
++) {
653 reg
= rd32(E1000_EECD
);
654 if (reg
& E1000_EECD_FLUDONE_I210
) {
665 * igb_get_flash_presence_i210 - Check if flash device is detected.
666 * @hw: pointer to the HW structure
669 bool igb_get_flash_presence_i210(struct e1000_hw
*hw
)
672 bool ret_val
= false;
674 eec
= rd32(E1000_EECD
);
675 if (eec
& E1000_EECD_FLASH_DETECTED_I210
)
682 * igb_update_flash_i210 - Commit EEPROM to the flash
683 * @hw: pointer to the HW structure
686 static s32
igb_update_flash_i210(struct e1000_hw
*hw
)
691 ret_val
= igb_pool_flash_update_done_i210(hw
);
692 if (ret_val
== -E1000_ERR_NVM
) {
693 hw_dbg("Flash update time out\n");
697 flup
= rd32(E1000_EECD
) | E1000_EECD_FLUPD_I210
;
698 wr32(E1000_EECD
, flup
);
700 ret_val
= igb_pool_flash_update_done_i210(hw
);
702 hw_dbg("Flash update time out\n");
704 hw_dbg("Flash update complete\n");
711 * igb_valid_led_default_i210 - Verify a valid default LED config
712 * @hw: pointer to the HW structure
713 * @data: pointer to the NVM (EEPROM)
715 * Read the EEPROM for the current default LED configuration. If the
716 * LED configuration is not valid, set to a valid LED configuration.
718 s32
igb_valid_led_default_i210(struct e1000_hw
*hw
, u16
*data
)
722 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
724 hw_dbg("NVM Read Error\n");
728 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
) {
729 switch (hw
->phy
.media_type
) {
730 case e1000_media_type_internal_serdes
:
731 *data
= ID_LED_DEFAULT_I210_SERDES
;
733 case e1000_media_type_copper
:
735 *data
= ID_LED_DEFAULT_I210
;
744 * __igb_access_xmdio_reg - Read/write XMDIO register
745 * @hw: pointer to the HW structure
746 * @address: XMDIO address to program
747 * @dev_addr: device address to program
748 * @data: pointer to value to read/write from/to the XMDIO address
749 * @read: boolean flag to indicate read or write
751 static s32
__igb_access_xmdio_reg(struct e1000_hw
*hw
, u16 address
,
752 u8 dev_addr
, u16
*data
, bool read
)
756 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, dev_addr
);
760 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAAD
, address
);
764 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, E1000_MMDAC_FUNC_DATA
|
770 ret_val
= hw
->phy
.ops
.read_reg(hw
, E1000_MMDAAD
, data
);
772 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAAD
, *data
);
776 /* Recalibrate the device back to 0 */
777 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_MMDAC
, 0);
785 * igb_read_xmdio_reg - Read XMDIO register
786 * @hw: pointer to the HW structure
787 * @addr: XMDIO address to program
788 * @dev_addr: device address to program
789 * @data: value to be read from the EMI address
791 s32
igb_read_xmdio_reg(struct e1000_hw
*hw
, u16 addr
, u8 dev_addr
, u16
*data
)
793 return __igb_access_xmdio_reg(hw
, addr
, dev_addr
, data
, true);
797 * igb_write_xmdio_reg - Write XMDIO register
798 * @hw: pointer to the HW structure
799 * @addr: XMDIO address to program
800 * @dev_addr: device address to program
801 * @data: value to be written to the XMDIO address
803 s32
igb_write_xmdio_reg(struct e1000_hw
*hw
, u16 addr
, u8 dev_addr
, u16 data
)
805 return __igb_access_xmdio_reg(hw
, addr
, dev_addr
, &data
, false);
809 * igb_init_nvm_params_i210 - Init NVM func ptrs.
810 * @hw: pointer to the HW structure
812 s32
igb_init_nvm_params_i210(struct e1000_hw
*hw
)
815 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
817 nvm
->ops
.acquire
= igb_acquire_nvm_i210
;
818 nvm
->ops
.release
= igb_release_nvm_i210
;
819 nvm
->ops
.valid_led_default
= igb_valid_led_default_i210
;
821 /* NVM Function Pointers */
822 if (igb_get_flash_presence_i210(hw
)) {
823 hw
->nvm
.type
= e1000_nvm_flash_hw
;
824 nvm
->ops
.read
= igb_read_nvm_srrd_i210
;
825 nvm
->ops
.write
= igb_write_nvm_srwr_i210
;
826 nvm
->ops
.validate
= igb_validate_nvm_checksum_i210
;
827 nvm
->ops
.update
= igb_update_nvm_checksum_i210
;
829 hw
->nvm
.type
= e1000_nvm_invm
;
830 nvm
->ops
.read
= igb_read_invm_i210
;
831 nvm
->ops
.write
= NULL
;
832 nvm
->ops
.validate
= NULL
;
833 nvm
->ops
.update
= NULL
;
839 * igb_pll_workaround_i210
840 * @hw: pointer to the HW structure
842 * Works around an errata in the PLL circuit where it occasionally
843 * provides the wrong clock frequency after power up.
845 s32
igb_pll_workaround_i210(struct e1000_hw
*hw
)
848 u32 wuc
, mdicnfg
, ctrl
, ctrl_ext
, reg_val
;
849 u16 nvm_word
, phy_word
, pci_word
, tmp_nvm
;
852 /* Get and set needed register values */
853 wuc
= rd32(E1000_WUC
);
854 mdicnfg
= rd32(E1000_MDICNFG
);
855 reg_val
= mdicnfg
& ~E1000_MDICNFG_EXT_MDIO
;
856 wr32(E1000_MDICNFG
, reg_val
);
858 /* Get data from NVM, or set default */
859 ret_val
= igb_read_invm_word_i210(hw
, E1000_INVM_AUTOLOAD
,
862 nvm_word
= E1000_INVM_DEFAULT_AL
;
863 tmp_nvm
= nvm_word
| E1000_INVM_PLL_WO_VAL
;
864 igb_write_phy_reg_82580(hw
, I347AT4_PAGE_SELECT
, E1000_PHY_PLL_FREQ_PAGE
);
865 for (i
= 0; i
< E1000_MAX_PLL_TRIES
; i
++) {
866 /* check current state directly from internal PHY */
867 igb_read_phy_reg_82580(hw
, E1000_PHY_PLL_FREQ_REG
, &phy_word
);
868 if ((phy_word
& E1000_PHY_PLL_UNCONF
)
869 != E1000_PHY_PLL_UNCONF
) {
873 ret_val
= -E1000_ERR_PHY
;
875 /* directly reset the internal PHY */
876 ctrl
= rd32(E1000_CTRL
);
877 wr32(E1000_CTRL
, ctrl
|E1000_CTRL_PHY_RST
);
879 ctrl_ext
= rd32(E1000_CTRL_EXT
);
880 ctrl_ext
|= (E1000_CTRL_EXT_PHYPDEN
| E1000_CTRL_EXT_SDLPE
);
881 wr32(E1000_CTRL_EXT
, ctrl_ext
);
884 reg_val
= (E1000_INVM_AUTOLOAD
<< 4) | (tmp_nvm
<< 16);
885 wr32(E1000_EEARBC_I210
, reg_val
);
887 igb_read_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
888 pci_word
|= E1000_PCI_PMCSR_D3
;
889 igb_write_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
890 usleep_range(1000, 2000);
891 pci_word
&= ~E1000_PCI_PMCSR_D3
;
892 igb_write_pci_cfg(hw
, E1000_PCI_PMCSR
, &pci_word
);
893 reg_val
= (E1000_INVM_AUTOLOAD
<< 4) | (nvm_word
<< 16);
894 wr32(E1000_EEARBC_I210
, reg_val
);
896 /* restore WUC register */
897 wr32(E1000_WUC
, wuc
);
899 igb_write_phy_reg_82580(hw
, I347AT4_PAGE_SELECT
, 0);
900 /* restore MDICNFG setting */
901 wr32(E1000_MDICNFG
, mdicnfg
);
906 * igb_get_cfg_done_i210 - Read config done bit
907 * @hw: pointer to the HW structure
909 * Read the management control register for the config done bit for
910 * completion status. NOTE: silicon which is EEPROM-less will fail trying
911 * to read the config done bit, so an error is *ONLY* logged and returns
912 * 0. If we were to return with error, EEPROM-less silicon
913 * would not be able to be reset or change link.
915 s32
igb_get_cfg_done_i210(struct e1000_hw
*hw
)
917 s32 timeout
= PHY_CFG_TIMEOUT
;
918 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
921 if (rd32(E1000_EEMNGCTL_I210
) & mask
)
923 usleep_range(1000, 2000);
927 hw_dbg("MNG configuration cycle has not completed.\n");